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§1. Introduction

In a series of papers ([6]~[10]), the author has developed a theory of
generalized Langevin equations for real continuous-time stationary Gaussian
proccsses with reflection positivity. The time evolution of such a process X
(t) can be described in terms of two kinds of Langevin equations with a
notable difference in character of random forces ([9]): One is the first
KMO-Langevin equation having a white noise as a random force, and it has
a root in his study ([7]) and ([8]) of the [«, 8, y]-Langevin equations.
The other is the second KMO-Langevin equation where a colored noise
named the Kubo noise is taken to be a random force.

With the linear response theory of R. Kubo ([4]) in mind, we estab-
lished in the fluctuation-dissipation theorems based on these Langevin
equations of the two types; our discovery was that the classical Einstein
relation for Ornstein-Uhlenbeck processes holds for the second type, but does
not hold for the first one. In addition, we calculated the deviation from the
classical Einstein relation. As a concrete example in physics, we discussed
the Stokes-Boussinesque-Langevin equation with the Alder-Wainwright
effect within our framework of the theory of KMO-Langevin equations
possessing reflection positivity.

The purpose of the present and subsequent papers is to establish the
discrete analogues of the results mentioned above for the first and second
KMO-Langevin equations. Further development of these results will be
discussed in the author’s forthcomming third paper, with the same title. In
contrast to the continuous-time case, we will find that the Einstein relation
for discrete-time series X (#) always deviates from the classical one in the
Markovian case, not only for the first type (see § 7 of the present (1)), but
also for the second one (see § 6 of (II)). In the third paper ([12]), we will
discuss an entropy criterion and present an answer to the basic question in
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the problem of modelling such as: “ Which noise, white or Kubo, should be
taken to be a random force in the equation with given coefficients (e, B, v)
called the KMO-Langevin data?”. It should be noted that a variety of
covariance functions arising from the theory of ARMA processes (1D and
of one-dimensional transformations ([5]) are all realized as those of real
discrete-time stationary Gaussian processes with reflection positivity. And
so they enter into the present framework of the theory of KMO-Langevin
equations.

Now we will state the content of this paper. Let X=(X (n); n=Z) be

a real stationary Gaussian process with mean zero and covariance function
R:

1.1 Rm)=EX#n)XW0) @xreZ).

In § 2 we will briefly recall the spectral theory of X. In particular, for
the Hardy spectral density 4 of X such that log 4€L'(—z, 7)), we define
the outer function % of X on U,(0)={z€(C; |z|<1} by

6

(1.2) h(z)=exp(11;/:: e

eiﬁ

2 log 4(6)d8).

In a similar manner to the continuous-time case discussed in [6], we will
in § 3 define the reflection positivity of X, which can be characterized by the
condition : there exists a bounded Borel measure ¢ on [—1,1] such that

1.3 R=[ "o (eD).

The following conditions are assumed in what follows :
1.9 o({—-1,1p=0

as [ (1—}5+1i—t)a<dt><oo.

From these conditions it follows that
(1.6) Re!N(2).

Section 4 is devoted to the study of the structure of the outer function %
as well as of the canonical representation kernel E =4, which will play an

important role in this paper. By using the result for the continuous-time
case obtained in [9], we have

THEOREM 4.1.  There exists a unique triple (ay, Bi, p,) such that
(1) a/1>0 and ﬁ1>0
(ii) pn s a bounded Borvel measure on [—1,1] with p,({—1,1})=0
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(iii) for any z€ U,(0)
1
h(z)=
‘/2_7; B(l+z2)+1—z+Q— zz)f

We call the triple (ai, 8, p,) in [Theorem 4.1 the first KMO-Langevin
data associated with ¢(or R). Another triple (a1, 81, 1) is also called by
the same name, where y, is a function on Z defined by

Pl(df)

A1 n=pe(@=e [ )
More explicitly,
0 ~ for ne{-1, —2,...}
1
18 pon=) [ for n{0, 1)

ﬁt”‘z(tz—Dpl(dt) for n€{2,3, ...},

which implies that
1.9 ne ' (Z).

It will be found in § 5 that the correspondence between ¢ and (a1,8:, p1) is
bijective (Theorem5.1). Furthermore we will obtain an explicit formula of
the triple (ai, Bi, y1) in terms of ¢ ((Lheorem 5. 2).

By using Theorem 4.1, we will in §6 derive a stochastic difference
equation with a white noise as its random force describing the time evolution
of X.

THEOREM 6. 1.
1.10) Xm—-Xn—-D=—X ) +Xn—1)— (X)) +adn)
as. (meZ),
where E=(&En) ; nEZ) is a real Gaussian white noise.

This equation (1.10) is nothing but the first KMO-Langevin equation
we are looking for in the discrete-time case. Conversely, we will show that
the first KMO-Langevin equation can be uniquely solved for any given triple
(a1, B, ;) with conditions (i) and (ii) in[Theorem 4.1 and a real Gaus-
sian white noise & ((Theorem 6. 2).

