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A certain logmodular algebra and its Gleason parts
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Abstract. Let A be a weak-*Dirichlet algebra on a nontrivial proba-
bility measure space (X,\mathscr{A}. m) and let H^{\infty}=H^{\infty}(m) be the weak-*closure
of A in L^{\infty}(m) . The first objective of this paper is to study the maximal ideal
space M(H^{\infty}) of H^{\infty} with a special regard to the algebraic direct sum
decomposition H^{\infty}=\mathscr{H}^{\infty}\oplus I^{\infty} . where I^{\infty} is an ideal of H^{\infty} apeared in [14].

The second objective of this paper is to study a certain logmodular
algebra A on a compact space X and its maximal ideal space M(A) in
connection with an abstract Hardy algebra H^{\infty} associated with A.
\S 1. Introduction.

We denote by B a complex commutative Banach algebra with a unit,
and by B^{-1} the group of invertible elements in B. We denote by M(B) the
maximal ideal space of B. We denote by \hat{f} the Gelfand transform of f\in B ,
by \hat{B} the set \{\hat{f}:f\in B\} , and by \Gamma(B) the Shilov boundary of B . We often
write f for \hat{f} , since the meaning will be clear from the context.

In \S 3 and \S 4, we denote by A a weak-*Dirichlet algebra on a nontrivial
probability measure space (X, \mathscr{A}, m) , and by H^{\infty}=H^{\infty}(m) the weak-*cl0-
sure of A in L^{\infty}(m) . We will often denote by m the complex homomorphism
of H^{\infty} which is determined by the measure m. Let J^{\infty} be the weak-*closed
linear span of all functions in H^{\infty} each of which vanishes on some set of
positive measure. Then J^{\infty} is an ideal of H^{\infty} which is contained in H_{m}^{\infty}=

\{f\in H^{\infty} : \int fdm=0\} . In [14], we call J^{\infty} the typical ideal. In [14], we have
established a decomposition H^{\infty}=\mathscr{H}^{\infty}\oplus I^{\infty} with I^{\infty}- a spacific ideal of H^{\infty}

with I^{\infty}\subset J^{\infty} where \oplus denotes the algebraic direct sum (see \S 2). Let \mathscr{L}^{\infty}

(resp. N^{\infty}) be the weak-* closure of \mathscr{H}^{\infty}+\overline{\mathscr{H}^{\infty}} (resp. I^{\infty}+\overline{I^{\infty}}) (the bar
denotes conjugation). Let \tilde{X}=M(L^{\infty}(m)) , Y=\Gamma(H^{\infty}|hu11I^{\infty}) and let E(I^{\infty})

be the support set of I^{\infty} For \phi\in Y let \mathscr{K}(\phi)=\{\tilde{x}\in\overline{X}:f(\tilde{x})=\phi(f)\forall f\in

\mathscr{L}^{\infty}\} . For any measurable set E of X, \chi_{E} denotes the characteristic func-
tion of E. For any set E of a topological space X,\overline{E} denotes the closure of
E in X.

In \S 3, we obtain the following. ( i) \phi\in hullI^{\infty} belongs to Y if and
only if |\phi(f)|=1 for every inner function f in \mathscr{H}^{\infty} ( ii) Theorem 3. 5.
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\chi_{E(I^{\infty})}\in \mathscr{L}^{\infty} and F=\overline{X}\cap Y=\overline{X}\cap hu11I^{\infty}=\{\tilde{x}\in\overline{X}:\hat{\chi}_{E(I^{\infty})}(\tilde{x})=0\}=\{\phi\in Y :
\hat{\chi}_{E(I^{\infty})}(\phi)=0\} . (iii) If \Phi\in M(H^{\infty})\backslash hu11I^{\infty} . then there is a (unique) point \phi

\in Y such that \Phi(f)=\phi(f) for every f\in \mathscr{H}^{\infty} The map defined by \Phi\mapsto\phi is
a continuous map of M(H^{\infty})\backslash hu11I^{\infty} onto Y\backslash F . (iv) Suppose that H_{m}^{\infty}\supsetneqq J^{\infty}

Then \tilde{X}\supset Y if and only if H^{\infty} is a maximal weak- cl*osed subalgebra of L^{\infty}

(v)\tilde{X}\cap Y=\emptyset if and only if there is an inner function h in I^{\infty} (vi)

Theorem 3. 9. hull I^{\infty} is connected, hull I^{\infty}\backslash Y is an open set in M(H^{\infty}) ,
\overline{hu11I^{\infty}\backslash Y}\supset Y and (\overline{M(H^{\infty})\backslash hu11I^{\infty}})\cap hu11I^{\infty}\subset Y If I^{\infty}\supsetneqq\{0\} , then
M(H^{\infty})\backslash hu11I^{\infty} is disconnected and hence M(I^{\infty}) is disconnected, (vii) If
the Gleason part P(m) of m is nontrivial, then \cup\{S(\tilde{\phi}):\tilde{\phi}\in Y\} is dense in
\overline{X} , where S(\tilde{\phi}) denotes the compact support of the representing measure of
\overline{\phi}\in Y (viii) If the Gleason part P(m) of m is nontrivial, then log |(C’

+I^{\infty})^{-1}|=R+N^{\infty}\cap L_{R}^{\infty} , where C and R are the complex and the real fields
respectively and C’=C\backslash \{0\} . In \S 3 we will generalize some results in [13] to
more general cases.

In \S 4, we obtain the following. ( i) If \phi\in(M(H^{\infty})\backslash hu11I^{\infty})\cup Y_{-} then
S(\phi)\subset K(\phi_{0}) for some \phi_{0}\in Y . ( ii) Theorem 4. 2. hull I^{\infty}\backslash Y is a union of
Gleason parts, (iii) Theorem 4. 4. \mathscr{K}(\phi)(\phi\in Y) is a weak peak set of H^{\infty}

\mathscr{K}(\phi) ( =H^{\infty}-convex hull of \mathscr{K}(\phi) ) \cap hu11I^{\infty}=\{\phi\} , (M(H^{\infty})\backslash hu11I^{\infty})\cup Y=\cup

\{\mathscr{K}\overline{(}\phi):\phi\in Y\} is a union of Gleason parts, and \mathscr{K}\overline{(\phi} ) \cap \mathscr{K}\overline{(}\phi ) =\emptyset for \phi\neq

\emptyset . (iv) Theorem 4. 5. Let B_{1} and B_{2} be weak-*closed subalgebras of
L^{\infty}(m) with H^{\infty}\subsetneqq B_{1}\subsetneqq B_{2}\subset L^{\infty}(m) . Let I_{B_{i}}^{\infty}= \{h\in L^{\infty}(m):\int hfdm=0\forall f\in

B_{i}\}(i=1,2) , and let \mathscr{H}_{B_{i}}^{\infty}=(B_{i}\cap\overline{B}_{i})\cap H^{\infty}(i=1,2) . Then we obtain I_{B_{1}}^{\infty}\supsetneqq

I_{Bz}^{\infty},\mathscr{H}_{B_{1}}^{\infty}\supsetneqq \mathscr{H}_{B_{2}}^{\infty} , hu11I_{B_{1}}^{\infty}\supsetneqq hu11I_{B_{2}}^{\infty} , and some properties of hull I_{B_{2}}^{\infty}\backslash hu11I_{B_{1}}^{\infty} . In
\S 4 we will generalize some results in [12] to more general cases.

In \S 5 and \S 6, we denote by A a strongly logmodular algebra on a
compact Hausdorff space X. For each \phi\in M(A) we denote its (unique)
representing measure by \phi . Let m\in M(A) , and let H^{\infty}=H^{\infty}(m) be the
weak-*closure of A in L^{\infty}(m) . Then A is a weak-*Dirichlet algebra on
(X, \mathscr{A}. m) , and hence we have a decomposition H^{\infty}=\mathscr{H}^{\infty}\oplus I^{\infty} Let J=J^{\infty}

\cap C(X) , I=I^{\infty}\cap C(X) , \mathscr{H}=\mathscr{H}^{\infty}\cap C(X) , \mathscr{L}=\mathscr{L}^{\infty}\cap C(X) and \mathscr{L}_{R}=\mathscr{L}^{\infty}\cap

C_{R}(X) . For \phi\in M(\mathscr{L}) let K(\phi)=\{x\in X:f(x)=\phi(f)\forall f\in \mathscr{L}\} . Suppose
that X=S(m) .

In \S 5, we obtain the following. ( i) Theorem 5. 4. If \phi\in M(A) , then
S(\phi) is a weak peak set for A. ( ii) Theorem 5. 5. A=H^{\infty}(m)\cap C(X) , A^{-1}

=(H^{\infty}(m))^{-1}\cap C(X) . (iii) If the Gleason part P(m) of m is nontrivial,
then I=J is a primary ideal of A and I=\{f\in A:\phi(f)=0\forall\phi\in P(m)\} . (iv)

Theorem 5. 8. There is a continuous map \eta of Y onte M(\mathscr{L}) , and for \phi\in
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M(\mathscr{L}) , we have \overline{X}\cap\pi^{-1}(K(\phi))=\cup\{\mathscr{K}(\overline{\theta}):\overline{\theta}\in\eta^{-1}(\phi)\} and \pi[\cup\{\mathscr{K}\overline{(}\tilde{\theta} ) : \overline{\theta}

\in\eta^{-1}(\phi)\}]\subset K\overline{(\phi}) , where \mathscr{K}\overline{(}\tilde{\theta} ) and K\overline{(\phi} ) are H^{\infty}-convex hull of \mathscr{K}(\tilde{\theta})

and A-convex hull of K(\phi) respectively (for \pi see \S 5). If \pi(M(H^{\infty}))=

M(A) , then M(A)=hu11I\cup(\cup\{K\overline{(\phi}) : \phi\in M(\mathscr{L})\}) . ( v) Theorem 5. 9. If
M(\mathscr{L}) is totally disconnected, then I is contained in the uniformly closed
linear span of all functions in A, each of which vanishes on some set of
positive measure, (vi) I^{\infty} is contained in the uniformly closed linear span of
all functions in H^{\infty}(m) , each of which vanishes on some set of positive
measure, (vii) If f\in L^{\infty}(m) is constant on \cup\{\mathscr{K}(\tilde{\theta}):\overline{\theta}\in\eta^{-1}(\phi)\} for every
\phi\in M(\mathscr{L}) , then f\in \mathscr{L} .

In \S 6, we obtain the following. Theorem 6. 3. If P(m) is nontrivial,
then \mathscr{H}\oplus I and \mathscr{L}_{R}\oplus N_{R} are both uniformly closed, and we have \log|(C’

+I)^{-1}|=R+N_{R} and \log|(\mathscr{H}\oplus I)^{-1}|=\mathscr{L}_{R}\oplus N_{R} , where N_{R}=N^{\infty}\cap C_{R}(X) .
In \S 7, we denote by A a logmodular algebra on a compact Hausdorff

space X. Let m\in M(A) and let P=P(m)\supsetneqq\{m\} . Let \tau be an analytic map
of the open unit disc D onto P such that f\circ\tau\in H^{\infty}(D) , where H^{\infty}(D) is the
Banach algebra of bounded analytic functions on D. Let \Gamma=\Gamma(A|\overline{P}) . In
\S 7, we obtain the following. ( i) Theorem 7. 1. If A\circ\tau=\{f\circ\tau:f\in A\}=

H^{\infty}(D) , then A|\Gamma is a strongly logmodular algebra on \Gamma and, roughly speak-

ing, A|\Gamma has the same properties as the function algebra H^{\infty}\hat{(}D). ( _{ii}) If A
\circ\tau=H^{\infty}(D) , then a nontrivial Gleason part for A|\Gamma is also a nontrivial
Gleason part for A. (iii) We give some conditions to be A\circ\tau=H^{\infty}(D) .

In \S 8, we will give some examples. Example 1 is related to the cases
2. 1 and 2. 3 in the section 2. Example 2 is related to Theorems 4. 2, 4. 4 and
Corollary 7. 2. Examples 3 and 4 are related to the sections 5, 6 and 7.

In \S 2, we will give some preliminaries concerning uniform algebras,
weak-*Dirichlet algebras, an algebraic direct sum decomposition H^{\infty}(m)=

\mathscr{H}^{\infty}\oplus I^{\infty} . etc.
The author would like to express his hearty thanks to the referee whose

comments led him to the improvement of the original version.

\S 2. Preliminaries.

First we will give some preliminaries concerning uniform algebras. Let
X be a compact Hausdorff space and let C(X) (resp. C_{R}(X) ) be the Banach
algebra of complex (resp. real) valued continuous functions on X with the
supremum norm. A closed subalgebra A of C(X) is said to be a uniform
algebra if A contains the constants, and A separates the points of X. A
uniform algebra A is said to be a logmodular algebra on X if the set log |A^{-1}|
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=\{\log|f|: f\in A^{-1}\} is dense in C_{R}(X) . A logmodular algebra A which
satisfies log |A^{-1}|=C_{R}(X) is said to be a strongly logmodular algebra.

A representing measure of \phi\in M(A) for a uniform algebra A is a
probability measure \mu on X such that \phi(f)=\int fd\mu for all f\in A . We

denote by S(\mu) the compact support of \mu i . e. , the complement of the largest
open set of \mu-measure zero. When \phi\in M(A) has a unique representing
measure, we denote its measure by \phi , \mu\emptyset or \lambda_{\phi} as the case may be. For \phi

and \emptyset in M(A) let

(2. 1) d_{A}( \phi, \phi)=\sup\{|\phi(f)| : f\in A, ||f||\leqq 1, \phi(f)=0\} ,

where ||f||= \sup\{|f(x)|:x\in X\} . We define \phi and \emptyset to be \phi-\emptyset when d_{A}(\phi ,
\phi)<1 (or, equivalently, ||\phi-\phi||<2). Then\sim is an equivalence relation in
M(A) , and P(m)=\{\phi\in M(A):m-\phi\}(\supsetneqq\{m\}) is said to be the (nontrivial)
Gleason part of m for A.

Let A be a logmodular algebra on X, and let m be a point of M(A) .
Let H^{\infty}=H^{\infty}(m) be the weak-*closure of A in L^{\infty}(m) . A function f in
H^{\infty}(m) is said to be inner if |f|=1a . e . (m). If P=P(m)\supsetneqq\{m\} , then there
is an inner function Z known as the Wermer embedding function which

satisfies ZH^{\infty}=H_{m}^{\infty} , where H_{m}^{\infty}= \{f\in H^{\infty} : \int fdm=0\} . And, there is an ana-
lytic map \tau such that \tau is a one-t0-0ne continuous map of the open unit disc
D in the complex plane onto P, and for every f in H^{\infty}f\circ\tau is analytic in D
(cf. [5], p. 158).

A compact Hausdorff space S is said to be Stonian (or, extremally
disconnected) if disjoint open subsets of S have disjoint closures. A positive
measure \mu on S is said to be normal if it vanishes on all nowhere dense Borel
sets in S (cf. [1], \S 7, \S 8). Let A be a logmodular algebra on X, let m\in

M(A) and let \tilde{X}=M(L^{\infty}(m)) . Then \tilde{X} is Stonian, and there is a probabil-
ity normal measure \tilde{m} on \overline{X} such that S(\tilde{m})=\tilde{X} and

\int_{X}fdm=\int_{\tilde{X}}\hat{f}d\tilde{m} , f\in L^{\infty}(m) .

This measure \tilde{m} is said to be the Radonization of m. If P(m)\supsetneqq\{m\} , then the
Gleason pare \mathscr{P}=\mathscr{P}(\tilde{m}) of \tilde{m}\in M(\hat{H}^{\infty}) for \hat{H}^{\infty} is also nontrivial (cf. [11],
Proposition). It is known that \phi\in M(H^{\infty}) belongs to \tilde{X} if and only if |\phi(f)|

=1 for every inner function f in H^{\infty}(m) . The reader is referred to Gamelin
[5] and Leibowitz [15] for basic definitions and properties about uniform
algebras.

Secondly we will give some preliminaries about weak-*Dirichlet alge-



A certain logmodular algebra and its Gleason parts 245

bras. Let {X,\mathscr{A} .m) be a fixed nontrivial probability measure space. A
weak-*Dirichlet algebra, which was introduced by Srinivasan and Wang
[23], is an algebra A of essentially bounded measurable functions on (X, \mathscr{A} ,
m) such that ( i) the constant functions lie in A ; ( ii)A+\overline{A} is weak-*
dense in L^{\infty}=L^{\infty}(m) (the bar denotes conjugation); (iii) for all f and g in A,

\int_{X}fgdm=\int_{X}fdm\int_{X}gdm . The abstract Hardy spaces H^{p}=H^{p}(m) , 1\leqq p\leqq\infty ,

associated with A are defined as follows. For 1\leqq p<\infty , H^{p} is the L^{p}(=

L^{p}(m)) -closure of A, while H^{\infty} is defined to be the weak-*closure of A in
L^{\infty}(m) . For 1\leqq p\leqq\infty , let H_{m}^{p}= \{f\in H^{p} : \int_{X}fdm=0\} . It is known that \hat{H}^{\infty}

is a strongly logmodular algebra on \overline{X}=M(L^{\infty}(m)) .
Let L(m)=L(m|\mathscr{A}) be the set of equivalence classes modulo m of the

measurable complex valued functions on X. Let B be a weak-*closed
subalgebra of L^{\infty}(m) which contains H^{\infty} properly. Let

\Delta=\{D\in \mathscr{A} : \chi_{D}\in B\} .

