A certain logmodular algebra and its Gleason parts

Kazuo KISHI (Received August 26, 1987, Revised October 26, 1987)

Abstract. Let A be a weak-* Dirichlet algebra on a nontrivial probability measure space (X, \mathscr{A}, m) and let $H^{\infty} = H^{\infty}(m)$ be the weak-* closure of A in $L^{\infty}(m)$. The first objective of this paper is to study the maximal ideal space $M(H^{\infty})$ of H^{∞} with a special regard to the algebraic direct sum decomposition $H^{\infty} = \mathscr{H}^{\infty} \oplus I^{\infty}$, where I^{∞} is an ideal of H^{∞} appeared in [14].

The second objective of this paper is to study a certain logmodular algebra A on a compact space X and its maximal ideal space M(A) in connection with an abstract Hardy algebra H^{∞} associated with A.

§ 1. Introduction.

We denote by B a complex commutative Banach algebra with a unit, and by B^{-1} the group of invertible elements in B. We denote by M(B) the maximal ideal space of B. We denote by \hat{f} the Gelfand transform of $f \in B$, by \hat{B} the set $\{\hat{f}: f \in B\}$, and by $\Gamma(B)$ the Shilov boundary of B. We often write f for \hat{f} , since the meaning will be clear from the context.

In § 3 and § 4, we denote by A a weak-* Dirichlet algebra on a nontrivial probability measure space (X, \mathscr{A}, m) , and by $H^{\infty} = H^{\infty}(m)$ the weak-* closure of A in $L^{\infty}(m)$. We will often denote by m the complex homomorphism of H^{∞} which is determined by the measure m. Let J^{∞} be the weak-* closed linear span of all functions in H^{∞} , each of which vanishes on some set of positive measure. Then J^{∞} is an ideal of H^{∞} which is contained in $H^{\infty}_m = \{f \in H^{\infty} : \int f \, dm = 0\}$. In [14], we call J^{∞} the typical ideal. In [14], we have established a decomposition $H^{\infty} = \mathcal{H}^{\infty} \oplus I^{\infty}$ with I^{∞} , a spacific ideal of H^{∞} with $I^{\infty} \subset J^{\infty}$, where \oplus denotes the algebraic direct sum (see § 2). Let \mathcal{L}^{∞} (resp. N^{∞}) be the weak-* closure of $\mathcal{H}^{\infty} + \overline{\mathcal{H}^{\infty}}$ (resp. $I^{\infty} + \overline{I^{\infty}}$) (the bar denotes conjugation). Let $\widetilde{X} = M(L^{\infty}(m))$, $Y = \Gamma(H^{\infty}|\text{hull }I^{\infty})$ and let $E(I^{\infty})$ be the support set of I^{∞} . For $\phi \in Y$, let $\mathcal{H}(\phi) = \{\widetilde{x} \in \widetilde{X} : f(\widetilde{x}) = \phi(f)\}$ $\forall f \in \mathcal{L}^{\infty}$. For any measurable set E of X, χ_{E} denotes the characteristic function of E. For any set E of a topological space X, \overline{E} denotes the closure of E in X.

In § 3, we obtain the following. (i) $\phi \in \text{hull } I^{\infty} \text{ belongs to } Y \text{ if and only if } |\phi(f)|=1 \text{ for every inner function } f \text{ in } \mathcal{H}^{\infty}.$ (ii) Theorem 3.5.

 $\chi_{\mathcal{E}(I^{\infty})} \in \mathscr{L}^{\infty} \text{ and } F = \widetilde{X} \cap Y = \widetilde{X} \cap \text{hull } I^{\infty} = \{\widetilde{x} \in \widetilde{X} : \widehat{\chi}_{\mathcal{E}(I^{\infty})}(\widetilde{x}) = 0\} = \{\phi \in Y : \widehat{\chi}_{\mathcal{E}(I^{\infty})}(\phi) = 0\}. \quad \text{(iii) If } \Phi \in M(H^{\infty}) \setminus \text{hull } I^{\infty}, \text{ then there is a (unique) point } \phi \in Y \text{ such that } \Phi(f) = \phi(f) \text{ for every } f \in \mathscr{H}^{\infty}. \quad \text{The map defined by } \Phi \mapsto \phi \text{ is a continuous map of } M(H^{\infty}) \setminus \text{hull } I^{\infty} \text{ onto } Y \setminus F. \quad \text{(iv) Suppose that } H^{\infty}_{m} \supseteq I^{\infty}. \quad \text{Then } \widetilde{X} \supset Y \text{ if and only if } H^{\infty} \text{ is a maximal weak-* closed subalgebra of } L^{\infty}. \quad \text{(v) } \widetilde{X} \cap Y = \emptyset \text{ if and only if there is an inner function } h \text{ in } I^{\infty}. \quad \text{(vi) } \underline{T} \text{ heorem } 3.9. \text{ hull } I^{\infty} \text{ is connected. hull } I^{\infty} \setminus Y \text{ is an open set in } M(H^{\infty}), \\ \underline{T} \text{ hull } I^{\infty} \setminus Y \supset Y \text{ and } (M(H^{\infty}) \setminus \text{hull } I^{\infty}) \cap \text{ hull } I^{\infty} \subset Y. \quad \text{If } I^{\infty} \supseteq \{0\}, \text{ then } M(H^{\infty}) \setminus \text{hull } I^{\infty} \text{ is disconnected and hence } M(I^{\infty}) \text{ is disconnected.} \quad \text{(vii) If the Gleason part } P(m) \text{ of } m \text{ is nontrivial, then } \bigcup \{S(\widetilde{\phi}) : \widetilde{\phi} \in Y\} \text{ is dense in } \widetilde{X}, \text{ where } S(\widetilde{\phi}) \text{ denotes the compact support of the representing measure of } \widetilde{\phi} \in Y. \quad \text{(viii) If the Gleason part } P(m) \text{ of } m \text{ is nontrivial, then log } |(C' + I^{\infty})^{-1}| = R + N^{\infty} \cap L^{\infty}_{R}, \text{ where } C \text{ and } R \text{ are the complex and the real fields respectively and } C' = C \setminus \{0\}. \quad \text{In } \S \text{ 3 we will generalize some results in } [13] \text{ to more general cases.}$

In § 4, we obtain the following. (i) If $\phi \in (M(H^{\infty}) \setminus \text{hull } I^{\infty}) \cup Y$, then $S(\phi) \subset K(\phi_0)$ for some $\phi_0 \in Y$. (ii) Theorem 4.2. hull $I^{\infty} \setminus Y$ is a union of Gleason parts. (iii) Theorem 4.4. $\mathscr{K}(\phi)$ ($\phi \in Y$) is a weak peak set of H^{∞} , $\mathscr{K}(\phi)$ ($=H^{\infty}$ -convex hull of $\mathscr{K}(\phi)$) \cap hull $I^{\infty} = \{\phi\}$, $(M(H^{\infty}) \setminus \text{hull } I^{\infty}) \cup Y = \cup \{\mathscr{K}(\phi) : \phi \in Y\}$ is a union of Gleason parts, and $\mathscr{K}(\phi) \cap \mathscr{K}(\phi) = \emptyset$ for $\phi \neq \emptyset$. (iv) Theorem 4.5. Let B_1 and B_2 be weak-* closed subalgebras of $L^{\infty}(m)$ with $H^{\infty} \subseteq B_1 \subseteq B_2 \subset L^{\infty}(m)$. Let $I_{B_i}^{\infty} = \{h \in L^{\infty}(m) : \int hf \ dm = 0 \ \forall f \in B_i\}$ (i=1,2), and let $\mathscr{H}_{B_i}^{\infty} = (B_i \cap \overline{B}_i) \cap H^{\infty}$ (i=1,2). Then we obtain $I_{B_1}^{\infty} \supseteq I_{B_2}^{\infty}$, $\mathscr{H}_{B_1}^{\infty} \supseteq \mathscr{H}_{B_2}^{\infty}$, hull $I_{B_1}^{\infty} \supseteq \operatorname{hull} I_{B_2}^{\infty}$, and some properties of hull $I_{B_2}^{\infty} \setminus \operatorname{hull} I_{B_1}^{\infty}$. In § 4 we will generalize some results in [12] to more general cases.

In § 5 and § 6, we denote by A a strongly logmodular algebra on a compact Hausdorff space X. For each $\phi \in M(A)$ we denote its (unique) representing measure by ϕ . Let $m \in M(A)$, and let $H^{\infty} = H^{\infty}(m)$ be the weak-* closure of A in $L^{\infty}(m)$. Then A is a weak-* Dirichlet algebra on (X, \mathscr{A}, m) , and hence we have a decomposition $H^{\infty} = \mathscr{H}^{\infty} \oplus I^{\infty}$. Let $J = J^{\infty} \cap C(X)$, $I = I^{\infty} \cap C(X)$, $\mathscr{H} = \mathscr{H}^{\infty} \cap C(X)$, $\mathscr{L} = \mathscr{L}^{\infty} \cap C(X)$ and $\mathscr{L}_{R} = \mathscr{L}^{\infty} \cap C(X)$. For $\phi \in M(\mathscr{L})$ let $K(\phi) = \{x \in X : f(x) = \phi(f) \ \forall f \in \mathscr{L}\}$. Suppose that X = S(m).

In § 5, we obtain the following. (i) Theorem 5.4. If $\phi \in M(A)$, then $S(\phi)$ is a weak peak set for A. (ii) Theorem 5.5. $A = H^{\infty}(m) \cap C(X)$, $A^{-1} = (H^{\infty}(m))^{-1} \cap C(X)$. (iii) If the Gleason part P(m) of m is nontrivial, then I = J is a primary ideal of A and $I = \{f \in A : \phi(f) = 0 \ \forall \ \phi \in P(m)\}$. (iv) Theorem 5.8. There is a continuous map η of Y onte $M(\mathcal{L})$, and for $\phi \in A$

 $M(\mathscr{L})$, we have $\widetilde{X} \cap \pi^{-1}(K(\phi)) = \bigcup \{\mathscr{K}(\widetilde{\theta}) : \widetilde{\theta} \in \eta^{-1}(\phi)\}$ and $\pi[\bigcup \{\mathscr{K}(\widetilde{\theta}) : \widetilde{\theta} \in \eta^{-1}(\phi)\}] \subset K(\phi)$, where $\mathscr{K}(\widetilde{\theta})$ and $K(\phi)$ are H^{∞} -convex hull of $\mathscr{K}(\widetilde{\theta})$ and A-convex hull of $K(\phi)$ respectively (for π see § 5). If $\pi(M(H^{\infty})) = M(A)$, then $M(A) = \text{hull } I \cup (\bigcup \{K(\phi) : \phi \in M(\mathscr{L})\})$. (v) Theorem 5.9. If $M(\mathscr{L})$ is totally disconnected, then I is contained in the uniformly closed linear span of all functions in A, each of which vanishes on some set of positive measure. (vi) I^{∞} is contained in the uniformly closed linear span of all functions in $H^{\infty}(m)$, each of which vanishes on some set of positive measure. (vii) If $f \in L^{\infty}(m)$ is constant on $\bigcup \{\mathscr{K}(\widetilde{\theta}) : \widetilde{\theta} \in \eta^{-1}(\phi)\}$ for every $\phi \in M(\mathscr{L})$, then $f \in \mathscr{L}$.

In § 6, we obtain the following. Theorem 6.3. If P(m) is nontrivial, then $\mathcal{H} \oplus I$ and $\mathcal{L}_R \oplus N_R$ are both uniformly closed, and we have $\log |(C'+I)^{-1}| = R + N_R$ and $\log |(\mathcal{H} \oplus I)^{-1}| = \mathcal{L}_R \oplus N_R$, where $N_R = N^{\infty} \cap C_R(X)$.

In § 7, we denote by A a logmodular algebra on a compact Hausdorff space X. Let $m \in M(A)$ and let $P = P(m) \supseteq \{m\}$. Let τ be an analytic map of the open unit disc D onto P such that $f \circ \tau \in H^{\infty}(D)$, where $H^{\infty}(D)$ is the Banach algebra of bounded analytic functions on D. Let $\Gamma = \Gamma(A|\overline{P})$. In § 7, we obtain the following. (i) Theorem 7.1. If $A \circ \tau = \{f \circ \tau : f \in A\} = H^{\infty}(D)$, then $A|\Gamma$ is a strongly logmodular algebra on Γ and, roughly speaking, $A|\Gamma$ has the same properties as the function algebra $H^{\infty}(D)$. (ii) If $A \circ \tau = H^{\infty}(D)$, then a nontrivial Gleason part for $A|\Gamma$ is also a nontrivial Gleason part for A. (iii) We give some conditions to be $A \circ \tau = H^{\infty}(D)$.

In § 8, we will give some examples. Example 1 is related to the cases 2.1 and 2.3 in the section 2. Example 2 is related to Theorems 4.2, 4.4 and Corollary 7.2. Examples 3 and 4 are related to the sections 5, 6 and 7.

In § 2, we will give some preliminaries concerning uniform algebras, weak-* Dirichlet algebras, an algebraic direct sum decomposition $H^{\infty}(m) = \mathcal{H}^{\infty} \oplus I^{\infty}$, etc.

The author would like to express his hearty thanks to the referee whose comments led him to the improvement of the original version.

§ 2. Preliminaries.