Fundamental examples of X are given by the Markov processes Xp,
—1<p<1, with covariance functions R,:

1.1 Ry(m)=p"™ (neZ).
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It then follows that the outer function %, of X, becomes

hp(2) =t V11" (zEU.(0) .

27 1—pz
By rewriting it in the form ((iii) in [Iheorem 4. 1, we have
1

(1.12) ]’lp(Z) x/_ ﬁ(l)(1+z>+1—2 ’

where

Do /1D n_1—p
(1.13) aiP=2 155 and S 1+p°

Therefore, we find from [Theorem 6.1 that the time evolution of X, is
governed by

(1.1 X —Xn—D=—BP(Xpo(m)+Xp(n—1)+aP Xo(n)
a.s. meZz).

We note that X, is a white noise.

Concerning a discrete analogue of the generalized fluctuation-dissipation
theorem for the continuous-time case discussed in [10], we will in § 7 show

THEOREM 7. 1.
(i) For any 6€(—=, )
1 hie™)
Bil+eD)+1—e®+22m(6) 2 lim h(e™)

Tl —=m

2
(i) S-=R0)Capn,

where
(1.15) Cpl,ylzn(fnlﬁ1(1+ei")+1—ei0+27r“71(6’)|‘2a’0)‘1

<111> D*2<2ﬂ>2,

where
RTINS O z 2
(1.16)  D=lim 5B X X(m)?.

R<O) Cﬂl, 71
2B 2P

Cl,n_ . 1+l‘
(v) —Zﬂﬁ—l R(O)./f o (dpm(du).

(iv) D=
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By taking account of the physical meaning of the generalized
fluctuation-dissipation theorem for the continuous-time case given in [10],
we call the relations (i), (ii) and [(iv) in [Theorem 7.1 the generalized
first fluctuation-dissipation theorem, the generalized second fluctuation-
dissipation theorem and the generalized Einstein relation, respectively.
And we call the constants Cg,, 5, in (1.15) and D in (1.16) the generalized
friction coefficient and the diffusion constant of X, respectively. We note
that this D is also expressed in terms of R :

1D D=3 Rm—EL,

In particular, the diffusion constant D, of X, is given by

(1.18) D,= f;ﬁ? (= 2<11+_pp> ) (peE(—1,1).
This expression is the classical Einstein relation. And so we conclude from
the generalized Einstein relation [(iv) in [Theorem 7.1 that there occures a
deviation from the classical Einstein relation (1.18) in general non-
Markovian cases. Such a deviation can be calculated explicitly by the
formula (v) in [Theorem 7. 1.

The author would like to thank the referees for their valuable and
constructive advices.

§ 2. Preliminaries

Let X=(Xn); n=Z) be a real stationary Gaussian process with

discrete time on a probability space (Q,.#, P) and let R be its covariance
function :

2.1 Rn)=EXn)XW0)) neZ).

We assume that the spectral measure of X has a spectral density 4=/4(8)
such that

2.2 log A= L' ((—=n, n)),
2.3) R<n>=[:e—mw<0>da.

Then we can define an outer function % of 4 by

2.0 h(z)zexp{jn f elz+zlog A4(6) db)

for ze U, (0)={z&C; |z|<1}. Such a function % has the following prop-
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erties ([2]) :

(2.5 Sup /::|h(re“’)|2d0<00;

(2.6) h(e”)ZITigll h(re™) exists a.e.0c(—n, n);
Q2.1 |h(e®|*=400) a.e 0s(—n n);
(2.8) 171{1;1 h(re*)=h(e™) in L*((—n, n)).

Next we define a function £ on Z by
.9  Em=hm=[ e™h(e*)ds.

[t then follows from the above properties of % that

(2.10) E<€!*(2),
2.1 Emn=0 n=-1,-2,-3, ...,
(2.12) lim E(n)=0, and

n—oo
1

=~ S\ E(nl+mEm) (2.

(2.13)  R(w=5- 3

As is well known ([3]), there exists a normalized Gaussian white noise
g=(&n) ; neZ) such that

@10 X=—r= X E—mEm)  in L*0 5 P).
(2.15) o X(m); m<n)=c(&E(m); m<n) (ne2).

By taking account of what have been obtained so far, the function E is said
to be a canonical representation kernel of X.

§ 3. Reflection positivity

Let X=(X(n); n=Z) be a real stationary Gaussian process on(Q, .%,
P) with covariance function R. We denote by M (resp. M*) the closed
linear hull of (X (n); neZ} (resp. {X (%) ; n>0}) in L%(Q, %, P) and by
Py the orthogonal projection on M*. The time reflection operator T is a
unitary and self-adjoint operator on M defined by

TXm))=X(—n) neZ).
As in the continuous-time case ([6]), we say that X has reflection positivity
(T-positivity) if and only if Py,.TP,. is non-negative.

In the sequel, we assume that X has reflection positivity. By taking the
same consideration as § 2 in [6], we see that there exists a unique Borel
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measure ¢ on [—1,1] such that
B.D  Rmw=[_ Med) (e
(-1,1]

ExampLE 3.1 For each pe(—1,1) consider a non-negative definite
function R, corresponding to the case o=4dj,, i.e.,

(32) Rp(n)=p'”'.
Then the spectral density 4, of R, is given by

3.3 4O =g Tler G-z D).