Then \Delta\subset \mathscr{A} is a sigma-algebra which contains the sigma-algebra \mathscr{A}_{m} of
the m-null sets and their complements. We define f\in L(m) to be \Delta -

measurable if and only if some and hence all \mathscr{A} -measurable functions which
represent f are \Delta-measurable Let L(m|\Delta) , L^{\infty}(m|\Delta) , L^{p}(m|\Delta) , etc. denote
the respective function classes.

Let H_{m\ln}^{\infty} be the intersection of all weak\cdot*closed subalgebras of L^{\infty}(m)

which contain H^{\infty} properly. Let
J^{\infty}=J^{\infty}(H^{\infty})

be the weak-* closed linear span of all functions in H^{\infty} . each of which
vanishes on some set of positive measure. Then J^{\infty} is an ideal of H^{\infty} which
is contained in H_{m}^{\infty} . By [[20], Corollary 5] we have the following equiva-
hence

H_{m}^{\infty}\supsetneqq J^{\infty}\Leftrightarrow H_{m\ln}^{\infty}\supsetneqq H^{\infty}

By [17], the following ( i ) , ( ii) , (iii) and (iv) are equivalent. ( i)
H^{\infty} is a maximal weak-*closed subalgebra of L^{\infty}(m) . ( ii)H_{m\ln}^{\infty}=L^{\infty}(m) .
(iii) J^{\infty}=\{0\} . (iv) H^{\infty} is an integral domain.

Here we will state some cases of the algebraic direct sum decomposition
H^{\infty}=\mathscr{H}^{\infty}\oplus I^{\infty}

Case 2. 1. We suppose H_{m}^{\infty}\supsetneqq J^{\infty} (cf. \S 6 in [14] and [10]).
Let B=H_{min}^{\infty} , and let
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I^{\infty}= \{h\in B:\int hfdm=0\forall f\in B\}

= \{h\in L^{\infty}(m):\int hfdm=0\forall f\in B\} .

Then we have
I^{\infty}=J^{\infty}

Let |\mathscr{L}^{\infty}=B\cap\overline{B}(\supsetneqq C) , where C is the complex field, and let \Delta=\{D\in \mathscr{A}:\chi_{D}

\in B\} . Then we have
\mathscr{L}^{\infty}=L^{\infty}(m|\Delta) .

Let \mathscr{H}^{\infty}=H^{\infty}\cap \mathscr{L}^{\infty} Then we have
(2.2) H_{m\ln}^{\infty}=\mathscr{L}^{\infty}\oplus I^{\infty} . \mathscr{L}^{\infty}I^{\infty}=I^{\infty} . H_{m\ln}^{\infty}I^{\infty}=I^{\infty}

and

(2.3) H^{\infty}=\mathscr{H}^{\infty}\oplus I^{\infty}-

where the sum is orthogonal in the Hilbert space sense, and hence it is the
algebraic direct sum.

\mathscr{L}^{\infty} is the weak-*closure of \mathscr{H}^{\infty}+\overline{\mathscr{H}^{\infty}}- and \mathscr{H}^{\infty} is a weak-*Dirichlet
algebra in \mathscr{L}^{\infty} . and \mathscr{H}^{\infty} is a maximal weak-*closed subalgebra of \mathscr{L}^{\infty}

Case 2. 2. We suppose H_{m}^{\infty}=J^{\infty} (cf. \S 7 in [14] and [10]).
There exsist weak-*closed subalgebras B of L^{\infty}(m) with H^{\infty}\subsetneqq B\subsetneqq L^{\infty}

Let B be a fixed one of them.
Let

I^{\infty}=I_{B}^{\infty}= \{h\in B:\int hfdm=0\forall f\in B\}

= \{h\in L^{\infty}(m):\int hfdm=0\forall f\in B\} .

Then we have
I^{\infty}\subsetneqq J^{\infty}

Let \mathscr{L}^{\infty}=B\cap\overline{B}(\supsetneqq C) , and let \Delta=\{D\in \mathscr{A}:\chi_{D}\in B\} . Then we have
\mathscr{L}^{\infty}=L^{\infty}(m|\Delta) .

Let \mathscr{H}^{\infty}=H^{\infty}\cap \mathscr{L}^{\infty} Then we have

(2.4) B=\mathscr{L}^{\infty}\oplus I^{\infty} . \mathscr{L}^{\infty}I^{\infty}=I^{\infty} . BI^{\infty}=I^{\infty}

and
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(2.5) H^{\infty}=\mathscr{H}^{\infty}\oplus I^{\infty} .

where the sum is orthogonal in the Hilbert space sense, and hence it is the
algebraic direct sum.

\mathscr{L}^{\infty} is the weak-*closure of \mathscr{H}^{\infty}+\overline{\mathscr{H}^{\infty}}, and \mathscr{H}^{\infty} is a weak-*Dirichlet
algebra\mathscr{L}^{\infty}

in \mathscr{L}^{\infty} . and \mathscr{H}^{\infty} is not a maximal weak-* closed subalgebra of

Case 2. 3. We suppose P(m)=\{\phi\in M(H^{\infty}) : ||\phi-m||<2\}\supsetneqq\{m\} (ci.
[14], \S 8).

By Proposition 7 in [14], we have
H_{m}^{\infty}\supsetneqq J^{\infty} .

Let \mathscr{L}^{\infty} . I^{\infty} and \mathscr{H}^{\infty} be as in the case 2. 1. Then we have

(2.6) H_{m\ln}^{\infty}=\mathscr{L}^{\infty}\oplus I^{\infty} and H^{\infty}=\mathscr{H}^{\infty}\oplus I^{\infty}

On the other hand, since P(m)\supsetneqq\{m\} , we have H_{m}^{\infty}=ZH^{\infty} for the
Wermer embedding function Z. Let \mathscr{H} be the weak-*closure of the
polynomials in Z in L^{\infty}(m) , and let

J=\{f\in H^{\infty} : \phi(f)=0\forall\phi\in P(m)\} .

Then we have
\mathscr{H}=\mathscr{H}^{\infty} and I^{\infty}=J .

Hence the decomposition H^{\infty}=\mathscr{H}\oplus I^{\infty} coincides with the decomposition of
Lemma 5 in [16]. The case 2. 3 is a special case of the case 2. 1 (see
Example 1 in \S 8).

REMARK. Let B be any weak-*closed subalgebra of L^{\infty}(m) with H^{\infty}

\subsetneqq B^{\infty}\subset L^{\infty}(m) . Let I_{B}^{\infty}= \{h\in B:\int hfdm=0 \forall f\in B\} , let \mathscr{L}_{B}^{\infty}=B\cap\overline{B}(\supsetneqq C) ,

let \Delta_{B}=\{D\in \mathscr{A}:\chi_{D}\in B\} , and let \mathscr{H}_{B}^{\infty}=H^{\infty}\cap \mathscr{L}_{B}^{\infty} . Then, as in the case 2. 2,
we have \mathscr{L}_{B}^{\infty}=L^{\infty}(m|\Delta_{B}) , B=\mathscr{L}_{B}^{\infty}\oplus I_{B}^{\infty}H^{\infty}=\mathscr{H}_{B}^{\infty}\oplus I_{B}^{\infty} , BI_{B}^{\infty}=I_{B}^{\infty} , etc.. The
results in \S 3 and \S 4 which are not used an asumption such as P(m)\supsetneqq\{m\} or
H_{m}^{\infty}\supsetneqq J^{\infty} hold for \mathscr{L}_{B}^{\infty} , \mathscr{H}_{B}^{\infty} , I_{B}^{\infty} . etc..

For 1\leqq p<\infty and for any subset M\subset L^{\infty}(m) , denote by [M]_{p} the
L^{p}(m) closure of M.

PROPOSITION 2. 1. Let \mathscr{H}^{\infty} \mathscr{L}^{\infty} and I^{\infty} be defined according to the
above cases 2. 1, 2. 2 and 2. 3, and let N^{\infty} be the weak-*closure of I^{\infty}+\overline{I^{\infty}}

Then we have
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L^{\infty}(m)=\mathscr{L}^{\infty}\oplus N^{\infty}

where \oplus denotes the algebraic direct sum. Moreover, for 1\leqq p<\infty , we
have

H^{p}(m)=[\mathscr{H}^{\infty}]_{p}\oplus[I^{\infty}]_{p} and L^{p}(m)=[\mathscr{L}^{\infty}]_{p}\oplus[N^{\infty}]_{p} .

PROOF. Let f=g+h, where g\in \mathscr{L}^{\infty} and h\in N^{\infty} . If 1\leqq p<\infty , then
we have

( \int_{X}|g|^{p}dm)^{1/p}=\sup\{|\int_{X}sgdm| : _{S}\in[\mathscr{L}^{\infty}]_{q}, ||s||_{q}<1\}

= \sup\{|\int_{X}s(g+h)dm| : _{S}\in[|\mathscr{L}^{\infty}]_{q}, ||s||_{q}<1\}

\leqq(\int_{X}|g+h|^{p}dm)^{1/p} .

where, when 1<p<\infty , then \frac{1}{p}+\frac{1}{q}=1 and ||s||_{q}=( \int|s|^{q}dm)^{1/q} , and when p

=1 , then q=\infty and ||s||_{\infty} stands for the essential supremum norm of s .
Thus, by making parrow\infty , we obtain ||g||_{\infty}\leqq||f||_{\infty} , and hence ||g||_{\infty}+||h||_{\infty}\leqq 3||f||_{\infty} .
Therefore \mathscr{L}^{\infty}+N^{\infty} is weak-* closed in L^{\infty}(m) (cf. [15], p. 203). And,
since H^{\infty}(m) is a weak\cdot*Dirichlet algebras in L^{\infty}(m) , we obtain

L^{\infty}(m)=\mathscr{L}^{\infty}\oplus N^{\infty}

If 1\leqq p<\infty , as in [16], Lemma 5, we obtain
L^{p}(m)=[\mathscr{L}^{\infty}]_{p}\oplus[N^{\infty}]_{p} .

By the same arguments as for L^{p}(m) , we obtain
H^{p}(m)=[\mathscr{H}^{\infty}]_{p}\oplus[I^{\infty}]_{p} . Q. E. D.

\S 3. Some properties of M(H^{\infty}) , Part 1.

In this section, let A be a weak-* Dirichlet algebra on a nontrivial
probability measure space (X, \mathscr{A}. m) , and let H^{\infty} . B , \mathscr{H}^{\infty} . J^{\infty} . I^{\infty} . and \mathscr{L}^{\infty}

=L^{\infty}(m|\Delta) be those objects as defined in the cases 2. 1, 2. 2 and 2. 3 in \S 2.
Then \mathscr{H}^{\infty}=H^{\infty}\cap L^{\infty}(m|\Delta) is a weak\cdot*Dirichlet algebra in \mathscr{L}^{\infty} on the prob-
ability measure space (X, \Delta, m) , and we can apply the results in [23] to \mathscr{H}^{\infty} .

Hence we have

(3. 1) \log|(\mathscr{H}^{\infty})^{-1}|=\mathscr{L}_{R}^{\infty} .

Let \Omega=M(|\mathscr{L}^{\infty}) , then \Omega is a Stonian space and we have

(3.2) \log|(\mathscr{H}^{\infty})^{-1}|=C_{R}(\Omega)< on \Omega .
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There is a probability normal measure \mu_{m} on \Omega such that \int_{X}fdm=\int_{\Omega}\hat{f}d\mu_{m}

(f\in \mathscr{L}^{\infty}) , and S(\mu_{m})=\Omega .
By ([4], Theorem 4), we have the following.

LEMMA. 3. 1. The Shilov boundary \Gamma(\mathscr{H}^{\infty}) of \mathscr{H}^{\infty} can be identified
with M(’\mathscr{L}^{\infty}) , and \phi\in M(\mathscr{H}^{\infty}) belongs to \Gamma(\mathscr{H}^{\infty}) if and only if |\phi(f)|=1

for every inner function f in \mathscr{H}^{\infty}

Let f=g+h\in H^{\infty}(m) , where g\in \mathscr{H}^{\infty} and h\in I^{\infty} Then, by the proof of
Proposition 2. 1, we have ||g||\leqq||f|| . Therefore, by the map

S:g+I^{\infty}\mapsto g(g\in \mathscr{H}^{\infty}) ,

the quotient Banach algebra H^{\infty}/I^{\infty} is isometrically isomorphic to \mathscr{H}^{\infty} .
Hence, under the adjoint map S^{*} of S, the space M(\mathscr{H}^{\infty}) is homeomorphic
to M(H^{\infty}/I^{\infty}) . And, under the adjoint map \sigma^{*} of the natural map \sigma:H^{\infty} }arrow

H^{\infty}/I^{\infty} . M(H^{\infty}/I^{\infty}) is homeomorphic to hull I^{\infty}=\{\phi\in M(H^{\infty}):\phi(f)=0\forall f\in

I^{\infty}\} . Let

(3.3) E=\sigma^{*}\circ S^{*} .

Then \sum is a homeomorphism of M(\mathscr{H}^{\infty}) onto hull I^{\infty} . and for every \phi\in

M(\mathscr{H}^{\infty}) we have \Sigma(\phi)(g)=\phi(g)(\forall g\in \mathscr{H}^{\infty}) . Let
(3.4) Y=\Sigma(\Gamma(\mathscr{H}^{\infty}))=\Sigma(M(\mathscr{L}^{\infty})) .

Then Y=\Gamma ( H^{\infty}| hull I^{\infty}) =\Gamma ( \mathscr{H}^{\infty}| hull I^{\infty}), and Y is a Stonian space, and
\log|(\mathscr{H}^{\infty})^{-1}|=C_{R}(Y) on Y The representing measure \mu_{m} on Y of m\in hu11

I^{\infty} for \mathscr{H}^{\infty} is a normal measure, and S(\mu_{m})=Y .

We have the following equivalence

H_{m}^{\infty}\supsetneqq J^{\infty}\Leftrightarrow hu11J^{\infty}\supsetneqq\{m\} .

Indeed, if H_{m}^{\infty}\supsetneqq J^{\infty} then by the map \Sigma we have \Sigma(M(\mathscr{H}^{\infty}))=hu11J^{\infty} On
the other hand, \mathscr{H}^{\infty} is a nontrivial weak-*Dirichlet algebra in \mathscr{L}^{\infty} Hence
hull J^{\infty}\supsetneqq\{m\} .

By Lemma 3. 1, we have the following.

PROPOSITION 3. 2. A point \phi in hull I^{\infty} belongs to Y=\Gamma(H^{\infty}|hu11I^{\infty})

if and only if |\phi(f)|=1 for every inner function f in \mathscr{H}^{\infty}

Since \mathscr{L}^{\infty}\subset L^{\infty}(m) and since \mathscr{L}^{\infty} is a self-adjoint Banach algebra,
every \phi in M(\mathscr{L}^{\infty}) can be extended multiplicatively to L^{\infty}(m) (cf. [6], p .
80). Hence the map \tau:\tilde{x}\mapsto\tilde{x}|\mathscr{L}^{\infty} (\tilde{x}\in\tilde{X}) is a continuous map of \overline{X} onto
M(\mathscr{L}^{\infty}) , where \tilde{X}=M(L^{\infty}(m)) and \overline{x}||\mathscr{L}^{\infty} is the restriction of \tilde{x} to \mathscr{L}^{\infty} .

Let
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(3.5) \tilde{\pi}(\tilde{x})=\Sigma(\overline{x}|\mathscr{L}^{\infty}),\tilde{x}\in\overline{X} .

Then \tilde{\pi} is a continuous map of \overline{X} onto Y For every \tilde{\phi}\in Y let
(3.6) \mathscr{K}(\tilde{\phi})=\tilde{\pi}^{-1}(\tilde{\phi}) .

Then \tilde{X}=\cup\{\mathscr{K}(\tilde{\phi}):\tilde{\phi}\in Y\} , and \mathscr{K}(\tilde{\phi})\cap \mathscr{K}(\tilde{\theta})=\emptyset for \tilde{\phi}\neq\tilde{\theta} . For every
f\in \mathscr{L}^{\infty} we have

f=\tilde{\phi}(f) on \mathscr{K}(\tilde{\phi}) .

If \phi\in M(I^{\infty}) , then there is a function h\in I^{\infty} such that \phi(h)=1 . We
define \Phi\in M(H^{\infty}) by \Phi(f)=\phi(fh) , f\in H^{\infty} Then, by a well known fact,
the map

(3. 7) \Pi : \phi\mapsto\Phi

is a homeomorphism of M(I^{\infty}) onto M(H^{\infty})\backslash hu11I^{\infty} .

Let B=\mathscr{L}^{\infty}\oplus I^{\infty} For f=g+h, where g\in \mathscr{L}^{\infty} and h\in I^{\infty} we have
||g||\leqq||f|| and hence ||g||+||h||\leqq 3||f|| . Hence, by ([13], p. 203), B is a Banach
algebra. For \phi\in M(I^{\infty}) with \phi(h)=1 for a function h\in I^{\infty} we define \Phi’\in

M(B) by \Phi’(f)=\phi(Jh) , f\in B . The map

(3.8) \Pi’ : \phi-\Phi’

is a homeomorphism of M(I^{\infty}) onto M(B)\backslash hu11I^{\infty} where of course hull I^{\infty}

=\{\phi\in M(B) : \phi(f)=0\forall f\in I^{\infty}\} .
For \phi\in M(I^{\infty}) , let \Phi=\Pi(\phi) and let \Phi’=\Pi’(\phi) . Then it follows from

\log|(\mathscr{H}^{\infty})^{-1}|=\mathscr{L}_{R}^{\infty} , \Phi’|\mathscr{L}^{\infty}\in M(\mathscr{L}^{\infty}) and \Phi=\Phi’ on \mathscr{H}^{\infty} that \Phi|\mathscr{H}^{\infty} can be
identified with a complex homomorphism of \mathscr{L}^{\infty} For \Phi\in M(H^{\infty})\backslash hu11I^{\infty} .
let

(3.9) \tilde{\pi}_{1}(\Phi)=\Sigma(\Phi|\mathscr{H}^{\infty}\} .

