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A certain logmodular algebra and its Gleason parts
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Abstract. Let A be a weak-* Dirichlet algebra on a nontrivial proba-
bility measure space (X, , m) and let H*=H"(m) be the weak-* closure
of Ain L*(m). The first objective of this paper is to study the maximal ideal
space M(H>) of H™ with a special regard to the algebraic direct sum
decomposition H*=#"@®I*, where I” is an ideal of H* apeared in [14].

The second objective of this paper is to study a certain logmodular
algebra A on a compact space X and its maximal ideal space M(A) in
connection with an abstract Hardy algebra H*= associated with A.

§1. Introduction.

We denote by B a complex commutative Banach algebra with a unit,
and by B™' the group of invertible elements in B. We denote by M(B) the
maximal ideal space of B. We denote by 7 the Gelfand transform of fEB,
by B the set {/:fE€B}, and by T'(B) the Shilov boundary of B. We often
write f for 7, since the meaning will be clear from the context.

In § 3 and § 4, we denote by A a weak-* Dirichlet algebra on a nontrivial
probability measure space (X, «, m), and by H*=H>(m) the weak-* clo-
sure of A in L*(m). We will often denote by # the complex homomorphism
of H” which is determined by the measure m. Let J* be the weak-* closed
linear span of all functions in H=, each of which vanishes on some set of
positive measure. Then /* is an ideal of H® which is contained in HZ=

{feH": /fa’mZO}. In [14], we call J* the typical ideal. In [14], we have

established a decomposition H*=# *@®I~ with I, a spacific ideal of H*
with ICJ®, where @ denotes the algebraic direct sum (see §2). Let &=
(resp. N*) be the weak-* closure of #~+#> (resp. I°+I%) (the bar
denotes conjugation). Let X=M(L"(m)), Y=T(H=hull I*) and let E(I*)
be the support set of I®. For ¢€Y, let ¥ (p)={x€X: f()=¢(f) Vf<
Z=}. For any measurable set E of X, xr denotes the characteristic func-
tion of £. For any set E of a topological space X, E denotes the closure of
E in X.

In § 3, we obtain the following. (i) ¢<hull I* belongs to Y if and
only if |¢(f)|=1 for every inner function f in #=. (ii) Theorem 3.5.
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xpume Z° and F=XNY=XNhull I"={fE€X: feu=-(Z)=0}={sE Y :
Fea=($)=0}. If ®=M(H>)\hull I*, then there is a (unique) point ¢
€Y such that ®(f)=¢(f) for every f€#=. The map defined by ®— ¢ is
a continuous map of M(H>)\hull I” onto Y'\F. Suppose that Hn=]".
Then XDV if and only if H* is a maximal weak-* closed subalgebra of L.
(v) XNY=0 if and only if there is an inner function % in I*. (vi)
Theorem 3.9. hull I is connected. hull /*\'Y is an open set in M(H%),
hull 7°\Y DY and (M(H*)\hull /*)N hull I*CY. If I 2{0}, then
M(H>)\hull I* is disconnected and hence M(I*) is disconnected. (vii) If
the Gleason part P(m) of m is nontrivial, then U{S(#): = Y} is dense in
X, where S(@) denotes the compact support of the representing measure of
€Y. (i) If the Gleason part P(m) of m is nontrivial, then log |(C’
+I°)|=R+N~NL%, where C and R are the complex and the real fields
respectively and C'=C\{0}. In § 3 we will generalize some results in to
more general cases.

In § 4, we obtain the following. (i) If ¢=(M(H*)\hull/*)U Y, then
S($)TK(¢o) for some ¢ Y. (ii) Theorem 4.2. hull I*\Y is a union of
Gleason parts. Theorem 4. 4. % (¢) (¢ Y) is a weak peak set of H,

%Tgb) (=H"-convex hull of #(¢))NhullI*={¢}, (M(H*)\hull[*)U Y=U

{ﬁ;\(/gzﬂ) : € Y} is a union of Gleason parts, and ﬁ;@) ﬂﬁfst)z @ for ¢=
¢. [iv) Theorem 4.5. Let B: and B. be weak-* closed subalgebras of

L=(m) with H*S Bi S B,CL=(m). Let I§‘2={hEL°°(m):/hf dm=0 ¥V fe

B} (i=1,2), and let #5=(B:.NB,)NH" (i=1,2). Then we obtain I, 2
% 52 #%,, hullIf 2hulll5,, and some properties of hull /5 \hull/5,. In
§ 4 we will generalize some results in to more general cases.

In §5 and §6, we denote by A a strongly logmodular algebra on a
compact Hausdorff space X. For each ¢=M(A) we denote its (unique)
representing measure by ¢. Let m&M(A), and let H*=H>(m) be the
weak-* closure of A in L*(m). Then A is a weak-* Dirichlet algebra on
(X, o, m), and hence we have a decomposition H*=#>®I*. Let J=]°
NC(X), I=I"NC(X), #=#"NC(X), ¥=2"NC(X) and Lr=2Z"N
Cr(X). For ¢M(Z) let K(¢p)={xeX: f(x)=¢(f) VSE L} Suppose
that X =S(m).

In § 5, we obtain the following. (i) [Theorem5.4. If ¢=M(A), then
S(¢) is a weak peak set for A. (ii) [Theorem 5.5 A=H*(m)NC(X), A~!
=(H>(m))* N C(X). If the Gleason part P(m) of m is nontrivial,
then /=] is a primary ideal of A and I={f€ A :¢(f)=0 V & P(m)}.
Theorem 5.8, There is a continuous map 7 of Y onte M(%), and for ¢<
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M(Z), we have XNz (K ($)=U{F(0): 637 (¢)} and ﬂ[U{ﬁng): 0

En'l(¢)}]CK?;5), where %Tg) and K@) are H*-convex hull of ¥ (0)
and A-convex hull of K(@) respectively (for 7 see §5). If n(M(H®))=

M(A), then M(A)=hulllU(U{K(¢): pcM(<)}). (v) Theorem 5.9. If
M(Z) is totally disconnected, then I is contained in the uniformly closed
linear span of all functions in A, each of which vanishes on some set of
positive measure. (vi) I is contained in the uniformly closed linear span of
all functions in H"(m), each of which vanishes on some set of positive
measure. (vii) If f€L"(m) is constant on U{#(8): 67 (¢)} for every
pEM(Z), then fE€ Z.

In § 6, we obtain the following. [Theorem 6.3. If P(m) is nontrivial,
then # @I and <@ N:z are both uniformly closed, and we have log|(C’
+ 1) '|=R+ Nz and log|(FPBI)|=Lr@® Nz, where Ne=N>N Cr(X).

In § 7, we denote by A a logmodular algebra on a compact Hausdorff
space X. Let m&M(A) and let P=P(m)=2{m}. Let r be an analytic map
of the open unit disc D onto P such that ferE H*(D), where H*(D) is the
Banach algebra of bounded analytic functions on D. Let I'=T(A|P). In
§ 7, we obtain the following. (i) [Theorem 7.1. If Aecr={fer:f€A}=
H>(D), then A|T is a strongly logmodular algebra on I" and, roughly speak-

ing, A|T' has the same properties as the function algebra H*(D). (ii) If A
or=H>(D), then a nontrivial Gleason part for A|l' is also a nontrivial
Gleason part for A. We give some conditions to be Aer=H>(D).

In § 8, we will give some examples. Example 1 is related to the cases
2.1 and 2. 3 in the section 2. Example 2 is related to Theorems 4. 2, 4. 4 and
Corollary 7.2. Examples 3 and 4 are related to the sections 5, 6 and 7.

In §2, we will give some preliminaries concerning uniform algebras,
weak-* Dirichlet algebras, an algebraic direct sum decomposition H*(m)=
F =PI, etc.

The author would like to express his hearty thanks to the referee whose
comments led him to the improvement of the original version.

§ 2. Preliminaries.

First we will give some preliminaries concerning uniform algebras. Let
X be a compact Hausdorff space and let C(X) (resp. Cz(X)) be the Banach
algebra of complex (resp. real) valued continuous functions on X with the
supremum norm. A closed subalgebra A of C(X) is said to be a uniform
algebra if A contains the constants, and A separates the points of X. A
uniform algebra A is said to be a logmodular algebra on X if the set log |A™|
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={log |f]: f€A™"} is dense in Ckr(X). A logmodular algebra A which
satisfies log |A™'|=Cr(X) is said to be a strongly logmodular algebra.
A representing measure of ¢=M(A) for a uniform algebra A is a

probability measure z on X such that ¢(f)= f fdu for all f€A. We

denote by S(z) the compact support of «i.e., the complement of the largest
open set of u-measure zero. When ¢=M(A) has a unique representing

measure, we denote its measure by ¢, ys or As as the case may be. For ¢
and ¢ in M(A) let

2.1 da(e, )=sup{lg(N)|: fEA, fI=1, ¢(f)=0},

where [|f]|=sup {|/(x)|: x€X}. We define ¢ and ¢ to be ¢~¢ when da(9,
¢)<1 (or, equivalently, |¢—¢|<2). Then ~ is an equivalence relation in
M(A), and P(m)={p=M(A): m ~ ¢} (2{m}) is said to be the (nontrivial)
Gleason part of m for A.

Let A be a logmodular algebra on X, and let m be a point of M(A).
Let H*=H>(m) be the weak-* closure of A in L*(m). A function f in
H>(m) is said to be inner if |f|=1 a.e. (m). If P=P(m)=2{m}, then there
is an inner function Z known as the Wermer embedding function which

satisfies ZH*=Hy, where Hy={f€H": ffa’m=0}. And, there is an ana-

lytic map r such that r is a one-to-one continuous map of the open unit disc
D in the complex plane onto P, and for every f in H® fer is analytic in D
(cf. [5] p. 158).

A compact Hausdorff space S is said to be Stonian (o7, extremally
disconnected) if disjoint open subsets of S have disjoint closures. A positive
measure ¢ on S is said to be normal if it vanishes on all nowhere dense Borel
setsin S (cf. [1], §7, §8). Let A be a logmodular algebra on X, let mE<
M(A) and let X=M(L"(m)). Then X is Stonian, and there is a probabil-
ity normal measure # on X such that S(7)=X and

[.ram= [ jdm, feL~(m),

This measure 7 is said to be the Radonization of m. If P(m)={m}, then the
Gleason pare .# = .# (i) of mEM(H®) for A is also nontrivial (cf. [11],
Proposition). It is known that ¢ M(H>) belongs to X if and only if |¢(f)|
=1 for every inner function f in H*(m). The reader is referred to Gamelin
[5] and Leibowitz for basic definitions and properties about uniform
algebras.