We now impose the additional assumption on the measure ¢ in (3.1):
3.4 c({—1,1}H=0.

Then it immediately follows that the spectral measure of R has the density
4 of the form

1 [ 1-p B
3.5 A= [ Gmetdd Bz,
By using a homeomorphism ¢ from (—1,1] onto [0, c0):

we define a bounded Borel measure o, on [0, o) by

3.7 o.=@(0).
A direct calculation yields that

3.8 deanH=E [T oloaay  cer),

which leads us to consider

3.9 4=+ [giroan.

Since ¢.({0})=0, it follows from Lemma 2.12 in that 4. is a Hardy
weight, that is,

(3.10) “’—fi%ez)cm.

And so we can define an outer function /4. of 4. on C* by
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(.11 he(§) =expf =

27zz

Noting that

r B |logd(2 tan™'&)
[ hogacorlas=2 [, 08254,

we see from (3.8), (3.9) and (3.10) that the spectral density 4 of R
satisfies condition (2.2). By a direct calculation, the outer function % of 4
can be rewritten into the form

<312> h(Z) eXp{ 1+A.§ 10gd(2 tan'I/U d/l},

27rz R A—¢ 1+ A2
— 11—z +
where z& U,(0) and &= 1+ZEC .

Since for any £ C*

1+8€ 1log(2/1+&% f
eXp{Zm R &E—C 1+¢&° d&}= —i§’

it follows from (3.8), (3.9), (3.11) and (3.12) that

Iemma 3. 1.

(i) h@=7En(A7E)  eUO)

(i) he(§)= CC W(iy)  ceo.

Furthermore, immediately from (3.7), we obtain

LemMma 3. 2.

(i) [ HElean=["1"0an

(i) [ 1+t0‘(dt) f Lo (dd).

§4. OQOuther function h and canonical representation kernel E

Let X=(X(n); nEZ) be a real stationary Gaussian process on(Q, .%,
P) satisfying reflection positivity. It then follows that the covariance func-
tion R of X has such a representation as (3.1) with a bounded Borel
measure o on [—1,1]. In the sequel, we assume the following conditions :

(4.1 c({—1,1D=0
(4.2) 11< - it>0'(dl‘><00.

1+t 1
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At first we will show the following structure theorem for the outer
function 2 of X, which will be the key to derive a description of the time
evolution of X in § 6.

THEOREM 4.1.  There exists a unique triple (ay, By, p1) such that

(1) ar>0 and >0
(ii) p1 @5 a bounded Borvel measure on [—1,1] with p,({—1,1})=0
(ii1)  for any ze U,(0)

1

h(z)=
J_n pi(l+2)+1—2+0— zz)_/

Pl(df)

Proor.  Since it follows from Lemma 3.2 and condition (4.2) that
/O‘w (A7'+2A)0.(dA) <oco, we can apply Theorem 2.2 in [9] to see that
there exists a unique triple (a., B, p.) such that

(4.3) a.>0 and B.>0
(4.4) pc is a Borel measure on [0, co) satisfying

peC{0D=0 and [ —pe(dl)<oo

1

(4.5) he(§)= for any €€ C™.
‘/2—” ﬁ—2§'~2§f p- é./Jc(a’/l)

Then we define a triple (ay, 8, p1) by
(4.6) alzﬁafc
(4 . 7) ﬁlzﬂc

(4.8) m(dt)—”"‘

(@~ pc) (dt).

In particular, we have

4.9 ad-11D=[ Tireclan).

Therefore, we find that the triple (ay, 61, p1) satisfies (i) and (ii) in
Theorem 4.1. Furthermore, it follows from (i) and (4.5)
that for any ze U, (0)

h(z)= V2 :

1+z ﬂ; 1 z °°< 1——2)“ .
Pet 1+z 1-I-z£ A 1+z pe(dd)
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On the other hand, by the definition of ¢,

[ (eazz) o= [ (Gieaes) @@

=a+2 [ 12 e,

Therefore, we find from (4.6), (4.7) and (4.8) that the triple (ai, B, p1)
satisfies relation [(iii) in [[heorem 4. 1.
The uniqueness of such a triple (ay, 1, p1) can be proved as follows:

since 0< (1+f>_%¢_x> <2 for any ¢, x&(—1,1), we see that

. %4

and

a,

which determine uniquely the pair (a;, 8,). Furthermore, since

/l#p (ahH =+ fl—l—p (d(s—1)) for any x&(0, 1)
- 14 ™ x Jo 1—x ' d T

+s
X

it follows from the uniqueness of Stieltjes transform that the measure p, is
uniquely determined. (Q.E.D.)

Next we will show the following expression of %, closely related to the
one established in [Theorem 4. 1.

THEOREM 4.2.  There exists a unique Borel measure v on [—1,1] such
that

(i) v({—=1,1H=0 and v([-1,1]) <
(i) /1 (1—£E+—1—Jlr—t>v(dt) <o
i) h(z'):?l; [11—_17:/(6#) for any 2 U, (0).