Then the map \tilde{\pi}_{1} is a continuous map of M(H^{\infty})\backslash hu11I^{\infty} to Y In particu-
lar, for \tilde{x}\in\tilde{X}\backslash hu11I^{\infty}- we have \tilde{\pi}(\overline{x})=\tilde{\pi}_{1}(\tilde{x}) .

Let E(I^{\infty}) be the support set of I^{\infty}i . e. , the complement of a set of
maximal measure on which all f\in I^{\infty} are null.

LEMMA 3. 3. There is a function h in I^{\infty} such that |h|=\chi_{E(I^{\infty})} .

PROOF. By [21, Corollary 1] there is a function w in L^{\infty}(m) such that
|w|=1a . e . (m) and \chi_{E(I^{\infty})}w\in I^{\infty} . Q. E. D.

THEOREM 3. 4. Let E=E(I^{\infty}),\tilde{X}=M(L^{\infty}(m)) , Y=\Gamma ( H^{\infty}| hull I^{\infty} )
and F=\overline{X}\cap Y. Then we have the following.
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(i) \chi_{E}\in \mathscr{L}^{\infty}

(ii) F=\tilde{X}\cap hu11I^{\infty}

(iii) F=\{\phi\in Y:\hat{\chi}_{E}(\phi)=0\} .
(iv) F=\{\tilde{x}\in\tilde{X}:\hat{\chi}_{E}(\tilde{x})=0\} .

PROOF. ( i) We have \int_{X}\chi_{E^{C}}fdm=0 for all f\in I^{\infty} By [10, p. 52],

we have

\{h\in L^{\infty}(m):\int_{X}hfdm=0, \forall f\in I^{\infty}\}=B .

Hence \chi_{E^{C}}\in B , Hence \chi_{E^{C}}\in \mathscr{L}^{\infty}=B\cap\overline{B} , and hence \chi_{E}\in \mathscr{L}^{\infty} .
(ii) If \phi\in\overline{X}\cap hu11I^{\infty}- then |\phi(f)|=1 for every inner function f in

\mathscr{H}^{\infty} Hence, by Proposition 3. 2, \phi\in Y

(iii) By Lemma 3. 3, there is a function h\in I^{\infty} such that |h|=\chi_{E} .
Then \hat{\chi}_{E}=|\hat{h}|=0 on F. Hence \{\phi\in Y:\hat{\chi}_{E}(\phi)=0\}\supset F.

If \phi_{0}\in Y\backslash F , then there is an inner function f in H^{\infty}(m) such that
|\phi_{0}(f)|<1 . Let f=g+h, where g\in \mathscr{H}^{\infty} and h\in I^{\infty} . Then |\phi_{0}(f)|=|\phi_{0}(g)|

<c<1 for some positive constant c . Since Y is a Stonian space, there is a
clopen (i . e. , closed and open) neighborhood V(\phi_{0}) in Y of \phi_{0} such that \{\phi

\in Y:|\phi(g)|<c\}\supset V(\phi_{0}) . Then there is a function \chi_{G}\in \mathscr{L}^{\infty} such that V(\phi_{0})

=\{\phi\in Y:\hat{\chi}_{G}(\phi)=1\} . If \tilde{x}\in\pi^{-1}(V(\phi_{0})) and \phi=\tilde{\pi}(\tilde{x}) , then |\tilde{x}(h)|\geqq|\tilde{x}(f)|

-|\overline{x}(g)|=1-|\phi(g)|>1-c>0 . Hence |\hat{h}|>1-c on \pi^{-1}(V(\phi_{0}))=\{\tilde{x}\in\overline{X} :
\hat{\chi}_{G}(\overline{x})=1\} , and hence \hat{\chi}_{G^{C}}+\hat{\chi}_{G}|\hat{h}|>1-c on \overline{X} . Hence \chi_{G^{C}}+\chi_{G}|h|>1-c

a.e. , and hence G\subset E . Hence V(\phi_{0})\subset\{\phi\in Y : \chi_{E}(\phi)=1\} . Therefore we
have F\supset\{\phi\in Y:\hat{\chi}_{E}(\phi)=0\} .

(iv) By the same argument as for (iii) we are able to prove (iv).

Q. E. D.

COROLLARY 3. 5. Let \overline{X}=M(L^{\infty}(m)) , Y=\Gamma ( H^{\infty}| hull I^{\infty} ) and F=
\overline{X}\cap Y. Then we have the following.

(i) \pi\sim(\tilde{X}\backslash F)=Y\backslash F.
(ii) \tilde{\pi}_{1}(M(H^{\infty})\backslash hu11I^{\infty})=Y\backslash F.

PROOF. ( i) Let \tilde{x}\in\overline{X}\backslash F and let E=E(I^{\infty}) . Then, by Theorem
3. 4, ( i ) , (iv), 1=\hat{\chi}_{E}(\overline{x})=\hat{\chi}_{E}(\overline{\pi}(\tilde{x})) . Therefore we have \tilde{\pi}(\overline{X}\backslash F)\subset Y\backslash F .

Next, by \overline{\pi}(\overline{X})=Y and \tilde{\pi}(F)=F , for every \tilde{\phi}\in Y\backslash F there is a point
\tilde{x}\in\overline{X}\backslash F such that \tilde{\pi}(\overline{x})=\tilde{\phi} . Therefore we have \overline{\pi}(\overline{X}\backslash F)\supset Y\backslash F .

(ii) Let \theta\in M(H^{\infty})\backslash hu11I^{\infty} If \tilde{\pi}_{1}(\theta)=\tilde{x}\in F . then \overline{x}(f)=\theta(f)(\forall f

\in \mathscr{H}^{\infty}) . Hence |\theta(f)|=1 for all inner functions f in \mathscr{H}^{\infty} and hence \theta\in Y

By \overline{x}\in Y\cap\overline{X},\tilde{x}\in Y Hence \theta=\overline{x} . By Theorem 3. 4, ( ii) , this is
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absurd. Hence \tilde{\pi}_{1}(\theta)\in Y\backslash F . Therefore we have \tilde{\pi}_{1}(M(H^{\infty})\backslash hu11I^{\infty})\subset Y\backslash

F.
Next, if \phi\in Y\backslash F , then by ( i) there is a point \tilde{x}\in\tilde{X}\backslash F such that

\overline{\pi}(\overline{x})=\phi . Therefore, by Theorem 3. 4, ( ii) , we have \tilde{\pi}_{1}(M(H^{\infty})\backslash hu11I^{\infty})\supset

Y\backslash F . Q. E. D.

COROLLARY 3. 6. Let \overline{X} and Y be as in Corollary 3. 5. Suppose that
H_{m}^{\infty}\supsetneqq I^{\infty}- Then \tilde{X}\supset Y if and only if H^{\infty} is a maximal weak-*closed subal-
gebra of L^{\infty}

PROOF. Assume \overline{X}\supset Y Then \tilde{\pi}(\tilde{X}\backslash Y)=\tilde{\pi}(\tilde{X}\backslash \tilde{X}\cap Y)=Y\backslash \tilde{X}\cap Y=

\emptyset . Hence \tilde{X}=Y . and hence H^{\infty}=\mathscr{H}^{\infty} Hence L^{\infty}=\mathscr{L}^{\infty} Therefore, H^{\infty}

=\mathscr{H}^{1}\infty is a maximal weak-*closed subalgebra of L^{\infty} (see Case 2. 1 in \S 2).
Next, assume that H^{\infty} is a maximal weak-*closed subalgebra of L^{\infty}

Then H_{m\ln}^{\infty}=L^{\infty}(m) , and hence I^{\infty}=\{0\} , and hence H^{\infty}=\mathscr{H}^{\infty} By \overline{X}=\Gamma(H^{\infty})

and Y=\Gamma(H^{\infty}|hu11I^{\infty}) , we have \overline{X}=Yr Q. E. D.

COROLLARY 3. 7 Let \tilde{X} and Y be as in Corollary 3. 5. Then \tilde{X}\cap Y=

\emptyset if and only if there is an inner function h in I^{\infty}

PROOF. By Theorem 3. 4, (ii), \tilde{X}\cap Y=\emptyset implies that \overline{X}=\{\tilde{x}\in\overline{X} :
\hat{\chi}_{E}(\tilde{x})=1\} , where E=E(I^{\infty}) . Hence \chi_{E}=1a . e. . Hence, by Lemma 3. 3,
there is an inner function h in I^{\infty} .

Next, if there is an inner function h in I^{\infty} . then |\hat{h}|=0 on Y and |\hat{h}|=1

on \overline{X} . Thus we have \overline{X}\cap Y=\emptyset . Q. E. D.

THEOREM 3. 8. Let Y=\Gamma(H^{\infty}|hu11I^{\infty}) . Then we have the following.
(i) The space hull I^{\infty} is connected.
(ii) hull I^{\infty}\backslash Y is an open set in M(H^{\infty}) , and \overline{hu11I^{\infty}\backslash Y}\supset Y.
(iii) \overline{M(H^{\infty})\backslash hu11I^{\infty}}\cap hu11I^{\infty}\subset Y.
(iv) If I^{\infty}\supsetneqq\{0\} , then the space M(H^{\infty})\backslash hu11I^{\infty} is disconnected, and

hence M(I^{\infty}) is disconnected.

PROOF. ( i) Since M(\mathscr{H}^{\infty}) is connected (cf. [15], p. 167, Theorem
10), hull I^{\infty}=\Sigma(M(\mathscr{H}^{\infty})) is connected.

(ii) Let \phi_{0}\in hu11I^{\infty}\backslash Y By Proposition 3. 2, there is an inner func-
tion f in \mathscr{H}^{\infty} with |\phi_{0}(f)|<1 . On the other hand, when we defined the map

\tilde{\pi}_{1} (see (3. 9)), we saw that, for every \phi\in M(H^{\infty})\backslash hu11I^{\infty} . \phi|\mathscr{H}^{\infty} can be
multiplicatively extended to \mathscr{L}^{\infty} Hence we have |\theta(f)|=1 for every \theta\in

Y\cup(M(H^{\infty})\backslash hu11I^{\infty}) . Hence (\phi_{0}\in)\{\phi\in M(H^{\infty}):|\phi(f)|<1\} is contained in
hull I^{\infty}\backslash Y Therefore hull I^{\infty}\backslash Y is an open set in M(H^{\infty}) .

Next, let \Gamma=\Gamma(\mathscr{H}^{\infty})=M(\mathscr{L}^{\infty}) and let K=\overline{M(\mathscr{H}^{\infty})\backslash \Gamma.} Suppose that K
does not contain \Gamma . Then \Gamma\backslash K=M(\mathscr{H}^{\infty})\backslash K is a non-empty open set in
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M(\mathscr{H}^{\infty}) . Let x_{0}\in M(\mathscr{H}^{\infty})\backslash K . Since M(\mathscr{H}^{\infty}) is a normal space, there is an
open neighborhood U(x_{0}) of x_{0} such that U(x_{0})\subset\overline{U(x_{0})}\subset M(\mathscr{H}^{\infty})\backslash K , where
\overline{U(x_{0})} is the closure of U(x_{0}) in M(\mathscr{H}^{\infty}) . Since \overline{U(x_{0})}=\overline{U(x_{0})}\cap(\Gamma\backslash K) ,
\overline{U(x_{0})} is the closure of an open set U(x_{0}) in the subspace \Gamma\backslash K . On the
other hand, since \Gamma is a Stonian space, the subspace \Gamma\backslash K also is extremally
disconnected. Hence \overline{U(x_{0})} is open in the subspace \Gamma\backslash K . Since \Gamma\backslash K=

M(\mathscr{H}^{\infty})\backslash K is an open set in M(\mathscr{H}^{\infty}) , \overline{U(x_{0})} is an open set in M(\mathscr{H}^{\infty}) .
Hence \overline{U(x_{0})} is a clopen set in M(\mathscr{H}^{\infty}) . This is a contradiction. Hence

\overline{M(\overline{\mathscr{H}}^{\infty})\backslash \Gamma}\supset\Gamma Therefore, by the map \Sigma , we have \overline{hu11I^{\infty}\backslash Y}\supset Y

(iii) Let \phi\in\overline{M(H^{\infty})\backslash hu11I^{\infty}}\cap hullI^{\infty} Then, there is a net \{\phi_{a}\}\subset

M(H^{\infty})\backslash hu11I^{\infty} such that \phi_{a}arrow\phi . Since |\phi_{a}(f)|=1 for every inner function
f in \mathscr{H}^{\infty} , we have |\phi(f)|=1 . By Proposition 3. 2, \phi belongs to Y

(iv) Let F=\tilde{X}\cap Y , where \tilde{X}=M(L^{\infty}) . By Theorem 3. 4, (iii) and
Corollary 3. 5, F is a clopen set with F\subsetneqq Y Since Y is a Stonian space,
there is a clopen set U with \emptyset\subsetneqq U\subsetneqq Y\backslash F . Then, by Corollary 3. 5, \emptyset\subsetneqq

\overline{\pi}_{1}^{-1}(U)\subsetneqq\overline{\pi}_{1}^{-1}(Y\backslash F)=M(H^{\infty})\backslash hu11I^{\infty} . and hence \tilde{\pi}_{1}^{-1}(U) is a nontrivial
clopen set in M(H^{\infty})\backslash hu11I^{\infty} Therefore M(H^{\infty})\backslash hu11I^{\infty} is disconnected.
Further, by the map II (see (3. 7)), we see that M(I^{\infty}) is disconnected.

Q. E. D.
Since A is a weak-*Dirichlet algebra, H^{\infty} is a strongly logmodular

algebra on \overline{X}=M(L^{\infty}(m)) . Hence, every \tilde{\phi} in M(H^{\infty}) has a unique re-
presenting measure \tilde{\phi} on \tilde{X} .

PROPOSITION 3. 9. Let \overline{X}=M(L^{\infty}) and let Y=\Gamma(H^{\infty}|hu11I^{\infty}) . Then
we have the following.

(i) If the Gleason part P(m) of m\in M(H^{\infty}) is nontrivial, then \tilde{\Omega}=

\cup\{S(\tilde{\phi}) : \tilde{\phi}\in Y\} is dense in \tilde{X}.
(ii) f\in\hat{L}^{\infty}(m) belongs to \hat{\mathscr{L}}^{\infty} if and only if f(\tilde{x})=\overline{\phi}(f) on \mathscr{K}(\tilde{\phi})

for every \tilde{\phi}\in Y.

PROOF. ( i) Suppose \overline{(\tilde{\Omega})}\subsetneqq\tilde{X} . Let \overline{x}_{0}\in\overline{X}\backslash \overline{(\tilde{\Omega})} , and let V=V(\tilde{x}_{0})

(\subset\overline{X}\backslash \overline{(\tilde{\Omega})}) be a clopen neighborhood of \overline{x}_{0} . Then, by Proposition 2. 1, we
have \chi_{V}=g+h , where g\in \mathscr{L}^{\hat{\infty}} and h\in\hat{N}_{\infty} . By [14, Theorem 8], hull I^{\infty}=

\overline{P(m)}, and hence, for every \tilde{\phi}\in Y . there is a net \{\phi_{a}\}(\subset P(m)) such that
\tilde{\phi}_{a}arrow\tilde{\phi} . Hence it follows from \overline{\phi}_{a}(h)=0 for all \alpha and h\in C_{R}(\overline{X}) that \tilde{\phi}(h)

=0 (cf. [8], Lemma 3). Hence, for every \overline{\phi}\in Y . we have 0= \int\chi_{V}d\overline{\phi}=

\int gd\overline{\phi}=\tilde{\phi}(g) . Since g=\tilde{\phi}(g) for all \tilde{x}\in \mathscr{K}(\tilde{\phi}) (see (3.7)), we have g=0

on \overline{X}=\cup\{\mathscr{K}(\tilde{\phi}):\tilde{\phi}\in Y\} , and hence \chi_{V}=h . Hence, by S(\overline{m})=\overline{X} , we have
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0= \int_{\overline{X}}hd\overline{m}=\int_{\tilde{X}}\chi_{V}d\tilde{m}=\overline{m}(V)>0 , which is a contradiction.

(ii) Let f\in L^{\infty}\hat{(}m) =C(\overline{X}) and let f be a constant on \mathscr{K}(\tilde{\phi}) for every
\overline{\phi}\in Y Then, there is a (unique) function g(\in C(Y)) such that f=g\circ

\overline{\pi} (cf. [1], Lemma 4. 3). On the other hand, g=G|Y for a (unique) func-
tion G\in \mathscr{L}^{\infty} Hence g\circ\pi=G on \overline{X} , and hence f=G on \overline{X} . Therefore f
belongs to \mathscr{L}^{\infty}- Q. E. D.