First we will give some preliminaries concerning uniform algebras. Let X be a compact Hausdorff space and let C(X) (resp. $C_R(X)$) be the Banach algebra of complex (resp. real) valued continuous functions on X with the supremum norm. A closed subalgebra A of C(X) is said to be a uniform algebra if A contains the constants, and A separates the points of X. A uniform algebra A is said to be a logmodular algebra on X if the set $\log |A^{-1}|$

={log $|f|: f \in A^{-1}$ } is dense in $C_R(X)$. A logmodular algebra A which satisfies $\log |A^{-1}| = C_R(X)$ is said to be a strongly logmodular algebra.

A representing measure of $\phi \in M(A)$ for a uniform algebra A is a probability measure μ on X such that $\phi(f) = \int f \, d\mu$ for all $f \in A$. We denote by $S(\mu)$ the compact support of μ i. e., the complement of the largest open set of μ -measure zero. When $\phi \in M(A)$ has a unique representing measure, we denote its measure by ϕ , μ_{ϕ} or λ_{ϕ} as the case may be. For ϕ and ϕ in M(A) let

$$(2.1) d_A(\phi, \psi) = \sup\{|\phi(f)| : f \in A, \|f\| \le 1, \ \psi(f) = 0\},$$

where $||f|| = \sup \{|f(x)| : x \in X\}$. We define ϕ and ψ to be $\phi \sim \psi$ when $d_A(\phi, \psi) < 1$ (or, equivalently, $||\phi - \psi|| < 2$). Then \sim is an equivalence relation in M(A), and $P(m) = \{\phi \in M(A) : m \sim \phi\}$ ($\supseteq \{m\}$) is said to be the (nontrivial) Gleason part of m for A.

Let A be a logmodular algebra on X, and let m be a point of M(A). Let $H^{\infty}=H^{\infty}(m)$ be the weak-* closure of A in $L^{\infty}(m)$. A function f in $H^{\infty}(m)$ is said to be inner if |f|=1 a.e. (m). If $P=P(m) \supseteq \{m\}$, then there is an inner function Z known as the Wermer embedding function which satisfies $ZH^{\infty}=H^{\infty}_m$, where $H^{\infty}_m=\{f\in H^{\infty}:\int f\,dm=0\}$. And, there is an analytic map τ such that τ is a one-to-one continuous map of the open unit disc D in the complex plane onto P, and for every f in H^{∞} $f \circ \tau$ is analytic in D (cf. [5], p. 158).

A compact Hausdorff space S is said to be Stonian (or, extremally disconnected) if disjoint open subsets of S have disjoint closures. A positive measure μ on S is said to be normal if it vanishes on all nowhere dense Borel sets in S (cf. [1], § 7, § 8). Let A be a logmodular algebra on X, let $m \in M(A)$ and let $\widetilde{X} = M(L^{\infty}(m))$. Then \widetilde{X} is Stonian, and there is a probability normal measure \widetilde{m} on \widetilde{X} such that $S(\widetilde{m}) = \widetilde{X}$ and

$$\int_X f \, dm = \int_{\widetilde{X}} \widehat{f} \, d\widetilde{m}, \ f \in L^{\infty}(m).$$

This measure \widetilde{m} is said to be the Radonization of m. If $P(m) \supseteq \{m\}$, then the Gleason pare $\mathscr{F} = \mathscr{F}(\widetilde{m})$ of $\widetilde{m} \in M(\widehat{H}^{\infty})$ for \widehat{H}^{∞} is also nontrivial (cf. [11], Proposition). It is known that $\phi \in M(H^{\infty})$ belongs to \widetilde{X} if and only if $|\phi(f)| = 1$ for every inner function f in $H^{\infty}(m)$. The reader is referred to Gamelin [5] and Leibowitz [15] for basic definitions and properties about uniform algebras.

Secondly we will give some preliminaries about weak-* Dirichlet alge-

bras. Let (X, \mathscr{N}, m) be a fixed nontrivial probability measure space. A weak-* Dirichlet algebra, which was introduced by Srinivasan and Wang [23], is an algebra A of essentially bounded measurable functions on (X, \mathscr{N}, m) such that (i) the constant functions lie in A; (ii) $A+\overline{A}$ is weak-* dense in $L^{\infty}=L^{\infty}(m)$ (the bar denotes conjugation); (iii) for all f and g in A, $\int_X fg \, dm = \int_X f \, dm \int_X g \, dm$. The abstract Hardy spaces $H^p = H^p(m)$, $1 \le p \le \infty$, associated with A are defined as follows. For $1 \le p < \infty$, H^p is the L^p (= $L^p(m)$)-closure of A, while H^{∞} is defined to be the weak-* closure of A in $L^{\infty}(m)$. For $1 \le p \le \infty$, let $H^p_m = \{f \in H^p : \int_X f \, dm = 0\}$. It is known that \hat{H}^{∞} is a strongly logmodular algebra on $\tilde{X} = M(L^{\infty}(m))$.

Let $L(m)=L(m|\mathscr{A})$ be the set of equivalence classes modulo m of the measurable complex valued functions on X. Let B be a weak-* closed subalgebra of $L^{\infty}(m)$ which contains H^{∞} properly. Let

$$\Delta = \{D \in \mathscr{A} : \chi_D \in B\}.$$

Then $\Delta \subset \mathscr{A}$ is a sigma-algebra which contains the sigma-algebra \mathscr{A}_m of the m-null sets and their complements. We define $f \in L(m)$ to be Δ -measurable if and only if some and hence all \mathscr{A} -measurable functions which represent f are Δ -measurable. Let $L(m|\Delta)$, $L^{\infty}(m|\Delta)$, $L^{p}(m|\Delta)$, etc. denote the respective function classes.

Let H_{\min}^{∞} be the intersection of all weak-* closed subalgebras of $L^{\infty}(m)$ which contain H^{∞} properly. Let

$$J^\infty {=} J^\infty(H^\infty)$$

be the weak-* closed linear span of all functions in H^{∞} , each of which vanishes on some set of positive measure. Then J^{∞} is an ideal of H^{∞} which is contained in H^{∞}_m . By [[20], Corollary 5] we have the following equivalence

$$H_m^\infty \supseteq J^\infty \Longleftrightarrow H_{\min}^\infty \supseteq H^\infty.$$

By [17], the following (i), (ii), (iii) and (iv) are equivalent. (i) H^{∞} is a maximal weak-* closed subalgebra of $L^{\infty}(m)$. (ii) $H^{\infty}_{\min} = L^{\infty}(m)$. (iii) $I^{\infty} = \{0\}$. (iv) H^{∞} is an integral domain.

Here we will state some cases of the algebraic direct sum decomposition $H^{\infty} = \mathcal{H}^{\infty} \oplus I^{\infty}$.

Case 2.1. We suppose $H_m^{\infty} \supseteq J^{\infty}$ (cf. § 6 in [14] and [10]). Let $B = H_{\min}^{\infty}$, and let

$$I^{\infty} = \{h \in B : \int hf \, dm = 0 \ \forall f \in B\}$$
$$= \{h \in L^{\infty}(m) : \int hf \, dm = 0 \ \forall f \in B\}.$$

Then we have

$$I^{\infty} = I^{\infty}$$

Let $\mathscr{L}^{\infty}=B\cap \overline{B}(\supseteq C)$, where C is the complex field, and let $\Delta=\{D\in\mathscr{A}:\chi_D\in B\}$. Then we have

$$\mathscr{L}^{\infty} = L^{\infty}(m|\Delta).$$

Let $\mathscr{H}^{\infty} = H^{\infty} \cap \mathscr{L}^{\infty}$. Then we have

$$(2.2) H_{\min}^{\infty} = \mathcal{L}^{\infty} \oplus I^{\infty}, \ \mathcal{L}^{\infty} I^{\infty} = I^{\infty}, \ H_{\min}^{\infty} I^{\infty} = I^{\infty}$$

and

$$(2.3) H^{\infty} = \mathcal{H}^{\infty} \oplus I^{\infty}.$$

where the sum is orthogonal in the Hilbert space sense, and hence it is the algebraic direct sum.

 \mathscr{L}^{∞} is the weak-* closure of $\mathscr{H}^{\infty} + \overline{\mathscr{H}^{\infty}}$, and \mathscr{H}^{∞} is a weak-* Dirichlet algebra in \mathscr{L}^{∞} , and \mathscr{H}^{∞} is a maximal weak-* closed subalgebra of \mathscr{L}^{∞} .

Case 2.2. We suppose $H_m^{\infty} = J^{\infty}$ (cf. § 7 in [14] and [10]).

There exsist weak-* closed subalgebras B of $L^{\infty}(m)$ with $H^{\infty} \subseteq B \subseteq L^{\infty}$. Let B be a fixed one of them.

Let

$$I^{\infty} = I_B^{\infty} = \{h \in B : \int hf \, dm = 0 \ \forall f \in B\}$$
$$= \{h \in L^{\infty}(m) : \int hf \, dm = 0 \ \forall f \in B\}.$$

Then we have

$$I^{\infty} \subseteq J^{\infty}$$
.

Let $\mathscr{L}^{\infty}=B\cap \overline{B}(\supseteq C)$, and let $\Delta=\{D\in\mathscr{A}: \chi_D\in B\}$. Then we have $\mathscr{L}^{\infty}=L^{\infty}(m|\Delta)$.

Let $\mathscr{H}^{\infty} = H^{\infty} \cap \mathscr{L}^{\infty}$. Then we have

$$(2.4) B = \mathcal{L}^{\infty} \oplus I^{\infty}, \ \mathcal{L}^{\infty} I^{\infty} = I^{\infty}, \ BI^{\infty} = I^{\infty}$$

and

$$(2.5)$$
 $H^{\infty} = \mathcal{H}^{\infty} \oplus I^{\infty}$

where the sum is orthogonal in the Hilbert space sense, and hence it is the algebraic direct sum.

 \mathscr{L}^{∞} is the weak-* closure of $\mathscr{H}^{\infty}+\overline{\mathscr{H}^{\infty}}$, and \mathscr{H}^{∞} is a weak-* Dirichlet algebra in \mathscr{L}^{∞} , and \mathscr{H}^{∞} is not a maximal weak-* closed subalgebra of \mathscr{L}^{∞} .

Case 2.3. We suppose $P(m) = \{ \phi \in M(H^{\infty}) : \|\phi - m\| < 2 \} \supseteq \{ m \}$ (cf. [14], § 8).

By Proposition 7 in [14], we have

$$H_m^\infty \supseteq J^\infty$$
.

Let \mathcal{L}^{∞} , I^{∞} and \mathcal{H}^{∞} be as in the case 2.1. Then we have

$$(2.6) H_{\min}^{\infty} = \mathcal{L}^{\infty} \oplus I^{\infty} \text{ and } H^{\infty} = \mathcal{H}^{\infty} \oplus I^{\infty}.$$

On the other hand, since $P(m) \supseteq \{m\}$, we have $H_m^{\infty} = ZH^{\infty}$ for the Wermer embedding function Z. Let \mathscr{H} be the weak-* closure of the polynomials in Z in $L^{\infty}(m)$, and let

$$J = \{ f \in H^{\infty} : \phi(f) = 0 \ \forall \phi \in P(m) \}.$$

Then we have

$$\mathcal{H} = \mathcal{H}^{\infty}$$
 and $I^{\infty} = J$.

Hence the decomposition $H^{\infty} = \mathcal{H} \oplus I^{\infty}$ coincides with the decomposition of Lemma 5 in [16]. The case 2.3 is a special case of the case 2.1 (see Example 1 in § 8).

REMARK. Let B be any weak-* closed subalgebra of $L^{\infty}(m)$ with $H^{\infty} \subseteq B^{\infty} \subset L^{\infty}(m)$. Let $I_{B}^{\infty} = \{h \in B : \int hf \, dm = 0 \quad \forall f \in B\}$, let $\mathscr{L}_{B}^{\infty} = B \cap \overline{B}(\supseteq C)$, let $\Delta_{B} = \{D \in \mathscr{A} : \chi_{D} \in B\}$, and let $\mathscr{H}_{B}^{\infty} = H^{\infty} \cap \mathscr{L}_{B}^{\infty}$. Then, as in the case 2. 2, we have $\mathscr{L}_{B}^{\infty} = L^{\infty}(m|\Delta_{B})$, $B = \mathscr{L}_{B}^{\infty} \oplus I_{B}^{\infty}$, $H^{\infty} = \mathscr{H}_{B}^{\infty} \oplus I_{B}^{\infty}$, $BI_{B}^{\infty} = I_{B}^{\infty}$, etc.. The results in § 3 and § 4 which are not used an asumption such as $P(m) \supseteq \{m\}$ or $H_{m}^{\infty} \supseteq I_{m}^{\infty}$ hold for \mathscr{L}_{B}^{∞} , \mathscr{H}_{B}^{∞} , I_{B}^{∞} , etc..

For $1 \le p < \infty$ and for any subset $M \subset L^{\infty}(m)$, denote by $[M]_p$ the $L^p(m)$ closure of M.

PROPOSITION 2.1. Let \mathscr{H}^{∞} , \mathscr{L}^{∞} and I^{∞} be defined according to the above cases 2.1, 2.2 and 2.3, and let N^{∞} be the weak-* closure of $I^{\infty} + \overline{I^{\infty}}$. Then we have

$$L^{\infty}(m) = \mathcal{L}^{\infty} \oplus N^{\infty}$$

where \oplus denotes the algebraic direct sum. Moreover, for $1 \leq p < \infty$, we have

$$H^p(m) = [\mathscr{H}^{\infty}]_p \oplus [I^{\infty}]_p$$
 and $L^p(m) = [\mathscr{L}^{\infty}]_p \oplus [N^{\infty}]_p$.