Proor. By Theorem 2.1 and (2.19) in [9], we see that there exists a
unique Borel measure v. on [0, o) such that

(4.12)  v({0)=0 and v.([0,00]) <00
(4.13) f A-p(dL) <oo
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4.14)  h(&= Z”f /1 vc(dzl) for any E= C™.

Then we define a Borel measure v on [—1,1] by

(4.15) u<df>—1—}‘<qo-lvc><dt>.

Since

L7 awtan= [ o) 1o o @

_[f

it follows from (4.12), (4.13) and (4.15) that the measure v satisfies ( i )
and(ii) in [Theorem 4.2, Furthermore, we see from (i) and
(4.14) that for any ze U, (0)
[ 1 oo < 1 > 1
WO=777 57 Jy (A 13z) wl@o

_ W2 1 1(1 1Z> »
=Ttz 20 L, (rt1es) (orwian

_ 1 /M1 1+t
5 L1 g e,

v(dt)

which, together with (4.15), yields [(iii) in [Theorem 4.2. The uniqueness
of a Borel measure v satisfying (i), (ii) and can be proved by using
the uniqueness of Stieltjes transform. (Q.E.D)

By taking a boundary value of the outer function %, we can rephrase
Theorems and (. 2 as follows.

CorROLLARY 4.1.  For almost all 6 (—n, n),

(i) h(e®)=—2 1
2T 5 e 41— e+ (] e2“’>/ — twplcdn

(i) ke =5 [ —Lgvian.

As a consequence of the above expression (ii) of %, we can obtain an
expression of the canonical representation kernel E in (2.9), which says
that £(n), n>0, is nothing but the moment sequence of the measure v.

THEOREM 4. 3.

E(n)=x0,0)(2) _/: t"v(dt) for any n=Z.
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Proor. By [Theorem 4.2 (ii) and [Corollary 4.1 (ii), the following
series

he®) =g 3 e[ thucdr)

is absolutely convergent (a.e.). Therefore, by (2.9), we have the asser-

tion. (Q.E.D.)
Concerning a relation between the measures ¢ in (3.1) and v in Theo-
rem 4. 2, we will show

THEOREM 4. 4.

(416 o(d) =5 f

v(a’s))V(dt)

Proor. By [Theorem 4. 3, for any nE{O 1,2, ...},

SEw+mEm=[ ([ +Lov@vian.
Therefore, by (2.14) and (3.1), we have [Theorem 4. 4. (Q.E.D.)

REMARK 4.1. By Lemma 2.6 (i) in [9], the measure o, in (3.7) is
related to the measure v, in (4.12) as follows:

41D old =5 ([ rn@)wlab),

In view of (3.7) and (4.15), it turns out that this equality is equivalent to
(4.16).

ExampLE 4.1. For each fixed pe(—1,1), consider the non-neagtive
definite function R, in (3.2). Then we see that the outer function %, and the
canonical representation kernel £, become

(4.18)  hp(z)= y1=p’

=2 (2€ ()
(4.19  Er(n) = X0,0 )V 2x(1—p*) p" (neZz).
Furthermore we observe that
_ 1 1—p 1
1+1)

which implies that the triple (&', 8%, p%) in [Theorem 4. 1 associated with
R, becomes
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2 ap=2,/17L, pP=17L and p=0.

ExaMPLE 4.2. Let R be the non-negative definite function given by
(4.22) Rm=ap"+op  (n€Z),
where o0y, 0,>0 and —1<p, <p,<1. Put

(4.23) a=0(1=pDp.+0:A—pHh
(4.2 @=0(A—pDA+pD) +0:A—p3 A+pD).

By a direct calculation, we can conclude that the outer function %, the triple
(a1, B, p1) and the measure v associated with this R are given as follows:

(i) Thecase &;,=0(—1<p<0<p,<1):

1
(425) h<2> Zﬁ' (1 171Z>(1 p22> (ZE(UI(O))
(o 2Jas
T A4+p0 A+
| _A=p0A=p)
S e DIEESS
2p1p2
D= Ay ()
4.27) p.227ra2{< D) Sipy+ D202}
The case a,#0:
1—qz
(428) h(Z) 2” <1 p12><1_p22> (ZEUI<O>>
_ Zﬁ(l‘f‘%)
A+ A+ )

_Ata)A—p)A—p)
29 A== T (55

2(qi—=p0) (P —q)
P == g5 @ o (4 e (D

(4.30) Vz’”l (@ =1 0ip+ (Dr— 0 Siom),

where

(4.3D) mz%(“z (%)2—4)#a1>0

Qi (+) (<)

_4
(4.32) rl—ql )
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We note that p, <q, <p, and q1>0 if al(>)0
<

§ 5. The first KMO-Langevin data

This section is devoted to the further study of the key expression of % in
Theorem 4. 1. In order to investigate the correspondence between ¢ in (3. 1)
and (a, B, p1) in [Theorem 4.1, we introduce two classes 3, and &, by

5. 21={o; o is a bounded Borel measure on [—1,1] such that

o({=1,1p=0and [ <1+t - ) (dt) <o)

and

(5.2) Z={(a,B,p); a>0, >0 and p is a bounded Borel measure on
[—1,1] such that p({—1,1)=10}.