By (3.1) we have \log|(\mathscr{H}^{\infty})^{-1}|=\mathscr{L}_{R}^{\infty} . On the other hand, since
\log|(H^{\infty})^{-1}|=L_{R}^{\infty} and since, for every f\in \mathscr{L}^{\infty} . f=\phi(f) on \mathscr{K}(\phi)(\phi\in Y) ,
we have \log|(C’+I^{\infty})^{-1}|=R+N_{R}^{\infty} on \mathscr{K}(\phi) , where N_{R}^{\infty}=N^{\infty}\cap L_{R}^{\infty} (see PrO-
position 2. 1) and C’=C\backslash \{0\} . On a certain condition, this relation holds
on \overline{X}=M(L^{\infty}(m)) .

PROPOSITION 3.10. Suppose that the Gleason part P=P(m) of m\in

M(H^{\infty}) is nontrivial Let N^{\infty} be the weak-*closure of I^{\infty}+I^{\infty} and let N_{R}^{\infty}

=N^{\infty}\cap L_{R}^{\infty} . Then we have
\log|(C’+I^{\infty})^{-1}|=R+N_{R}^{\infty} ,

where C and R are the complex and the real fields respectively, and C’=C\backslash

\{0\} .

PROOF. Let u=r+h, where r\in R and h\in N_{R}^{\infty} . Then, there is a
function f\in(H^{\infty}(m))^{-1} such that \log|f|=u . For every \phi\in P , \log|\phi(f)|=

\int\log|f|d\phi=r , and henc\overline{e} we have |\phi(f)|=e^{r} on \overline{P} . Here, let f=g+h,

where g\in \mathscr{H}^{\infty} and h\in I^{\infty} Then g\in(\mathscr{H}^{\infty})^{-1} and |\phi(g)|=e^{r} on \overline{P} . Hence
G=g/e^{r}\in(\mathscr{H}^{\infty})^{-1} and |\phi(G)|=1 on Y Hence |G|=1 on \tilde{X} . Since \tilde{X} is
an antisymmetric set, G and hence g are constant on \overline{X} . Hence f=c+h,
where c\in C’ Let k=1/(c+h) . Then k\in C’+I^{\infty} . Hence f\in(C’+I^{\infty})^{-1}-

Next, if u\in\log|(C’+I^{\infty})^{-1}| , then u=\log|c+h| , where c+h\in(C’
+I^{\infty})^{-1} . Then, for \phi\in Y .

\int ud\phi=\int\log|c+h|d\phi=\log|\int(c+h)d\phi|=\log|c| .

Here, let u=g+h, where g\in \mathscr{L}_{R}^{\infty} and h\in N_{R}^{\infty} Then u(\phi)=g(\phi)=\log|c|

for every \phi\in Y and hence g=\log|c| on \overline{X} . Therefore u=\log|c|+h\in R

+N_{R}^{\infty} Q. E. D.

\S 4. Some properties of M(H^{\infty}) , Part 2.

In this section, let A be a weak-* Dirichlet algebra on a nontrivial
probability measure space (X, \mathscr{A}m) , and let H^{\infty} , \mathscr{H}^{\infty} , I^{\infty} and \mathscr{L}^{\infty}=
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L^{\infty}(m|\Delta) be those objects as defined in the cases 2. 1, 2. 2 and 2. 3 in \S 2.

PROPOSITION 4. 1. Let Y=\Gamma(H^{\infty}|hu11I^{\infty}) and let \phi\in(M(H^{\infty})\backslash hu11I^{\infty})

\cup Y Then, for every f\in \mathscr{L}^{\infty} . f is a constant (=\phi(f)) on S(\phi) , and
hence S(\phi)\subset \mathscr{K}(\phi_{0}) , where \phi_{0}=\tilde{\pi}(S(\phi)) and \mathscr{K}(\phi_{0})=\tilde{\pi}^{-1}(\phi_{0}) .

PROOF. For every inner function f in \mathscr{H}^{\infty} . |\phi(f)|=1 and hence
\int|f-\phi(f)|^{2}d\phi=0 . Hence f=\phi(f) on S(\phi) .

By \log|(\mathscr{H}^{\infty})^{-1}|=\mathscr{L}_{R}^{\infty} and [4, Theorem 2], the set Q=\{F\overline{G}:F is a
finite linear combination of inner functions in \mathscr{H}^{\infty} and G is an inner function
in \mathscr{H}^{\infty}} is dense in norm in \mathscr{L}^{\infty}- Hence, for f\in \mathscr{L}^{\infty} and any positive \epsilon ,
there is a function F\overline{G}\in Q such that ||f-F/G||<\epsilon/2 . Hence,

\int|f-\phi(f)|d\phi\leqq||f-F/G||+\int|\phi(F/G)-\phi(f)|d\phi<\epsilon .

Hence, f=\phi(f) on S(\phi) . Q. E. D.

THEOREM 4. 2. Let Y=\Gamma(H^{\infty}|hu11I^{\infty}) . Then the set hull I^{\infty}\backslash Y is a
union of Gleason parts for H^{\infty}(m) .

PROOF. By Proposition 4. 1, if \phi belongs to (M(H^{\infty})\backslash hu11I^{\infty})\cup Y
, then

|\phi(f)|=1 for every inner function f in \mathscr{H}^{\infty} On the other hand, by Proposi-
tion 3. 2, for \psi\in hullI^{\infty}\backslash Yr

, there is an inner function f_{0} in \mathscr{H}^{\infty} such that
|\phi(f_{0})|<1 . Let F=(f_{0}-\phi(f_{0}))/(1-\overline{\phi(f_{0})}f_{0}) . Then F is an inner function in
\mathscr{H}^{\infty} and \phi(F)=0 . Hence \sup\{|\phi(f)| : f\in H^{\infty}(m), ||f||\leqq 1, \phi(f)=0\}=1 .
Hence hull I^{\infty}\backslash Y is a union of Gleason parts for H^{\infty}(m) . Q. E. D.

It occurs that a certain point of Y belongs to some nontrivial Gleason
part and a certain point of Y composes trivial Gleason part, and both two
cases occur actually (see Example 2, (iii) in \S 8).

By using ||g||\leqq||f|| for f=g+h\in H^{\infty} where g\in \mathscr{H}^{\infty} and h\in I^{\infty} . we
obtain the following.

PROPOSITION 4. 3. For \phi and \theta in hull I^{\infty} we have
\sup\{|\phi(f)-\theta(f)| : f\in H^{\infty}(m), ||f||\leqq 1\}

= \sup\{|\phi(f)-\theta(f)| : f\in \mathscr{H}^{\infty}. ||f||\leqq 1\} .

THEOREM 4. 4. Let Y=\Gamma ( H^{\infty}| hull I^{\infty}) and let \mathscr{K}(\phi)=\overline{\pi}^{-1}(\phi) for \phi

\in Y, and let \mathscr{K}\overline{(}\phi ) be the H^{\infty}- convex hull of \mathscr{K}(\phi) . Then we have the
following.

(i) \mathscr{K}(\phi) is a weak peak set for H^{\infty}- and \mathscr{K}\overline{(}\phi ) \cap hull I^{\infty}=\{\phi\} .
(ii) M(H^{\infty})\backslash hu11I^{\infty}=\cup\{\mathscr{K}\overline{(}\phi)\backslash \{\phi\}:\phi\in Y\} , and \mathscr{K}\overline{(}\phi ) \cap \mathscr{K}\overline{(}\emptyset ) =\emptyset
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for \phi\neq\phi.

(iii) The set (M(H^{\infty})\backslash hu11I^{\infty})\cup Y=\cup\{\mathscr{K}\overline{(}\phi):\phi\in Y\} is a union of
Gleason parts, and for every \phi in Y,

\mathscr{K}\overline{(}\phi ) is a union of Gleason parts,

PROOF. ( _{i}) Let \theta\in \mathscr{K}\overline{(}\phi) \cap hull I^{\infty} By \theta\in \mathscr{K}\overline{(}\phi), for every inner
function f in \mathscr{H}^{\infty} . we have |\theta(f)|=1 . Hence, by Proposition 3. 2, \theta belongs

to Y Hence \theta=\phi , and hence, \mathscr{K}(\phi)\cap hullI^{\infty}=\{\phi\} .
Let \phi\in Y . and let U(\phi) be any clopen neighborhood of \phi in Y. and let

E=\tilde{\pi}^{-1}(U(\phi)) . Then E\supset \mathscr{K}(\phi) . By Proposition 3. 9, \chi_{E}\in \mathscr{L}^{\infty} , and hence,

there is a function F\in(\mathscr{H}^{\infty})^{-1} such that \log|F|=\chi_{E} . By Proposition 4. 1,
S(\phi)\subset \mathscr{K}(\phi) , and hence,

\log|\phi(F)|=\int\log|F|d\phi=1 .

Hence |\phi(F/e)|=1 . Since |F/e|=1 on \mathscr{K}(\phi) , we have

\int_{\tilde{X}}|F/e-\phi(F/e)|^{2}d\phi=0 ,

and hence, F=\phi(F) on S(\phi) . Hence F=\phi(F) on \mathscr{K}(\phi) .
Let f_{E}=F/\phi(F) . Then f_{E}=1 on \mathscr{K}(\phi) , |f_{E}|=1 on E , and |f_{E}|<1 on

E^{c} . Hence ||f_{E}||=f_{E}=1 on \mathscr{K}(\phi) . Hence K_{E}=\{x:f_{E}(x)=1\} is a peak set
for H^{\infty}- and \mathscr{K}(\phi)\subset K_{E}\subset E . Let \{ U_{a}(\phi)\} be a fundamental system of
clopen neighborhoods of \phi in Y Then, \bigcap_{a}\overline{\pi}^{-1}(U_{a}(\phi))=\overline{\pi}^{-1}(\phi)=\mathscr{K}(\phi) , and

hence, \bigcap_{a}K_{Ea}=\mathscr{K}(\phi) , where E_{a}=\overline{\pi}^{-1}(U_{a}(\phi)) . Therefore, \mathscr{K}(\phi) is a weak

peak set for H^{\infty} .

(ii) Since \mathscr{K}(\phi)\cap \mathscr{K}(\phi)=\emptyset for \phi\neq\phi , \mathscr{K}\overline{(}\phi ) \cap \mathscr{K}\overline{(}\phi ) =\emptyset . Let \theta\in

M(H^{\infty})\backslash hu11I^{\infty} By Proposition 4. 1, S(\theta)\subset \mathscr{K}(\phi) for some \phi\in Y Hence
\theta\in \mathscr{K}\overline{(}\phi)\backslash \{\phi\} , and hence, M(H^{\infty})\backslash hu11I^{\infty}\subset\cup\{\mathscr{K}\overline{(}\phi)\backslash \{\phi\}:\phi\in Y\} .

Next, let \theta\in\cup\{\mathscr{K}\overline{(}\phi)\backslash \{\phi\}:\phi\in Y\} . Then there is a point \phi in Y such

that \theta\in \mathscr{K}\overline{(}\phi ) \backslash \{\phi\} . For every inner function g in \mathscr{H}^{\infty} . g=\phi(g) on \mathscr{K}(\phi) ,

and hence, g=\phi(g) on S(\theta) . Then, by |\theta(g)|=|\phi(g)|=1 , we have \theta\not\in

hull I^{\infty}\backslash Y Hence \theta\in(M(H^{\infty})\backslash hu11I^{\infty})\cup Y . and, by \theta\not\in Y . we have \theta\in

M(H^{\infty})\backslash hu11I^{\infty}

(iii) By Theorem 4. 2, (iii) is obvious. Q. E. D.

THEOREM 4. 5. Let B_{1} and B_{2} be weak-*closed subalgebras of L^{\infty}(m)

such that H^{\infty}\subsetneqq B_{1}\subsetneqq B_{2}\subset L^{\infty}(m) . Let I_{B_{i}}^{\infty}= \{h\in L^{\infty}(m) : \int_{X}hfdm=0\forall f\in B_{i}\}
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(i=1,2), and let \mathscr{H}_{B_{i}}^{\infty}=(B_{i}\cap\overline{B}_{i})\cap H^{\infty}(i=1,2) . Let Y_{i}=\Gamma(H^{\infty}|hu11I_{B_{i}}^{\infty})(i

=1,2) and let Y=\{\phi\in hu11I_{B_{2}}^{\infty} : |\phi(h)|=1 for every inner function h in \mathscr{H}

\infty B_{1}\} . Then we have the following.

(i) I_{B_{1}}^{\infty}\supsetneqq I_{B2}^{\infty} and \mathscr{H}_{B_{1}}^{\infty}\subsetneqq \mathscr{H}_{B_{2}}^{\infty} .
(ii) hull I_{B_{1}}^{\infty} hull I_{B_{2}}^{\infty} .
(iii) hull I_{B_{1}}^{\infty}=(hullI_{B_{2}}^{\infty}\backslash Y)\cup Y_{1} and Y\supset Y_{i}(i=1,2) .
(iv) Y\backslash Y_{2}=hullI_{B_{2}}^{\infty}\backslash [(hu11I_{B_{1}}^{\infty}\backslash Y_{1})\cup Y_{2}] is a union of Gleason parts.

PROOF. ( i) It follows from H^{\infty}B_{i}\subset B_{i}(i=1,2) and [[10], Lemma
1. 1] that B_{i}=[B_{i}]_{1}\cap L^{\infty}(m)(i=1,2) . Hence [B_{1}]_{1}\subsetneqq[B_{2}]_{1} . Therefore I_{B_{1}}^{\infty}

\supsetneqq I_{B_{2}}^{\infty} .
By B_{1}\subset B_{2} we have \mathscr{H}_{B_{1}}^{\infty}\subset \mathscr{H}_{B_{2}}^{\infty} . If \mathscr{H}_{B_{1}}^{\infty}=\mathscr{H}_{B_{2}}^{\infty} , then H^{\infty}=\mathscr{H}_{B_{1}}^{\infty}\oplus I_{B_{1}}^{\infty}\supsetneqq

H^{\infty}=\mathscr{H}_{B_{2}}^{\infty}\oplus I_{B_{2}}^{\infty} . Therefore \mathscr{H}_{B_{1}}^{\infty}\subsetneqq \mathscr{H}_{B_{2}}^{\infty} .
(ii) By I_{B_{1}}^{\infty}\supset I_{B_{2}}^{\infty} we have hull I_{B_{1}}^{\infty}\subset hull I_{B_{2}}^{\infty} . If hull I_{B_{1}}^{\infty} hull I_{B_{2}}^{\infty} , then

H^{\infty}|hu11I_{B_{1}}^{\infty}=H^{\infty}|hu11I_{B_{2}}^{\infty} . Hence \Gamma=\Gamma(H^{\infty}|hu11I_{B_{1}}^{\infty})=\Gamma(H^{\infty}|hu11I_{B_{2}}^{\infty}) . Hence
\mathscr{H}_{B_{1}}^{\infty}=\mathscr{H}_{B_{2}}^{\infty} on \Gamma=\Gamma ( \mathscr{H}_{B_{1}}^{\infty}| hull I_{B_{1}}^{\infty} ) =\Gamma ( \mathscr{H}_{B_{2}}^{\infty}| hull I_{B_{2}}^{\infty} ). Hence, by using

\tilde{\pi} (see (3. 5)), we have \mathscr{H}_{B_{1}}^{\infty}=\mathscr{H}_{B_{2}}^{\infty} on \overline{X}=M(L^{\infty}(m)) . Hence \mathscr{H}_{B_{1}}^{\infty}=\mathscr{H}_{B_{2}}^{\infty} ,
which is a contradiction. Therefore hull I_{B_{1}}^{\infty} hull I_{B_{2}}^{\infty} .

(iii) This part is derived from Proposition 3. 2.
(iv) This part is derived from Theorem 4. 2. Q. E. D.

\S 5. Some properties of a strongly logmodular algebra, Part 1.

Let X be a compact Hausdorff space and let M(X) be the conjugate
space of C(X)i . e. , the space of regular Borel measures on X. Given
another compact Hausdorff space Z and a continuous map \rho of X onto Z, for
every f\in C(Z) let

(5.1) \rho^{0}(f)(x)=f(\rho(x)) for all x\in X .

The map \rho^{0} is an isometric isomorphism of C(Z) into C(X) . Let \rho^{*}

be the adjoint map of \rho^{0} Then, for every \mu\in M(X) , we have

(5.2) \int_{X}f\circ\rho d\mu=\int_{Z}fd(\rho^{*}(\mu)) for all f\in C(Z) ,

or, equivalently,

(5.3) \rho^{*}(\mu)(B)=\mu(\rho^{-1}(B)) for every Borel set B of Z .

Let A be a logmodular algebra on a compact space X, and m be a point
of M(A) , and \tilde{x}_{0} be any point of \tilde{X}=M(L^{\infty}(dm)) . For every f in C(X) , if
we define the map \phi:f\mapsto\hat{f}(\overline{x}_{0}) , then \phi\in M(C(X)) . Hence there is a unique
point xo in X such that \hat{f}(\tilde{x}_{0})=\phi(f)=f(x_{0}) . Hence we have \hat{f}(\tilde{x}_{0})=f(x_{0})
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for all f\in A . We let
\pi:\tilde{x}_{0}\mapsto x_{0},\tilde{x}_{0}\in\overline{X} .

Then \pi is a continuous map of \overline{X} into X.
Next, let \overline{\phi}_{0} be any point of M(H^{\infty}(m)) with a unique representing

measure \mu_{\overline{\phi}_{0}}(=\overline{\phi}_{0}) on \overline{X} . Let \tilde{\phi}_{1}(\hat{f})=\int_{\tilde{X}}\hat{f}d\mu_{\overline{\phi}_{0}}(=\int_{-}\hat{f}d\overline{\phi}_{0}) for all \hat{f}\in C(\overline{X}) .