Secondly we will give some preliminaries about weak-* Dirichlet alge-
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bras. Let (X, %, m) be a fixed nontrivial probability measure space. A
weak-* Dirichlet algebra, which was introduced by Srinivasan and Wang
, is an algebra A of essentially bounded measurable functions on (X, &,
m) such that (i) the constant functions lie in A;(ii) A+A is weak-*
dense in L”=L>(m) (the bar denotes conjugation) ; for all f and gin A,

/};fgdmZ]);fdngdm. The abstract Hardy spaces H?=H?(m), 1< p=<co,

associated with A are defined as follows. For 1=<p<oco, H? is the L? (=
L?(m))-closure of A, while H* is defined to be the weak-* closure of A in

L”(m). For 1<p=<oo, let H£={f€Hp:[(fdm=0}. It is known that A*

is a strongly logmodular algebra on X=M(L"(m)).

Let L(m)=L(m|.%) be the set of equivalence classes modulo » of the
measurable complex valued functions on X. Let B be a weak-* closed
subalgebra of L*(m) which contains H® properly. Let

A={De .« : ypEB}.

Then AC is a sigma-algebra which contains the sigma-algebra  » of
the m-null sets and their complements. We define f&€L(m) to be A-
measurable if and only if some and hence all % -measurable functions which
represent f are A-measurable. Let L(m|A), L(m|A), L?(m|A), etc. denote
the respective function classes.

Let HSn be the intersection of all weak-* closed subalgebras of L*(m)
which contain H” properly. Let

J=J"(H>)
be the weak-* closed linear span of all functions in H*, each of which
vanishes on some set of positive measure. Then J* is anideal of H™ which

is contained in Hy. By [[20], Corollary 5] we have the following equiva-
lence

Hp2]*Hmm=H".
By [17], the following (i), (ii), and are equivalent. (i)

H> is a maximal weak-* closed subalgebra of L>(m). (ii) Hmn=L"(m).
J=={0}. H* is an integral domain.

Here we will state some cases of the algebraic direct sum decomposition
He=#"PI".

Case 2.1. We suppose Hn=2J" (cf. §6 in and [10]).
Let B=Hmin, and let
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I“z{hEB:/hfdmz() VfEB)
={heL"(m): [hf dm=0 ¥/ fEB).

Then we have
=],

Let #*=BN B(2C), where C is the complex field, and let A={De «: yp
€B}. Then we have

Z=L>(m|A).
Let Z*=H*N <" Then we have
(2.2) Hun=2"®I", *I[°=I*, Han =1~
and
(2.3)  H=*=Z~@I",

where the sum is orthogonal in the Hilbert space sense, and hence it is the
algebraic direct sum. L

£ % is the weak-* closure of #°+%*, and #* is a weak-* Dirichlet
algebra in ¥, and #* is a maximal weak-* closed subalgebra of <.

Case 2.2. We suppose Hyp=]" (cf. §7 in and [10]).

There exsist weak-* closed subalgebras B of L*(m) with H*SBS L*.
Let B be a fixed one of them.

Let

I“zl?z{heB:/hfa’m=O VfEB)
={heL°°(m):/hfdm=0 VfEB).

Then we have
<]~

Let #*=BNB(2C), and let A={DE «: ypB}. Then we have
Z*=L"(m|A).

Let #*=H*N¥>. Then we have

2.4 B=>®I°, *I*=]* BI*=]"

and



A certain logmodular algebra and its Gleason parts 247

(2.5 H*=2#"®I",

where the sum is orthogonal in the Hilbert space sense, and hence it is the
algebraic direct sum.

Z* is the weak-* closure of # °°+5f;, and #~ is a weak-* Dirichlet
algebra in ¥, and #* is not a maximal weak-* closed subalgebra of
z*,

Case 2.3. We suppose P(m)={p=EM(H>):|p—m|<2}2{m} (cf.

[14], §8). ﬁ
By Proposition 7 in [14], we have

Hz=]~
Let &%, I” and # be as in the case 2.1. Then we have
(2.6) Hun="®I° and H*=#"PI".

On the other hand, since P(m)=2{m}, we have Hy=ZH> for the
Wermer embedding function Z. Let # be the weak-* closure of the
polynomials in Z in L*(m), and let

J={fE€EH>: ¢(f)=0 V ¢= P(m)}.
Then we have
HF = and [*=].

Hence the decomposition H>=5®I> coincides with the decomposition of
Lemma 5 in [16]. The case 2.3 is a special case of the case 2.1 (see
Example 1 in § 8).

REMARK. Let B be any weak-* closed subalgebra of L*(m) with H*
SB"CL*(m). Let I;={h€B: [hfdm=0 V/EB), let #3=BNB(XC),

let As={DE «: ypEB}, and let 5=H*N ¥%. Then, as in the case 2. 2,
we have Z5=L"(m|Asz), B=<5®PIy, H*=#35PIz, BIg=1Ig, etc.. The
results in § 3 and § 4 which are not used an asumption such as P(m)={m} or
Hr=2] hold for 5, #3%, Iz, etc..

For 1£p<oo and for any subset M C L*(m), denote by [M], the
L?(m) closure of M.

PROPOSITION 2.1. Let &%, &% and I” be defined according to the
above cases 2.1, 2.2 and 2.3, and let N* be the weak-* closure of I+ 1.
Then we have
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L*(m)=Z"@N",

where © denotes the algebraic divect sum. Moreover, for 1< p<co, we
have

H*(m)=[#1,@[I"], and L*(m)=[Z~],B[N"],.

PROOF. Let f=g+h, where g€ ¥~ and h&EN=. If 1<p<co, then
we have

([{Igl"dM)”‘Esup{lﬁsgcz’MI :s€[L]q, [Islla <1}
=sup{| [ s(g+h)dml : s€[2 ]y, Isla<1)
<([ lg+l? dm)*?,

where, when 1< p<oo, then %+—(1]—=1 and ||s||q=(ﬂs|"dm)”q, and when p

=1, then g= and |sll. stands for the essential supremum norm of s.
Thus, by making p— oo, we obtain |gle=<|fl», and hence |glle+]%]o=<3[f].
Therefore £ “+N® is weak-* closed in L*(m) (cf. [15], p. 203). And,
since H*(m) is a weak-* Dirichlet algebras in L*(m), we obtain

L*(m)= PN
If 1=p<oo, asin , Lemma 5, we obtain

L*(m)=[ <], [N~
By the same arguments as for L?(m), we obtain

H(m)=[2"],@[1"],. Q.E.D.
§ 3. Some properties of M(H"), Part 1.

In this section, let A be a weak-* Dirichlet algebra on a nontrivial
probability measure space (X, &, m), and let H®, B, #=, J*, I, and &~
=L>(m|A) be those objects as defined in the cases 2.1, 2.2 and 2.3 in § 2.
Then #*=H>NL*(m|A) is a weak-* Dirichlet algebra in #“ on the prob-
ability measure space (X, A, m), and we can apply the results in to #°.
Hence we have

3.1  logl(#*) Y =<5%.
Let Q=M(#"), then Q is a Stonian space and we have
(3.2 log|(# =)= Cr(Q) on Q.
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There is a probability normal measure #» on Q such that _[( fdm= '/Q‘ 7 dptm

(feZ =), and S(un)=0Q.
By ([4], Theorem 4), we have the following.

LEMMA. 3.1.  The Shilov boundary T(#™) of #° can be identified
with M(<™), and ¢SM(#*) belongs to T(#>) if and only if |¢(f)|=1
for every inner function f in F#°.

Let f=g+hEH(m), where g% and h=I*. Then, by the proof of
[Proposition 2. 1, we have ||g|=|f|. Therefore, by the map

S:g+I7—yg (9ex7),

the quotient Banach algebra H®/I* is isometrically isomorphic to #.
Hence, under the adjoint map S* of S, the space M(#*) is homeomorphic
to M(H*/[*). And, under the adjoint map ¢* of the natural map o¢: H*—
H>/I*, M(H*/I*) is homeomorphic to hull I*={¢=M(H=*): ¢(f)=0 VfE
I}, Let

3.3 21=0%S*

Then 2} is a homeomorphism of M(#) onto hull I, and for every ¢<
M(#=) we have 32(¢) (9)=¢(g9) (VgE#"). Let

B.4)  Y=2((#)=2(M(Z=)).

Then Y= T(H" hull I")=T(#>|hull I*), and Y is a Stonian space, and
log|(#=)'|=Ck(Y) on Y. The representing measure g» on Y of m<hull
I” for #*is a normal measure, and S(u»)=Y.

We have the following equivalence

Hz2/°<hull J*=2{m).

Indeed, if Hn=2J", then by the map 2} we have 2 (M(#>))=hull /. On
the other hand, # is a nontrivial weak-* Dirichlet algebra in #“. Hence
hull J°=2{m}.

By Lemma 3.1, we have the following.

PROPOSITION 3.2. A point ¢ in hull I” belongs to Y =T(H=hull I*)
if and only if |#(f)|=1 for every inner function f in .

Since £ “CL"(m) and since < is a self-adjoint Banach algebra,
every ¢ in M(Z*) can be extended multiplicatively to L*(m) (cf. [6], p.
80). Hence the map r: £— %|¥> (£ X) is a continuous map of X onto
M(< =), where X=M(L*(m)) and %| = is the restriction of ¥ to &=
Let



250 K. Kishi

3.5  #(x)=2(x|¥"~), r€X.
Then 7 is a continuous map of X onto Y. For every ¢V let
3.6)  F(B)=7"g).

Then X=U{%(¢): €Y}, and F($)NF ()= for $=8. For every
€< we have

f=¢(f) on ¥ ().

If $€M(I”), then there is a function ZEI® such that ¢(h)=1. We
define @€ M(H*) by ®(f)=¢(fh), f=H”. Then, by a well known fact,
the map

3.7 I:¢—

is a homeomorphism of M(I*) onto M(H*)\hull I*.

Let B= £*®I*. For f=g+h, where g€ <> and hEI”, we have
lgl=|fl and hence |gll+|%|<3|f]. Hence, by ([13], p. 203), B is a Banach
algebra. For ¢=M(I”) with ¢#(h)=1 for a function 2EI° we define &'

M(B) by ®(f)=¢(), f€B. The map
(3.8 In: ¢—@’

is a homeomorphism of M(I®) onto M(B)\hull I*, where of course hull I*®
={¢EM(B): ¢(f)=0 VfEI7}.