For each oc€2,, we denote by R;, 4, and %, the non-negative definite
function, the spectral density and the outer function associated with o,
respectively :

Ro(n)= f 7o (dt) (neZ)
1 1 1—¢2
6.3 {d0=5 [ Tlmetan (0 (~m, o)
ho’(Z)ZGXp{417[ [: el +Zlog dA:(6)do} (z€ U (0)).

THEOREM 5. 1.  There exists a bijective mapping L, from 3, onto &, such
that for any o2, and (ay, B, p)=L,(6)E3,
1

(5.4) ]’ld(Z)“
2x AQ+D+H -2+ A [ 2

(ze U (0)).

Pl(dl‘)

Proor. By [Theorem 4. 1, we have an injective mapping L, from 3, into
<, satisfying relation (5.4) and so we have only to show that L, is sur-
jective. Let (ai, B, 0) be any element of %,. We define a new triple (a.,
Be, pc) by

(5.5) a. f =4 and pc:¢<1_5 - p1>.

By noting (4.9), we see from Theorem 3.1 in that there exists a unique
bounded Borel measure o. on [0, ) such taht
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5.6) o({0)=0 and [" (A+211) 6. (dh) < oo
1

‘/— ﬁc—ZC—Zé'f

where /. is the outer function of the Hardy weight 4. of the form

6.7 k(D=

(gec,

pc(d/U

5.8  A@=1 [ gippold) GER).

We then define a bounded Borel measure ¢ on [—1,1] by
(5.9 GZQD_I(Gc)-

By Lemma 3.2, (5.6) and (5.9), we see that ¢€2,. Furthermore, it fol-
lows from (i) and (3.12) that

2 1=z
ho(2) = 1+th<z 1+z> e U, (0) .

By combining this with (5.7) and then noting (5.5), we conclude that
Li(o)=C(ar, B, pv). Q.E.D.)

For each bounded Borel measure p on [—1,1] with p({—1,1})=0, we
define a function y on Z by

(5.10)  y=5-((1- e21>f L p ()",

We note that y is well-defined, because

(5.1 |(1+el"’)§el ew)|<z for any te(—1,1) and 8€ (—z, 7).

Some properties of y are listed as
ProposSITION 5. 1.
0 ' for ne{—1, —=2,...}
iy o=l [ tetan for n€0,1)
[ @r—tmpdd  for n=23,.)
(i) yel(Z)
GiD) 3y (=0
(V) (=D m=0.
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Proor. By the definition of y, we have

ind _ei20
ym=5 [ ([T e apan (e,

Hence (i) follows from the simiple fact that for any te(—1, 1)

. . 0 for ne{—1, —2,...)
/_‘ e " 1_219 df=:2nt" for n={0, 1}
22(t"—1t""%) for ne{2,3,...}.

Since
SBlvwl< [ Gl Ha-maan=[" a+ltea <oo,

we have (ii). By (ii), we can take the inverse Fourier transform of
(5.10) to get

27y (6)=(1— ez”’)/ = lgp(a't) for any € (—=, 7).

By taking §=0 and §= —x in the above expression, we have and [(iv),
respectively. (Q.E.D)

DEFINITION 5.2.  For each o3, we call a triple (a;, 81, o) (=L, (0))
or (ay, B, y1) the first KMO-Langevin data associated with ¢ or R;.

We will give a formula concerning the first KMO-Langevin data
(a1, B1, y1) associated with a fixed o (€3,).

THEOREM 5. 2.

(i) alzz\//ll

0 a=/( Ao [ 1
i) 10D =g tery) W= B+ D= (Bi-Dds (€2,

¢ o(dt)

i o(dt))™!

Proor. By noting (4.10), we see from (2.6), (2.7) and (3.5) that

=(2V22)lim| ko (1)
=(2y27)*4(—7)

_ V1t
=4 ,/—'1 1+¢ oldl),
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which implies (i). Similarly, by noting (4.11), we have
=4(— ﬂ)(d(O))“
! 1+¢ -1
Lot 1 Lotany-

which implies (ii). By [Corollary 4.1 (i), for a.e. & (—=, n),

. 1
(1—¢e*%) ]:1 %MPI(C#)

By taking Fourier transform of both hand sides, we have [iii). (Q.E.D.)
REmArRk 5.1. We see from (2.4), (3.5) and (4.2) that

T

(1) el [ Lt log (de(0)Ddb) (2 Ui(0))

there exist positive constants ¢, and ¢, such that
a<ds(0)<c, for any 0= (—=x, n)

1i1) %1?‘— is the outer function of the Hardy density 45'.

§6. The first KMO-Langevin equation

Returning to § 4, we will derive a stochastic difference equation describ-
ing the time evolution of a real stationary Gaussian process X =(X (n) ; n€
Z) on a probability space (Q, %, P,); the covariance function R takes the
form (3.1) with some bounded Borel measure c<3,.