Then, this linear functional \overline{\phi}_{1} on C(\overline{X}) is a unique Hahn-Banach (norm
preserving) extension to C(\overline{X}) of \overline{\phi}_{0}\in M(H^{\infty}(m)) . For any f\in C(X) we
have \int_{\tilde{X}}\hat{f}d\tilde{\phi}_{0}=\int_{\tilde{X}}f\circ\pi d\overline{\phi}_{0}=\int_{X}fd(\pi^{*}(\overline{\phi}_{0})) . We let

\phi_{0} : f \mapsto\int_{X}fd(\pi^{*}(\overline{\phi}_{0})) , f\in C(X) .

Then we have \overline{\phi}_{1}(\hat{f})=\phi_{0}(f) for all f\in C(X) , and hence \tilde{\phi}_{0}(\hat{f})=\phi_{0}(f) for all
f\in A . Hence \pi^{*}(\overline{\phi}_{0}) is a unique representing measure of \phi_{0}\in M(A) . We
let

\pi:\overline{\phi}_{0}\mapsto\phi_{0},\tilde{\phi}_{0}\in M(H^{\infty}(m)) .

The map \pi is a continuous map of M(H^{\infty}(m)) into M(A) . If \overline{\phi}\in

M(H^{\infty}(m)) and \pi(\tilde{\phi})=\phi , then we have \pi(S(\overline{\phi}))=S(\phi) . Hence if X=
S(m) , then we have \pi(\tilde{X})=X .

In the following Proposition 5. 1 and Corollaries 5. 2 and 5. 3, we suppose
X=S(m), and let

\pi_{1}=\pi|\overline{X} .

If f\in C(X) , then \hat{f}(\pi_{1}^{-1}(x))=f(x) for any x in X. This relation is extended
as follows.

PROPOSITION 5. 1. Let f\in L^{\infty}(dm) , \alpha\in X, and \overline{X}_{a}=\{\overline{x}\in\overline{X}:\pi(\overline{x})=

\alpha\}=\pi_{1}^{-1}(\alpha) . If f is continuous at x=\alpha, then \hat{f}(\tilde{x})=f(\alpha) for all \overline{x}\in\overline{X}_{a} .

PROOF. We suppose that ||f||\leqq 1 and f(\alpha)=0 . For any \epsilon>0 , there is
an open neighborhood V(\alpha) of \alpha such that |f(x)|<\epsilon for every x\in V(\alpha) .
By Urysohn’s lemma, there is a function h\in C_{R}(X) such that h(\alpha)=1 , h(x)
=0 for every x\in X\backslash V(\alpha) , and 0\leqq h(x)\leqq 1 for every x\in X . Then we have
|(1-h^{n})f-f|=|h^{n}f|\leqq|f|<\epsilon on V(\alpha) , and |(1-h^{n})f-f|=|h^{n}f|=0 on X\backslash

V(\alpha) . Hence we have ||(1-h^{n})f-f||<\epsilon , and hence |\tilde{x}[(1-h^{n})f-f]|=

|\overline{x}(f)|<\epsilon for all \tilde{x}\in\overline{X}_{a} . Hence we have f(\tilde{x})=0 for all \tilde{x}\in\overline{X}_{a} . Q. E. D.
Let E be a measurable subset of X, and let \hat{E}=\{\tilde{x}\in\overline{X}:\hat{\chi}_{E}(\overline{x})=1\} .

Then \hat{E} is a clopen set in \tilde{X} .
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COROLLARY 5. 2. If O is an open subset of X, then we have \hat{O}\supset

\pi_{1}^{-1}(O),\hat{O}=\overline{\pi_{1}^{-1}(O)} and \pi(\hat{O})=\overline{O}.

PROOF. By Proposition 5. 1, we have \hat{O}\supset\pi_{1}^{-1}(O) . Since \overline{m} is a nor-

mal measure on \tilde{X} and since \pi^{*}(\tilde{m})=m , we have \tilde{m}(\hat{O})=\int\hat{\chi}_{0}d\tilde{m}=\int\chi_{0}dm=

m(O)=\overline{m}(\pi_{1}^{-1}(O))=\overline{m}(\overline{\pi_{1}^{-1}(O)}) (see (5. 3)). Hence we have \hat{O}=\overline{\pi_{1}^{-1}(O)} .
\hat{O}\supset\pi_{1}^{-1}(O) implies \pi(\hat{O})\supset O. Hence \pi(\hat{O})\supset\overline{O}. And we have \pi(\hat{O})=

\pi(\overline{\pi_{1}^{-1}(O)})\subset\overline{\pi(\pi_{1}^{-1}(O))}=\overline{O} . Hence \pi(\hat{O})=\overline{O} . Q. E. D.

COROLLARY 5. 3. If O is a clopen subset of X, then \hat{O}=\pi_{1}^{-1}(O) . If K
is a compact subset of X, then \pi(\hat{K})\subset K.

PROOF. If O is a clopen subset of X, then \hat{O}=\overline{\pi_{1}^{-1}(O)}=\pi_{1}^{-1}(O) .
Since O=X\backslash K is an open subset of X,\hat{O}\supset\pi_{1}^{-1}(O) . Hence, by \hat{O}\cap\hat{K}

=\emptyset , we obtain \pi(\hat{K})\subset K . Q. E. D.

THEOREM 5. 4. Let A be a strongly logmodular algebra on a compact
Hausdorff space X. Then, for every \phi\in M(A) , S(\phi) is a weak peak set for
A .

PROOF. Let xo be any element of X\backslash S(\phi) . By Urysohn’s lemma,
there is a function g\in C_{R}(X) such that g(x_{0})=0 , g(x)=1 for every x in
S(\phi) , and 0\leqq g(x)\leqq 1 for every x in X. By \log|A^{-1}|=C_{R}(X) there is a
function F in A^{-1} such that \log|F|=g . Since the measure \phi is an Arens-

Singer measure we have \log|\phi(F)|=\int\log|F|d\phi=\int gd\phi=1 , and hence |\phi(F/

e)|=1 . By |F/e|=1 on S(\phi) , we have \int|F/e-\phi(F/e)|^{2}d\phi=0 . Hence we

have F(x)=\phi(F) for every x\in S(\phi) . Let f=F/\phi(F)\in A . Then we have
f(x)=||f||=1 for every x\in S(\phi) and |f(x_{0})|=1/e<1 .

Now, let U be any open neighborhood of S(\phi) , and let y be any point of
X\backslash U . Then, by what was proved above, there is a function f\in A such
that f(x)=||f||=1 for every x\in S(\phi) , and |f(x)|<1 for every x in some
open neighborhood V(y) of y . Since X\backslash U\subset\cup\{V(y):y\in X\backslash U\} and since
X\backslash U is a compact subset, there is \{y_{i} : i=1,2^{ },\cdots, n\}\subset X\backslash U such that X\backslash

U \subset\bigcup_{i=1}^{n}V(y_{i}) . Let f_{i}\in A(i=1, 2, \cdots, n) be functions such that f_{i}(x)=||f_{i}||

=1 for every x\in S(\phi) and |f_{i}(x)|<1 for every x in V(y_{i}) . Let f_{U}=\Sigma f_{i}\underline{1}n

ni=1
\in A and let K_{U}=\{x: f_{U}(x)=1\} . Then ||f_{U}||=f_{U}(x)=1 for every x\in S(\phi) ,

and K_{U}\subset U . Thus K_{U} is a peak set for A, and we have S( \phi)=\bigcap_{U}K_{U} .

Therefore, S(\phi) is a weak peak set for A. Q. E. D.
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THEOREM 5. 5. Let A be a strongly logmodular algebra on a compact
Hausdorff space X. Let m\in M(A) , and we suppose that X=S(m) . Then
we have the following.

(i) A=H^{\infty}(m)\cap C(X) .
(ii) A^{-1}=(H^{\infty}(m))^{-1}\cap C(X) .
(iii) f\in A^{-1} if and only if f\in(H^{\infty}(m))^{-1} and \log|f|\in C_{R}(X) .
PROOF. ( i) Let f\in H^{\infty}(m)\cap C(X) . Let B be the Banach algebra

generated by f and the identity. Then \log|A^{-1}|=C_{R}(X)\supset\log|B^{-1}| . Hence,
for any function g\in B^{-1} , there is a function G\in A^{-1} such that |gG^{-1}|=1 .
Since gG^{-1}\in(H^{\infty}(m))^{-1} and since X=S(m) is an antisymetric set of
H^{\infty}(m) , we have G=\alpha ga . e . (m), where \alpha is a constant and |\alpha|=1 . Since
\alpha g and G belong to C(X) , we have G=\alpha g . Hence A^{-1}\supset B^{-1} , and hence
A\supset B . Thus we obtain A=H^{\infty}(m)\cap C(X) .

(ii) Let f\in(H^{\infty}(m))^{-1}\cap C(X) . Then f\in A , and there is a function g
\in H^{\infty}(m) such that fg=1a.e. (m). It is easy to see that f\in C(X)^{-1} .
Hence 1/f\in H^{\infty}(m)\cap C(X)=A , and hence f\in A^{-1} .

(iii) Let f\in(H^{\infty}(m))^{-1} and let \log|f|\in C(X) . Then there is a func-
tion g\in A^{-1} such that \log|g|=\log|f| . Hence |fg^{-1}|=1 and fg^{-1}\in(H^{\infty}(m))^{-1} .
Hence f=\alpha ga . e . (m). Since X=S(m) and \alpha g\in A^{-1} . we have f\in A^{-1} .

Q. E. D.
In the rest of this section, let X, A, and m be as in Theorem 5. 5. Let

H^{\infty}=H^{\infty}(m)=\mathscr{H}^{\infty}\oplus I^{\infty} and \mathscr{L}^{\infty}

be the objects as defined in the cases 2. 1, 2. 2 and 2. 3 of \S 2. Let
J=J^{\infty}\cap C(X) , I=I^{\infty}\cap C(X),\mathscr{H}=\mathscr{H}^{\infty}\cap C(X) ,
\mathscr{L}=\mathscr{L}^{\infty}\cap C(X) , and \mathscr{L}_{R}=\mathscr{L}^{\infty}\cap C_{R}(X) .

Then J and I are closed ideals of A, and \mathscr{H}(\subset A) , \mathscr{L} and \mathscr{L}_{R} are Banach
algebras. By \mathscr{L}^{\infty}I^{\infty}=I^{\infty} (see (2.2) and (2.4)) we have
(5.4) \mathscr{L}I=I .

The following proposition is proved by the same argument as for
Theorem 5. 5.

PROPOSITION 5. 6. Let X, A and m be as in Theorem 5. 5. Then we
have the following.

(i) \mathscr{H}^{-1}=(\mathscr{H}^{\infty})^{-1}\cap C(X) .
(ii) f\in \mathscr{H}^{-1} if and only if f\in(\mathscr{H}^{\infty})^{-1} and \log|f|\in C_{R}(X) .
(iii) \log|\mathscr{H}^{-1}|=\mathscr{L}_{R} .
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PROPOSITION 5. 7. Let X, A and m be as in Theorem 5. 5. Suppose

that P(m) is nontrivial. Then J=I is a primary ideal of A and we have

I=\{f\in A:\phi(f)=0\forall\phi\in P(m)\} .

PROOF. Let I_{1}=\{f\in A : \phi(f)=0 \forall\phi\in P(m)\} . Then, by [14, TheO-
rem 8], we have I_{1}\subset I^{\infty} . and hence I_{1}\subset I^{\infty}\cap C(X)=I .

On the other hand, by I\subset A , we have I\subset I_{1} , and hence I=I_{1} .
As we stated in \S 2, there is an analytic map of D onto P(m) , hnd cence

I is a primary ideal of A. Q. E. D.
For x_{1} and x_{2} in X we define x_{1} and x_{2} to be x_{1}-x_{2} when f(x_{1})=f(x_{2})

for all f in \mathscr{L} Then –is an equivalence relation on X. Let \check{X} be the
quotient space X/- with the quotient topology, and let Q:X\mapsto\check{X} be the
quotient map (cf. [15], p. 37). For every f\in \mathscr{L} we define a continuous
function \check{f} on a compact Hausdorff space \check{X} by f=\check{f}\circ Q . Then we have

C(\check{X})=\{\check{f}:f\in \mathscr{L}\} ,

and therefore Q^{0}(C(\check{X}))=\mathscr{L} Further, since \mathscr{L} is self-adjoint, we have

C(M(\mathscr{L}))=\{\hat{f}:f\in \mathscr{L}\} .

The map \Phi:\hat{f}\mapsto\check{f}(\forall f\in \mathscr{L}) is an algebra isomorphism of C(M(\mathscr{L}))

onto C(\check{X}) , and hence the adjoint map \sigma=\Phi^{*} of \Phi is a homeomorphism of
\check{X} onto M(\mathscr{L}) such that \Phi(\hat{f})(\check{x})=\hat{f}(\sigma(\check{x}))(\forall\check{x}\in\check{X}) . Let

(5.5) q=\sigma\circ Q .

Then q is a continuous map of X onto M(\mathscr{L}) and we have q^{0}(\hat{f})=f(\forall f\in

\mathscr{L}) and q^{0}(\hat{\mathscr{L}})=\mathscr{L}

For \phi\in M(\mathscr{L}) , let

K(\phi)=q^{-1}(\phi) .

Then we have K(\phi)=\{x\in X:f(x)=\phi(f), \forall f\in \mathscr{L}\},X=\cup\{K(\phi):\phi\in

M(\mathscr{L})\} , and K(\phi)\cap K(\theta)=\emptyset for \phi\neq\theta .
For every \tilde{\phi} in Y=\Gamma(H^{\infty}|hu11I^{\infty}) , let

(5.6) \eta : \tilde{\phi}\mapsto(\Sigma^{-1}(\tilde{\phi}))|\mathscr{L} (see (3. 4)).

Then \eta is a continuous map of Y onto M(\mathscr{L}) , because \mathscr{L} is a selfadjoint

Banach algebra (cf. [6], p. 80).

THEOREM 5. 8. Let A be a strongly logmodular algebra on a compact

Hausdorff space X. Let m\in M(A) and suppose X=S(m) . Let K(\phi)=

\{x\in X:f(x)=\phi(f), \forall f\in \mathscr{L}\} for \phi\in M(\mathscr{L}) . Then we have the following.
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(i) For every \phi\in M(\mathscr{L}) , we have
\tilde{x}\cap\pi^{-1}(K(\phi))=\cup\{\mathscr{K}(\tilde{\theta}):\tilde{\theta}\in\eta^{-1}(\phi)\} .

(ii) For \phi, \theta\in M(\mathscr{L})(\phi\neq\theta) , we have
–

\pi[\cup\{\mathscr{K}(\tilde{\theta}):\tilde{\theta}\in\eta^{-1}(\phi)\}]\subset K(\phi)

and
K\overline{(\phi})\cap K\overline{(\theta})=\emptyset

,

where \mathscr{K}\overline{(}\tilde{\theta} ) and K\overline{(\phi} ) are H^{\infty} -convex hull of \mathscr{K}(\tilde{\theta}) and A-convex hull
of K(\phi) respectively.

(iii) If \pi(M(H^{\infty}(m)))=M(A) , then we have
M(A)=hu11I\cup(\cup\{K(\phi):\phi\in M(\mathscr{L})\}) .

PROOF. ( i) Let \tilde{\theta}\in\eta^{-1}(\phi) . Then, for every f in \mathscr{L} . we have
\overline{\theta}(f)=\phi(f) . From f=\tilde{\theta}(f) on \mathscr{K}(\tilde{\theta}) we have f=\phi(f) on \pi(\mathscr{K}(\tilde{\theta})) .
Hence we have \pi(\mathscr{K}(\tilde{\theta}))\subset K(\phi) , and hence \pi[\cup\{\mathscr{K}(\tilde{\theta}):\tilde{\theta}\in\eta^{-1}(\phi)\}]\subset

K(\phi) . Hence it follws from \tilde{X}=\cup\{\mathscr{K}(\tilde{\theta}):\overline{\theta}\in Y\}=\bigcup_{\phi\in M(\mathscr{L})}[\cup\{\mathscr{K}(\tilde{\theta}):\tilde{\theta}\in

\eta^{-1}(\phi)\}] , X=\cup\{K(\phi) : \phi\in M(\mathscr{L})\} and \pi(\overline{X})=X that
\tilde{X}\cap\pi^{-1}(K(\phi))=\cup\{\mathscr{K}(\tilde{\theta}):\overline{\theta}\in\eta^{-1}(\phi)\} .

(ii) Let \tilde{\theta}\in\eta^{-1}(\phi) . If \overline{\psi}\in \mathscr{K}\overline{(}\tilde{\theta}), then S(\tilde{\phi})\subset \mathscr{K}(\tilde{\theta}) . Let \phi=

\pi(\tilde{\phi}) . Then S(\phi)=\pi(S(\tilde{\phi}))\subset\pi(\mathscr{K}(\tilde{\theta}))\subset K(\phi) . Hence \psi\in K\overline{(\phi}). Hence
we have

\pi\{\mathscr{K}\overline{(}\tilde{\theta}):\overline{\theta}\in\eta^{-1}(\phi)\}\subset K\overline{(\phi}) .