For ¢ M(I*), let ®=II(¢) and let ®'=II"(¢). Then it follows from
log/(# )= <%, ¥|¥~eM(£*) and =& on #= that ®|# = can be
identified with a complex homomorphism of <. For & M(H*)\hull I*,
let

(3.9  #m(®)=(0|#}).

Then the map #; is a continuous map of M(H*)\hull I* to Y. In particu-
lar, for £ €X\hull I*, we have (%)= (%)

Let E(I*) be the support set of I® i.e., the complement of a set of
maximal measure on which all f&I are null.

LEMMA 3.3.  There is a function h in I* such that |h|=xeq-.

PrROOF. By [21, Corollary 1] there is a function w in L*(m) such that
lw|=1 a.e. (m) and yeg~yw<sI>. Q.E.D.

THEOREM 3.4. Let E=E(I*), X=M(L*(m)), Y=T(H*|hull I)
and F=XNY. Then we have the following.
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(1) e ™.

(i) F=XnNhull I*.

(i) F={¢€Y : g=(¢)=0}.
(iv) F={zeX:7:(%)=0).

PRoOF. (i) We have fX xeefdm=0 for all FE€I°. By [10, p. 52],

we have
(he L=(m) - thdm=0, VfeI*)=B.

Hence yxz-€ B, hence y:c€ #“=BN B, and hence y:E ¥

If X Nhull I, then |¢(f)|=1 for every inner function f in
#%. Hence, by |Proposition 3.2, ¢=Y.

By Lemma 3.3, there is a function Z&I* such that |4|=yxz.
Then 7e=|4=0 on F. Hence {¢S Y : 7:($)=0}DF.

If ¢ Y'\F, then there is an inner function f in H®(m) such that
|#o(f)|<1. Let f=g+h, where g€ #= and hEI". Then |go(F)|=|do(9)|
<c¢<1 for some positive constant ¢. Since Y is a Stonian space, there is a
clopen (i.e., closed and open) neighborhood V(¢o) in Y of ¢ such that {¢
€Y :[¢(@)l<c}DV(go). Then there is a function ycE £ such that V(¢o)
={¢€ Y :7:(¢)=1}. If x€a(V(gy) and ¢=7(%), then |z (k)| =|%(¥)]
—|%(9)l=1—|¢(g)|>1—c>0. Hence |A|>1—c on 77 (V(g))={zEX :
#e(%)=1}, and hence foe+Zclil>1—c on X. Hence yoe+ xelh|>1—c
a.e, and hence GCE. Hence V(¢y)CT{p<=Y : 2:(¢)=1}. Therefore we
have FO{¢=Y : 7:(4)=0}.

iv) By the same argument as for we are able to prove [(iv).
Q.E.D.

_ COROLLARY 3.5.  Let X=M(L"(m)), Y=T(H"|hull I*) and F=
XNY. Then we have the following.

(i) #(X\F)=Y\F.
#(M(H=)\hull I*)=Y\F.

ProoF. (i) Let £EX\F and let E=E(I*). Then, by Theorem
3.4, (i), Gv), 1=#4:(%)=7:(#(%)). Therefore we have #(X\F)CY\F.

Next, by #(X)=Y and #(F)=F, for every ¢<= Y \F there is a point
ZE€X\F such that #(¥)=¢. Therefore we have #(X\F)D Y\F.

Let € M(H*)\hull I*. If #(9)=%<F, then £(f)=0(f) (VS
€#°>). Hence |0(f)|=1 for all inner functions f in #*, and hence 8<Y.
By x€YNX, ¥€Y. Hence §=%. By Theorem 3.4, (i), this is
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absurd. Hence 7#(8)€ Y\F. Therefore we have #i(M(H>)\hull I*)C Y\
F.

Next, if ¢ Y\F, then by (i) there is a point ¥€X\F such that
7#(%)=¢. Therefore, by Theorem 3.4, (ii), we have 7(M(H*)\hull I*)D
Y\F. Q. E.D.

COROLLARY 3;6. Let X and Y be as in Corollary 3.5. Suppose that
Hyx=2J]°. Then XDY if and only if H” is a maximal weak-* closed subal-
gebra of L~.

PROOF. Assume XDOVY. Then #(X\Y)=7(X\XNY)=Y\XNY=
®. Hence X=Y, and hence H*=%#">. Hence L°=<". Therefore, H”
=%" is a maximal weak-* closed subalgebra of L* (see Case 2.1 in § 2).
Next, assume that H® is a maximal weak-* closed subalgebra of L.
Then HZa=L>(m), and hence I°={0}, and hence H*=#*. By X=T(H*)
and Y=T(H=hull I*), we have X=Y. Q.E.D.

COROLLARY 3.7 Let X and Y be as in Corvollary 3.5. Then XNY=
D if and only if there is an inner function h in I”.

PrROOF. By Theorem 3.4, (iv), XN Y=0 implies that X={x€ X :
7:(%)=1}, where E=E(I*). Hence xz=1 a.e.. Hence, by Lemma 3.3,
there is an inner function %z in I~.

Next, if there is an inner function % in I*, then |£|=0 on Y and |A|=1
on X. Thus we have XNY=0. Q.E.D.

THEOREM 3.8. Let Y=T(H"hull I?). Then we have the following.

(i) The space hull I” is connected.

hull I°\'Y is an open set in M(H*), and hull I*\Y DY,

M(H*)\hull I*Nhull I”CY.

If I°2{0}, then the space M(H*)\hull I is disconnected, and
hence M(I”) is disconnected.

Proor. (i) Since M(#*) is connected (cf. [15], p. 167, Theorem
10), hull 7I°=>X(M(#*)) is connected.

Let ¢ochull I°\Y. By [Proposition 3.2, there is an inner func-
tion f in # = with |@o(f)|<1. On the other hand, when we defined the map
71 (see (3.9)), we saw that, for every ¢ M(H>)\hull I, $|#> can be
multiplicatively extended to . Hence we have |8(f)|=1 for every &
YU(M(H=)\hull I*). Hence (=) ¢EM(H™):|¢(f)|<1} is contained in
hull 7°\Y. Therefore hull I*\Y is an open set in M(H").

Next, let T=I(#>)=M(¥") and let K=M(#*)\I". Suppose that K
does not contain T'. Then T\K=M(#*)\K is a non-empty open set in
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M(#™). Let xo&M(#*)\K. Since M(#*) is a normal space, there is an
open neighborhood U(xo) of xo such that U(xe)C U(xo) CM(#*)\K, where
U(xo) is the closure of U(xo) in M(#>). Since U(xo) = U(xo) N(C\K),
U(xo) is the closure of an open set U(xo) in the subspace I'\K. On the
other hand, since I is a Stonian space, the subspace T'\K also is extremally
disconnected. Hence U(xo) is open in the subspace M'\K. Since MNK=
M(#=)\K is an open set in M(#*), U(x,) is an open set in M(#™).
Hence U(xo) is a clopen set in M(#=). This is a contradiction. Hence
M(#*)\I' OT". Therefore, by the map >, we have hull I*\YDY.

Let ¢ M(H)\hull I N hull I Then, there is a net {¢.}C
M(H=)\hull I* such that ¢.— ¢. Since |p.(F)|=1 for every inner function
fin #*, we have |#(f)|=1. By [Proposition 3.2, ¢ belongs to Y.

Let F=XNY, where X=M(L"). By Theorem 3.4, and
Corollary 3.5, F' is a clopen set with FF'§& Y. Since Y is a Stonian space,
there is a clopen set U with @ SU% Y\F. Then, by Corollary 3.5, @ &
A (U)s #r(Y\F)=M(H>)\hull I*, and hence #7(U) is a nontrivial
clopen set in M(H*)\hull I®. Therefore M(H*)\hull I* is disconnected.
Further, by the map II (see (3.7)), we see that M(I*) is disconnected.

Q.E.D.

Since A is a weak-* Dirichlet algebra, H* is a strongly logmodular
algebra on X= M(L“(m)) Hence, every ¢ in M(H*) has a unique re-
presenting measure ¢ on X.

PROPOSITION 3.9. Let X=M(L*) and let Y=T(H>|hull I®). Then
we have the following.

(i) If the Gleason part P(m) of mEM(H®) is nontrivial, then Q=
U{S(@): ¢€ Y} is dense in X.

(i) fEL>(m) belongs to L= if and only if f(%)=¢() on 7 (§)
for every ¢EY.

ProoF. (i) Suppose (Q)S X. Let #,=X\(Q), and let V="V (%)
(CX\(Q)) be a clopen neighborhood of %o. Then, by Proposition 2. 1, we
have x,=g+h, where g€ > and h&N.. By [14, Theorem 8], hull [*=
"P(m), and hence, for every ng Y, there is a net {¢.} (CP(m)) such that
o~ $. Hence it follows from ¢.(h)=0 for all @ and ~<E Cx(X) that ¢(h)

=0 (cf. [8], Lemma 3). Hence, for every 4= Y, we have Ofoquﬁ:

fga’qg-t é(g). Since g=¢(g) for all T=#($) (see (3.6)), we have g=0
on X=U{x($): Y}, and hence y,=h. Hence, by S()=X, we have
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0= /thﬁz 'é xydm=m(V)>0, which is a contradiction.

Let f€L*(m)=C(X) and let f be a constant on % (@) for every
$=Y. Then, there is a (unique) function g(€C(Y)) such that f=geo
7 (cf. [1], Lemma 4.3). On the other hand, g=G|Y for a (unique) func-
tion GEZ>. Hence gor=G on X, and hence f=G on X. Therefore f
belongs to &*. Q.E.D.

By (3.1) we have log|(#*)™!|= £%. On the other hand, since
log|(H®)'|=L% and since, for every f€ %% f=¢(f) on ¥ (¢p) (4€Y),
we have log|(C'+I*)"Y|=R+ Ny on #(¢), where Ny=N"NL3 (see Pro-
position 2.1) and C’=C\{0}. On a certain condition, this relation holds
on X=M(L"(m)).

PROPOSITION 3.10.  Suppose that the Gleason part P=P(m) of m&
M(H?) is nontrivial. Let N® be the weak-* closure of I°+ I and let N7
=N*NL%. Then we have

log|(C'+I°)"Y|=R+ Ny,

wheve C and R ave the complex and the real fields respectively, and C'=C\
{0}.

PrOOF. Let u=7+h, where &R and 2= Nr. Then, there is a
function f&(H>*(m)) ' such that log|f|=u. For every ¢=P, log|d(f)|=

flog}f|d¢=7’, and hence we have |¢(f)|=e” on P. Here, let f=g+#,
where g€ % and h<I°. Then g=(#>)™' and |¢(g)|=e’~on P. Hence
G=gle"e(#>)" and |¢(G)|=1 on Y. Hence |G|=1 on X. Since X is
an antisymmetric set, G and hence ¢ are constant on X. Hence f=c+#,
where ¢c€C’. Let k=1/(c+%). Then Ek=C’ +1I%, hence f&(C'+I1*)".