Let the triple (ai, 81, 1) be the first KMO-Langevin data associated
with ¢. By using the normalized Gaussian white noise é=(&(n) ; nE€Z) 1n
(2.14), we will show

THEOREM 6. 1.

6.1 X)) —Xn—D=—BX0)+Xn-1))—(y*X)(n)+a&(n)
as. mez).

Proor By Theorems 4.2 (ii) and 4.3, we have
(6.2) Eci'(Z).

Furthermore, by noting [Proposition 5.1 (ii), we see from (2.14) that the
following two random series are absolutely convergent (a.s.): for any n€Z

(6.3) Xn)—Xn—D+/(Xw)+Xn—1))
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— 1 mgm{E(n—m)—E(n-—l—m)-l—ﬁl(E(n—m)

J2n
+Em—m—1)}&(m)
6.9 XOW= 3 yiln—DXD)

=—00

—L 3 (Entn-DEC-m)Em.

On the other hand, it follows from (2.9), (5.10), [Proposition 5.1 (ii) and
(6.2) that for any n, meZ

(6.5) En—m—En—1-m)+p(E(n—m+En—m—1))
:[: e—i(n—m)o{l_ei0+ﬁ1<1+ei0>}h<eie>da

6.6 3 (- DEU—m)
:[: e—i(n—m)e(l_eh‘e)'[i T:%éﬁpl(dt)h(eie) de

Therefore, by substituting (6.5) and (6.6) into (6.3) and (6.4), respec-
tively, we conclude from [Corollary 4.1 (i) that for any n=Z

X)) —Xn—D+/XW+Xn—1)+ (X))

=—1— S i —in-mye %1 ‘
Vo7 nal)r € To=d)§(m)
=a&(n) as,
which completes the proof of [Theorem 6. 1l. (Q.E.D)

DerINITION 6.1.  We call the stochastic difference equation (6.1) the
first KMO-Langevin equation associated with X.
As the converse of [Theorem 6. 1, we will show

THEOREM 6.2.  For each triple (ay, By, p)E & and each normalized
Gaussian white noise E=(&E(n); n€Z) on a probability space (Q, .F, P),
there exists a unique real stationary Gaussian process X=X (n);: neZ) on
Q, F P) with veflection positivity such that X satisfies the first KMO-
Langevin equation (6.1) ; the covariance function of this X coincides with
Ry, o=L7'((a1, B, p)).

Proor By [Theorem 5. 1, we get a bounded Borel measure c=L7'((a,
Bi, p1)) 1In %) such that the outer function %, associated with o takes the form
(5.4). Choose an [2(Z)-function E =/, as a canonical representation ker-
nel to define a real stationary Gaussian process X=(X ) ; n€Z):
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X=(2D™ B Ei—mEm).

Then it follows from [Iheorem 6. 1 that this X is our desired process.

To prove the uniqueness of such a process X, let Y=(Y (»n) ; nEZ) be
another real stationary Gaussian process on ({, .#, P) satisfying the same
equation (6.1). Fix any m&Z. By multiplying both hand sides of equa-
tion (6.1) by (hs(+)e ™ )~(n) and then summing up with respect to n, we
can observe from (2.10), [Corollary 4.1, (5.10), [Proposition 5.1 (ii) and
(6.2) that

Y(m)=(2m)" 3 E(m—mE&mn),

which implies Y = X. (Q.E.D.)

ExampLE 6.1. Let X,=(X,(n); n&EZ) be a real stationary Gaussian
process with the covariance function R, given in (3.2) (p&(—1,1)). We
note that each X, has the simple Markov property, and in particular X,
represents a normalized Gaussian white noise & The first KMO-Langevin
equation of X, takes the simplest from

6.13) Xp(n)—Xp(n—1)=—BP(Xp(n)+X,(n—1)) +ap&(n)
as. (ne?z),

where the pair (&, %) was given by (4.21). In case p=0, the above
form (6.13) for the white noise & becomes trivial :

6.14) &éEn)—&én—-1)=—(EMN)+&EMnN—1))+2&(n) as. (neZ).

ExampLE 6.2. Let X=(X(n); n&Z) be a real stationary Gaussian
process with the covariance function R of the form (4.22). It follows from
Proposition 5.1 (i) that

0 for ne{-1, —2, ...}
(6.15) nm)=1poqt for n={0, 1}

poq (@2 —1) for ne{2,3, ...},
where

Po= =gy A+pyA+p)

We note that (i) in Example 4. 2 is a special case ¢, =0 of (ii) in Example
4.2. Therefore, we see from [Theorem 6.1 that X satisfies the following
KMO-Langevin equation :
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6.1 X —Xn—D=-—pXmW+Xn—1)—(y*X)(n)+ar&(n)
as. (me2),

where the pair (ay, 8;) was given by (4.26) or (4.29). It deserves men-
tion that the second term on the right hand side of equation (6.17) depends
upon the whole past of X in case ¢, #0, i.e. a;#0.