If \theta_{1}\in K\overline{(\phi} ) and \theta_{2}\in K\overline{(\theta} ), then we have \theta_{1}(f)=\phi(f) and \theta_{2}(f)=\theta(f) for
every f\in \mathscr{L} And, for some g\in \mathscr{L} \phi(g)\neq\theta(g) . Hence we have K\overline{(\phi} ) \cap

K(\theta)=\emptyset .

(iii) By Theorem 4. 4, (iii), (M(H^{\infty})\backslash hu11I^{\infty})\cup Y=\cup\{\mathscr{K}\overline{(}\tilde{\theta}):\tilde{\theta}\in Y\} .
Hence, by ( ii) , we have \pi[(M(H^{\infty})\backslash hu11I^{\infty})\cup Y]\subset\cup\{K\overline{(\phi}):\phi\in M(\mathscr{L})\} .
On the other hand, if \tilde{\phi}\in hullI^{\infty} . then \tilde{\phi}(h)=0 for all h\in I^{\infty} . and hence
\pi(\tilde{\phi})(h)=0 for all h\in I=I^{\infty}\cap C(X) . Hence we have \pi[hullI^{\infty}]\subset hu11I .
Thus we obtain

M(A)=hu11I\cup(\cup\{K\overline{(\phi}):\phi\in M(\mathscr{L})\}) . Q. E. D.
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THEOREM 5. 9. Let A, X and m be as in Theorem 5. 8. Suppose that
\mathscr{L}\supsetneqq C and M(\mathscr{L}) is totally disconnected. Then we have the following.

(i) I=I^{\infty}\cap C(X) is contained in the uniformly closed linear span X
of all functions in A, each of which vanishes on some set of positive measure.
In particular, in the cases 2. 1 and 2. 3 in \S 2, we have I=J=X

(ii) For every \phi in M(\mathscr{L}) , the set K(\phi) is a weak peak set for A.

PROOF. ( _{i}) Let q be the continuous map defined in (5. 5), let q^{0} be
the map of C(M(\mathscr{L})) to C(X) defined in (5. 5), and let q^{*} be the adjoint

map of q^{0} (see (5. 2)). Let \mu_{m}=q^{*}(m) and let f\in \mathscr{L} Then, for every \epsilon>0

there are clopen sets D_{h} (k=1,2, \cdots, n) in M(\mathscr{L}) with 0<\mu_{m}(D_{k})<1(k=1 ,

2, \cdots , n) and complex numbers c_{k}(k=1,2, \cdots, n) such that

|| \hat{f}-\sum_{k=1}^{n}c_{k}\chi_{D_{k}}||<\epsilon .

Hence we have

(5. 7) ||q^{0}( \hat{f}-\sum_{k=1}^{n}c_{k}\chi_{D_{k}})||=||f-\sum_{k=1}^{n}c_{k}\chi_{q^{-1}(D_{k})}||<\epsilon ,

where \chi_{q^{-1}(D_{k})}\in \mathscr{L} and 0<m(q^{-1}(D_{k}))<1(k=1,2, \cdots, n) .
Now, by (5. 4), for every h in I, there are f\in \mathscr{L} and g\in I with ||g||<

1/2 such that fg=h. Suppose that f satisfies (5. 7). Then we have

||h- \sum_{h=1}^{n}c_{k}\chi_{q^{-1}(D_{k})}g||\leqq||g||\epsilon<\epsilon/2 ,

where \chi_{q^{-1}(D_{k})}g\in I (k=1,2, \cdots, n) . Hence we have ( i ) .
(ii) By using Proposition 5. 6, Theorem 5. 8 ( ii) and the map q

defined in (5. 5), ( ii) is proved by the same argument as for Theorem 5. 3.
(i ) . Q. E. D

Although, in \S 2, J^{\infty}=J^{\infty}(H^{\infty}) is defined to be the weak-*closed linear
span of all functions in H^{\infty}(m) , each of which vanishes on some set of
positive measure, we see by Theorem 5. 9, in the cases 2. 1 and 2. 3 in \S 2, J^{\infty}

is the uniformly closed linear span of those sets. That is, we have the
following.

COROLLARY 5. 10. Let I^{\infty} be as in the cases 2.1, 2.2 and 2.3 in \S 2.

Then I^{\infty} is contained in the uniformly closed linear span X^{\infty} of all func-
tions in H^{\infty}(m) , each of which vanishes on some set of positive measure. In
particular, in the cases 2.1 and 2.3 in \S 2, we have I^{\infty}=J^{\infty}=X^{\infty}

PROPOSITION 5. 11. Let X, A and m be as in Theorem 5.8, and let f
\in L^{\infty}(m) . Then f\in \mathscr{L} if and only if \hat{f} is constant on \cup\{\mathscr{K}(\tilde{\theta}) : \overline{\theta}\in
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\eta^{-1}(\phi)\} for every \phi in M(\mathscr{L}) . {For \eta see (5.6).)

PROOF. By the definition of \pi and Theorem 5. 8, ( i ) , we obtain the
“if” part.

Let f\in L^{\infty}(m) . Then \hat{f}\in C(\tilde{X}) , and by Theorem 5. 8, ( _{i} ) , \hat{f} is con-
stant on \tilde{X}\cap\pi^{-1}(x) for every x\in X . Hence, by [1, Lemma 4. 3] and
Proposition 3. 9, ( ii) , we see that f\in \mathscr{L}^{\infty}\cap C(X)=|\mathscr{L} Q. E. D.
\S 6. Some properties of a strongly logmodular algebra, Part 2.

In this section, let A be a strongly logmodular algebra on a compact
Hausdorff space X and let m\in M(A) . We suppose that P=P(m)\supsetneqq\{m\}

and X=S(m) .
Let H^{\infty}=H^{\infty}(m)=\mathscr{H}^{\infty}\oplus I^{\infty} and \mathscr{L}^{\infty} be as in the case 2. 3 of \S 2, and let

N^{\infty} be the weak\cdot*closure of I^{\infty}+\overline{I^{\infty}} in L^{\infty}(m) . Let \mathscr{L}=\mathscr{L}^{\infty}\cap C(X) , \mathscr{L}_{R}

=|\mathscr{L}^{\infty}\cap C_{R}(X) , N=N^{\infty}\cap C(X) and N_{R}=N^{\infty}\cap C_{R}(X) . Let \mathscr{P} be the
nontrivial Gleason part of \tilde{m}\in M(H^{\infty}) , where \tilde{m} is the complex homomor-
phism of H^{\infty} which is defined by the Radonization of the measure m. Then
\pi \mathscr{P}=P and \pi\overline{\mathscr{P}}=\overline{P} (cf. [12])

LEMMA 6. 1. ( i) Let f\in L^{\infty}(m) . Then f\in N^{\infty} if and only if \phi(f)

=0 for all \phi\in \mathscr{P}

(ii) Let f\in C(X) . Then f\in N if and only if \phi(f)=0 for all \phi\in P.
PROOF. ( i) Let f=g+h, where g\in \mathscr{L}^{\infty} and h\in N^{\infty} The “if”

part is obvious. If \hat{f}(\phi)=0 on \mathscr{P} . then g\wedge(\phi)=0 on \mathscr{P}-. Hence g\wedge=0 on
Y(=\Gamma(H^{\infty}|hu11I^{\infty})) . By g\in \mathscr{L}^{\infty}.\hat{g}=0 on \pi--1(Y)=\overline{X}=M(L^{\infty}) and hence g=
0a. e . (m). Thus f\in N^{\infty}

(ii) By using \pi \mathscr{P}=P , we easily obtain ( ii) . Q. E. D.
LEMMA 6. 2. Let u\in C_{R}(X) . Then u\in N_{R} if and only if there is a

function f\in A^{-1} such that u=\log|f| and |\hat{f}(\phi)|=1 on \overline{P}. And, in this
case, \hat{f}(\phi) is constant on \overline{P}.

PROOF. Let u\in N_{R} . By \log|A^{-1}|=C_{R}(X) , there is a function f\in A^{-1}

such that u=\log|f| . Then, for every \tilde{\phi}\in \mathscr{P} . 0= \tilde{\phi}(u\underline{)=}\int_{\tilde{X}}\log|f|d\tilde{\phi}=

\log|\tilde{\phi}(f)| , and hence we have |\tilde{\phi}(f)|=1 on \overline{\mathscr{P}}. Hence \tilde{\phi}(f)=\tilde{\phi}(1/f) for
every \tilde{\phi}\in\overline{\mathscr{P}}. Hence \hat{f}|Y and \overline{\hat{f}|Y} belong to \hat{H}^{\infty}|Y. Since Y is an
antisymmetric set, \hat{f}(\tilde{\phi}) is constant on Y. Since \overline{\mathscr{P}} is the \hat{H}^{\infty} -convex hull
of Y,\hat{f}(\tilde{\phi}) is constant on \overline{\mathscr{P}}. Since \overline{P}=\pi(\mathscr{P}3, |\hat{f}(\phi)|=1 on \overline{P} and \hat{f}(\phi)

is constant on \overline{P} .
Conversely, if f\in A^{-1} and |\hat{f}(\phi)|=1 on \overline{P}, then for u=\log|f| , \phi(u)=
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\int\log|f|d\phi=\log|\phi(f)|=0 on P-. Hence, by Lemma 6. 1. ( ^{ii}) , u\in N_{R} .

By Proposition 2. 1, \log|(H^{\infty})^{-1}|=L_{R}^{\infty} can be rewriten as
1og|(\mathscr{H}^{\infty}Q.E.D

.

\oplus I^{\infty})^{-1}|=\mathscr{L}_{R}^{\infty}\oplus N_{R}^{\infty} . And, we have \log|(\mathscr{L}^{\infty}+I^{\infty})^{-1}|=\mathscr{L}_{R}^{\infty}\oplus N_{R}^{\infty} and \log|(I^{\infty}

+C’)^{-1}|=N_{R}^{\infty}+R (see Proposition 3. 10), where C’=C\backslash \{0\} . As we see in

the following theorem, these formulas hold for \mathscr{H} . I , \mathscr{L} and N_{R} .

THEOREM 6. 3. Let A be a strongly logmodular algebra on X and let m

\in M(A) . We suppose that P=P(m)\supsetneqq\{m\} and X=S(m) . Let I=\{f\in A :
\phi(f)=0 \forall\phi\in P\} . then \mathscr{H}+I, \mathscr{L}\oplus I and \mathscr{L}_{R}\oplus N_{R} are all uniformly

closed and we have the following.

(i) \log|(C’+I)^{-1}|=R+N_{R} on X,

(ii) \log|(\mathscr{H}\oplus I)^{-1}|=\mathscr{L}_{R}\oplus N_{R} on X,

(iii) \log|(\mathscr{L}\oplus I)^{-1}|=\mathscr{L}_{R}\oplus N_{R} on X,

where \oplus denotes the algebraic direct sum, C and R are the complex and the

real fields respectively, and C’=C\backslash \{0\} .

PROOF. For F=g+h, where g\in \mathscr{H} and h\in I , we have ||g||\leqq||F||

(see the proof of Proposition 2. 1), and hence ||h||\leqq 2||F|| . Hence, if F_{n}=g_{n}

+h_{n} (n=1,2, \cdots) uniformly converges to F_{0} , then g_{n} and h_{n} uniformly

converge to g\in \mathscr{H} and h\in I respectively. Hence F_{0}\in \mathscr{H}\oplus I . Therefore,
\mathscr{H}\oplus I is uniformly closed. We can see similarly that \mathscr{L}\oplus I and \mathscr{L}_{R}\oplus N_{R}

are both uniformly closed.
(i) By lemma 6. 2, for u\in N_{R} there is a function f\in A^{-1} such that u

=\log|f| , |\hat{f}(\phi)|=1 on P-, and f\wedge(\phi) is aconstant on P. Let \phi_{0} be a fixed
point in \overline{P} . Then,

f=\phi_{0}(f)+(f-\phi_{0}(f))\in C’+I .

There is a function g\in A such that fg=1 . By \phi(g)=1/\phi(f) on P-, |\hat{g}(\phi)|=

1 on \overline{P} and \hat{g}(\phi) is constant on \overline{P} . Hence,

g=\phi_{0}(g)+(g-\phi_{0}(g))\in C’+I .

Hence f\in(C’+I)^{-1} . Therefore R+N_{R}\subset\log|(C’+I)^{-1}| .
Conversely, if u\in\log|(C’+I)^{-1}| , then u=\log|c+h| , where c+h\in(C’

+I)^{-1} . For every \phi\in\overline{P} , we have

\phi(u)=\int\log|c+h|d\phi=\log|\phi(c+h)|=\log|c| ,

and hence \phi(u-\log|c|)=0 . By Lemma 6.1, u-\log|c|\in N_{R} . Hence u=
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\log|c|+v , where v\in N_{R} . Therefore, \log|(C’+I)^{-1}|\subset R+N_{R} .
(ii) By Proposition 5.6, we have

(6. 1) \log|\mathscr{H}^{-1}|=\mathscr{L}_{R} .

By ( i) we have
(6.2) \log|(C’+I)^{-1}|=R+N_{R} .

Here, we will prove

(6.3) (C’+I)_{\mathscr{H}^{-1}=(\mathscr{H}\oplus I)^{-1}}^{-1} .

Let c+h\in(C’+I)^{-1} and let g\in \mathscr{H}^{-1} . Then (c+h)g=cg+hg\in \mathscr{H}\oplus I .
By l/(c h)g=(c’+h’)(1/g)=c’/g+h’/g\in \mathscr{H}\oplus I , where c’\in C and h’\in I .
Hence (c+h)g\in(\mathscr{H}\oplus I)^{-1} . Thus (C’+I)^{-1}\mathscr{H}^{-1}\subset(\mathscr{H}\oplus I)^{-1}

Let f\in(\mathscr{H}\oplus I)^{-1} . Let f=g+h and 1/f=g_{1}+h_{1} , where g, g_{1}\in \mathscr{H} and
h, h_{1}\in I . Then gg_{1}=1 and hence g\in \mathscr{H}^{-1} . By f=g+h, we have f/g=1
+h/g=1+h_{1} , where h_{1}=h/g\in I . Let F=1/(1+h_{1}) . Then F=1-h_{1}F\in
C’+I . Hence 1+h_{1}\in(C’+I)^{-1} . Hence f=(1+h/g)g\in(C’+I)^{-1}\mathscr{H}^{-1}

Thus (\mathscr{H}\oplus I)^{-1}\subset(C’+I)^{-1}\mathscr{H}^{-1} . Therefore, we obtain (6. 3).
By (6. 1), (6. 2) and (6.3), we obtain

\log|(\mathscr{H}\oplus I)^{-1}|=\mathscr{L}_{R}\oplus N_{R} .

(iii) By \mathscr{L}_{R}=\log|\mathscr{H}^{-1}|\subset\log|\mathscr{L}^{-1}|\subset \mathscr{L}_{R} , we have
\log|\mathscr{L}^{-1}|=\mathscr{L}_{R} .

The following formula is proved by the same argument as for (6. 3).

(C+I)^{-1}\mathscr{L}^{-1}=(\mathscr{L}\oplus I)^{-1}

Hence we obtain (iii). Q. E. D.
Let A be a strongly logmodular algebra on a compact Hausdorff Stonian

space X and let m\in M(A) . We suppose that X=S(m) , P(m)\supsetneqq\{m\} and
the Wermer embedding function Z belongs to A. Example 4, ( _{ii}) in \S 8 is
such an example.

By Proposition 5. 6 we have \log|\mathscr{H}^{-1}|=\mathscr{L}_{R} . Let T be the map which
will be defined in (7. 1) of \S 7. Let H=T(\mathscr{H}) , L=T(\mathscr{L}) and L_{R}=T
(\mathscr{L}_{R}) . Then, by T(\log|\mathscr{H}^{-1}|)=\log|(T(\mathscr{H}))^{-1}| , we have \log|H^{-1}|=L_{R} .
Hence H is a strongly logmodular algebra on M(L) such that e^{i\theta}\in H and
A(\partial D)\subsetneqq H\subset H^{\infty}(D) , where A(\partial D) is the disk algebra on the unit circle \partial D .

PROBLEM. Does such an algebra H coincide with H^{\infty}(D) ?
If this problem has an affirmative answer, then \mathscr{H}=T^{-1}(H)=

T^{-1}(H^{\infty}(\partial D))=\mathscr{H}^{\infty} , i . e. , the natural injection \mathscr{H}\subseteqq \mathscr{H}^{\infty} is an isometric
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isomorphism of \mathscr{H} and \mathscr{H}^{\infty} Further we will obtain an algebraic direct sum
decomposition A=\mathscr{H}\oplus J , where J=J^{\infty}\cap C(X) .

\S 7. A logmodular algebra A satisfying A\circ\tau=H^{\infty}(D) .
In this section, let A be a logmodular algebra on a compact Hausdorff

space X and let m\in M(A) . We suppose that P=P(m) is nontrivial. Let
Z be the Wermer embedding function, let \mathscr{H}^{\infty} be the weak\cdot*closure of the
polynomials in Z in L^{\infty}(m) , and let \mathscr{L}^{\infty} be the weak-* closure of the
polynomials in Z and \overline{Z} in L^{\infty}(m) . Let I^{\infty}=\{f\in H^{\infty}(m):\phi(f)=0\forall\phi\in P\} .
Then, as we stated in the case 2. 3 of \S 2, we have H^{\infty}=H^{\infty}(m)=\mathscr{H}^{\infty}\oplus I^{\infty}

The correspondence

(7. 1) T: \sum_{k=-n}^{n}a_{k}Z^{k}\mapsto\sum_{h=-n}^{n}a_{k}e^{ik\theta} , a_{k}\in C

induces an isometric isomorphism T of \mathscr{L}^{\infty} onto L^{\infty}(d\theta) , which carries
\mathscr{H}^{\infty} onto H^{\infty}(D) , where n ranges over all integers and (1/2\pi)d\theta is the
normalized Haar measure on the unit circle (cf. [16]). By Fatou’s theorem,
every function in H^{\infty}(D) is identified with its boundary function on the unit
circle \partial D .