PROOF. Let f=g+h, where $g\in \mathscr{L}^{\infty}$ and $h\in N^{\infty}$. If $1\leq p<\infty$, then we have

$$(\int_{X} |g|^{p} dm)^{1/p} = \sup\{ |\int_{X} sg \, dm| : s \in [\mathscr{L}^{\infty}]_{q}, \|s\|_{q} < 1 \}$$

$$= \sup\{ |\int_{X} s(g+h) \, dm| : s \in [\mathscr{L}^{\infty}]_{q}, \|s\|_{q} < 1 \}$$

$$\leq (\int_{X} |g+h|^{p} \, dm)^{1/p},$$

where, when $1 , then <math>\frac{1}{p} + \frac{1}{q} = 1$ and $\|s\|_q = (\int |s|^q dm)^{1/q}$, and when p = 1, then $q = \infty$ and $\|s\|_{\infty}$ stands for the essential supremum norm of s. Thus, by making $p \to \infty$, we obtain $\|g\|_{\infty} \le \|f\|_{\infty}$, and hence $\|g\|_{\infty} + \|h\|_{\infty} \le 3\|f\|_{\infty}$. Therefore $\mathscr{L}^{\infty} + N^{\infty}$ is weak-* closed in $L^{\infty}(m)$ (cf. [15], p. 203). And, since $H^{\infty}(m)$ is a weak-* Dirichlet algebras in $L^{\infty}(m)$, we obtain

$$L^{\infty}(m) = \mathcal{L}^{\infty} \oplus N^{\infty}.$$

If $1 \le p < \infty$, as in [16], Lemma 5, we obtain

$$L^{p}(m) = [\mathscr{L}^{\infty}]_{p} \oplus [N^{\infty}]_{p}.$$

By the same arguments as for $L^p(m)$, we obtain

$$H^{p}(m) = [\mathcal{H}^{\infty}]_{p} \oplus [I^{\infty}]_{p}.$$
 Q. E. D.

§ 3. Some properties of $M(H^{\infty})$, Part 1.

In this section, let A be a weak-* Dirichlet algebra on a nontrivial probability measure space (X, \mathscr{A}, m) , and let H^{∞} , B, \mathscr{H}^{∞} , J^{∞} , I^{∞} , and $\mathscr{L}^{\infty} = L^{\infty}(m|\Delta)$ be those objects as defined in the cases 2.1, 2.2 and 2.3 in § 2. Then $\mathscr{H}^{\infty} = H^{\infty} \cap L^{\infty}(m|\Delta)$ is a weak-* Dirichlet algebra in \mathscr{L}^{∞} on the probability measure space (X, Δ, m) , and we can apply the results in [23] to \mathscr{H}^{∞} . Hence we have

(3.1)
$$\log|(\mathscr{H}^{\infty})^{-1}| = \mathscr{L}_{R}^{\infty}.$$

Let $\Omega = M(\mathscr{L}^{\infty})$, then Ω is a Stonian space and we have

(3.2)
$$\log |(\widehat{\mathscr{X}}^{\infty})^{-1}| = C_R(\Omega) \text{ on } \Omega.$$

There is a probability normal measure μ_m on Ω such that $\int_X f \, dm = \int_{\Omega} \hat{f} \, d\mu_m$ $(f \in \mathcal{L}^{\infty})$, and $S(\mu_m) = \Omega$.

By ([4], Theorem 4), we have the following.

LEMMA. 3.1. The Shilov boundary $\Gamma(\mathcal{H}^{\infty})$ of \mathcal{H}^{∞} can be identified with $M(\mathcal{L}^{\infty})$, and $\phi \in M(\mathcal{H}^{\infty})$ belongs to $\Gamma(\mathcal{H}^{\infty})$ if and only if $|\phi(f)|=1$ for every inner function f in \mathcal{H}^{∞} .

Let $f=g+h\in H^{\infty}(m)$, where $g\in \mathscr{H}^{\infty}$ and $h\in I^{\infty}$. Then, by the proof of Proposition 2.1, we have $\|g\|\leq \|f\|$. Therefore, by the map

$$S: g+I^{\infty} \mapsto g \ (g \in \mathscr{H}^{\infty}),$$

the quotient Banach algebra H^{∞}/I^{∞} is isometrically isomorphic to \mathscr{H}^{∞} . Hence, under the adjoint map S^* of S, the space $M(\mathscr{H}^{\infty})$ is homeomorphic to $M(H^{\infty}/I^{\infty})$. And, under the adjoint map σ^* of the natural map $\sigma: H^{\infty} \mapsto H^{\infty}/I^{\infty}$, $M(H^{\infty}/I^{\infty})$ is homeomorphic to hull $I^{\infty} = \{\phi \in M(H^{\infty}) : \phi(f) = 0 \ \forall f \in I^{\infty}\}$. Let

$$(3.3) \qquad \Sigma = \sigma^* \circ S^*.$$

Then Σ is a homeomorphism of $M(\mathcal{H}^{\infty})$ onto hull I^{∞} , and for every $\phi \in M(\mathcal{H}^{\infty})$ we have $\Sigma(\phi)(g) = \phi(g)$ $(\forall g \in \mathcal{H}^{\infty})$. Let

$$(3.4) Y = \sum (\Gamma(\mathcal{H}^{\infty})) = \sum (M(\mathcal{L}^{\infty})).$$

Then $Y = \Gamma(H^{\infty}|\text{ hull }I^{\infty}) = \Gamma(\mathscr{H}^{\infty}|\text{ hull }I^{\infty})$, and Y is a Stonian space, and $\log |(\mathscr{H}^{\infty})^{-1}| = C_{\mathbb{R}}(Y)$ on Y. The representing measure μ_m on Y of $m \in \text{hull }I^{\infty}$ for \mathscr{H}^{∞} is a normal measure, and $S(\mu_m) = Y$.

We have the following equivalence

$$\mathrm{H}_m^{\infty} \supseteq J^{\infty} \iff \mathrm{hull} J^{\infty} \supseteq \{m\}.$$

Indeed, if $H_m^{\infty} \supseteq J^{\infty}$, then by the map Σ we have $\Sigma(M(\mathscr{H}^{\infty})) = \text{hull } J^{\infty}$. On the other hand, \mathscr{H}^{∞} is a nontrivial weak-* Dirichlet algebra in \mathscr{L}^{∞} . Hence hull $J^{\infty} \supseteq \{m\}$.

By Lemma 3.1, we have the following.

PROPOSITION 3.2. A point ϕ in hull I^{∞} belongs to $Y = \Gamma(H^{\infty}|\text{hull }I^{\infty})$ if and only if $|\phi(f)| = 1$ for every inner function f in \mathcal{H}^{∞} .

Since $\mathscr{L}^{\infty} \subset L^{\infty}(m)$ and since \mathscr{L}^{∞} is a self-adjoint Banach algebra, every ϕ in $M(\mathscr{L}^{\infty})$ can be extended multiplicatively to $L^{\infty}(m)$ (cf. [6], p. 80). Hence the map $\tau: \tilde{x} \mapsto \tilde{x} | \mathscr{L}^{\infty} \ (\tilde{x} \in \widetilde{X})$ is a continuous map of \tilde{X} onto $M(\mathscr{L}^{\infty})$, where $\tilde{X} = M(L^{\infty}(m))$ and $\tilde{x} | \mathscr{L}^{\infty}$ is the restriction of \tilde{x} to \mathscr{L}^{∞} . Let

$$(3.5) \qquad \tilde{\pi}(\tilde{x}) = \sum (\tilde{x} | \mathscr{L}^{\infty}), \ \tilde{x} \in \tilde{X}.$$

Then $\tilde{\pi}$ is a continuous map of \tilde{X} onto Y. For every $\tilde{\phi} \in Y$ let

$$(3.6) \qquad \mathscr{K}(\tilde{\phi}) = \tilde{\pi}^{-1}(\tilde{\phi}).$$

Then $\widetilde{X} = \bigcup \{ \mathscr{K}(\widetilde{\phi}) : \widetilde{\phi} \in Y \}$, and $\mathscr{K}(\widetilde{\phi}) \cap \mathscr{K}(\widetilde{\theta}) = \emptyset$ for $\widetilde{\phi} \neq \widetilde{\theta}$. For every $f \in \mathscr{L}^{\infty}$ we have

$$f = \tilde{\phi}(f)$$
 on $\mathcal{K}(\tilde{\phi})$.

If $\phi \in M(I^{\infty})$, then there is a function $h \in I^{\infty}$ such that $\phi(h) = 1$. We define $\Phi \in M(H^{\infty})$ by $\Phi(f) = \phi(fh)$, $f \in H^{\infty}$. Then, by a well known fact, the map

$$(3.7) \quad \Pi: \phi \mapsto \Phi$$

is a homeomorphism of $M(I^{\infty})$ onto $M(H^{\infty})\setminus \text{hull } I^{\infty}$.

Let $B = \mathscr{L}^{\infty} \oplus I^{\infty}$. For f = g + h, where $g \in \mathscr{L}^{\infty}$ and $h \in I^{\infty}$, we have $\|g\| \leq \|f\|$ and hence $\|g\| + \|h\| \leq 3\|f\|$. Hence, by ([13], p. 203), B is a Banach algebra. For $\phi \in M(I^{\infty})$ with $\phi(h) = 1$ for a function $h \in I^{\infty}$ we define $\Phi' \in M(B)$ by $\Phi'(f) = \phi(fh)$, $f \in B$. The map

$$(3.8) \quad \Pi': \phi \mapsto \Phi'$$

is a homeomorphism of $M(I^{\infty})$ onto $M(B)\setminus I^{\infty}$, where of course hull $I^{\infty} = \{\phi \in M(B) : \phi(f) = 0 \ \forall f \in I^{\infty}\}.$

For $\phi \in M(I^{\infty})$, let $\Phi = \Pi(\phi)$ and let $\Phi' = \Pi'(\phi)$. Then it follows from $\log |(\mathscr{H}^{\infty})^{-1}| = \mathscr{L}_{R}^{\infty}$, $\Phi' | \mathscr{L}^{\infty} \in M(\mathscr{L}^{\infty})$ and $\Phi = \Phi'$ on \mathscr{H}^{∞} that $\Phi | \mathscr{H}^{\infty}$ can be identified with a complex homomorphism of \mathscr{L}^{∞} . For $\Phi \in M(H^{\infty}) \setminus \| I^{\infty}$, let

(3.9)
$$\tilde{\pi}_1(\Phi) = \sum (\Phi | \mathcal{H}^{\infty}).$$

Then the map $\tilde{\pi}_1$ is a continuous map of $M(H^{\infty}) \setminus I^{\infty}$ to Y. In particular, for $\tilde{x} \in \widetilde{X} \setminus I^{\infty}$, we have $\tilde{\pi}(\tilde{x}) = \tilde{\pi}_1(\tilde{x})$.

Let $E(I^{\infty})$ be the support set of I^{∞} i.e., the complement of a set of maximal measure on which all $f \in I^{\infty}$ are null.

LEMMA 3.3. There is a function h in I^{∞} such that $|h| = \chi_{E(I^{\infty})}$.

PROOF. By [21, Corollary 1] there is a function w in $L^{\infty}(m)$ such that |w|=1 a. e. (m) and $\chi_{E(I^{\infty})}w \in I^{\infty}$. Q. E. D.

THEOREM 3. 4. Let $E = E(I^{\infty})$, $\widetilde{X} = M(L^{\infty}(m))$, $Y = \Gamma(H^{\infty}|\text{ hull }I^{\infty})$ and $F = \widetilde{X} \cap Y$. Then we have the following.

- (i) $\chi_E \in \mathcal{L}^{\infty}$.
- (ii) $F = \widetilde{X} \cap \text{hull } I^{\infty}$.
- (iii) $F = \{ \phi \in Y : \widehat{\chi}_E(\phi) = 0 \}.$
- (iv) $F = {\tilde{x} \in \tilde{X} : \hat{\chi}_E(\tilde{x}) = 0}$.

PROOF. (i) We have $\int_X \chi_{E^c} f \, dm = 0$ for all $f \in I^{\infty}$. By [10, p. 52], we have

$$\{h \in L^{\infty}(m): \int_X hf \, dm = 0, \, \forall f \in I^{\infty}\} = B.$$

Hence $\chi_{E^c} \in B$, hence $\chi_{E^c} \in \mathscr{L}^{\infty} = B \cap \overline{B}$, and hence $\chi_E \in \mathscr{L}^{\infty}$.

- (ii) If $\phi \in \widetilde{X} \cap \text{hull } I^{\infty}$, then $|\phi(f)|=1$ for every inner function f in \mathscr{H}^{∞} . Hence, by Proposition 3. 2, $\phi \in Y$.
- (iii) By Lemma 3.3, there is a function $h \in I^{\infty}$ such that $|h| = \chi_{E}$. Then $\widehat{\chi}_{E} = |\widehat{h}| = 0$ on F. Hence $\{\phi \in Y : \widehat{\chi}_{E}(\phi) = 0\} \supset F$.