§ 7. Generalized fluctuation-dissipation theorems

In this final section we will prove a couple of relations between our
objects-the first KMO-Langevin data (ay, 81, 1) € %, the outer function %
of X and other important quantities. The physical meaning of these rela-
tions will be explained in detail later (see Remarks 7.2~7.4).

Let (ai, B, m) be any element of &, and §=(&(n); nEZ) be a nor-
malized Gaussian white noise. By [Theorem 6.2, we obtain a real stationary
Gaussian process X=(X(n); n=Z) as the unique solution of the first
KMO-Langevin equation :

(7.D X)) —Xn—D==p(XW+Xn—-1))—(n+X)(n)+a&n)
as. (nez),

where v, is given by (5.10). This process has the covariance function R =
R,€l'(Z), with o=Li'((a1, B, p1)).
We will begin with

Lemma 7.1.  The following limit exists :

(7.2)  D=lim ZNE((Z Xm)H= Z R(n )_R(O)

Proor. For any NeZ,

E(Z X())=W+DR®+23 (3 R(n—m))
—(N+DRO+2% (% R(D).

Therefore, we have the assertion, noting that R</'(Z).

(Q.E.D)
DerINITION 7.1. In view of the definition of diffusion constant for the
continuous-time case (cf. (2.30) in [10]), the above limit D is called the

diffusion constant of the procese X.
As a discrete analogue of Theorem 2.1 in [10], we will show

THEOREM 7. 1.
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(i) For any 6€(—n, )
1 he™)
Li(l+e®)+1—e“+2723(6) 211mh(e”)

(ii) —%L:R(O)Cpl,n,

where

(7.3) C/;l,y,:n(fjﬁl(l-i-e“)+1—ei6+27r3‘/1(¢9)|‘2d0)‘1.
b= 2(2ﬁ)2

: _R<0) Cﬂl,h
D="3s Z

C L 1+t
v G R((D / f ICOIICD)

Proor. By noting (5.11), we see from Corollary 4. 1 that

(7.4) 211m h(e®)=—=— JZ_n

Therefore, (i) follows from [Corollary 4.1 (i), (5.10) and Proposition 5.
1 Cii).

By using Corollary 4.1 (i), (5.10) and [Proposition 5.1 (ii) again,
we see from (2.7) that

2 ~
A =7HBA+e") +1—e"+2mn(OF  ae §S(—m, ).

By integrating both hand sides with respect to 4, we have (ii).
We now compute the diffusion constant D. By (3.1) and (3.7), we
have

1.5 ZRmw=[ e

L1 17l
7.6 [ rean=4 [T a+Pedan
7.7 RO)=0:([0,0)).
Hence, appealing to the result in [10], Theorem 2.1 (iii), we get

p=t([" a+Daan - a0 oh)=1 [ Lacan)

af ot

Y Y




336 Y. Okabe

which completes the proof of (Gii). is an immediate consequence of
and [(fii).

Now, we proceed to the proof of (v). We first claim

(7.8)  E(0)——2Te

1+ 6+ %0
1.9 Ew=175E0 7L SEm -5 2 e EXm)

(n=1).
By Theorems 4. 2 and 4.3, we have

7100 5= ZEW=hz) (2 UO).

In particular,
E0)=2nh(2)|:=0.

Therefore, by taking z=0 (resp. #=0) in [Theorem 4.1 (resp.
5.1 (1)), we get (7.8). Furthermore, by using [Theorem 4.1 again, we
see from (7.10) that for any nEN

En)—En—-1D==REW+EmR—1))—(n+E)n)

and so

E(w)—E®=3 (E(m)—E(m—D)
=—BEO+Em+2 & Em)— 3 (neE)(m),

which implies (7.9).
Next we prove the key formula

@1 2RO=(1+ 29 )EW F B 5 R
2 &

By substituting (7.8) and (7.9) into (2.13), we have

22R(0)=EO +1- 8 E@) FEm - 5 (S EU)EM)

1+ﬁ 1+8 i
1

On the other hand, we see from (2.11), (2.13) and (6.2) that
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[~

L (X EU+m)ED

$ (8 EDEm

ﬁMg |IM8

Em+DE(D)—EWOE(m+1))

gMS B

C
273 Rim)—EW) 3} E(m),

and

(y*E)UD)E(n)

Ms
M=

(

S
Il

—
—

(Z‘. EU+m)EU—k) (k)

I |
Ms iMs
M8 uMS ||M8 =

3
li
o

(k){E E(l+m)E(I—k)—EmE(—k)}

3
l
©

(Z Rm~+k)n(k)— 71(0>E(0)Z‘. E(m).

|
N

m

And so

22R(0) = E(0)?+ } +§1E<0> S E(n)

~B @n B ROD-E© 3 EOm)

1+ﬁ1{2”,§ <2 R(m+ k) y(k)—n(0)EO) 2 E(m)}

—EO*+EWO 3 E@H{fg EO 3 E(m)

475ﬂ1 -
144 nzl R(n ﬁl m=0 <k§0 R(m+k)v(k)),

which implies (7.11).
We are now ready to show

C L7 1 — 1 S
(7.12) —2"/3,1 1=500) > =

o

Rm+k)n(k)),

which is proved in the following manner.
By (7.10),

20 Enw)=2x 1)}1311 h(x).

And so by (4.11)