Next, if u< log|(C’+1%)7!|, then u= log|c+ #%|, where c+he(C’
+71°)7'. Then, for ¢€Y,

/udgz’):/loglc-l-h|d¢=log|ﬂc—l—h)d¢|=log|cl.

Here, let u=g+h, where ¢& £% and h&Ni. Then u(p)=g(¢)= log|c|
for every ¢ Y, and hence g=log|c|] on X. Therefore u=log|c|+hER
+ Nk Q.E.D.

§ 4. Some properties of M(H"), Part 2.

In this section, let A be a weak-* Dirichlet algebra on a nontrivial
probability measure space (X, ', m), and let H*, #=, I and ¥ *=



A certain logmodular algebra and its Gleason parts 255

L>(m|A) be those objects as defined in the cases 2.1, 2.2 and 2.3 in § 2.

PROPOSITION 4.1. Let Y=T(H"hull I*) and let ¢=(M(H>)\hull I*)
UY. Then, for every f€ &% fis a constant (=¢(f)) on S(¢), and
hence S(¢)C# (do), where ¢o=7(S(¢)) and # (do)= 7 (o).

PrROOF. For every inner function f in #%, |¢(f)|=1 and hence
Jir=#(Hldp=0. Hence f=4(f) on S(¢).

By log|(#*)™!|= %% and [4, Theorem 2], the set Q={FG:F is a
finite linear combination of inner functions in #* and G is an inner function
in #*} is dense in norm in . Hence, for /€% > and any positive ¢,
there is a function FGEQ such that |f— F/G||<e/2. Hence,

Jif = o(r)dp =<1 =FIGI+ [|4(FIG)— ()l dp<e.

Hence, f=¢(f) on S(¢). Q.E.D.

THEOREM 4.2. Let Y=D(H>hull I*). Then the set hull I°\Y is a
union of Gleason parts for H™(m).

PrROOF. By Proposition 4. 1, if ¢ belongs to (M(H*>)\hull I*)U Y, then
|¢(F)|=1 for every inner function f in #*. On the other hand, by Proposi-
tion 3.2, for ¢<hull I*\'Y, there is an inner function fo in # such that
|g(R)I<1. Let F=(fo—¢(f))/(1—¢(£)fs). Then F is an inner function in
#* and ¢(F)=0. Hence sup{l¢(f)|: fFEH"(m), |f|=1, ¢(f)=0}=1.
Hence hull I°\'Y is a union of Gleason parts for H>(m). Q.E.D.

It occurs that a certain point of Y belongs to some nontrivial Gleason
part and a certain point of Y composes trivial Gleason part, and both two
cases occur actually (see Example 2, in §8).

By using |lg|=|f|l for f=g+h=H>, where g€ # and h€l®, we
obtain the following.

PrOPOSITION 4.3. For ¢ and 6 in hull I* we have

sup{l¢(/)—0(F)|: FEH"(m), |11}
=sup{|g(f)— () : fex™, |fl=1)}.

THEOREM 4.4. Let Y=T(H”| hull I*) and let % ($)=7"(¢) for ¢

€Y, and let WTq‘ﬁ) be the H*-convex hull of % ($). Then we have the
following.

(i) 7(P) is a weak peak set for H®, and % ($)Nhull I*={4).
M(H>)\hull I*=U{Fx ($)\{¢}: 6 Y}, and % (¢) N #(¢) =0
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for ¢=¢.
The set (M(H*)\hull I?)UY=U{Fx(¢):pEY} is a union of
Gleason parts, and for every ¢ in Y, F (@) is a union of Gleason parls.

Proor. (i) Let HEYTQS)ﬂhull I*. By HEWT¢), for every inner
function 7 in %>, we have |6(f)|=1. Hence, by [Proposition 3. 2, & belongs

to Y. Hence #=¢, and hence, % (¢) Nhull I*={¢}.

Let ¢ Y, and let U(¢) be any clopen neighborhood of ¢ in Y, and let
E=7#YU(¢)). Then ED#*(¢). By Proposition 3.9, xE <>, and hence,
there is a function FE(# =)™ such that log|F|=x:. By Proposition 4.1,
S(¢)C# ($), and hence,

log|$(F)|= [log| Fldg=1.
Hence |¢(F/e)|=1. Since |F/e|=1 on #(¢), we have
[ |Fle— ¢(Fle)Pdp=o,

and hence, F=¢(F) on S(¢). Hence F=¢(F) on % (¢).

Let fe=F/$(F). Then fe=1 on # (@), |fel=1 on E, and |f&|<1 on
E¢. Hence |fz|=f:=1 on #(¢). Hence Ke={x:fe(x)=1} is a peak set
for H*, and ¥ (¢)CK:CE. Let {U«®)} be a fundamental system of
clopen neighborhoods of ¢ in Y. Then, N7 (Ud(4))=7"(¢)=%(¢), and

hence, QKEa=jz”(¢>), where E.= 7Y U4(¢)). Therefore, # (¢) is a weak
peak set for H”.

Since ¥ ()N ¥ (¢)=0 for ¢p=¢, jz’;('gb) ﬂﬁfT¢) =@¢. Let 6
M(H>\hull I*. By Proposition 4.1, S(8)C% (¢) for some ¢&Y. Hence

—~ —~

0.7 ($)\{¢}, and hence, M(H=)\hull I*C U{F ($)\{4}: = Y.
Next, let € U{#(#)\{4}: = Y). Then there is a point ¢ in ¥ such

that 0€ % (¢)\{#}. For every inner function g in #=, g=¢(g) on ¥ (¢),
and hence, g=¢(g) on S(8). Then, by |6(g)|=|4(g)|=1, we have O
hull 7°\'Y. Hence d=(M(H>)\hull I")U Y, and, by €Y, we have &
M(H*)\hull I*.

By Theorem 4.2, is obvious. Q.E.D.

THEOREM 4.5. Let By and B: be weak-* closed subalgebras of L™(m)
such that H*S BiS B.CL>(m). Let I§';={hEL°°(m):/);hfdm=0 Y fE B}
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(1=1,2), and let #5=(B.NB)NH" (i=1,2). Let Yi=T(H%|hull I3) (i
=1,2) and let Y={¢<hull I3, : |¢(h)|=1 for every inner function h in ¥
5. Then we have the following.

(1) IgRI% and #5.SF5%,.

(ii) hull I3, &hull I3,.

Gii) hull I5;=(hull Z\Y)UY: and YO Y: (=1, 2).

(iv)  Y\Ye=hull Ig\[(hull IZ\Y))U Y2] is a union of Gleason parts.

Proor. (i) It follows from H*B:;CB; (i=1,2) and [[10], Lemma
1.1] that B:=[B:iNL>(m) (i=1,2). Hence [Bi]; $[B:);. Therefore I3,
=215,

By BiCB, we have #5 C#5%,. If #5=%#7%, then H>=#35®I3 2
H>=#%,DIs,. Therefore #5 S#%,.

By Iz, DIz, we have hull I5;Chull I5,. If hull I3,=hull I3, then
H=hull I5;=H"|hull I5,. Hence I'=T(H*|hull I5)=T(H>|hull I5,). Hence
X =F% on I =T(#% | hull I 5)=T(#%,|hull I5,). Hence, by using
7 (see (3.5)), we have #5, =235, on X=M(L"(m)). Hence #5=%%,
which is a contradiction. Therefore hull /5, Shull 75..

This part is derived from [Proposition 3. 2.

This part is derived from Theorem 4. 2. Q.E.D.

§5. Some properties of a strongly logmodular algebra, Part 1.

Let X be a compact Hausdorff space and let M(X) be the conjugate
space of C(X) i.e, the space of regular Borel measures on X. Given

another compact Hausdorff space Z and a continuous map p of X onto Z, for
every f€C(Z) let

5.1 0°(F)(x)=F(o(x)) for all xEX.

The map ©° is an isometric isomorphism of C(Z) into C(X). Let p*
be the adjoint map of p°. Then, for every € M(X), we have

(5.2) [( Foodu= £ Fd(o*(w) for all fFEC(Z),

or, equivalently,
(5.3 o*()(B)=u(p Y (B)) for every Borel set B of Z.

Let A be a logmodular algebra on a compact space X, and m be a point
of M(A), and %, be any point of X=M(L>(dm)). Forevery fin C(X), if
we define the map ¢ :/+— f(%,), then ¢=M(C(X)). Hence there is a unique
point xo in X such that 7(%o)=¢(f)=7(x). Hence we have F(%o)=7(x)
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for all f€EA. We let
T X0 Xo, X,
Then 7 is a cozltinuous map of X into X.
Next, let ¢o be any point of M(H™(m)) with a unique representing
measure #;(=do) on X. Let ﬁl(fA)ZAfdugo(=£?fd$o) for all f€C(X).

Then, this linear functional q}l on Q(X) is a unique Hahn-Banach (norm
preserving) extension to C(X) of ¢o=M(H"(m)). For any f€C(X) we

have /};f’;dgo:/;?fWZ’d(]go:/);fd(ﬂ*(50)). We let

to: fro [ Fd(¥(B), FECX).

Then we have $1(f‘)~= do(f) for all 7€ C(X), and hence @o(F)=¢o(f) for all
fEA. Hence n*(do) is a unique representing measure of po=M(A). We
let

72 oo, o& M(H=(m)).

The map 7 is a continuous map of M(Hf(m)) into M(A). If ¢
M(H*(m)) and 7r(¢)=¢; then we have 7(S(¢))=S(¢#). Hence if X=
S(m), then we have n(X)=X.

In the following [Proposition 5. 1l and Corollaries 5. 2 and 5. 3, we suppose
X=S(m), and let

n=rlX.

If f€C(X), then f(ai(x))=#(x) for any x in X. This relation is extended
as follows.

PROPOSITION 5.1.  Let fEL™(dm), a€EX, and X.={ZEX : n(%)=
at=n"(a). If f is continuous at x=a, then fF(Z)=Ff(a) for all ¥<EX..