If $\phi_0 \in Y \setminus F$, then there is an inner function f in $H^{\infty}(m)$ such that $|\phi_0(f)| < 1$. Let f = g + h, where $g \in \mathscr{H}^{\infty}$ and $h \in I^{\infty}$. Then $|\phi_0(f)| = |\phi_0(g)| < c < 1$ for some positive constant c. Since Y is a Stonian space, there is a clopen (i. e., closed and open) neighborhood $V(\phi_0)$ in Y of ϕ_0 such that $\{\phi \in Y : |\phi(g)| < c\} \supset V(\phi_0)$. Then there is a function $\chi_G \in \mathscr{L}^{\infty}$ such that $V(\phi_0) = \{\phi \in Y : \widehat{\chi}_c(\phi) = 1\}$. If $\widetilde{\chi} \in \pi^{-1}(V(\phi_0))$ and $\phi = \widetilde{\pi}(\widetilde{\chi})$, then $|\widetilde{\chi}(h)| \ge |\widetilde{\chi}(f)| - |\widetilde{\chi}(g)| = 1 - |\phi(g)| > 1 - c > 0$. Hence $|\widehat{h}| > 1 - c$ on $\pi^{-1}(V(\phi_0)) = \{\widetilde{\chi} \in \widetilde{\chi} : \widehat{\chi}_c(\widetilde{\chi}) = 1\}$, and hence $\widehat{\chi}_{cc} + \widehat{\chi}_c |\widehat{h}| > 1 - c$ on $\widetilde{\chi}$. Hence $\chi_{cc} + \chi_c |h| > 1 - c$ a. e., and hence $G \subset E$. Hence $V(\phi_0) \subset \{\phi \in Y : \widehat{\chi}_E(\phi) = 1\}$. Therefore we have $F \supset \{\phi \in Y : \widehat{\chi}_E(\phi) = 0\}$.

(iv) By the same argument as for (iii) we are able to prove (iv). Q. E. D.

COROLLARY 3.5. Let $\widetilde{X} = M(L^{\infty}(m))$, $Y = \Gamma(H^{\infty}|\text{ hull }I^{\infty})$ and $F = \widetilde{X} \cap Y$. Then we have the following.

- (i) $\tilde{\pi}(\tilde{X}\backslash F) = Y\backslash F$.
- (ii) $\tilde{\pi}_1(M(H^{\infty})\backslash \text{hull } I^{\infty})=Y\backslash F.$

PROOF. (i) Let $\tilde{x} \in \tilde{X} \backslash F$ and let $E = E(I^{\infty})$. Then, by Theorem 3. 4, (i), (iv), $1 = \hat{\chi}_{E}(\tilde{x}) = \hat{\chi}_{E}(\tilde{\pi}(\tilde{x}))$. Therefore we have $\tilde{\pi}(\tilde{X} \backslash F) \subset Y \backslash F$.

Next, by $\tilde{\pi}(\tilde{X}) = Y$ and $\tilde{\pi}(F) = F$, for every $\tilde{\phi} \in Y \backslash F$ there is a point $\tilde{x} \in \tilde{X} \backslash F$ such that $\tilde{\pi}(\tilde{x}) = \tilde{\phi}$. Therefore we have $\tilde{\pi}(\tilde{X} \backslash F) \supset Y \backslash F$.

(ii) Let $\theta \in M(H^{\infty}) \setminus I^{\infty}$. If $\tilde{\pi}_1(\theta) = \tilde{x} \in F$, then $\tilde{x}(f) = \theta(f)$ ($\forall f \in \mathscr{H}^{\infty}$). Hence $|\theta(f)| = 1$ for all inner functions f in \mathscr{H}^{∞} , and hence $\theta \in Y$. By $\tilde{x} \in Y \cap \tilde{X}$, $\tilde{x} \in Y$. Hence $\theta = \tilde{x}$. By Theorem 3.4, (ii), this is

absurd. Hence $\tilde{\pi}_1(\theta) \subseteq Y \setminus F$. Therefore we have $\tilde{\pi}_1(M(H^{\infty}) \setminus I^{\infty}) \subseteq Y \setminus F$.

Next, if $\phi \in Y \backslash F$, then by (i) there is a point $\tilde{x} \in \tilde{X} \backslash F$ such that $\tilde{\pi}(\tilde{x}) = \phi$. Therefore, by Theorem 3. 4, (ii), we have $\tilde{\pi}_1(M(H^{\infty}) \backslash \text{hull } I^{\infty}) \supset Y \backslash F$.

COROLLARY 3.6. Let \widetilde{X} and Y be as in Corollary 3.5. Suppose that $H_m^{\infty} \supseteq J^{\infty}$. Then $\widetilde{X} \supseteq Y$ if and only if H^{∞} is a maximal weak-* closed subalgebra of L^{∞} .

PROOF. Assume $\widetilde{X} \supset Y$. Then $\widetilde{\pi}(\widetilde{X} \setminus Y) = \widetilde{\pi}(\widetilde{X} \setminus \widetilde{X} \cap Y) = Y \setminus \widetilde{X} \cap Y = \emptyset$. Hence $\widetilde{X} = Y$, and hence $H^{\infty} = \mathscr{H}^{\infty}$. Hence $L^{\infty} = \mathscr{L}^{\infty}$. Therefore, $H^{\infty} = \mathscr{H}^{\infty}$ is a maximal weak-* closed subalgebra of L^{∞} (see Case 2.1 in § 2).

Next, assume that H^{∞} is a maximal weak-* closed subalgebra of L^{∞} . Then $H^{\infty}_{\min} = L^{\infty}(m)$, and hence $I^{\infty} = \{0\}$, and hence $H^{\infty} = \mathscr{H}^{\infty}$. By $\widetilde{X} = \Gamma(H^{\infty})$ and $Y = \Gamma(H^{\infty}|\text{hull }I^{\infty})$, we have $\widetilde{X} = Y$. Q. E. D.

COROLLARY 3.7 Let \widetilde{X} and Y be as in Corollary 3.5. Then $\widetilde{X} \cap Y = \emptyset$ if and only if there is an inner function h in I^{∞} .

PROOF. By Theorem 3.4, (iv), $\widetilde{X} \cap Y = \emptyset$ implies that $\widetilde{X} = \{\widetilde{x} \in \widetilde{X} : \widehat{\chi}_{E}(\widetilde{x}) = 1\}$, where $E = E(I^{\infty})$. Hence $\chi_{E} = 1$ a.e.. Hence, by Lemma 3.3, there is an inner function h in I^{∞} .

Next, if there is an inner function h in I^{∞} , then $|\hat{h}|=0$ on Y and $|\hat{h}|=1$ on \widetilde{X} . Thus we have $\widetilde{X} \cap Y = \emptyset$. Q. E. D.

THEOREM 3.8. Let $Y = \Gamma(H^{\infty}|\text{hull }I^{\infty})$. Then we have the following.

- (i) The space hull I^{∞} is connected.
- (ii) hull $I^{\infty} \setminus Y$ is an open set in $M(H^{\infty})$, and $\overline{\text{hull } I^{\infty} \setminus Y} \supset Y$.
- (iii) $\overline{M(H^{\infty})\backslash \text{hull } I^{\infty}} \cap \text{hull } I^{\infty} \subset Y.$
- (iv) If $I^{\infty} \supseteq \{0\}$, then the space $M(H^{\infty}) \setminus I^{\infty}$ is disconnected, and hence $M(I^{\infty})$ is disconnected.

PROOF. (i) Since $M(\mathcal{H}^{\infty})$ is connected (cf. [15], p. 167, Theorem 10), hull $I^{\infty} = \sum (M(\mathcal{H}^{\infty}))$ is connected.

(ii) Let $\phi_0 \in \text{hull } I^{\infty} \setminus Y$. By Proposition 3.2, there is an inner function f in \mathscr{H}^{∞} with $|\phi_0(f)| < 1$. On the other hand, when we defined the map $\tilde{\pi}_1$ (see (3.9)), we saw that, for every $\phi \in M(H^{\infty}) \setminus \text{hull } I^{\infty}$, $\phi | \mathscr{H}^{\infty}$ can be multiplicatively extended to \mathscr{L}^{∞} . Hence we have $|\theta(f)| = 1$ for every $\theta \in Y \cup (M(H^{\infty}) \setminus \text{hull } I^{\infty})$. Hence $(\phi_0 \in)\{\phi \in M(H^{\infty}) : |\phi(f)| < 1\}$ is contained in hull $I^{\infty} \setminus Y$. Therefore hull $I^{\infty} \setminus Y$ is an open set in $M(H^{\infty})$.

Next, let $\Gamma = \Gamma(\mathcal{H}^{\infty}) = M(\mathcal{L}^{\infty})$ and let $K = \overline{M(\mathcal{H}^{\infty}) \backslash \Gamma}$. Suppose that K does not contain Γ . Then $\Gamma \backslash K = M(\mathcal{H}^{\infty}) \backslash K$ is a non-empty open set in

- $M(\mathscr{H}^{\infty})$. Let $x_0 \in M(\mathscr{H}^{\infty}) \setminus K$. Since $M(\mathscr{H}^{\infty})$ is a normal space, there is an open neighborhood $U(x_0)$ of x_0 such that $U(x_0) \subset \overline{U(x_0)} \subset M(\mathscr{H}^{\infty}) \setminus K$, where $\overline{U(x_0)}$ is the closure of $U(x_0)$ in $M(\mathscr{H}^{\infty})$. Since $\overline{U(x_0)} = \overline{U(x_0)} \cap (\Gamma \setminus K)$, $\overline{U(x_0)}$ is the closure of an open set $U(x_0)$ in the subspace $\Gamma \setminus K$. On the other hand, since Γ is a Stonian space, the subspace $\Gamma \setminus K$ also is extremally disconnected. Hence $\overline{U(x_0)}$ is open in the subspace $\Gamma \setminus K$. Since $\Gamma \setminus K = M(\mathscr{H}^{\infty}) \setminus K$ is an open set in $M(\mathscr{H}^{\infty})$, $\overline{U(x_0)}$ is an open set in $M(\mathscr{H}^{\infty})$. Hence $\overline{U(x_0)}$ is a clopen set in $M(\mathscr{H}^{\infty})$. This is a contradiction. Hence $\overline{M(\mathscr{H}^{\infty})} \setminus \Gamma \supset \Gamma$. Therefore, by the map Σ , we have $\overline{\operatorname{hull} I^{\infty}} \setminus Y \supset Y$.
- (iii) Let $\phi \in \overline{M(H^{\infty}) \setminus \text{hull } I^{\infty}} \cap \text{hull } I^{\infty}$. Then, there is a net $\{\phi_{\alpha}\} \subset M(H^{\infty}) \setminus \text{hull } I^{\infty}$ such that $\phi_{\alpha} \to \phi$. Since $|\phi_{\alpha}(f)| = 1$ for every inner function f in \mathcal{H}^{∞} , we have $|\phi(f)| = 1$. By Proposition 3. 2, ϕ belongs to Y.
- (iv) Let $F = \widetilde{X} \cap Y$, where $\widetilde{X} = M(L^{\infty})$. By Theorem 3.4, (iii) and Corollary 3.5, F is a clopen set with $F \subseteq Y$. Since Y is a Stonian space, there is a clopen set U with $\emptyset \subseteq U \subseteq Y \setminus F$. Then, by Corollary 3.5, $\emptyset \subseteq \widetilde{\pi_1}^{-1}(U) \subseteq \widetilde{\pi_1}^{-1}(Y \setminus F) = M(H^{\infty}) \setminus I^{\infty}$, and hence $\widetilde{\pi_1}^{-1}(U)$ is a nontrivial clopen set in $M(H^{\infty}) \setminus I^{\infty}$. Therefore $M(H^{\infty}) \setminus I^{\infty}$ is disconnected. Further, by the map Π (see (3.7)), we see that $M(I^{\infty})$ is disconnected.

Q. E. D.

Since A is a weak-* Dirichlet algebra, H^{∞} is a strongly logmodular algebra on $\widetilde{X} = M(L^{\infty}(m))$. Hence, every $\widetilde{\phi}$ in $M(H^{\infty})$ has a unique representing measure $\widetilde{\phi}$ on \widetilde{X} .

PROPOSITION 3. 9. Let $\widetilde{X} = M(L^{\infty})$ and let $Y = \Gamma(H^{\infty}|\text{hull }I^{\infty})$. Then we have the following.

- (i) If the Gleason part P(m) of $m \in M(H^{\infty})$ is nontrivial, then $\tilde{\Omega} = \bigcup \{S(\tilde{\phi}) : \tilde{\phi} \in Y\}$ is dense in \tilde{X} .
- (ii) $f \in \hat{L}^{\infty}(m)$ belongs to $\hat{\mathcal{L}}^{\infty}$ if and only if $f(\tilde{x}) = \tilde{\phi}(f)$ on $\mathcal{K}(\tilde{\phi})$ for every $\tilde{\phi} \in Y$.

PROOF. (i) Suppose $\overline{(\widetilde{\Omega})} \subseteq \widetilde{X}$. Let $\widetilde{x}_0 \in \widetilde{X} \setminus \overline{(\widetilde{\Omega})}$, and let $V = V(\widetilde{x}_0)$ ($\subset \widetilde{X} \setminus \overline{(\widetilde{\Omega})}$) be a clopen neighborhood of \widetilde{x}_0 . Then, by Proposition 2. 1, we have $\chi_V = g + h$, where $g \in \mathscr{L}^{\infty}$ and $h \in \widehat{N}_{\infty}$. By [14, Theorem 8], hull $I^{\infty} = \overline{P(m)}$, and hence, for every $\widetilde{\phi} \in Y$, there is a net $\{\phi_{\alpha}\}$ ($\subset P(m)$) such that $\widetilde{\phi}_{\alpha} \to \widetilde{\phi}$. Hence it follows from $\widetilde{\phi}_{\alpha}(h) = 0$ for all α and $h \in C_{\mathbb{R}}(\widetilde{X})$ that $\widetilde{\phi}(h) = 0$ (cf. [8], Lemma 3). Hence, for every $\widetilde{\phi} \in Y$, we have $0 = \int \chi_V d\widetilde{\phi} = \int g d\widetilde{\phi} = \widetilde{\phi}(g)$. Since $g = \widetilde{\phi}(g)$ for all $\widetilde{x} \in \mathscr{K}(\widetilde{\phi})$ (see (3.6)), we have g = 0 on $\widetilde{X} = \bigcup \{\mathscr{K}(\widetilde{\phi}) : \widetilde{\phi} \in Y\}$, and hence $\chi_V = h$. Hence, by $S(\widetilde{m}) = \widetilde{X}$, we have

 $0 = \int_{\widetilde{X}} h \, d\widetilde{m} = \int_{\widetilde{X}} \chi_V \, d\widetilde{m} = \widetilde{m}(V) > 0$, which is a contradiction.