- _x/?;al
(7.13) Z.OE(n)— 26
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Combining this with (7.8), we have

(1+ 2950 § E=772

1+ 6 BLi(1+6) -
On the other hand, by Lemma 7.1 and [Theorem 7.1 [(iii),
> _af R
2 Rw=ggr—"2"".
Therefore, by combining these with (7.11), we see that
T A N _RW)
RO =58y 1+A\88T 2
1

BEEY ”i‘.o (20 Rm+E)yn(k))

and so

00

RO)=12=3 (2 ROnt&nk),

4ﬂ

which, together with [Theorem 7.1 (ii), implies (7.12).
Next we claim

1+t

110 3 (F Rm+omt)= [ [ atanman.

By (3.1) and [Proposition 5.1 (i),
the left hand side of (7.14)

(3 ROm+ ) n (R

—

Ms ||M8

||M8 h

" @) k)

t
f 45
EPRAGTL: "W

—f {a- 2)/ Pl<dw1o<dt>’

which implies (7.14). Thus, we conclude from (7.12) and (7.14) that
(v) holds. (Q.E.D.

Before we go into the explanation of the physical meaning of
7.1, we will consider the simplest

- O

i
S T 1

ExampLE 7.1. Let X, be the same stochastic process as in Example 6.
1, and D, be the diffusion constant of X,. By (3.2) and Lemma 7.1,

(7.15) R,(0)=1
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By combining these with (4.21), we see that

719 @V R0y

0
RY

1
289"

which, together with [Theorem 7.1 (ii) or [Theorem 7.1 [(iv)], imply
(7.21)  Cap yo="Cap ¢=28P.

In addition, we see from (3.2), (4.19) and (4.21) that a remarkable rela-
tion between R, and E, holds:

(7.200 D,=

1+8%
J_ (1)

We will return to the general case and give some characterization of the
simple Markovian property. As a discrete analogue of Theorem 2.2 in [10],
we can see from [Iheorem 7. 1l that

THEOREM 7. 2.

(7.22) Row)=—F=—mEs(n) (n=0).

: Cﬁ'l 71
(i) 26 >1
(i) The following four statements ave equivalent ;
Cﬂl, g p—
(a) T =1
(b)) 7n=0
(c) pm=0

(d) X=X, with some p(€(—1,1)).

REMARK 7.1.  As we have seen in Theorem 2. 2 in [10], the relation (7.
22) characterizes the simple Markovian property for the continuous-time
processes. However, this is no longer true for the present discrete-time
processes. We will give such an example. Let X be a real stationary
Gaussian process discussed in the case (i) of Example 6.2 such that

B 1
(7.23) p=—p, and 0= 0= 4oy -

It then follows from [I'heorem 4.3 and (4.27) the canonical representation
kernel £ of X becomes

(7.2 EM) =X,y (0)V2xA+pD T+ (0™,

which implies the desired relation



340 Y. Okabe

(7.25) Rn)=

1
E >0).
20—pyai—pp FW (=0

Finally we will give three remarks concerning the physical meaning of

Theorem 7.1 (cf. for the continuous-time case).

REMARK 7.2. In relation (i) in [Theorem 7.1, the left hand side
denotes a complex mobility of the system X described by equation (7.1),
which represents the response of the system X to the external force ¢;& On
the other hand, the right hand side is determined by the outer funciton of X,
which represents the thermal fluctuation of the system in equilibrium without
the external force. The relation (i) in [Theorem 7.1 might be said to be
the generalized first fluctuation-dissipation theorem.

REMmARrk 7.3. We are now concerned with relation (ii) in Theorem 7.
2
1. The fluctuation power of a randow force a;& in equation (7.1) is %.

While, the positive constant Cs,. » is expressed in terms of the drift coefficient
representing the systematic part of equation (7.1). And from the physical
point of view we can regard R(0) as the absolute constant £ 7, where £ and
T denote the Boltzman constant and absolute temperature of the system in
equilibrium, respectively. This leads us to think of C,,, ,, as the generalized
friction constant, and the relation (ii) itself might be said to be the
generalized second fluctuation-dissipation theorem.

REmMARK 7.4. For the Markov process X, in Example 7.1, we found
that the diffusion constant D, is inversely proportional to the friction con-
stant Y. This relation (7.20) is analogous to the classical Einstein rela-
tion valid for the Ornstein-Uhlenbeck Brownian motion with continuous time
(see (2.29) in [10]). For this reason, we call relation (7.20) for X, the
Einstein relation. In a general system described by equation (7.1) with
y #+0, however, we found a significant deviation [(iv) in [[heorem 7. 1| from
the Einstein relation (7.20) with v1= 0, and obtained the formula (v) in
(I'heorem 7.1 expressing the degree of such a deviation. In view of the
analogous fact in the continuous-time case (Theorem 2.1 in [10]), we call
the relation [(iv) in [[heorem 7. 1l the generalized Einstein relation.
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