ProOOF. We suppose that |f||£1 and f(a)=0. For any >0, there is
an open neighborhood V(a) of @ such that |f(x)|<e for every x& V(a).
By Urysohn’s lemma, there is a function #2& Ce(X) such that #(e)=1, h(x)
=( for every x&X\V(a), and 0=h(x)=1 for every xX. Then we have
(1=n")f=fl=In"fI£|fI<e on V(a), and |(1—A")f—fI=|k"FI=0 on X\
V(a). Hence we have [(1—4")f—f|<e, and hence |Z[(1—=4")f—f]|=
|%(f)|<e for all #€X,. Hence we have f(%)=0 for all s€X,. Q.E.D.

Let E be a measurable subset of X, and let E={Ff€ X : 7:(%)=1).
Then E is a clopen set in X.
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COROLLARY 5.2. If O is an open subset of X, then we have 0>
'(0), O=%0) and =(O)=0O0.

PrOOF. By [Proposition 5. 1, we have ODzi'(0). Since # is a nor-

mal measure on X and since 7*(#7%)=m, we have #(0)= f Todm= f xodm=
m(O)Azﬁ'z(m‘l(O))z7%(7&‘1(0)) (see (5.3)). Hence we have O=r'(0).

O> 7} (0) implies 7(0)>0. Hence 7(0)D 0. And we have 7(0)=

0. Hence 7(0)=0. Q.E.D.

(77 0))C n(x*(0))=0.

COROLLARY 5.3. If O is a clopen subset of X, then O=m(0). If K
is a compact subset of X, then n(K)CK.

PrOOF. If O is a clopen subset of X, then O=(0)=x"(0).
Since O=X\K is an open subset of X, OO (0). Hence, by ONK
=@, we obtain n(K)CK. Q.E.D.

THEOREM 5.4. Let A be a strongly logmodular algebra on a compact

Hausdorff space X. Then, for every ¢=M(A), S(P) is a weak peak set for
A.

PrOOF. Let xo be any element of X\S(¢). By Urysohn’s lemma,
there is a function ¢ Cr(X) such that g(x)=0, g(x)=1 for every x in
S(¢), and 0= g(x)=<1 for every x in X. By log|A™|=Cr(X) there is a
function F in A7! such that log|F|=g. Since the measure ¢ is an Arens-

Singer measure we have log|¢(F)l=ﬁog|F|d¢=fga’¢=l, and hence |¢(F/

e)|=1. By |F/e|=1 on S(¢), we have le/e—gb(F/e)lzdgb:O. Hence we

have F(x)=¢(F) for every x€S(¢). Let f=F/¢(F)A. Then we have
F(x)=|f1=1 for every x&S(¢$) and |f(xo)|=1/e<1.

Now, let U be any open neighborhood of S(¢), and let y be any point of
X\U. Then, by what was proved above, there is a function f€A such
that f(x)=||f|=1 for every x&€S(¢), and |f(x)|<1 for every x in some
open neighborhood V(y) of y. Since X\UC U{V(y): yEX\U} and since
X\U isacompact subset, thereis {y::i=1, 2, ---, n}CX\U such that X\

UC.LZJ1 V(y:). Let fi€A (i=1, 2, n) be functions such that f:(x)=|f:l

=1 for every x&S(¢) and |fi(x)|<1 for every x in V(y:). Let fuziélfi

€A and let Kv={x:fu(x)=1}. Then |fu|=rv(x)=1 for every x&S(¢),
and KyCU. Thus Ky is a peak set for A, and we have S(gﬁ):QKU.

Therefore, S(¢) is a weak peak set for A. Q.E.D.
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THEOREM 5.5. Let A be a strongly logmodular algebra on a compact
Hausdorff space X. Let mEM(A), and we suppose that X=S(m). Then
we have the following.

(i) A=H"(m)NC(X).
(ii) A'=(H*(m))'NC(X).
(i) fEA™ if and only if fE(H (m))™" and log|flE Cr(X).

Proor. (i) Let fEH"(m)NC(X). Let B be the Banach algebra
generated by f and the identity. Then log|A™!|=Cr(X)Dlog|B™!|. Hence,
for any function gEB™, there is a function GEA™! such that |¢gG!|=1.
Since gG'E€(H™(m))™" and since X=S(m) is an antisymetric set of
H>(m), we have G=ag a.e. (m), where « is a constant and |e|=1. Since
ag and G belong to C(X), we have G=ag. Hence A"'DB™', and hence
ADB. Thus we obtain A=H>(m)N C(X).

Let fE€(H*(m))'NC(X). Then fEA, and there is a function g
E€H"(m) such that fg=1 a.e.(m). It is easy to see that f&eC(X)™
Hence 1/f€H*(m)NC(X)=A, and hence fEA™

Let f€(H*(m))™" and let log|f|EC(X). Then there is a func-
tion g=A™" such that log|g|=log|f|. Hence |fg~!|=1 and fg'€(H*(m))™".
Hence f=ag a.e. (m). Since X=S(m) and agEA~", we have fEA™.

Q. E.D.

In the rest of this section, let X, A, and m be as in [Theorem 5.5. Let

H>=H>(m)=#"®I° and &~
be the objects as defined in the cases 2.1, 2.2 and 2.3 of §2. Let

J=I"NC(X), I=I"NC(X),#=#>NC(X),
F=2"NC(X), and ¥ r=2"NCr(X).

Then J and [ are closed ideals of A, and #(CA), & and Zr are Banach
algebras. By £ *I*=]" (see (2.2) and (2.4)) we have

5.4 zI=1I.

The following proposition is proved by the same argument as for

'Theorem 5. 5.

PROPOSITION 5.6. Let X, A and m be as in Theovem 5.5. Then we
have the following.

(i) #F'=(F*)'NnCcX).
(i) fe#™ if and only if fE(F ™) and log|flE Cr(X).
(iii) log|# Y=Zr%.
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PROPOSITION 5.7. Let X, A and m be as in Theorvem 5.5. Suppose
that P(m) is nontrivial. Then J=I is a primary ideal of A and we have

I={fEA: ¢(f)=0 V& P(m)).

PrOOF. Let L={f€A: ¢(f)=0 VYV o=P(m)}. Then, by [14, Theo-
rem 8], we have I,CI*, and hence 1CI*NC(X)=1.

On the other hand, by IC A, we have IC, and hence I=1.

As we stated in § 2, there is an analytic map of D onto P(m), hnd cence
I is a primary ideal of A. Q.E.D.

For x, and x» in X we define x; and x2 to be x1~x2 when f(x1) f(x2)
for all £ in <. Then ~ is an equivalence relation on X. Let X be the
quotient space X/~ with the quotient topology, and let Q:X — X be the
quotient map (cf. [15], p. 37). For every_ e we define a continuous
function f on a compact Hausdorff space X by f= f Q. Then we have

C(X)={f:fe<},
and therefore Q°( C()V( ))=%. Further, since & is self-adjoint, we have
CM(2)={f: fe<).

The map @: Fi>f (VfE%) is an algebra isomorphism of C(M(£))
onto C(X), and hence the adjoint map o= ®* of @ is a homeomorphism of
X onto M(%) such that ®(F)(x)= Flo(x) (VxeX). Let

(5.5) g=0°@Q.

Then ¢ is a continuous map of X onto M(%) and we have ¢°(F)=7f (VfE
Z) and (¥ )=2.
For ¢=eM(%), let

K(¢)=aq7"(9).

Then we have K(¢)={xEX: f(x)=¢(f), VfEe £}, X=U{K(¢): ¢<
M(£)}, and K(¢)NK(8)=@ for ¢=4.
For every ¢ in Y=T(H>|hull I7), let

G.6)  7:d—(2N P& (see (3.4)).

Then 7 is a continuous map of Y onto M(Z), because & is a selfadjoint
Banach algebra (cf. [6], p. 80).

THEOREM 5.8. Let A be a strongly logmodular algebra on a compact
Hausdorff space X. Let meM(A) and suppose X=S(m). Let K(¢)=
xeX:fx)=¢(f), VfEZ} for ¢€M(&). Then we have the following.
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(i) For every ¢p€M(Z), we have
N (K(p)=U{x(8): =37 (¢)}.
(ii) For ¢, 0€M(Z) (¢=x86), we have

fU{7 (8): G ($}CK(9)
and

K@NK(@)=0,
where 55/75) and K@) are H*-convex hull of % (08) and A-convex hull
of K(@) respectively.
(i) If #(M(H*(m))=M(A), then we have
M(A)=hull TU(U{K(8) : s M(2))).

_ PrROOF. (i) Let d€57(g). Then, for every f in &, we have
8(F)=¢(f). From f=€(f) on % (6) we have f=¢(f) on (x(8)).
Hence we have n(%(6))CK(¢), and hence z[U{# (8): Gy (¢)}]C
K(¢). Hence it follws from X=U{%(§): §= Y}=¢E%J [U{x(0): d=

7 (N, X=U{K(¢): ¢€M(Z)} and n(X)=X that -
XN 7 (K($))=U{x( g) . 5677"1(¢)}.

(ii) Let 6€77Y(¢). If ¢ %Té), then S(¢)C¥ (8). Let ¢=

7(¢). Then S(P)=n(S(P)Ca(F(F))CK(¢). Hence ¢ K’(;S). Hence
we have

7 (0): e ($)}CK(p).

If 6€K(4) and EK(6), then we have 6(f)=¢(f) and 6(f)=68(f) for
every f€%. And, for some g%, #(9)%6(g9). Hence we have K’(\qfﬁ)ﬂ

—~——

K=o,
(i) By Theorem 4.4, (iii), (M(H=)\hull I)U Y =U{%(8): §= 1),

Hence, by (ii), we have z[(M(H=)\hull I”)U Y]C U{K(¢): p=M(Z ).
On the other hand, if #< hull I*, then ¢(k)=0 for all AEI*, and hence
m($)(h)=0 for all h&I=I"NC(X). Hence we have z[hull 7*]Chull 1.
Thus we obtain

M(A)=hull TU(U{K($) : s M(£))). Q.E.D.
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THEOREM 5.9. Let A, X and m be as in Theorem 5.8. Suppose that
L 2C and M(Z) is totally disconnected. Then we have the following.

(1) I=I"NC(X) is contained in the uniformly closed linear span *
of all functions in A, each of which vanishes on some set of positive measure.
In particular, in the cases 2.1 and 2.3 in § 2, we have I=]=.7.

(i) For every ¢ in M(Z), the set K(¢) is a weak peak set for A.

ProoF. (i) Let g be the continuous map defined in (5.5), let ¢° be
the map of C(M(Z)) to C(X) defined in (5.1), and let ¢* be the adjoint
map of ¢° (see (5.2)). Let um=g*(m) and let fEZ . Then, for every >0
there are clopen sets Di (k=1,2, -, n) in M(Z) with 0<m(Ds)<1 (=1,
2. ---, n) and complex numbers cx (k=1,2, -, n) such that

17— 3 coxnd <e.