(ii) Let $f \in L^{\infty}(m) = C(\widetilde{X})$ and let f be a constant on $\mathcal{K}(\widetilde{\phi})$ for every $\widetilde{\phi} \in Y$. Then, there is a (unique) function $g(\in C(Y))$ such that $f = g \circ \widetilde{\pi}$ (cf. [1], Lemma 4.3). On the other hand, $g = G \mid Y$ for a (unique) function $G \in \mathcal{L}^{\infty}$. Hence $g \circ \pi = G$ on \widetilde{X} , and hence f = G on \widetilde{X} . Therefore f belongs to \mathcal{L}^{∞} . Q. E. D.

By (3.1) we have $\log |(\mathscr{H}^{\infty})^{-1}| = \mathscr{L}_{R}^{\infty}$. On the other hand, since $\log |(H^{\infty})^{-1}| = L_{R}^{\infty}$ and since, for every $f \in \mathscr{L}^{\infty}$, $f = \phi(f)$ on $\mathscr{K}(\phi)$ ($\phi \in Y$), we have $\log |(C' + I^{\infty})^{-1}| = R + N_{R}^{\infty}$ on $\mathscr{K}(\phi)$, where $N_{R}^{\infty} = N^{\infty} \cap L_{R}^{\infty}$ (see Proposition 2.1) and $C' = C \setminus \{0\}$. On a certain condition, this relation holds on $\widetilde{X} = M(L^{\infty}(m))$.

PROPOSITION 3.10. Suppose that the Gleason part P = P(m) of $m \in M(H^{\infty})$ is nontrivial. Let N^{∞} be the weak-* closure of $I^{\infty} + \overline{I^{\infty}}$ and let $N_{R}^{\infty} = N^{\infty} \cap L_{R}^{\infty}$. Then we have

$$\log |(C'+I^{\infty})^{-1}| = R + N_R^{\infty}$$

where C and R are the complex and the real fields respectively, and $C'=C\setminus\{0\}$.

PROOF. Let u=r+h, where $r\in R$ and $h\in N_R^\infty$. Then, there is a function $f\in (H^\infty(m))^{-1}$ such that $\log |f|=u$. For every $\phi\in P$, $\log |\phi(f)|=\int \log |f|d\phi=r$, and hence we have $|\phi(f)|=e^r$ on \overline{P} . Here, let f=g+h, where $g\in \mathscr{H}^\infty$ and $h\in I^\infty$. Then $g\in (\mathscr{H}^\infty)^{-1}$ and $|\phi(g)|=e^r$ on \overline{P} . Hence $G=g/e^r\in (\mathscr{H}^\infty)^{-1}$ and $|\phi(G)|=1$ on Y. Hence |G|=1 on \widetilde{X} . Since \widetilde{X} is an antisymmetric set, G and hence G are constant on G. Hence $G=g/e^r\in C'$. Let $g=g/e^r\in C'$. Let $g=g/e^r\in C'$. Then $g=g/e^r\in C'$, hence $g=g/e^r\in C'$.

Next, if $u \in \log |(C'+I^{\infty})^{-1}|$, then $u = \log |c+h|$, where $c+h \in (C'+I^{\infty})^{-1}$. Then, for $\phi \in Y$,

$$\int u d\phi = \int \log|c + h| d\phi = \log|\int (c + h) d\phi| = \log|c|.$$

Here, let u=g+h, where $g \in \mathscr{L}_R^{\infty}$ and $h \in N_R^{\infty}$. Then $u(\phi)=g(\phi)=\log|c|$ for every $\phi \in Y$, and hence $g=\log|c|$ on \widetilde{X} . Therefore $u=\log|c|+h \in R$ $+N_R^{\infty}$.

§ 4. Some properties of $M(H^{\infty})$, Part 2.

In this section, let A be a weak-* Dirichlet algebra on a nontrivial probability measure space (X, \mathscr{A}, m) , and let H^{∞} , \mathscr{H}^{∞} , I^{∞} and \mathscr{L}^{∞} =

 $L^{\infty}(m|\Delta)$ be those objects as defined in the cases 2.1, 2.2 and 2.3 in § 2.

PROPOSITION 4.1. Let $Y = \Gamma(H^{\infty}|\text{hull }I^{\infty})$ and let $\phi \in (M(H^{\infty})\backslash \text{hull }I^{\infty})$ $\cup Y$. Then, for every $f \in \mathscr{L}^{\infty}$, f is a constant $(=\phi(f))$ on $S(\phi)$, and hence $S(\phi) \subset \mathscr{K}(\phi_0)$, where $\phi_0 = \tilde{\pi}(S(\phi))$ and $\mathscr{K}(\phi_0) = \tilde{\pi}^{-1}(\phi_0)$.

PROOF. For every inner function f in \mathscr{H}^{∞} , $|\phi(f)|=1$ and hence $\int |f-\phi(f)|^2 d\phi = 0$. Hence $f = \phi(f)$ on $S(\phi)$.

By $\log |(\mathscr{H}^{\infty})^{-1}| = \mathscr{L}_{R}^{\infty}$ and [4, Theorem 2], the set $Q = \{F\overline{G} : F \text{ is a finite linear combination of inner functions in } \mathscr{H}^{\infty}$ and G is an inner function in \mathscr{H}^{∞} } is dense in norm in \mathscr{L}^{∞} . Hence, for $f \in \mathscr{L}^{\infty}$ and any positive ε , there is a function $F\overline{G} \in Q$ such that $||f - F/G|| < \varepsilon/2$. Hence,

$$\int |f - \phi(f)| d\phi \le ||f - F/G|| + \int |\phi(F/G) - \phi(f)| d\phi < \varepsilon.$$

Hence,
$$f = \phi(f)$$
 on $S(\phi)$. Q. E. D.

THEOREM 4.2. Let $Y = \Gamma(H^{\infty}|\text{hull }I^{\infty})$. Then the set hull $I^{\infty} \setminus Y$ is a union of Gleason parts for $H^{\infty}(m)$.

PROOF. By Proposition 4. 1, if ϕ belongs to $(M(H^{\infty}) \setminus \text{hull } I^{\infty}) \cup Y$, then $|\phi(f)|=1$ for every inner function f in \mathscr{H}^{∞} . On the other hand, by Proposition 3. 2, for $\phi \in \text{hull } I^{\infty} \setminus Y$, there is an inner function f_0 in \mathscr{H}^{∞} such that $|\psi(f_0)|<1$. Let $F=(f_0-\psi(f_0))/(1-\overline{\psi(f_0)}f_0)$. Then F is an inner function in \mathscr{H}^{∞} and $\psi(F)=0$. Hence $\sup\{|\phi(f)|: f\in H^{\infty}(m), \|f\|\leq 1, \psi(f)=0\}=1$. Hence $\inf I^{\infty}\setminus Y$ is a union of Gleason parts for $H^{\infty}(m)$. Q. E. D.

It occurs that a certain point of Y belongs to some nontrivial Gleason part and a certain point of Y composes trivial Gleason part, and both two cases occur actually (see Example 2, (iii) in § 8).

By using $||g|| \le ||f||$ for $f = g + h \in H^{\infty}$, where $g \in \mathcal{H}^{\infty}$ and $h \in I^{\infty}$, we obtain the following.

Proposition 4.3. For ϕ and θ in hull I^{∞} we have

$$\sup\{|\phi(f) - \theta(f)| : f \in H^{\infty}(m), \|f\| \le 1\}$$
$$= \sup\{|\phi(f) - \theta(f)| : f \in \mathscr{H}^{\infty}, \|f\| \le 1\}.$$

THEOREM 4.4. Let $Y = \Gamma(H^{\infty}|\text{ hull }I^{\infty})$ and let $\mathcal{K}(\phi) = \tilde{\pi}^{-1}(\phi)$ for $\phi \in Y$, and let $\widetilde{\mathcal{K}(\phi)}$ be the H^{∞} -convex hull of $\mathcal{K}(\phi)$. Then we have the following.

- (i) $\mathcal{K}(\phi)$ is a weak peak set for H^{∞} , and $\widetilde{\mathcal{K}(\phi)} \cap \text{hull } I^{\infty} = \{\phi\}$.
- (ii) $M(H^{\infty}) \setminus M(H^{\infty}) \setminus I^{\infty} = \bigcup \{ \widetilde{\mathscr{K}(\phi)} \setminus \{\phi\} : \phi \in Y \}, \text{ and } \widetilde{\mathscr{K}(\phi)} \cap \widetilde{\mathscr{K}(\phi)} = \emptyset$

for $\phi \neq \psi$.

(iii) The set $(M(H^{\infty})\backslash \operatorname{hull} I^{\infty})\cup Y=\cup \{\widetilde{\mathscr{K}(\phi)}:\phi\subseteq Y\}$ is a union of Gleason parts, and for every ϕ in Y, $\widetilde{\mathscr{K}(\phi)}$ is a union of Gleason parts.

PROOF. (i) Let $\theta \in \mathcal{K}(\phi) \cap \text{hull } I^{\infty}$. By $\theta \in \mathcal{K}(\phi)$, for every inner function f in \mathcal{H}^{∞} , we have $|\theta(f)|=1$. Hence, by Proposition 3. 2, θ belongs to Y. Hence $\theta = \phi$, and hence, $\mathcal{K}(\phi) \cap \text{hull } I^{\infty} = \{\phi\}$.

Let $\phi \in Y$, and let $U(\phi)$ be any clopen neighborhood of ϕ in Y, and let $E = \tilde{\pi}^{-1}(U(\phi))$. Then $E \supset \mathcal{K}(\phi)$. By Proposition 3. 9, $\chi_E \in \mathcal{L}^{\infty}$, and hence, there is a function $F \in (\mathcal{K}^{\infty})^{-1}$ such that $\log |F| = \chi_E$. By Proposition 4. 1, $S(\phi) \subset \mathcal{K}(\phi)$, and hence,

$$\log|\phi(F)| = \int \!\!\log|F| d\phi = 1.$$

Hence $|\phi(F/e)|=1$. Since |F/e|=1 on $\mathcal{K}(\phi)$, we have

$$\int_{\widetilde{x}} |F/e - \phi(F/e)|^2 d\phi = 0,$$

and hence, $F = \phi(F)$ on $S(\phi)$. Hence $F = \phi(F)$ on $\mathcal{K}(\phi)$.

Let $f_E = F/\phi(F)$. Then $f_E = 1$ on $\mathcal{K}(\phi)$, $|f_E| = 1$ on E, and $|f_E| < 1$ on E^c . Hence $||f_E|| = f_E = 1$ on $\mathcal{K}(\phi)$. Hence $K_E = \{x : f_E(x) = 1\}$ is a peak set for H^{∞} , and $\mathcal{K}(\phi) \subset K_E \subset E$. Let $\{U_{\alpha}(\phi)\}$ be a fundamental system of clopen neighborhoods of ϕ in Y. Then, $\bigcap_{\alpha} \tilde{\pi}^{-1}(U_{\alpha}(\phi)) = \tilde{\pi}^{-1}(\phi) = \mathcal{K}(\phi)$, and hence, $\bigcap_{\alpha} K_{E_{\alpha}} = \mathcal{K}(\phi)$, where $E_{\alpha} = \tilde{\pi}^{-1}(U_{\alpha}(\phi))$. Therefore, $\mathcal{K}(\phi)$ is a weak peak set for H^{∞} .

(ii) Since $\mathscr{K}(\phi) \cap \mathscr{K}(\psi) = \emptyset$ for $\phi \neq \psi$, $\mathscr{K}(\phi) \cap \mathscr{K}(\psi) = \emptyset$. Let $\theta \in M(H^{\infty}) \setminus I^{\infty}$. By Proposition 4.1, $S(\theta) \subset \mathscr{K}(\phi)$ for some $\phi \in Y$. Hence $\theta \in \mathscr{K}(\phi) \setminus \{\phi\}$, and hence, $M(H^{\infty}) \setminus I^{\infty} \subset \bigcup \{\mathscr{K}(\phi) \setminus \{\phi\} : \phi \in Y\}$.

Next, let $\theta \in \mathcal{K}(\phi) \setminus \{\phi\} : \phi \in Y\}$. Then there is a point ϕ in Y such that $\theta \in \mathcal{K}(\phi) \setminus \{\phi\}$. For every inner function g in \mathcal{K}^{∞} , $g = \phi(g)$ on $\mathcal{K}(\phi)$, and hence, $g = \phi(g)$ on $S(\theta)$. Then, by $|\theta(g)| = |\phi(g)| = 1$, we have $\theta \in \text{hull } I^{\infty} \setminus Y$. Hence $\theta \in (M(H^{\infty}) \setminus \text{hull } I^{\infty}) \cup Y$, and, by $\theta \notin Y$, we have $\theta \in M(H^{\infty}) \setminus \text{hull } I^{\infty}$.

(iii) By Theorem 4.2, (iii) is obvious. Q. E. D.