THEOREM 7. 1. Let A be a logmodular algebra on a compact Hausdorff
space X, let P=P(m) be the nontrivial Gleason part of m for A, and let \tau

be an analytic map of D onto P. Let \Gamma=\Gamma(A|\overline{P}) be the Shilov boundary of
A|\overline{P}. Suppose that A\circ\tau=H^{\infty}(D) . Then we have the following.

(i) \Gamma=\pi(Y) , and \Gamma is a compact Hausdorff Stonian space, where Y
=\Gamma(H^{\infty}|hu11I^{\infty}) (see (3. 4)).

(ii) M(A|\Gamma)=\overline{P}=hu11I, where I= {f\in A:\phi(f)=0 for all \phi\in P}.
(iii) A|\Gamma is a strongly logmodular algebra on \Gamma .
(iv) Let \lambda_{m} be a (unique) representing measure on \Gamma of m for A|\Gamma .

and let H^{\infty}(\lambda_{m}) be the weak-*closure of A|\Gamma in L^{\infty}(\lambda_{m}) . Then, \lambda_{m} is a

normal measure on \Gamma such that S(\lambda_{m})=\Gamma . and the natural injection A|\Gamma\subseteqq

H^{\infty}(\lambda_{m}) is an isometric isomorphism of A|\Gamma and H^{\infty}(\lambda_{m}) .
(v) If the Wermer embedding function Z belongs to A, then A|\Gamma is

the weak-*closure of the set of polynomials in Z in L^{\infty}(\lambda_{m}) .

PROOF. ( i ) , ( ii) By the map

f|\Gamma\mapsto f|\overline{P}\mapsto f|P\mapsto f\circ\tau\in H^{\infty}(D) , f\in A

the algebra A|\Gamma is isometrically isomorphic to the Banach algebra H^{\infty}(D) .
Hence A|\Gamma is a uniform algebra on \Gamma By a general theory, we have M(A|

\Gamma)= { \phi\in M(A):|\phi(f)|\leqq||f||\Gamma for all f\in A} (cf. [15], p. 166). By A\circ\tau=
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H^{\infty}(D) , we have hull (I)=\overline{P} (cf. [12], Theorem 4. 4). Hence, by M(A|\Gamma)\subset

hull I and \overline{P}\subset M(A|\Gamma) , we have

(7.2) M(A|\Gamma)=hu11I=\overline{P} .

From H^{\infty}(D)=\{f\circ\tau:f\in A\}\subset\{f\circ\tau:f\in H^{\infty}(m)\}=\{f\circ\tau:f\in \mathscr{H}^{\infty}\}\subset H^{\infty}(D) ,
we obtain \{f\circ\tau:f\in A\}=\{f\circ\tau:f\in \mathscr{H}^{\infty}\} . Hence we have
(7.3) A|\overline{\mathscr{P}}=\mathscr{H}^{\infty}|\overline{\mathscr{P}}.

The map \pi is a homeomorphism of \overline{\mathscr{P}} onto \overline{P} (cf. [12], Theorem 4.1),
and, for every f in A, we have

(7.4) f(\tilde{\phi})=f(\pi(\tilde{\phi})),\tilde{\phi}\in\overline{\mathscr{P}}.

Further, by \overline{\mathscr{P}}=hullI^{\infty} (cf. [12], Theorem 3. 1), we have
(7.5) Y=\Gamma(\mathscr{H}^{\infty}|\mathscr{P}3 .

Hence, by (7. 3), (7.4) and (7. 5), we obtain
\Gamma=\pi(Y) .

Since Y is a compact Hausdorff Stonian space, \Gamma is a compact Hausdorff
Stonian space too.

(iii) Let \pi_{Y}=\pi|Y Then \pi_{Y}^{0} is a one-t0-0ne map of C_{R}(\Gamma) onto
C_{R}(Y) (see (5. 1)), and we have

\pi_{Y}^{0}(\log|(A|\Gamma)^{-1}|)=\log|(A|Y)^{-1}|

=\log|(\mathscr{H}^{\infty}|Y)^{-1}|=C_{R}(Y) on Y

Hence we have
\log|(A|\Gamma)^{-1}|=C_{R}(\Gamma) .

Since A|\Gamma is a uniform algebra on \Gamma the algebra A|\Gamma is a strongly log-
modular algebra on \Gamma

(iv) Let \lambda_{\tilde{m}}=\tilde{\pi}^{*}(\tilde{m}) (see (5. 2)). Then \lambda_{\tilde{m}} is a normal measure on Y
(cf. [13], p. 77). For any f\in A , we have

m(f)= \int_{X}fdm=\int_{\tilde{X}}\hat{f}d\tilde{m}=\int_{\tilde{X}}\hat{g}d\overline{m}

= \int_{\tilde{X}}\hat{g}\circ\pi d\tilde{m}=\int_{Y}\hat{g}d\lambda_{\tilde{m}}=\int_{Y}(\hat{g}+\hat{h})d\lambda_{\tilde{m}}

= \int_{Y}\hat{f}d\lambda_{\tilde{m}}=\int_{Y}f\circ\pi d\lambda_{\overline{m}=}\int_{\Gamma}fd(\pi^{*}(\lambda_{\overline{m}}))

= \int_{\Gamma}fd\lambda_{m} ,
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where f=g+ha. e . (m), g\in \mathscr{H}^{\infty} and h\in I^{\infty} Hence we see that \lambda_{m} is a
normal measure on the compact Stonian space \Gamma and S(\lambda_{m})=\Gamma . Hence, the
natural injection C(\Gamma)\subseteqq L^{\infty}(\lambda_{m}) is an isometric isomorphism of C(\Gamma) and
L^{\infty}(\lambda_{m}) . So, by Theorem 5. 5, we have A|\Gamma=H^{\infty}(\lambda_{m})\cap C(\Gamma)=H^{\infty}(\lambda_{m}) .

(v) For every function f\in H^{\infty}(D) , there is a sequence \{f_{n}\}\subset A(\partial D)

such that ||f_{n}||<||f|| for all n and f_{n}arrow fa . e . (d\theta) , where A(\partial D) is the disc
algebra on the unit circle \partial D^{\cdot}. Then, from

| \int_{\partial D}gfd\theta|=\lim_{n}|\int_{\partial D}gf_{n}d\theta|

\leqq\varliminf_{n}||f_{n}||\int_{\partial D}|g|d\theta , g\in L^{1}(d\theta) ,

we have ||f||\leqq\varliminf_{n}||f_{n}||\leqq\varlimsup_{n}||f_{n}||\leqq||f|| , and hence \lim_{n}||f_{n}||=||f|| .

For every n=1,2, \cdots , let \epsilon_{n} be a number such that 0<\epsilon_{n}<||f||-||f_{n}|| .
For every f_{n} , there is a polynomial P_{n}(e^{i\theta}) in e^{i\theta} on the unit circle \partial D such
that ||P_{n}-f_{n}||<\epsilon_{n} . Then we have ||P_{n}||<||f|| (n=1,2, \cdots) and P_{n}arrow fa . e .
(d\theta) .

Let F=T^{-1}(f) and let P_{n}(Z)=T^{-1}(P_{n}(e^{i\theta})) (for T see (7. 1)). Then,

by [16, p. 464], we have

\int_{\partial D}|P_{n}(e^{i\theta})-f(e^{i\theta})|d\theta=\int_{X}|P_{n}(Z)-F|dm

= \int_{\tilde{X}}|P_{n}\hat{(}Z)-\hat{F}|d\overline{m}=\int_{\overline{X}}|(P_{n}\hat{(}Z)-\hat{F})\circ\overline{\pi}|d\overline{m}

= \int_{Y}|P_{n}\hat{(}Z)-\hat{F}|d\lambda_{\tilde{m}}arrow 0(narrow\infty) .

Hence (by passing to a subsequence) there is a sequence \{P_{n}\hat{(}Z)\} such that
P_{n}\hat{(}Z)arrow\hat{F}a . e . (\lambda_{\tilde{m}}) and ||P_{n}\hat{(}Z ) ||_{Y}\leqq||\hat{F}||_{Y} .

For any g\in A|\Gamma there is a function f\in A such that g=f|\Gamma r Let f=G
+H a . e . (m), where G\in \mathscr{H}^{\infty} and H\in I^{\infty} Then, for every \tilde{\phi}\in Y . we
have [g\circ\pi](\tilde{\phi})=g(\phi)=f(\phi)=f(\tilde{\phi})=G(\tilde{\phi}) , where \phi=\pi(\tilde{\phi}) . That is, we
have g\circ\pi=G on Y Then, there is a sequence of polynomials \{P_{n}(Z)\}(=

\{P_{n}\hat{(}Z)\}) in Z such that P_{n}(Z)arrow Ga . e . (\lambda_{\tilde{m}}) and ||P_{n}(Z)||_{Y}\leqq||G||_{Y} . Since Z
belongs to A we have

\int_{Y}|P_{n}(Z)-G|d\lambda_{\tilde{m}}=\int_{Y}|P_{n}(Z)\circ\pi-g\circ\pi|d\lambda_{\overline{m}}

= \int_{\Gamma}|P_{n}(Z)-g|d\lambda_{m}arrow 0(narrow\infty) .

Hence (by passing to a subsequence) there is a sequence of polynomials
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\{P_{n}(Z)\} in Z such that P_{n}(Z)arrow ga . e . (\lambda_{m}) and ||P_{n}(Z)||_{\Gamma}\leqq||g||_{\Gamma} . Hence A|\Gamma

is the weak-*closure the set of polynomials in Z in L^{\infty}(\lambda_{m}) . Q. E. D
For the examples such that A\circ\tau=H^{\infty}(D) , see Example 4, ( ii) in \S 8.

COROLLARY 7. 2. Let X, A, P=P(m), \Gamma_{\tau}

, and \tau be as in Theorem 7.
1, and suppose that A\circ\tau=H^{\infty}(D) . Then we have the following.

(i) If P(\phi)(\phi\in\overline{P}) , the Gleason part of \phi for A|\Gamma . is nontrivial,
then P(\phi) is a nontrivial Gleason part of \phi even for A.

(ii) There is a one-tO-One map from the set of nontrivial Gleason parts
for H^{\infty}(D) onto the set of nontrivial Gleason parts for A|\Gamma

(iii) G=\cup {P(\phi);P(\phi) is the nontrivial Gleason part for A|\Gamma } is an
open dense subset in the subspace \overline{P}.

PROOF. ( i) By Theorem 7. 1, ( i)-(iii) , there is an analytic map \sigma

of D onto P(\phi) . Let G(\phi) be the Gleason part of \phi for A . Then, by
d_{A|\Gamma}(\phi_{1}, \phi_{2})\geqq d_{A}(\phi_{1}, \phi_{2}) , we have P(\phi)\subset G(\phi) (see (2, 1)). Let \rho be an ana-
lytic map of D onto G(\phi) . The map \sigma (resp. \rho) is an isometry of D with the
pseud0-hyperbolic metric onto P(\phi) (resp. G(\phi) ) with the metric d_{A|\Gamma}(\phi_{1} ,
\phi_{2}) (resp. d_{A} ( \phi_{1} , \phi_{2})) (cf. [11], Theorem 3). Hence \xi=\rho^{-1}\circ\sigma is a one-t0-
one continuous map of D into D.

Let K=\{z\in D:|z|\leqq 1/2\} . Then \xi(K) is a compact subset of D .
Hence there is a sequence of distinct points \{z_{n}\}(\subset\xi(K)) which converges to
some point in \xi(K) . There is a point \lambda_{n}\in K such that z_{n}=\xi(\lambda_{n}) for every
n . For every f\in I , we have f\circ\rho\in H^{\infty}(D) and (f\circ\rho)(z_{n})=(f\circ\rho)(\rho^{-1}\circ\sigma)(\lambda_{n})

=(f\circ\sigma)(\lambda_{n})=0(n=1,2, \cdots) . Hence we have f\circ\rho=0 in D, and hence G(\phi)

=\rho(D)\subset hu11I . From hull I=\overline{P}=M(A|\Gamma) , we have f\circ\rho\in H^{\infty}(D) for
every f in A|\Gamma Hence we have G(\phi)\subset P(\phi) , and hence P(\phi)=G(\phi) .

(ii) Let f\in A , F^{*}(\lambda)=f(\tau(\lambda)) , and F be the boundary value on \partial D of
F^{*} . Let \eta:f|\Gammaarrow\hat{F} be the map derived by the chain of maps

f|\Gamma\mapsto f|\overline{P}\mapsto f|P\mapsto F^{*}\mapsto F-\hat{F}(\in H^{\infty}\hat{(}D)|M(L^{\infty}(\partial D))) .

Then \eta is an isometric isomorphism of A|\Gamma onto H^{\infty}\hat{(}D) |M(L^{\infty}(\partial D)) . Let
\eta^{*} be the adjoint of \eta . Then \eta^{*} is a one-t0-0ne map of the set of Gleason
parts for H^{\infty}(D) onto the set of Gleason parts for A|\Gamma

(iii) Since the set G_{1} of nontrivial Gleason parts for H^{\infty}(D) is an open
dense subset of M(H^{\infty}(D)) , G=\eta^{*}(G_{1}) is an open dense subset in the sub-
space \overline{P} (cf. [9], p. 89). Q. E. D.

Under the same condition as in Corollary 7. 2, we could not decide that,
when \phi\in\overline{P}\backslash \Gamma and P(\phi) is a trivial Gleason part of \phi for A|\Gamma . then P(\phi)

is a trivial Gleason part of \phi for A. (See Example 2, (iii) in \S 8.)
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COROLLARY 7. 3. Let A be a logmodular algebra on a compact

Hausdorff space X, and let the Gleason part P=P(m) of m for A be
nontrivial, and let \tau be an analytic map of D onto P. Then A\circ\tau=H^{\infty}(D) if
and only if \mathscr{H}^{\infty}= {g:f\in A, f=g+ha. e . (m), where g\in \mathscr{H}^{\infty} and h\in I^{\infty}}.

PROOF. Let H=\{g:f\in A , f=g+ha. e . (m), where g\in \mathscr{H}^{\infty} and h\in

I^{\infty}\} . If A\circ\tau=H^{\infty}(D) , then by (7. 3) we have A|\overline{\mathscr{P}}=\mathscr{H}^{\infty}|\overline{\mathscr{P}}. Hence we
have H|\overline{\mathscr{P}}=H^{\infty}|\overline{\mathscr{P}}. and hence H|Y=\mathscr{H}^{\infty}|Y

, and hence H|\tilde{X}=\mathscr{H}^{\infty}|\tilde{X} .
Therefore we have H=\mathscr{H}^{\infty}-

Conversely let \tau=\Sigma\circ T^{*} . Then we have \tau(D)=\mathscr{P} , and for every F=
g+h\in H^{\infty}(m) , where g\in \mathscr{H}^{\infty} and h\in I^{\infty} , we have

F(\tau(\lambda))=g(\tau(\lambda))=g(\Sigma\circ T^{*}(\lambda))=g(T^{*}(\lambda))

=T(g)(\lambda)\in H^{\infty}(D) , where \lambda\in D .

Hence \tau is an analytic map of D onto \overline{\mathscr{P}} Since T is an isometric isomor-
phism of \mathscr{H}^{\infty} onto H^{\infty}(D) , for every function F in H^{\infty}(D) , there is a func-
tion g\in \mathscr{H}^{\infty} such that Tg=F. By the assumption, there is a function f\in

A such that f=g+ha. e . (m), where g\in \mathscr{H}^{\infty} and h\in I^{\infty}- Hence we have
F(\lambda)=(Tg)(\lambda)=g(T^{*}(\lambda))=g(\Sigma(T^{*}(\lambda)))=g(\tau(\lambda))=f(\tau(\lambda)) . Hence we have
A\circ\tau=H^{\infty}(D) . Q. E. D.

A function f is called a bounded analytic function on P if f is a complex
valued function defined on P and f\circ\tau\in H^{\infty}(D) , where \tau is an analytic map of
D onto P=P(m) . Let H^{\infty}(P) be the set of bounded analytic functions on P.

COROLLARY 7. 4. Let X, A, P=P(m), and \tau be as in Corollary 7. 3.
Then A\circ\tau=H^{\infty}(D) if and only if A\circ\tau=H^{\infty}(P) .

PROOF. By [15, p. 154] we have H^{\infty}(P)=H^{\infty}(m)\circ\tau .
If A\circ\tau=H^{\infty}(D) , then by Corollary 7. 3 we have A\circ\tau=H^{\infty}(m)\circ\tau=

H^{\infty}(P) .
Conversely, by the proof of Corollary 7. 3, we have H^{\infty}(m)\circ\tau=H^{\infty}(D)

and hence A\circ\tau=H^{\infty}(D) . Q. E. D.

COROLLARY 7. 5. Let X, A, P=P(m), and \tau be as in Corollary 7. 3.
Then A\circ\tau=H^{\infty}(D) and I=\{0\} if and only if A=\mathscr{H}^{\infty}=H^{\infty}(m) on X.