Hence we have

6.0 10— 3 cl=1F = 2 coxronl<e,

where yo100EL and 0<m(g (Dx)<1 (k=1,2, -, n).
Now, by (5.4), for every % in I, there are f€% and g&[ with lgll <
1/2 such that fg=h. Suppose that f satisfies (5.7). Then we have

=2 crxa-ron gl =lglle<el2,

where xo-1o0g=l (F=1,2,---, n). Hence we have (i).

ii) By using [Proposition 5.6, [Theorem 5.8 (ii) and the map ¢
defined in (5.5), (ii) is proved by the same argument as for Theorem 5. 3.
Ci). Q.E.D

Although, in § 2, J°=J~(H*) is defined to be the weak-* closed linear
span of all functions in H>(m), each of which vanishes on some set of
positive measure, we see by [Theorem 5.9, in the cases2.1and 2.31in § 2, J°
is the uniformly closed linear span of those sets. That is, we have the
following.

COROLLARY 5.10. Let I® be as in the cases 2.1, 2.2 and 2.3 in § 2.
Then I is contained in the uniformly closed linear span .= of all func-
tions in H*(m), each of which vanishes on some set of positive measure. In
particular, in the cases 2.1 and 2.3 in § 2, we have I°=]>=_7".

PROPOSITION 5.11. Let X, A and m be as in Theorem 5.8, an~d lef f
cL=(m). Then fE < if and only if f is constant on U{x(0): 6&
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17 (P)} for every ¢ in M(Z). (For y see (5.6).)

PROOF. By the definition of 7 and [Theorem 5.8, (i), we obtain the
“if” part.

Let fEL“’(m) Then f€C(X), and by [Theorem 5.8, (i), 7 is con-
stant on XNz Yx) for every x&€X. Hence, by [1, Lemma 4. 3] and
Proposition 3.9, (ii), we see that f€ N C(X)=<. Q.E.D.

§6. Some properties of a strongly logmodular algebra, Part 2.

In this section, let A be a strongly logmodular algebra on a compact
Hausdorff space X and let m&M(A). We suppose that P=P(m)=2{m}
and X=S(m).

Let H*=H>(m)=2"@®I> and £ be asin the case 2.3 of §2, and let
N= be the weak-* closure of I*+ I in L*(m). Let & =N C(X), &=
= Z"NCp(X), N=N"NC(X) and Ne=N~NCz(X). Let # be the
nontrivial Gleason part of %€ M(H"), where 7 is the complex homomor-
phism of H* which is defined by the Radonization of the measure #. Then
7 =P and 7 =P (cf. [12])

LEMMA 6.1. (i) Let f€L"(m). Then fEN® if and only if ¢(f)
=0 for all p= 7.
(ii) Let fEC(X). Then fEN if and only if $(f)=0 for all pEP,

PrROOF. (i) Let f=g+h, where g€ &> and hSN>. The “if’
part is obvious. If f(¢)=0 on .#, then §(¢)=0 on F. Hence d=0 on
Y(=I(H~hull I?)). By g€ g=00n #(Y)=X=M(L" ) and hence g=
0 a.e.(m). Thus fEN.

By using 7. =P, we easily obtain (ii). Q.E.D.

LEMMA 6.2. Let usCr(X). Then uAENR if and only if therve is a
functzon fEA™ such  that u=1log|f| and |f($)|=1 on P. And in this
case, 7(¢) is constant on P.

PROOF. Let uEN:. By log|A™|=Cr(X), there is a function fEA"!
such that u=log|f|. Then, for every ¢d€ .#, 0=¢(u)= /loglfldqb—

logl¢(f)| and hence we have |#(f)|=1 on -£. Hence ¢(f)= d(1/f) for
every ¢ .Z. Hence f|Y and f|Y belong to H®|Y. Since Y is an
ant1symmetr1c set, f(¢) is constant on Y. Since 7 is the H*-convex hull
of Y, /(@) is constant on F. Since P= (F), 1F(#)|=1 on P and 7(¢)
is constant on P.

Conversely, if f€A™ and |/(¢)|=1 on P, then for u=log|fl, ¢(u)=
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ﬁoglf|d¢=log|¢(f)|=0 on P. Hence, by Lemma 6.1. (ii), #&Nz.

Q.E.D.

By Proposition 2.1, log|(H*)™'|=L% can be rewriten as log |[(#°

D)= 3®Ns. And, we have logl(#~+1")"!|= L%DNi and log|(I®

+C)Y|=Ng+R (see [Proposition 3.10), where C’'=C\{0}. As we see in
the following theorem, these formulas hold for #, I, ¥ and Ng.

THEOREM 6.3. Let A be a strongly logmodular algebva on X and let m
eM(A). We suppose that P=P(m)=2{m} and X=S(m). Let I={fEA:
$()=0 VoEP). Then #+I < ®I and £ DNz are all uniformly
closed and we have the following.

(i) logl(C’'+I)Y|=R+Nr on X,
(i) log/(#DBI) Y=L rDNe on X,
(i) logl(Z®I) Y=L rDNr on X,

where @® denotes the algebraic divect sum, C and R are the complex and the
real fields respectively, and C'=C\{0}.

ProOF. For F=g+h, where g€ # and hEI, we have lgll <[ F
(see the proof of Proposition 2.1), and hence I#I<2IF|. Hence, if Fr=gn
+ 4 (n=1,2, ) uniformly converges to Fuv, then g» and k. uniformly
converge to g% and hEI respectively. Hence Foe#®@I. Therefore,
@I is uniformly closed. We can see similarly that & @I and ZLzPNe
are both uniformly closed.

(i) By lemma 6.2, for #E Nz there is a function fEA™ such that «
=log|f|, f(#)|=1 on P, and f(¢) is a constant on P. Let ¢ be a fixed
point in P. Then,

F=go(f)+(f = fEC+I.

There is a function gEA such that fg=1. By ¢(g)=1/¢(f) on P, |§(¢)|=
1 on P and g(¢) is constant on P. Hence,

g=do(g)+(g—do(g)EC +1.

Hence f€(C’+1)"". Therefore R+NzClog|(C'+1)7.
Conversely, if «< log|(C'+I)7Y|, then u= log|c+ k|, where c+he(C
+I)7!. For every ¢< P, we have

¢(u)=floglc+h|d¢=log|¢(c+h)l=loglcl,

and hence ¢(u—loglc))=0. By Lemma 6.1, u—log|lc|ENz. Hence u=
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log|c|+v, where vENz. Therefore, log/(C’+I)YC R+ Ng.
By [Proposition 5.6, we have

6.1 log| # 7 !|= L.

By (i) we have

(6.2) log|(C’+1)"Y|=R+ Ns.
Here, we will prove

6.3  (C+D'Fi'=(xDI).

Let c+h€(C'+1)™" and let g= %', Then (c+h)g=cg+hgs #PI.
By 1/(c+h)g=(c'+h)1)g)=cJg+ W Jg= # @I, where ¢’'€C and W],
Hence (c+h)g=(#PDI)™. Thus (C'+D ' 'c(FeD).

Let f&(#®I)™". Let f=g+4 and 1/f=g+hi, where ¢, =% and
h, m€1l. Then ggi=1 and hence g 5 . By f=g+h, we have flg=1
+hlg=1+h\, where hi=h/g=]. Let F=1/(14+h). Then F=1-Fc
C'+1. Hence 1+4<(C’+1)"'. Hence f=A+n/g)ge(C’+I1)* 1.
Thus (@) C(C'+I)'#, Therefore, we obtain (6. 3).

By (6.1), (6.2) and (6.3), we obtain

log|(# D)= xDNk.
By & r=log|#|Clog|# ~'|C %%, we have
log| & 7!|=Z%.

The following formula is proved by the same argument as for (6. 3).
(C+I)' e ~(# @)

Hence we obtain [(iii). Q.E.D.

Let A be a strongly logmodular algebra on a compact Hausdorff Stonian
space X and let mEM(A). We suppose that X=S(m), P(m)=2{m} and
the Wermer embedding function Z belongs to A. Example 4, (ii) in § 8 is
such an example.

By [Proposition 5. 6| we have log|# '|=%%. Let T be the map which
will be defined in (7.1) of §7. Let H=T(#), L=T(%) and Lx=T
(Z%). Then, by T(log| # )= log|(T(#))7!], we have log|H !|=L,.
Hence H is a strongly logmodular algebra on M(L) such that e®®c and
A(0D)S HC H>(D), where A(dD) is the disk algebra on the unit circle 9D.

PROBLEM.  Does such an algebra H coincide with H *(D)?
If this problem has an affirmative answer, then # =T"YH)=
T~ (H*(dD))=",i.e., the natural injection X E#“ is an isometric
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isomorphism of # and # . Further we will obtain an algebraic direct sum
decomposition A=# @], where J=]~N C(X).

§7. A logmodular algebra A satisfying Aor=H>(D).

In this section, let A be a logmodular algebra on a compact Hausdorff
space X and let mEM(A). We suppose that P=P(m) is nontrivial. Let
Z be the Wermer embedding function, let #~ be the weak-* closure of the
polynomials in Z in L*(m), and let < be the weak-* closure of the
polynomials in Z and Z in L=(m). Let I"={f€H"(m): ¢(f)=0 V $EP}.
Then, as we stated in the case 2.3 of § 2, we have H"=H"(m)=%#"®I".

The correspondence

(7.D T: k;‘.n_naka*—»kzZ‘.n_nakeik", a.€C

induces an isometric isomorphism 7" of < onto L*(df), which carries
#* onto H*(D), where n ranges over all integers and (1/27)d6f is the
normalized Haar measure on the unit circle (cf. [16]). By Fatou’s theorem,
every function in H=(D) is identified with its boundary function on the unit
circle oD.

THEOREM 7.1. Let A be a logmodular algebra on a compact Hausdorff
space X, let P=P(m) be the nontrivial Gleason part of m for A, and let t
be an analytic map of D onto P. Let T=T(A|P) be the Shilov boundary of
A|P. Suppose that Act=H"(D). Then we have the following.

(i) T=xz(Y), and T is a compact Hausdorff Stonian space, where Y
=T(H>|hull I*) (see (3.4)).

(ii) M(A|D)=P=hull I, where I={f€A: (f)=0 for all $EP}.

(iii) AU is a strongly logmodular algebra on T.

(iv) Let An be a (unique) rvepresenting measure on T' of m for A|T,
and let H*(An) be the weak-* closure of AT in L*(An). Then, An is a
normal measure on T such that S(An)=T, and the natural injection A|T'S
H>(An) is an isometric isomorphism of A|T' and H>(An).