THEOREM 4.5. Let B_1 and B_2 be weak-* closed subalgebras of $L^{\infty}(m)$ such that $H^{\infty} \subseteq B_1 \subseteq L^{\infty}(m)$. Let $I_{B_i}^{\infty} = \{h \in L^{\infty}(m) : \int_X hf \, dm = 0 \ \forall f \in B_i\}$

(i=1,2), and let $\mathscr{H}_{B_i}^{\infty} = (B_i \cap \overline{B}_i) \cap H^{\infty}$ (i=1,2). Let $Y_i = \Gamma(H^{\infty}|\text{hull }I_{B_i}^{\infty})$ (i=1,2) and let $Y = \{\phi \in \text{hull }I_{B_2}^{\infty} : |\phi(h)| = 1 \text{ for every inner function } h \text{ in } \mathscr{H}_{B_1}^{\infty}\}$. Then we have the following.

- (i) $I_{B_1}^{\infty} \supseteq I_{B_2}^{\infty}$ and $\mathscr{H}_{B_1}^{\infty} \subseteq \mathscr{H}_{B_2}^{\infty}$.
- (ii) hull $I_{B_1}^{\infty} \subseteq \text{hull } I_{B_2}^{\infty}$.
- (iii) hull $I_{B_1}^{\infty} = (\text{hull } I_{B_2}^{\infty} \setminus Y) \cup Y_1 \text{ and } Y \supset Y_i \text{ } (i=1,2).$
- (iv) $Y \setminus Y_2 = \text{hull } I_{B_2}^{\infty} \setminus [(\text{hull } I_{B_1}^{\infty} \setminus Y_1) \cup Y_2]$ is a union of Gleason parts.

PROOF. (i) It follows from $H^{\infty}B_i \subset B_i$ (i=1,2) and [[10], Lemma 1.1] that $B_i = [B_i]_1 \cap L^{\infty}(m)$ (i=1,2). Hence $[B_1]_1 \subseteq [B_2]_1$. Therefore $I_{B_1}^{\infty} \supseteq I_{B_2}^{\infty}$.

By $B_1 \subseteq B_2$ we have $\mathscr{H}_{B_1}^{\infty} \subseteq \mathscr{H}_{B_2}^{\infty}$. If $\mathscr{H}_{B_1}^{\infty} = \mathscr{H}_{B_2}^{\infty}$, then $H^{\infty} = \mathscr{H}_{B_1}^{\infty} \oplus I_{B_1}^{\infty} \supseteq H^{\infty} = \mathscr{H}_{B_2}^{\infty} \oplus I_{B_2}^{\infty}$. Therefore $\mathscr{H}_{B_1}^{\infty} \subseteq \mathscr{H}_{B_2}^{\infty}$.

- (ii) By $I_{B_1}^{\infty} \supset I_{B_2}^{\infty}$ we have hull $I_{B_1}^{\infty} \subset \text{hull } I_{B_2}^{\infty}$. If hull $I_{B_1}^{\infty} = \text{hull } I_{B_2}^{\infty}$, then $H^{\infty}|\text{hull } I_{B_1}^{\infty} = H^{\infty}|\text{hull } I_{B_2}^{\infty}$. Hence $\Gamma = \Gamma(H^{\infty}|\text{hull } I_{B_1}^{\infty}) = \Gamma(H^{\infty}|\text{hull } I_{B_2}^{\infty})$. Hence $\mathcal{H}_{B_1}^{\infty} = \mathcal{H}_{B_2}^{\infty}$ on $\Gamma = \Gamma(\mathcal{H}_{B_1}^{\infty}|\text{hull } I_{B_1}^{\infty}) = \Gamma(\mathcal{H}_{B_2}^{\infty}|\text{hull } I_{B_2}^{\infty})$. Hence, by using $\tilde{\pi}$ (see (3.5)), we have $\mathcal{H}_{B_1}^{\infty} = \mathcal{H}_{B_2}^{\infty}$ on $\tilde{X} = M(L^{\infty}(m))$. Hence $\mathcal{H}_{B_1}^{\infty} = \mathcal{H}_{B_2}^{\infty}$, which is a contradiction. Therefore hull $I_{B_1}^{\infty} \subseteq \text{hull } I_{B_2}^{\infty}$.
 - (iii) This part is derived from Proposition 3. 2.
 - (iv) This part is derived from Theorem 4.2. Q. E. D.

§ 5. Some properties of a strongly logmodular algebra, Part 1.

Let X be a compact Hausdorff space and let M(X) be the conjugate space of C(X) i. e., the space of regular Borel measures on X. Given another compact Hausdorff space Z and a continuous map ρ of X onto Z, for every $f \in C(Z)$ let

(5.1)
$$\rho^0(f)(x) = f(\rho(x)) \text{ for all } x \in X.$$

The map ρ^0 is an isometric isomorphism of C(Z) into C(X). Let ρ^* be the adjoint map of ρ^0 . Then, for every $\mu \in M(X)$, we have

(5.2)
$$\int_{X} f \circ \rho \, d\mu = \int_{Z} f \, d(\rho^*(\mu)) \text{ for all } f \in C(Z),$$

or, equivalently,

(5.3)
$$\rho^*(\mu)(B) = \mu(\rho^{-1}(B))$$
 for every Borel set B of Z.

Let A be a logmodular algebra on a compact space X, and m be a point of M(A), and \tilde{x}_0 be any point of $\tilde{X}=M(L^\infty(dm))$. For every f in C(X), if we define the map $\phi: f \mapsto \hat{f}(\tilde{x}_0)$, then $\phi \in M(C(X))$. Hence there is a unique point x_0 in X such that $\hat{f}(\tilde{x}_0) = \phi(f) = f(x_0)$. Hence we have $\hat{f}(\tilde{x}_0) = f(x_0)$

for all $f \in A$. We let

$$\pi: \tilde{\chi}_0 \mapsto \chi_0, \ \tilde{\chi}_0 \in \tilde{X}.$$

Then π is a continuous map of \widetilde{X} into X.

Next, let $\tilde{\phi}_0$ be any point of $M(H^\infty(m))$ with a unique representing measure $\mu_{\tilde{\phi}_0}(=\tilde{\phi}_0)$ on \tilde{X} . Let $\tilde{\phi}_1(\hat{f})=\int_{\tilde{X}}\hat{f}\,d\mu_{\tilde{\phi}_0}(=\int_{\tilde{X}}\hat{f}\,d\tilde{\phi}_0)$ for all $\hat{f}\in C(\tilde{X})$. Then, this linear functional $\tilde{\phi}_1$ on $C(\tilde{X})$ is a unique Hahn-Banach (norm preserving) extension to $C(\tilde{X})$ of $\tilde{\phi}_0\in M(H^\infty(m))$. For any $f\in C(X)$ we have $\int_{\tilde{X}}\hat{f}\,d\tilde{\phi}_0=\int_{\tilde{X}}f\circ\pi\,d\tilde{\phi}_0=\int_{X}f\,d(\pi^*(\tilde{\phi}_0))$. We let

$$\phi_0: f \mapsto \int_X f d(\pi^*(\tilde{\phi}_0)), f \in C(X).$$

Then we have $\tilde{\phi}_1(\hat{f}) = \phi_0(f)$ for all $f \in C(X)$, and hence $\tilde{\phi}_0(\hat{f}) = \phi_0(f)$ for all $f \in A$. Hence $\pi^*(\tilde{\phi}_0)$ is a unique representing measure of $\phi_0 \in M(A)$. We let

$$\pi: \widetilde{\phi}_0 \mapsto \phi_0, \ \widetilde{\phi}_0 \in M(H^{\infty}(m)).$$

The map π is a continuous map of $M(H^{\infty}(m))$ into M(A). If $\tilde{\phi} \in M(H^{\infty}(m))$ and $\pi(\tilde{\phi}) = \phi$, then we have $\pi(S(\tilde{\phi})) = S(\phi)$. Hence if X = S(m), then we have $\pi(\tilde{X}) = X$.

In the following Proposition 5. 1 and Corollaries 5. 2 and 5. 3, we suppose X=S(m), and let

$$\pi_1 = \pi | \widetilde{X}$$
.

If $f \in C(X)$, then $\hat{f}(\pi_1^{-1}(x)) = f(x)$ for any x in X. This relation is extended as follows.

PROPOSITION 5.1. Let $f \in L^{\infty}(dm)$, $\alpha \in X$, and $\widetilde{X}_{\alpha} = \{\widetilde{x} \in \widetilde{X} : \pi(\widetilde{x}) = \alpha\} = \pi_1^{-1}(\alpha)$. If f is continuous at $x = \alpha$, then $\widehat{f}(\widetilde{x}) = f(\alpha)$ for all $\widetilde{x} \in \widetilde{X}_{\alpha}$.

PROOF. We suppose that $||f|| \le 1$ and $f(\alpha) = 0$. For any $\varepsilon > 0$, there is an open neighborhood $V(\alpha)$ of α such that $|f(x)| < \varepsilon$ for every $x \in V(\alpha)$. By Urysohn's lemma, there is a function $h \in C_R(X)$ such that $h(\alpha) = 1$, h(x) = 0 for every $x \in X \setminus V(\alpha)$, and $0 \le h(x) \le 1$ for every $x \in X$. Then we have $|(1-h^n)f-f|=|h^nf|\le |f|<\varepsilon$ on $V(\alpha)$, and $|(1-h^n)f-f|=|h^nf|=0$ on $X \setminus V(\alpha)$. Hence we have $|(1-h^n)f-f|<\varepsilon$, and hence $|\tilde{x}[(1-h^n)f-f]|=|\tilde{x}(f)|<\varepsilon$ for all $\tilde{x} \in \tilde{X}_\alpha$. Hence we have $f(\tilde{x})=0$ for all $\tilde{x} \in \tilde{X}_\alpha$. Q. E. D.

Let E be a measurable subset of X, and let $\hat{E} = \{\tilde{x} \in \tilde{X} : \hat{\chi}_{E}(\tilde{x}) = 1\}$. Then \hat{E} is a clopen set in \tilde{X} . COROLLARY 5.2. If O is an open subset of X, then we have $\hat{O} \supset \pi_1^{-1}(O)$, $\hat{O} = \overline{\pi_1^{-1}(O)}$ and $\pi(\hat{O}) = \overline{O}$.

PROOF. By Proposition 5.1, we have $\widehat{O} \supset \pi_1^{-1}(O)$. Since \widetilde{m} is a normal measure on \widetilde{X} and since $\pi^*(\widetilde{m}) = m$, we have $\widetilde{m}(\widehat{O}) = \int \widehat{\chi}_O d\widetilde{m} = \int \chi_O dm = m(O) = \widetilde{m}(\pi_1^{-1}(O)) = \widetilde{m}(\overline{\pi_1^{-1}(O)})$ (see (5.3)). Hence we have $\widehat{O} = \overline{\pi_1^{-1}(O)}$. $\widehat{O} \supset \pi_1^{-1}(O)$ implies $\pi(\widehat{O}) \supset O$. Hence $\pi(\widehat{O}) \supset \overline{O}$. And we have $\pi(\widehat{O}) = \pi(\overline{\pi_1^{-1}(O)}) \subset \overline{\pi}(\pi_1^{-1}(O)) = \overline{O}$. Hence $\pi(\widehat{O}) = \overline{O}$. Q. E. D.

COROLLARY 5.3. If O is a clopen subset of X, then $\hat{O} = \pi_1^{-1}(O)$. If K is a compact subset of X, then $\pi(\hat{K}) \subset K$.

PROOF. If O is a clopen subset of X, then $\widehat{O} = \overline{\pi_1^{-1}(O)} = \pi_1^{-1}(O)$. Since $O = X \setminus K$ is an open subset of X, $\widehat{O} \supset \pi_1^{-1}(O)$. Hence, by $\widehat{O} \cap \widehat{K} = \emptyset$, we obtain $\pi(\widehat{K}) \subset K$.

THEOREM 5.4. Let A be a strongly logmodular algebra on a compact Hausdorff space X. Then, for every $\phi \in M(A)$, $S(\phi)$ is a weak peak set for A.

PROOF. Let x_0 be any element of $X \setminus S(\phi)$. By Urysohn's lemma, there is a function $g \in C_R(X)$ such that $g(x_0) = 0$, g(x) = 1 for every x in $S(\phi)$, and $0 \le g(x) \le 1$ for every x in X. By $\log |A^{-1}| = C_R(X)$ there is a function F in A^{-1} such that $\log |F| = g$. Since the measure ϕ is an Arens-Singer measure we have $\log |\phi(F)| = \int \log |F| d\phi = \int g d\phi = 1$, and hence $|\phi(F/e)| = 1$. By |F/e| = 1 on $S(\phi)$, we have $\int |F/e - \phi(F/e)|^2 d\phi = 0$. Hence we have $F(x) = \phi(F)$ for every $x \in S(\phi)$. Let $f = F/\phi(F) \in A$. Then we have $f(x) = \|f\| = 1$ for every $x \in S(\phi)$ and $|f(x_0)| = 1/e < 1$.

Now, let U be any open neighborhood of $S(\phi)$, and let y be any point of $X \setminus U$. Then, by what was proved above, there is a function $f \in A$ such that $f(x) = \|f\| = 1$ for every $x \in S(\phi)$, and |f(x)| < 1 for every x in some open neighborhood V(y) of y. Since $X \setminus U \subset \bigcup \{V(y) : y \in X \setminus U\}$ and since $X \setminus U$ is a compact subset, there is $\{y_i : i = 1, 2, \dots, n\} \subset X \setminus U$ such that $X \setminus U \subset \bigcup_{i=1}^n V(y_i)$. Let $f_i \in A$ $(i=1, 2, \dots, n)$ be functions such that $f_i(x) = \|f_i\| = 1$ for every $x \in S(\phi)$ and $|f_i(x)| < 1$ for every x in $V(y_i)$. Let $f_U = \frac{1}{n} \sum_{i=1}^n f_i \in A$ and let $K_U = \{x : f_U(x) = 1\}$. Then $\|f_U\| = f_U(x) = 1$ for every $x \in S(\phi)$, and $K_U \subset U$. Thus K_U is a peak set for A, and we have $S(\phi) = \bigcap_U K_U$. Therefore, $S(\phi)$ is a weak peak set for A. Q. E. D.