PROOF. If A\circ\tau=H^{\infty}(D) and I=\{0\} , then we have \overline{P}=hu11(I) and
hull I=M(A) . Hence we have \overline{P}\supset X , and hence \Gamma=\Gamma(A|\overline{P})=X . Hence,
by Theorem 7. 1, (iv), A|X=A|\Gamma is the weak-*closure of A|\Gamma in L^{\infty}(m)=

L^{\infty}(\lambda_{m}) . Hence we have A=H^{\infty}(m) and hence Z\in A . Hence by Theorem
7. 1, ( v) we have A=\mathscr{H}^{\infty}

Conversely, if A=\mathscr{H}^{\infty}=H^{\infty}(m) on X, then I\subset I^{\infty}=\{0\} implies I=\{0\} .
And we have A\circ\tau=H^{\infty}(m)\circ\tau=H^{\infty}(D) . Q. E. D.
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Finally we will state a proposition which is an immediate consequence of
Proposition 3. 9.

PROPOSITION 7. 6. Let X, A, P, and \Gamma be as in Theorem 7. 1. Sup-
pose that X=S(m) . Then \cup\{S(\phi):\phi\in\Gamma\} is dense in X.

\S 8. Examples.

EXAMPLE 1. Let K be the Bohr compactification of the real line R.
Let A be the Dirichlet algebra of continuous, complex valued functions on X
=K\cross K which are uniform limits of the polynomials in \chi_{\tau_{1}}\chi_{\tau_{2}} , where

(\tau_{1}, \tau_{2})\in S=\{(\tau_{1}, \tau_{2}):\tau_{2}>0\}\cup\{(\tau_{1},0):\tau_{1}\geqq 0\} ,

and \chi_{\tau_{i}} are the characters of K determined by \tau_{i}\in R . We denote by m the
normaized Haar measure on X, and we also denote by m the complex
homomorphism of A defined by the measure m. We denote by H^{\infty}(m) the
weak-*closure of A in L^{\infty}(m) .

The Gleason part P(m) of m\in M(A) is trivial (cf. [15], p. 149). Fur-
ther H_{m\ln}^{\infty} is the weak-*closure of \bigcup_{\tau_{1}\geqq 0}\overline{\chi}_{\tau_{1}}H^{\infty}(m) . Hence we have H^{\infty}(m)\subsetneqq

H_{m\ln}^{\infty}\subsetneqq L^{\infty}(m) . (Cf. [19] p. 166.)

EXAMPLE 2. ( i) Let A(T^{2}) be the Dirichlet algebra of continuous,
complex valued functions on the torus T^{2}=\{(z, w):|z|=|w|=1\} , which are
uniform limits of the polynomials in z^{i}w^{j} , where (i, j)\in S=\{(i, j):j>0\}\cup\{(i ,
0): i\geqq 0}. Then the maximal ideal space of A(T^{2}) can be identified with
(\{z:|z|=1\}\cross\{w:|w|\leqq 1\})\cup(\{z:|z|\leqq 1\}\cross\{0\}) , with the normalized Haar mea-
sure m identified with (z, w)=(0,0) .

The Gleason part P=P(m) of m is \{z:|z|<1\}\cross\{0\} . For each z\in\{z :
|z|=1\} , D_{z}=\{z\}\cross\{w:|w|<1\} is a nontrivial Gleason part. The closure \overline{P}=

\{z:|z|\leqq 1\}\cross\{0\} of P does not meet T^{2} . Every point (z_{0},0) of \partial P=\overline{P}\backslash P=

\{z:|z|=1\}\cross\{0\} is a point of D_{z_{0}} . Therefore \overline{P} is not a union of Gleason
parts.

(ii) Let (1/2\pi)d\theta be the normalized Haar measure on the unit circle
T. and let H^{\infty}(d\theta) be the weak-* closure of the disc algebra A(T) in
L^{\infty}(d\theta) .

Let A(T^{2}) and m=(1/4\pi^{2})d\theta d\phi be as in ( i ) . Let H^{\infty}=H^{\infty}(m) be
the weak-*closure of A(T^{2}) in L^{\infty}(m) . As in (2. 6), we have

(8. 1) H^{\infty}=\mathscr{H}^{\infty}\oplus I^{\infty}-

where \mathscr{H}^{\infty} and I^{\infty} are the weak-*closure in L^{\infty}(m) of the sets { \sum_{i=0}^{n}a_{i}z^{i} : a_{i}\in
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C(i=1,2, \cdots, n)\} and \{\sum_{j=1}^{m}w^{j}g_{j}(z):g_{j}\in L^{\infty}(d\theta), (j=1,2, \cdots, m)\} respectively,

where z=e^{i\theta} and w=e^{i\phi} . Let \tau be the natural homeomorphism of
M(H^{\infty}(d\theta)) and M(L^{\infty}(d\theta)) onto M(\mathscr{H}^{\infty}) and M(\mathscr{L}^{\infty}) respectively, which
is induced by the correspondence between z=e^{i\theta} on T^{2} and z=e^{i\theta} on T
We will identify \lambda\in M(H^{\infty}(d\theta)) with \tau(\lambda)\in M(\mathscr{H}^{\infty}) .

For a fixed point w_{0} with |w_{0}|<1 , each element f\in H^{\infty}(m) uniquely
can be decomposed as
(8.2) f(z, w)=f_{1}(z)+wf_{2}(z)+(w-w_{0})f_{3}(z, w)a.e . (m),
where f_{1}\in \mathscr{H}^{\infty} . f_{2}\in \mathscr{L}^{\infty} and f_{3}\in I^{\infty} In fact, by (8. 1), we have

f(z, w)=f_{1}(z)+f_{\acute{2}}(z, w) ,

where f_{1}\in \mathscr{H}^{\infty} and f_{\acute{2}}\in I^{\infty} By the definition of I^{\infty} . f_{\acute{2}}(z, w)/w is the bound-
ary value of a bounded analytic function in w for almost every z=e^{i\theta} . We
define

f_{2}(z)= \int_{0}^{2\pi}e^{-i\psi}f_{2}’(z, e^{i\psi})P_{wo}(\phi)\frac{d\phi}{2\pi} ,

where P_{w_{0}}(\phi) is the Poisson kernel for wo . Then we have

\frac{f_{2}’(z,w)}{w}-f_{2}(z)=(w-w_{0})f_{3}’(z, w) ,

where f_{3}’(z, w) is the boundary value of a bounded analytic function in w for
almost every z=e^{i\theta} . Here we difine

f_{3}(z, w)=wf_{\acute{3}}(z, w) ,

then f_{3}\in I^{\infty} and this gives the decomposition (8. 2) of f. It is easy to see
the uniqueness of the decomposition from our construction.

Now, for \xi\in M(H^{\infty}) , we difine a linear functional \phi_{\xi} on H^{\infty}(m) by

\phi_{\xi}(f)=\xi(f_{1}) .

For f, g\in H^{\infty}(m) , the decomposition (8. 2) of fg is given by
(8.3) (fg)(z, w)=(f_{1}g_{1})(z)+w(f_{1}g_{2}+f_{2}g_{1}+w_{0}f_{2}g_{2})(z)

+(w-w_{0})(f_{1}g_{3}+f_{3}g_{1}+wf_{2}g_{2}+wf_{2}g_{3}

+wf_{3}g_{2}+(w-w_{0})f_{3}g_{3})(z, w) ,

where f(z, w)=f_{1}(z)+wf_{2}(z)+(w-w_{0})f_{3}(z, w) and g(z, w)=g_{1}(z)+wg_{2}(z)

+(w-w_{0})g_{3}(z, w) . It follown from (8. 3) that \phi_{\xi} is multiplicative on
H^{\infty}(m) . Hence \phi_{\xi}\in M(H^{\infty}(m)) . Clearly the map

\Phi:\xi\mapsto\phi_{\xi}
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is a continuous map from M(\mathscr{H}^{\infty}) into M(H^{\infty}(m)) .
Similary, for (\xi, w_{0})\in M(L^{\infty}(d\theta))\cross D(D=\{w\in C:|w|<1\}) , we define a

linear functional \phi_{\xi,wo} on H^{\infty}(m) by

\phi_{\xi,wo}(f)=\xi(f_{1})+w_{0}\xi(f_{2}) .

By (8. 3), \phi_{\xi,wo} is also multiplicative on H^{\infty}(m) , and hence \phi_{\xi,wo}\in

M(H^{\infty}(m)) . Moreover, the map
\emptyset:(\xi, w_{0})\mapsto\phi_{\xi,wo}

is a continuous map from M(L^{\infty}(d\theta))\cross D into M(H^{\infty}(m)) . Here we note
that \phi_{\xi,0}=\phi_{\xi} if \xi\in M(L^{\infty}(d\theta))=M(\mathscr{L}^{\infty}) .

Now, the Gleason part \mathscr{P} of \phi_{0}=\Phi(0)(=\overline{m}) is \Phi(D) , where \tilde{m} is the
complex homomorphism defined by the Radonization of the measure m. So,

\overline{\mathscr{P}}=\overline{\Phi(D)}=\Phi(\overline{D})=\Phi(M(\mathscr{H}^{\infty})) .

Hence \overline{P}\ni\phi_{\xi}=\phi_{\xi,0} for \xi\in M(L^{\infty}(d\theta)) . However \phi_{\xi,0} and \phi_{\xi,wo} are in the
same Gleason part whenever |w_{0}|<1 . Therefore \overline{\mathscr{P}} is not a union of
Gleason parts for H^{\infty}(m) .

The author would like to acknowledge his indebtedness to Dr. M.
Hayashi for this part ( ii) .

(iii) Let H^{\infty}=\mathscr{H}^{\infty}\oplus I^{\infty} and \mathscr{L}^{\infty} be as in ( ii) . Let \chi be a function in
\mathscr{L}^{\infty} with \chi^{2}=\chi and \chi\neq 0,1 , and let A_{1}=\mathscr{H}^{\infty}\oplus\chi I^{\infty} Then A_{1} is a weak-*
Dirichlet algebra. If we put m_{1}=\overline{m}|A_{1} , then m_{1}\in M(A_{1}) and the Gleason
part P_{1} of m_{1} for A_{1} is nontrivial. If \tau_{1} is an analytic map of D onto P_{1} ,
then A_{1}\circ\tau_{1}=H^{\infty}(D) . Let \Gamma_{1} be the Shilov boundary of A_{1}|\overline{P}_{1} . Then it
follows from ( ii) and [[13], \S 4] that a certain point of \Gamma_{1} belongs to some
nontrivial Gleason part for A_{1} and a certain point of \Gamma_{1} composes trivial
Gleason part for A_{1} .

EXAMPLE 3. Let A’ be a weak-*Dirichlet algebra on a nontrivial
probability measure space (X^{ \mathscr{A}},. m) and let H^{\infty}=H^{\infty}(m) be the weak-*
closure of A’ in L^{\infty}(m) . Let \tilde{X}=M(L^{\infty}(m)) and A=\hat{H}^{\infty}|\overline{X} . Then A is a
strongly logmodular algebra on a compact Hausdorff Stonian space \overline{X} .

Let \phi be any point of M(A) and let X_{1}=S(\phi) . Then X_{1} is a compact
Hausdorff Stonian space (cf. [22], Theorem 2. 2), and by Theorem 5. 4 X_{1}

is a weak peak set of A. Let A_{1}=A|X_{1} . Then A_{1} is a uniform algebra on
X_{1} . From

C_{R}(X_{1})=C_{R}(\overline{X})|X_{1}=(\log|A^{-1}|)|X_{1}\subset\log|A_{1}^{-1}|\subset C_{R}(X_{1})

we have \log|A_{1}^{-1}|=C_{R}(X_{1}) . Therefore A_{1} also is a strongly logmodular
algebra on X_{1} .
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If the Gleason part P(m) of m\in M(H^{\infty}(m)) is nontrivial and \tau is an
analytic map of D onto P(m) , then we have H^{\infty}(m)\circ\tau=H^{\infty}(D) .

EXAMPLE 4. We will identify a function in H^{\infty}(D) with its boundary
function on the unit circle \partial D . Let (1/2\pi)d\theta be the normalized Lebesgue
measure on \partial D . Let \{z_{n}\} be a sequence in D such that \varlimsup_{n}|z_{n}|=1 . We

denote by \overline{\{z_{n}\}} the weak-*closure of \{z_{n}\} in M(H^{\infty}(D)) . \{z_{n}\} is said to be
interpolation and sparse if

\inf_{nm}.\prod_{m\neq n}|\frac{z_{n}-z_{m}}{1-\overline{z}_{m}z_{n}}|>0 and \lim_{narrow\infty m}\prod_{m\neq n}|\frac{z_{n}-z_{m}}{1-\overline{z}_{m}z_{n}}|=1

respectively.
(i) Let m be any point in \{\overline{z_{n}}\}\backslash D . Then P(m)\supsetneqq\{m\} if and only if

\{z_{n}\} is an interpolating sequence (cf. [9], Theorem 4. 3.). In this case, there
is a Blaschke product B such that \hat{B}=0 on P(m) . Hence the closure \overline{P(m)}

of P(m) does not meet the Shilov boundary \tilde{X}=M(L^{\infty}(d\theta)) of H^{\infty}\hat{(}D ) (cf.
[9], p. 102). It is known from [3] that \overline{P(m)} is a union of Gleason parts.

Let \mu_{m} be the representing measure on \overline{X} of m for H^{\infty}\hat{(}D), and let X=
S(\mu_{m}) . Then, by Example 3, A=H^{\infty}(D)|X is a strongly logmodular alge-
bra on a compact Hausdorff Stonian space X.

(ii) Let \{z_{\acute{n}}\} be a sequence in D such that \varlimsup_{n}|z_{\acute{n}}|=1 . Then there is a

subsequence \{z_{n}\} of \{z_{\acute{n}}\} such that \{z_{n}\} is sparse (cf. [7], p. 106). Let m be
any point in \overline{\{z_{n}\}}\backslash D . As in ( i ) , let X=S(\mu_{m}) and let A=H^{\infty}(D)|X . In
this case, the Wermer embedding function Z belongs to A i . e. , if B(z) is the

Blaschke product with zero sequence \{z_{n}\} , then Z=\alpha\hat{B(}z)|X for some
unimodular constant \alpha (cf. [9], p. 106). Let f be any function in H^{\infty}(D) .
Then g=f\circ(\alpha B) belongs to H^{\infty}(D) . Hence for an analytic map \tau=Z^{-1}=

(\alpha\hat{B}|P(m))^{-1} we have \hat{g}(\tau(t))=f(\alpha\hat{B}(\tau(t)))=f(t) , t\in D (cf. [9], Lemma
6. 3). Hence we have A\circ\tau=H^{\infty}(D) .

(iii) Let m be an element of M(H^{\infty}(D))\backslash D such that the Gleason part
P(m) is nontrivial and any analytic map \tau of D onto P(m) is not a
homeomorphism (cf. [9], p. 109). As in ( i ) , let X=S(\mu_{m}) and let A=

H^{\infty}\hat{(}D)|X . Then Z\not\in A . Hence Z\not\subset C(X) , because, if Z\in C(X) , then by
Theorem 5. 5, we have Z\in \mathscr{H}^{\infty}\cap C(X)\subset A . From this, \mathscr{H}^{\infty}\cap C(X)\subsetneqq

\mathscr{H}^{\infty}(m) . Further we have A\circ\tau\subsetneqq H^{\infty}(D) , because, if A\circ\tau=H^{\infty}(D) , then
\rho=\pi\circ\Sigma\circ T^{*} is an analytic map of D onto P (see the proof of Corollary 7. 3),

and \rho is a homeomorphism (cf. [12], Theorem 4. 1), and hence \tau is a home-
omorphism (cf. [11], Theorem 2).
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(iv) Let m be any point in M(H^{\infty}(D))\backslash (D\cup\overline{X}) , let X=S(\mu_{m}) as in

(i) and let A=H^{\infty}\hat{(}D )|X . Let H^{\infty}(m) be the weak-*closure of A in
L^{\infty}(\mu_{m}) . It follows from [[5], p. 63] and the Tietze extension theorem that
|A|=C_{R}^{+}(X)(=\{u\in C_{R}(X):u\geqq 0\}) . Since X is a Stonian space, X is totally
disconnected. For any clopen set V in X with 0<\mu_{m}(V)<1 there is a
function f\in A such that |f|=\chi_{V} . Then f\in J^{\infty}=J^{\infty}(H^{\infty}(m)) (see (2. 1)).
Hence J^{\infty}\supsetneqq\{0\} .

Let E be the set of all clopen sets V with 0<\mu_{m}(V)<1 . Let V\in E , let
J_{V}=\{f\in A: |f|=\chi_{V}\} , let J_{V^{C}}=\{f\in A: |f|=\chi_{V^{C}}\} and let J_{V}+J_{V^{C}}=\{f+g : f\in

J_{V} , g\in J_{V^{C}}\} . Then J=\cup\{J_{V}+J_{V^{C}} : V\in E\}\subset J^{\infty} J separates the points of X,

and we have fg\in J for f\in J and g\in J . Hence the linear span \mathscr{V}(J) of J is
an algebra. If P(m)\supsetneqq\{m\} , then the uniform closure of {?}(J) is contained
in I=\{f\in A:\phi(f)=0\forall\phi\in P(m)\} . It is not known whether the weak-*
closure of \Psi(J) in L^{\infty}(\mu_{m}) coincides with J^{\infty} .
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