(v) If the Wermer embedding function Z belongs to A, then AU is
the weak-* closure of the set of polynomials in Z in L(An).

Proor. (i), (ii) By the map
fI>f|P—f|P— fore H*(D), fEA

the algebra A|T is isometrically isomorphic to the Banach algebra H®(D).
Hence A|T is a uniform algebra on I'. By a general theory, we have M(A]
D)={¢€M(A):|p(I=|f]: for all fEA} (cf. [15], p. 166). By Aer=
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H*=(D), we have hull (/)= P (cf. [12], Theorem 4.4). Hence, by M(A|T)C
hull I and PCM(A|T), we have

(7.2) M(A|Il)=hull I=P.

From H*(D)={fer: fEA}C{for: fEH (m)}={fer: fE #~}CH"(D),
we obtain {fer: f€A}={fer: fE#>}. Hence we have

(7.3 AlF=x 7.

The map 7z is a homeomorphism of % onto P (cf. [12], Theorem 4.1),
and, for every f in A, we have

7.0 f()=F(n(¢)), $€ 7.
Further, by #=hull I* (cf. [12], Theorem 3. 1), we have
(7.5  Y=D0(#"|%).
Hence, by (7.3), (7.4) and (7.5), we obtain
r=xn(Y).

Since Y is a compact Hausdorff Stonian space, I" is a compact Hausdorff
Stonian space too.

Let 7y=nx|Y. Then 7% is a one-to-one map of Cz(T") onto
Cr(Y) (see (5.1)), and we have

mlog|(AIT) ™) =log|(Al Y)™|
=log|(#>|Y) |=Cx(Y) on Y.

Hence we have
log|(AIT) ™= Cr(T).

Since A|l" is a uniform algebra on T, the algebra Al is a strongly log-
modular algebra on T.

Let Az=7*(m) (see (5.2)). Then A, is a normal measure on Y
(cf. [13], p. 77). For any fEA, we have

M(f)=Lfdm=/);?dﬁ¢=/)?gAdn~a
:égondﬁ=fygd/1m:£/(g+ﬁ)d/lﬁ
zfyfd/imzfyfondﬁ,ﬁ:frfd(,[*uﬁ))
~ [t din,
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where f=g+h a.e. (m), g#= and hEI”. Hence we see that A» is a
normal measure on the compact Stonian space I' and S(A»)=T". Hence, the
natural injection C(I")E L*(A») is an isometric isomorphism of C(I') and
L>(An). So, by [Theorem 5.5, we have A|l'=H"(A»)N C(T)=H>(An).

(v) For every function f€H*(D), there is a sequence {f»}ZA(dD)
such that [[f|<|lf] for all » and fi—f a.e.(df), where A(dD) is the disc
algebra on the unit circle dD. Then, from

[ of dol=1im| [ ofudel
<timlf [ lold6, g=L(do0),

we have |f|<limlfl<lim[fl<]], and hence lim|fa|=]71.

For every n=1,2, -, let &, be a number such that 0<e,<|[f|—|/al.
For every f., there is a polynomial P.(e®) in e on the unit circle dD such
that |P.—fall<en.. Then we have |P.|<||f]| (r=1,2,+) and P.-—f a.e.
(d9).

Let F=T7Yf) and let P.(Z)=T"(Pu«e®)) (for T see (7.1)). Then,
by [16, p. 464], we have

ﬁban(e“’)—f(e"e)ld@:l(ipn(z)_ﬂdm
= [1PX2)~ Flam= [ |(P{2)~ F)- 7lam

zfy|p,,’(‘z)—1?"|d/1m—»0 (n—c0).

Hence (by passing to a subsequence) there is a sequence {P.(Z)} such that

PAZ)~F a.e.(A;) and |PA(2)|v<|F]v.

For any g€ A|T there is a function fEA such that g=f|. Let f=G
+H a.e (m), where GE #= and HEI®. Then, for every ¢V, we
have [gon]($)=g(#)=f(¢)=F($)=G(¢), where ¢=n($). That is, we
have ger=G on Y. Then, there is a sequence of polynomials {P.(Z)} (=
{P.(Z)}) in Z such that P.(Z)—G a.e.(Az) and [|P(Z)ly<|Gly. Since Z
belongs to A we have

fy \PA(Z)— GldAn= / \P(Z)e 1 — goldis
- f |PA(Z) = gl dAn—0 (n—00).

Hence (by passing to a subsequence) there is a sequence of polynomials
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{P:(Z)} in Z such that P.(Z)—g a.e. (Ax) and |P(Z)|-<|lgl.. Hence A|T
is the weak-* closure the set of polynomials in Z in L*(An). Q.E.D
For the examples such that Aer=H"(D), see Example 4, (ii) in §8.

COROLLARY 7.2. Let X, A, P=P(m), T, and t be as in Theorem 1.
1, and suppose that Aet=H>(D). Then we have the following.

(i) If P(p) (¢ P), the Gleason part of ¢ for A|T, is nontrivial,
then P($) is a nontrivial Gleason part of ¢ even for A.

(ii)  There is a one-to-one map from the set of nontrivial Gleason parts
for H*(D) onto the set of nontrivial Gleason parts for A|T.

(iii) G=U{P(¢); P(¢) is the nontrivial Gleason part for A|T} is an
open dense subset in the subspace P.

Proor. (i) By[Theorem 7.1, (i)~(iii), there is an analytic map ¢
of D onto P(#). Let G(¢) be the Gleason part of ¢ for A. Then, by
dar( @1, ¢2) 2da(é1, ¢2), we have P($)CG(4) (see (2,1)). Let o be an ana-
lytic map of D onto G(¢). The map o (resp. o) is an isometry of D with the
pseudo-hyperbolic metric onto P(¢) (resp. G(¢)) with the metric dur(¢1,
¢2) (resp. da(é, ¢2)) (cf. [11], Theorem 3). Hence £=p ' is a one-to-
one continuous map of D into D.

Let K={zED:|2|<1/2}. Then &) is a compact subset of D.
Hence there is a sequence of distinct points {z:}(C&(K)) which converges to
some point in &(K). There is a point ., €K such that z,=&(1.) for every
n. For every f€I, we have feo€H>™(D) and (f°0)(z.)=(fcp)(0t°0)(An)
=(fo0)(A)=0 (n=1,2,---). Hence we have fcp=0 in D, and hence G(¢)
=p(D)Chull I. From hull I=P=M(A|T), we have fop& H*(D) for
every f in Al Hence we have G(¢)C P(¢), and hence P(¢)=G(¢).

Let f€A, F¥(1)=7(z(4)), and F be the boundary value on 9D of
F*. Let 5: fIT—F be the map derived by the chain of maps

P £| Pio f| P F*o Fis F (€ H(D)| M(L*(D))).

Then 7 is an isometric isomorphism of A|T" onto H*(D)|M(L*(6D)). Let
7* be the adjoint of 7. Then 7* is a one-to-one map of the set of Gleason
parts for H*(D) onto the set of Gleason parts for A|T.

Since the set G: of nontrivial Gleason parts for H*(D) is an open
dense subset of M(H*(D)), G=7*(G:) is an open dense subset in the sub-
space P (cf. [9], p. 89). Q.E.D.

Under the same condition as in |Corollary 7. 2, we could not decide that,
when ¢= P\I' and P(¢) is a trivial Gleason part of ¢ for A|T, then P(¢)
is a trivial Gleason part of ¢ for A. (See Example 2, in §8.)
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COROLLARY 7.3. Let A be a logmodular algebva on a compact
Hausdorff space X, and let the Gleason part P=P(m) of m for A be
nontrivial, and let T be an analytic map of D onto P. Then Act=H>(D) if
and only if #°={g:f€EA, f=g+ha.e (m), where g=#~ and h<Iv}.

ProoF. Let H={g:f€A, f=g+h a.e.(m), where g#* and h<
7). If Aer=H=(D), then by (7.3) we have A|.#=2#>.#. Hence we
have H| #Z =H"| %, and hence H|Y= #|Y, and hence H|X= #~|X.
Therefore we have H=7#".

Conversely let r=2XT* Then we have 7(D)=.%, and for every F=
g+heEH*(m), where g=#= and h<I”, we have

F(z(A)=g(z(A)=g(Z T*(1)=g(T*(4))
=T(g)(A)eH*(D), where A€ D.

Hence 7 is an analytic map of D onto .. Since T is an isometric isomor-
phism of # = onto H*(D), for every function F in H*(D), there is a func-
tion g=# ™ such that Tg=F. By the assumption, there is a function fE
A such that f=g+ha.e. (m), where g #= and h<I*. Hence we have
FA)=(Tg)(D)=g(T*(A)=g(Z(T*(A))=g(z(A)=/f(z(A)). Hence we have
Aer=H>(D). Q. E.D.

A function f is called a bounded analytic function on P if f is a complex
valued function defined on P and fer& H*(D), where r is an analytic map of
Donto P=P(m). Let H*(P) be the set of bounded analytic functions on P.

COROLLARY 7.4. Let X, A, P=P(m), and t be as in Corollary 7.3.
Then Aer=H>(D) if and only if Acr=H>(P).

PrROOF. By [15, p. 154] we have H*(P)=H>(m)°r.

If Acr=H>=(D), then by [Corollary 7.3 we have Aecr=H(m)er=
H>(P).

Conversely, by the proof of [Corollary 7.3, we have H™(m)or=H>(D)
and hence Acr=H>(D). Q.E.D.

COROLLARY 7.5. Let X, A, P=P(m), and t be as in Corollary 7. 3.
Then Acr=H>(D) and I={0} if and only if A=F*=H"(m) on X.

PrOOF. If Aer=H>(D) and I={0}, then we have P=hull (/) and
hull 7=M(A). Hence we have PDX, and hence I'=T(A|P)=X. Hence,
by Mheorem 7.1, (iv), A|X=A|T is the weak-* closure of A|T" in L*(m)=
L*(A»). Hence we have A=H>(m) and hence Z&A. Hence by
7.1, (v) we have A=#".

Conversely, if A=#*=H"(m) on X, then ICI*={0} implies 7={0}.
And we have Acr=H>(m)r=H"(D). Q.E.D.




272 K. Kishi

Finally we will state a proposition which is an immediate consequence of
[Proposition 3. 9.

PROPOSITION 7.6. Let X, A, P, and T be as in Theorvem 7.1. Sup-
pose that X=S(m). Then U{S(p): ¢ET} is dense in X.

§ 8. Examples.