THEOREM 5.5. Let A be a strongly logmodular algebra on a compact Hausdorff space X. Let $m \in M(A)$, and we suppose that X = S(m). Then we have the following.

- (i) $A = H^{\infty}(m) \cap C(X)$.
- (ii) $A^{-1} = (H^{\infty}(m))^{-1} \cap C(X)$.
- (iii) $f \in A^{-1}$ if and only if $f \in (H^{\infty}(m))^{-1}$ and $\log |f| \in C_R(X)$.
- PROOF. (i) Let $f \in H^{\infty}(m) \cap C(X)$. Let B be the Banach algebra generated by f and the identity. Then $\log |A^{-1}| = C_R(X) \supset \log |B^{-1}|$. Hence, for any function $g \in B^{-1}$, there is a function $G \in A^{-1}$ such that $|gG^{-1}| = 1$. Since $gG^{-1} \in (H^{\infty}(m))^{-1}$ and since X = S(m) is an antisymetric set of $H^{\infty}(m)$, we have $G = \alpha g$ a. e. (m), where α is a constant and $|\alpha| = 1$. Since αg and G belong to C(X), we have $G = \alpha g$. Hence $A^{-1} \supset B^{-1}$, and hence $A \supset B$. Thus we obtain $A = H^{\infty}(m) \cap C(X)$.
- (ii) Let $f \in (H^{\infty}(m))^{-1} \cap C(X)$. Then $f \in A$, and there is a function $g \in H^{\infty}(m)$ such that fg=1 a. e. (m). It is easy to see that $f \in C(X)^{-1}$. Hence $1/f \in H^{\infty}(m) \cap C(X) = A$, and hence $f \in A^{-1}$.
- (iii) Let $f \in (H^{\infty}(m))^{-1}$ and let $\log |f| \in C(X)$. Then there is a function $g \in A^{-1}$ such that $\log |g| = \log |f|$. Hence $|fg^{-1}| = 1$ and $fg^{-1} \in (H^{\infty}(m))^{-1}$. Hence $f = \alpha g$ a. e. (m). Since X = S(m) and $\alpha g \in A^{-1}$, we have $f \in A^{-1}$.

Q. E. D.

In the rest of this section, let X, A, and m be as in Theorem 5.5. Let

$$H^{\infty} = H^{\infty}(m) = \mathscr{H}^{\infty} \oplus I^{\infty}$$
 and \mathscr{L}^{∞}

be the objects as defined in the cases 2.1, 2.2 and 2.3 of § 2. Let

$$J=J^{\infty}\cap C(X), \ I=I^{\infty}\cap C(X), \mathscr{H}=\mathscr{H}^{\infty}\cap C(X),$$

 $\mathscr{L}=\mathscr{L}^{\infty}\cap C(X), \ \text{and} \ \mathscr{L}_{R}=\mathscr{L}^{\infty}\cap C_{R}(X).$

Then J and I are closed ideals of A, and $\mathscr{H}(\subseteq A)$, \mathscr{L} and \mathscr{L}_R are Banach algebras. By $\mathscr{L}^{\infty}I^{\infty}=I^{\infty}$ (see (2.2) and (2.4)) we have

$$(5.4)$$
 $\mathscr{L}I=I.$

The following proposition is proved by the same argument as for Theorem 5.5.

PROPOSITION 5.6. Let X, A and m be as in Theorem 5.5. Then we have the following.

- (i) $\mathscr{H}^{-1} = (\mathscr{H}^{\infty})^{-1} \cap C(X)$.
- (ii) $f \in \mathcal{H}^{-1}$ if and only if $f \in (\mathcal{H}^{\infty})^{-1}$ and $\log |f| \in C_R(X)$.
- (iii) $\log |\mathcal{H}^{-1}| = \mathcal{L}_R$.

PROPOSITION 5.7. Let X, A and m be as in Theorem 5.5. Suppose that P(m) is nontrivial. Then J=I is a primary ideal of A and we have

$$I = \{ f \in A : \phi(f) = 0 \ \forall \phi \in P(m) \}.$$

PROOF. Let $I_1 = \{ f \in A : \phi(f) = 0 \quad \forall \phi \in P(m) \}$. Then, by [14, Theorem 8], we have $I_1 \subset I^{\infty}$, and hence $I_1 \subset I^{\infty} \cap C(X) = I$.

On the other hand, by $I \subseteq A$, we have $I \subseteq I_1$, and hence $I = I_1$.

As we stated in § 2, there is an analytic map of D onto P(m), had cence I is a primary ideal of A. Q. E. D.

For x_1 and x_2 in X we define x_1 and x_2 to be $x_1 \sim x_2$ when $f(x_1) = f(x_2)$ for all f in \mathcal{L} . Then \sim is an equivalence relation on X. Let \check{X} be the quotient space X/\sim with the quotient topology, and let $Q:X\mapsto \check{X}$ be the quotient map (cf. [15], p. 37). For every $f\in\mathcal{L}$ we define a continuous function \check{f} on a compact Hausdorff space \check{X} by $f=\check{f}\circ Q$. Then we have

$$C(\check{X}) = \{\check{f} : f \in \mathcal{L}\},\$$

and therefore $Q^0(C(\check{X})) = \mathcal{L}$. Further, since \mathcal{L} is self-adjoint, we have

$$C(M(\mathcal{L})) = \{\hat{f} : f \in \mathcal{L}\}.$$

The map $\Phi: \hat{f} \mapsto \check{f} \ (\forall f \in \mathscr{L})$ is an algebra isomorphism of $C(M(\mathscr{L}))$ onto $C(\check{X})$, and hence the adjoint map $\sigma = \Phi^*$ of Φ is a homeomorphism of \check{X} onto $M(\mathscr{L})$ such that $\Phi(\hat{f})(\check{x}) = \hat{f}(\sigma(\check{x}))$ $(\forall \check{x} \in \check{X})$. Let

$$(5.5) q = \sigma \circ Q.$$

Then q is a continuous map of X onto $M(\mathcal{L})$ and we have $q^0(\hat{f})=f$ $(\forall f \in \mathcal{L})$ and $q^0(\hat{\mathcal{L}})=\mathcal{L}$.

For $\phi \in M(\mathcal{L})$, let

$$K(\phi)=q^{-1}(\phi).$$

Then we have $K(\phi) = \{x \in X : f(x) = \phi(f), \forall f \in \mathcal{L}\}, X = \bigcup \{K(\phi) : \phi \in M(\mathcal{L})\}, \text{ and } K(\phi) \cap K(\theta) = \emptyset \text{ for } \phi \neq \theta.$

For every $\tilde{\phi}$ in $Y = \Gamma(H^{\infty}|\text{hull }I^{\infty})$, let

(5.6)
$$\eta: \tilde{\phi} \mapsto (\Sigma^{-1}(\tilde{\phi}))|\mathscr{L} \text{ (see (3.4))}.$$

Then η is a continuous map of Y onto $M(\mathcal{L})$, because \mathcal{L} is a selfadjoint Banach algebra (cf. [6], p. 80).

THEOREM 5.8. Let A be a strongly logmodular algebra on a compact Hausdorff space X. Let $m \in M(A)$ and suppose X = S(m). Let $K(\phi) = \{x \in X : f(x) = \phi(f), \forall f \in \mathcal{L}\}$ for $\phi \in M(\mathcal{L})$. Then we have the following.

(i) For every $\phi \in M(\mathcal{L})$, we have $\tilde{x} \cap \pi^{-1}(K(\phi)) = \bigcup \{ \mathcal{K}(\tilde{\theta}) : \tilde{\theta} \in \eta^{-1}(\phi) \}.$

(ii) For ϕ , $\theta \in M(\mathcal{L})$ $(\phi \neq \theta)$, we have $\pi[\cup \{\widetilde{\mathcal{K}}(\widetilde{\theta}) : \widetilde{\theta} \in \eta^{-1}(\phi)\}] \subset \widetilde{K(\phi)}$

and

$$\widetilde{K(\phi)} \cap \widetilde{K(\theta)} = \emptyset$$
.

where $\widetilde{\mathscr{K}(\tilde{\theta})}$ and $\widetilde{K(\phi)}$ are H^{∞} -convex hull of $\mathscr{K}(\tilde{\theta})$ and A-convex hull of $K(\phi)$ respectively.

(iii) If $\pi(M(H^{\infty}(m)))=M(A)$, then we have $M(A)=\text{hull }I\cup(\cup\{\widetilde{K(\phi)}:\phi\in M(\mathscr{L})\}).$

PROOF. (i) Let $\tilde{\theta} \in \eta^{-1}(\phi)$. Then, for every f in \mathcal{L} , we have $\tilde{\theta}(f) = \phi(f)$. From $f = \tilde{\theta}(f)$ on $\mathcal{K}(\tilde{\theta})$ we have $f = \phi(f)$ on $\pi(\mathcal{K}(\tilde{\theta}))$. Hence we have $\pi(\mathcal{K}(\tilde{\theta})) \subset K(\phi)$, and hence $\pi[\cup \{\mathcal{K}(\tilde{\theta}) : \tilde{\theta} \in \eta^{-1}(\phi)\}] \subset K(\phi)$. Hence it follows from $\tilde{X} = \cup \{\mathcal{K}(\tilde{\theta}) : \tilde{\theta} \in Y\} = \bigcup_{\phi \in M(\mathcal{L})} [\cup \{\mathcal{K}(\tilde{\theta}) : \tilde{\theta} \in \eta^{-1}(\phi)\}]$, $X = \cup \{K(\phi) : \phi \in M(\mathcal{L})\}$ and $\pi(\tilde{X}) = X$ that

$$\widetilde{X} \cap \pi^{-1}(K(\phi)) = \bigcup \{ \mathscr{K}(\widetilde{\theta}) : \widetilde{\theta} \in \eta^{-1}(\phi) \}.$$

(ii) Let $\widetilde{\theta} \in \eta^{-1}(\phi)$. If $\widetilde{\psi} \in \mathscr{K}(\widetilde{\theta})$, then $S(\widetilde{\psi}) \subset \mathscr{K}(\widetilde{\theta})$. Let $\psi = \pi(\widetilde{\psi})$. Then $S(\psi) = \pi(S(\widetilde{\psi})) \subset \pi(\mathscr{K}(\widetilde{\theta})) \subset K(\phi)$. Hence $\psi \in K(\widetilde{\phi})$. Hence we have

$$\pi\{\widetilde{\mathscr{K}(\theta)}: \widetilde{\theta} \in \eta^{-1}(\phi)\}\subset \widetilde{K(\phi)}.$$

If $\theta_1 \in \widetilde{K(\phi)}$ and $\theta_2 \in \widetilde{K(\theta)}$, then we have $\theta_1(f) = \phi(f)$ and $\theta_2(f) = \theta(f)$ for every $f \in \mathscr{L}$. And, for some $g \in \mathscr{L}$, $\phi(g) \neq \theta(g)$. Hence we have $\widetilde{K(\phi)} \cap \widetilde{K(\theta)} = \emptyset$.

(iii) By Theorem 4.4, (iii), $(M(H^{\infty}) \setminus I^{\infty}) \cup Y = \bigcup \{\widetilde{\mathcal{K}}(\widetilde{\theta}) : \widetilde{\theta} \in Y\}$. Hence, by (ii), we have $\pi[(M(H^{\infty}) \setminus I^{\infty}) \cup Y] \subset \bigcup \{\widetilde{K(\phi)} : \phi \in M(\mathscr{L})\}$. On the other hand, if $\widetilde{\phi} \in \operatorname{hull} I^{\infty}$, then $\widetilde{\phi}(h) = 0$ for all $h \in I^{\infty}$, and hence $\pi(\widetilde{\phi})(h) = 0$ for all $h \in I = I^{\infty} \cap C(X)$. Hence we have $\pi[\operatorname{hull} I^{\infty}] \subset \operatorname{hull} I$. Thus we obtain

$$M(A)$$
=hull $I \cup (\cup \{K(\phi) : \phi \in M(\mathcal{L})\})$. Q. E. D.

THEOREM 5.9. Let A, X and m be as in Theorem 5.8. Suppose that $\mathcal{L} \supseteq C$ and $M(\mathcal{L})$ is totally disconnected. Then we have the following.

- (i) $I = I^{\infty} \cap C(X)$ is contained in the uniformly closed linear span \mathcal{I} of all functions in A, each of which vanishes on some set of positive measure. In particular, in the cases 2.1 and 2.3 in § 2, we have $I = \mathcal{I} = \mathcal{I}$.
 - (ii) For every ϕ in $M(\mathcal{L})$, the set $K(\phi)$ is a weak peak set for A.