ExaAMPLE 1. Let K be the Bohr compactification of the real line K.
Let A be the Dirichlet algebra of continuous, complex valued functions on X
=K X K which are uniform limits of the polynomials in ¥z Xz, where

(n, 2)ES={(n, &) : >0} U{(n,0): n =0},

and x are the characters of K determined by :€ER. We denote by m the
normaized Haar measure on X, and we also denote by m the complex
homomorphism of A defined by the measure m. We denote by H*(m) the
weak-* closure of A in L>(m).

The Gleason part P(m) of meM(A) is trivial (cf. [15], p. 149). Fur-
ther Hmn is the weak-* closure of Tgo ZoH®(m). Hence we have H*(m)S

H3aS L=(m). (Cf. p. 166.)

ExaMPLE 2. (i) Let A(T? be the Dirichlet algebra of continuous,
complex valued functions on the torus 7?={(z, w): |z|=|w|=1}, which are
uniform limits of the polynomials in z‘w’, where (7, 7)€S={(7, 7)) : 7 >0} U{(7,
0):7=0}. Then the maximal ideal space of A(7?) can be identified with
({z:lzl=1}x{w: lw|=£1})U({z: |2|£1} x{0}), with the normalized Haar mea-
sure m identified with (z, w)=(0, 0).

The Gleason part P=P(m) of mis {z:]z/<1}x{0}. For each z&{z:
|z|=1}, D:={z}x{w:|w|<1} is a nontrivial Gleason part. The closure P=
{z:12|1=1}x{0} of P doesnot meet T2 Every point (2, 0) of 0P= P\P=
{z:12|=1}x{0} is a point of D.,. Therefore P is not a union of Gleason
parts.

Let (1/27)d6 be the normalized Haar measure on the unit circle
T, and let H*(d0) be the weak-* closure of the disc algebra A(T) in
L>(d8).

Let A(T?) and m=(1/47%)d0d$ be as in (i). Let H*=H>(m) be
the weak-* closure of A(T?) in L*(m). Asin (2.6), we have

@8.1)  H"=#~®I",

where # * and [~ are the weak-* closure in L*(m) of the sets {goaizi DA€
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C (i=1,2, -, n)} and {éwfgj(z):gJEL”(dﬁ), (7=1,2, -, m)} respectively,

where z=¢* and w=e*. Let 7 be the natural homeomorphism of
M(H>=(d)) and M(L*(d)) onto M(#*) and M(<Z*) respectively, which
is induced by the correspondence between z=¢” on T? and z=¢* on T.
We will identify A€ M(H>(d)) with r(A)EM(F#*).

For a fixed point wo with |wo <1, each element f& H>(m) uniquely
can be decomposed as

8.2)  flz, w)=A(2)+ whz)+(w—wo)fs(z, w) a.e.(m),
where A€ #°, L, <™ and L<=1". In fact, by (8.1), we have

f(z, w)=A(2)+ f(z, w),

where A€E# ™ and fsE1”. By the definition of I*, £(z, w)/w is the bound-
ary value of a bounded analytic function in w for almost every z=e®”. We
define

2 ]
= [ e file e Pu g1 oL

where P,,(¢) is the Poisson kernel for wo. Then we have
Haw) _ p )= (w—w) iz, w),

where fi(z, w) is the boundary value of a bounded analytic function in w for
almost every z=e”. Here we difine

iz, w)=wfi(z, w),

then E1”, and this gives the decomposition (8.2) of f. It is easy to see
the uniqueness of the decomposition from our construction.
Now, for éEM(H®), we difine a linear functional ¢. on H>(m) by

¢E(f) - é(fl).

For f, g€ H*(m), the decomposition (8.2) of fg is given by
(8.3) (fg)(Z, w)=(f1g1)(z) + w(fng'Jr‘fzgl + wszgz)(z)
+(w—wo)(f193+fsgl+wfzgz+ wi2gs
+ whg+(w—wo) f295)(2, w),

where f(z, w)=/fi(z)+ wf2(z) +(w—wo)fs(z, w) and g(z, w)=g(2)+wg(z)
+(w—wo)gs(z, w). It follown from (8.3) that ¢. is multiplicative on
H>(m). Hence ¢.=M(H"(m)). Clearly the map

O:E— e
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is a continuous map from M(#*) into M(H*(m)).
Similary, for (&, wo)EM(L(d8))xD (D={weC:|w|<1)}), we define a
linear functional ¢ew, on H*(m) by

be,wo(f)=E(H)+ wol(f).

By (8.3), ¢euw, is also multiplicative on H®(m), and hence ¢e »,E
M(H*(m)). Moreover, the map

¢ (&, wo) Pe,wo

is a continuous map from M(L™(df))X D into M(H=(m)). Here we note
that deo=0, if EEM(L™(dO))=M(Z").

Now, the Gleason part % of ¢,=®(0) (=) is ®(D), where 7 is the
complex homomorphism defined by the Radonization of the measure 7. So,

Z=0(D)=0(D)=d(M(#")).

Hence P2 ¢ge=¢.0 for £EEM(L(dF)). However ¢eo and $e,w, are in the
same Gleason part whenever |wo|<1. Therefore % is not a union of
Gleason parts for H>(m).

The author would like to acknowledge his indebtedness to Dr. M.
Hayashi for this part Cii).

Let H*=2#"@®I° and <~ be as in (ii). Let x be a function in
£ with x*=x and x¥0, 1, and let A,=#"@xI". Then A, is a weak-*
Dirichlet algebra. If we put mi=7i|A:, then m,EM(A,) and the Gleason
part P of »mu for A is nontrivial. If © is an analytic map of D onto =9
then Aicn=H>(D). Let I'i be the Shilov boundary of Ai|P.. Then it
follows from (ii) and [[13], § 4] that a certain point of Ty belongs to some
nontrivial Gleason part for A, and a certain point of I'; composes trivial
Gleason part for A;.

EXAMPLE 3. Let A’ be a weak-* Dirichlet algebra on a nontrivial
probability measure space (X, %, m) and let H*=H“(m) be the weak-*
closure of A" in L*(m). Let X=M(L*(m)) and A=H=|X. Then A is a
strongly logmodular algebra on a compact Hausdorff Stonian space X.

Let ¢ be any point of M(A) and let X;=S(¢). Then X is a compact
Hausdorff Stonian space (cf. [22], Theorem 2. 2), and by [Theorem 5.4 X,
is a weak peak set of A. Let Ai=A|Xi. Then A is a uniform algebra on
Xi. From

CR(XI): CR(X)IXl=(log|A‘1|)lX1C10g|A1_1|C CR(XI)

we have log|Ar'|=Cr(X)). Therefore A; also is a strongly logmodular
algebra on X.
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If the Gleason part P(m) of m&M(H™(m)) is nontrivial and r is an
analytic map of D onto P(m), then we have H*(m)er=H"(D).

EXAMPLE 4. We will identify a function in H*(D) with its boundary
function on the unit circle dD. Let (1/27)dd be the normalized Lebesgue
measure on 0D. Let {z.} be a sequence in D such that li,rlnlzn|=1. We

denote by {z.} the weak-* closure of {z.} in M(H™(D)). {z.} is said to be
interpolation and sparse if

. n— Xm . Zn— Xm

inf [I -=2>0 and lim [I |=——|=

n m.mxn ]-_Zmzn n-ooom: m¥*n 1—“Zmzn
respectively.

(i) Let m be any point in {z.J\D. Then P(m)=2{m} if and only if
{2} is an interpolating sequence (cf. [9], Theorem 4.3.). In this case, there
is a Blaschke product B such that B=0 on P(m). Hence the closure P(m)

of P(m) does not meet the Shilov boundary X=M(L=(df)) of H*(D) (cf.
[9], p. 102). It is known from [3] that P(m) is a union of Gleason parts.

Let un be the representing measure on X of m for H*(D), and let X=
S(ur). Then, by Example 3, A=H"(D)|X is a strongly logmodular alge-
bra on a compact Hausdorff Stonian space X.

Let {z;} be a sequence in D such that li'rlnlz;| =1. Then thereisa

subsequence {z.} of {23} such that {zn} issparse (cf. [7], p. 106). Let mbe
any point in {z.J\D. As in (i), let X=S(un) and let A=H"(D)|X. In
this case, the Wermer embedding function Z belongs to A i.e., if B(z) isthe

Blaschke product with zero sequence {2z}, then Z=aB(z)|X for some
unimodular constant @ (cf. [9], ». 106). Let f be any function in H>(D).
Then g=7f°(aB) belongs to H*(D). Hence for an analytic map r=2Z""'=
(aB|P(m))™"  we have §(z(t))=F(aB(z(1))=/(t), t€D (cf. [9]
6. 3). Hence we have Acr=H"(D).

Let m be an element of M(H*(D))\D such that the Gleason part
P(m) is nontrivial and any analytic map r of D onto P(m) is not a
homeomorphism (cf. [9], p. 109). As in (i), let X=S(un) and let A=

H>(D)|X. Then Z&€A. Hence Z& C(X), because, if Z€ C(X), then by
Theorem 5.5, we have ZE#F*NC(X)CA. From this, F*NC(X)&
2 *(m). Further we have A°rS$ H>(D), because, if Aer=H>(D), then
o= oXoT* is an analytic map of D onto P(see the proof of Corollary 7. 3),
and p is a homeomorphism (cf. , Theorem 4. 1), and hence r is a home-
omorphism (cf. [11], Theorem 2).
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Let m be any point in M(H*(D)\(DUX), let X=S(un) as in

(i) and let A=H=(D)|X. Let H*(m) be the weak-* closure of A in
L>(un). 1t follows from [[5], p. 63] and the Tietze extension theorem that
|A|=C#(X)(={ucs C:(X): «u=0}). Since X is a Stonian space, X is totally
disconnected. For any clopen set V in X with 0<ux(V)<1 there is a
function f€A such that |f|=xv. Then feJ°=J*(H*(m)) (see (2.1)).
Hence J==2{0}.

Let E be the set of all clopen sets V with 0<u,(V)<1. Let VEE, let
Iv={feA:|fl=x}, let Jve={fEA:|fl=xve} and let Jv+Jve={ft+g:fE
Jv, g€Jvet. Then J=U{Jv+]ve: VEE}CJ®. ] separates the points of X,
and we have fg&J for f&J and g=J. Hence the linear span 7" (J) of J is
an algebra. If P(m)=2{m}, then the uniform closure of " (J) is contained
in I={f€A: ¢(f/)=0 Vo=P(m)}. It is not known whether the weak-*
closure of 7°(J) in L™(un) coincides with J=.
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