PROOF. (i) Let q be the continuous map defined in (5.5), let q^0 be the map of $C(M(\mathcal{L}))$ to C(X) defined in (5.1), and let q^* be the adjoint map of q^0 (see (5.2)). Let $\mu_m = q^*(m)$ and let $f \in \mathcal{L}$. Then, for every $\varepsilon > 0$ there are clopen sets D_k $(k=1,2,\cdots,n)$ in $M(\mathcal{L})$ with $0 < \mu_m(D_k) < 1$ $(k=1,2,\cdots,n)$ and complex numbers c_k $(k=1,2,\cdots,n)$ such that

$$\|\hat{f} - \sum_{k=1}^{n} c_k \chi_{D_k}\| < \varepsilon.$$

Hence we have

(5.7)
$$||q^{0}(\hat{f} - \sum_{k=1}^{n} c_{k} \chi_{D_{k}})|| = ||f - \sum_{k=1}^{n} c_{k} \chi_{q^{-1}(D_{k})}|| < \varepsilon,$$

where $\chi_{q^{-1}(D_k)} \in \mathcal{L}$ and $0 < m(q^{-1}(D_k)) < 1 \ (k=1, 2, \dots, n)$.

Now, by (5.4), for every h in I, there are $f \in \mathcal{L}$ and $g \in I$ with ||g|| < 1/2 such that fg = h. Suppose that f satisfies (5.7). Then we have

$$||h - \sum_{k=1}^{n} c_k \chi_{q^{-1}(D_k)} g|| \le ||g|| \varepsilon < \varepsilon/2,$$

where $\chi_{q^{-1}(D_k)}g \in I$ $(k=1, 2, \dots, n)$. Hence we have (i).

(ii) By using Proposition 5.6, Theorem 5.8 (ii) and the map q defined in (5.5), (ii) is proved by the same argument as for Theorem 5.3. (i).

Although, in § 2, $J^{\infty}=J^{\infty}(H^{\infty})$ is defined to be the weak-* closed linear span of all functions in $H^{\infty}(m)$, each of which vanishes on some set of positive measure, we see by Theorem 5. 9, in the cases 2. 1 and 2. 3 in § 2, J^{∞} is the uniformly closed linear span of those sets. That is, we have the following.

COROLLARY 5.10. Let I^{∞} be as in the cases 2.1, 2.2 and 2.3 in § 2. Then I^{∞} is contained in the uniformly closed linear span \mathcal{J}^{∞} of all functions in $H^{\infty}(m)$, each of which vanishes on some set of positive measure. In particular, in the cases 2.1 and 2.3 in § 2, we have $I^{\infty}=J^{\infty}=\mathcal{J}^{\infty}$.

PROPOSITION 5.11. Let X, A and m be as in Theorem 5.8, and let $f \in L^{\infty}(m)$. Then $f \in \mathcal{L}$ if and only if \hat{f} is constant on $\bigcup \{\mathcal{K}(\tilde{\theta}) : \tilde{\theta} \in \mathcal{L}^{\infty}(m) \}$

 $\eta^{-1}(\phi)$ for every ϕ in $M(\mathcal{L})$. (For η see (5.6).)

PROOF. By the definition of π and Theorem 5.8, (i), we obtain the "if" part.

Let $f \in L^{\infty}(m)$. Then $\hat{f} \in C(\widetilde{X})$, and by Theorem 5.8, (i), \hat{f} is constant on $\widetilde{X} \cap \pi^{-1}(x)$ for every $x \in X$. Hence, by [1, Lemma 4.3] and Proposition 3.9, (ii), we see that $f \in \mathscr{L}^{\infty} \cap C(X) = \mathscr{L}$. Q. E. D.

§ 6. Some properties of a strongly logmodular algebra, Part 2.

In this section, let A be a strongly logmodular algebra on a compact Hausdorff space X and let $m \in M(A)$. We suppose that $P = P(m) \supseteq \{m\}$ and X = S(m).

Let $H^{\infty}=H^{\infty}(m)=\mathscr{H}^{\infty}\oplus I^{\infty}$ and \mathscr{L}^{∞} be as in the case 2.3 of § 2, and let N^{∞} be the weak-* closure of $I^{\infty}+\overline{I^{\infty}}$ in $L^{\infty}(m)$. Let $\mathscr{L}=\mathscr{L}^{\infty}\cap C(X)$, $\mathscr{L}_R=\mathscr{L}^{\infty}\cap C_R(X)$, $N=N^{\infty}\cap C(X)$ and $N_R=N^{\infty}\cap C_R(X)$. Let \mathscr{F} be the nontrivial Gleason part of $\widetilde{m}\in M(H^{\infty})$, where \widetilde{m} is the complex homomorphism of H^{∞} which is defined by the Radonization of the measure m. Then $\pi\mathscr{F}=P$ and $\pi\mathscr{F}=\overline{P}$ (cf. [12])

LEMMA 6.1. (i) Let $f \in L^{\infty}(m)$. Then $f \in N^{\infty}$ if and only if $\phi(f) = 0$ for all $\phi \in \mathscr{F}$.

(ii) Let $f \in C(X)$. Then $f \in N$ if and only if $\phi(f) = 0$ for all $\phi \in P$.

PROOF. (i) Let f=g+h, where $g\in \mathscr{L}^{\infty}$ and $h\in N^{\infty}$. The "if" part is obvious. If $\hat{f}(\phi)=0$ on \mathscr{F} , then $\hat{g}(\phi)=0$ on $\widetilde{\mathscr{F}}$. Hence $\hat{g}=0$ on $Y(=\Gamma(H^{\infty}|\text{hull }I^{\infty}))$. By $g\in \mathscr{L}^{\infty}$, $\hat{g}=0$ on $\tilde{\pi}^{-1}(Y)=\tilde{X}=M(L^{\infty})$ and hence g=0 a. e. (m). Thus $f\in N^{\infty}$.

(ii) By using $\pi \mathscr{F} = P$, we easily obtain (ii). Q. E. D.

LEMMA 6.2. Let $u \in C_R(X)$. Then $u \in N_R$ if and only if there is a function $f \in A^{-1}$ such that $u = \log|f|$ and $|\hat{f}(\phi)| = 1$ on \overline{P} . And, in this case, $\hat{f}(\phi)$ is constant on \overline{P} .

PROOF. Let $u \in N_R$. By $\log |A^{-1}| = C_R(X)$, there is a function $f \in A^{-1}$ such that $u = \log |f|$. Then, for every $\tilde{\phi} \in \mathscr{F}$, $0 = \tilde{\phi}(u) = \int_{\tilde{X}} \log |f| d\tilde{\phi} = \log |\tilde{\phi}(f)|$, and hence we have $|\tilde{\phi}(f)| = 1$ on $\overline{\mathscr{F}}$. Hence $|\tilde{\phi}(f)| = |\tilde{\phi}(1/f)|$ for every $\tilde{\phi} \in \overline{\mathscr{F}}$. Hence $|\tilde{f}||Y|$ and $|\tilde{f}||Y|$ belong to $|\tilde{H}|^{\infty}||Y|$. Since |Y|| is an antisymmetric set, $|\tilde{f}(\tilde{\phi})||$ is constant on |Y|. Since $|\tilde{F}||=\pi(|\tilde{F}|)$, $|\hat{f}(\tilde{\phi})|=1$ on $|\tilde{F}||=1$ and $|\tilde{f}(\tilde{\phi})|$ is constant on $|\tilde{F}|$. Since $|\tilde{F}|=\pi(|\tilde{F}|)$, $|\hat{f}(\tilde{\phi})|=1$ on $|\tilde{F}|$ and $|\tilde{f}(\tilde{\phi})|$ is constant on $|\tilde{F}|$.

Conversely, if $f \in A^{-1}$ and $|\hat{f}(\phi)| = 1$ on \overline{P} , then for $u = \log |f|$, $\phi(u) = 1$

 $\int \log |f| d\phi = \log |\phi(f)| = 0$ on \overline{P} . Hence, by Lemma 6.1. (ii), $u \in N_R$.

Q. E. D.

By Proposition 2.1, $\log |(H^{\infty})^{-1}| = L_R^{\infty}$ can be rewriten as $\log |(\mathscr{H}^{\infty} \oplus I^{\infty})^{-1}| = \mathscr{L}_R^{\infty} \oplus N_R^{\infty}$. And, we have $\log |(\mathscr{L}^{\infty} + I^{\infty})^{-1}| = \mathscr{L}_R^{\infty} \oplus N_R^{\infty}$ and $\log |(I^{\infty} + C')^{-1}| = N_R^{\infty} + R$ (see Proposition 3.10), where $C' = C \setminus \{0\}$. As we see in the following theorem, these formulas hold for \mathscr{H} , I, \mathscr{L} and N_R .

THEOREM 6.3. Let A be a strongly logmodular algebra on X and let $m \in M(A)$. We suppose that $P=P(m) \supseteq \{m\}$ and X=S(m). Let $I=\{f \in A: \phi(f)=0 \ \forall \phi \in P\}$. Then $\mathscr{H}+I$, $\mathscr{L} \oplus I$ and $\mathscr{L}_R \oplus N_R$ are all uniformly closed and we have the following.

- $(i) \log |(C'+I)^{-1}| = R + N_R \text{ on } X,$
- (ii) $\log |(\mathcal{H} \oplus I)^{-1}| = \mathcal{L}_R \oplus N_R$ on X,
- (iii) $\log |(\mathcal{L} \oplus I)^{-1}| = \mathcal{L}_R \oplus N_R \text{ on } X$,

where \oplus denotes the algebraic direct sum, C and R are the complex and the real fields respectively, and $C' = C \setminus \{0\}$.

PROOF. For F = g + h, where $g \in \mathcal{H}$ and $h \in I$, we have $\|g\| \le \|F\|$ (see the proof of Proposition 2.1), and hence $\|h\| \le 2\|F\|$. Hence, if $F_n = g_n + h_n$ ($n = 1, 2, \cdots$) uniformly converges to F_0 , then g_n and h_n uniformly converge to $g \in \mathcal{H}$ and $h \in I$ respectively. Hence $F_0 \in \mathcal{H} \oplus I$. Therefore, $\mathcal{H} \oplus I$ is uniformly closed. We can see similarly that $\mathcal{L} \oplus I$ and $\mathcal{L}_R \oplus N_R$ are both uniformly closed.

(i) By lemma 6.2, for $u \in N_R$ there is a function $f \in A^{-1}$ such that $u = \log |f|$, $|\hat{f}(\phi)| = 1$ on \bar{P} , and $\hat{f}(\phi)$ is a constant on P. Let ϕ_0 be a fixed point in \bar{P} . Then,

$$f = \phi_0(f) + (f - \phi_0(f)) \in C' + I.$$

There is a function $g \in A$ such that fg=1. By $\phi(g)=1/\phi(f)$ on \overline{P} , $|\widehat{g}(\phi)|=1$ on \overline{P} and $\widehat{g}(\phi)$ is constant on \overline{P} . Hence,

$$g = \phi_0(g) + (g - \phi_0(g)) \in C' + I.$$

Hence $f \in (C'+I)^{-1}$. Therefore $R+N_R \subset \log|(C'+I)^{-1}|$.

Conversely, if $u \in \log |(C'+I)^{-1}|$, then $u = \log |c+h|$, where $c+h \in (C'+I)^{-1}$. For every $\phi \in \overline{P}$, we have

$$\phi(u) = \int \log|c + h| d\phi = \log|\phi(c + h)| = \log|c|,$$

and hence $\phi(u - \log |c|) = 0$. By Lemma 6.1, $u - \log |c| \in N_R$. Hence u =

 $\log |c| + v$, where $v \in N_R$. Therefore, $\log |(C'+I)^{-1}| \subset R + N_R$.

(ii) By Proposition 5.6, we have

(6.1)
$$\log |\mathcal{H}^{-1}| = \mathcal{L}_R.$$

By (i) we have

(6.2)
$$\log |(C'+I)^{-1}| = R + N_R$$

Here, we will prove

(6.3)
$$(C'+I)^{-1}\mathcal{H}^{-1} = (\mathcal{H} \oplus I)^{-1}$$
.

Let $c+h\in (C'+I)^{-1}$ and let $g\in \mathscr{H}^{-1}$. Then $(c+h)g=cg+hg\in \mathscr{H}\oplus I$. By $1/(c+h)g=(c'+h')(1/g)=c'/g+h'/g\in \mathscr{H}\oplus I$, where $c'\in C$ and $h'\in I$. Hence $(c+h)g\in (\mathscr{H}\oplus I)^{-1}$. Thus $(C'+I)^{-1}\mathscr{H}^{-1}\subset (\mathscr{H}\oplus I)^{-1}$.

Let $f \in (\mathcal{H} \oplus I)^{-1}$. Let f = g + h and $1/f = g_1 + h_1$, where $g, g_1 \in \mathcal{H}$ and $h, h_1 \in I$. Then $gg_1 = 1$ and hence $g \in \mathcal{H}^{-1}$. By f = g + h, we have $f/g = 1 + h/g = 1 + h_1$, where $h_1 = h/g \in I$. Let $F = 1/(1 + h_1)$. Then $F = 1 - h_1 F \in C' + I$. Hence $1 + h_1 \in (C' + I)^{-1}$. Hence $f = (1 + h/g)g \in (C' + I)^{-1}\mathcal{H}^{-1}$. Thus $(\mathcal{H} \oplus I)^{-1} \subset (C' + I)^{-1}\mathcal{H}^{-1}$. Therefore, we obtain (6.3).

By (6.1), (6.2) and (6.3), we obtain

$$\log |(\mathcal{X} \oplus I)^{-1}| = \mathcal{L}_R \oplus N_R$$
.

(iii) By $\mathcal{L}_R = \log |\mathcal{H}^{-1}| \subset \log |\mathcal{L}^{-1}| \subset \mathcal{L}_R$, we have $\log |\mathcal{L}^{-1}| = \mathcal{L}_R$.

The following formula is proved by the same argument as for (6.3).

$$(C+I)^{-1}\mathcal{L}^{-1} = (\mathcal{L} \oplus I)^{-1}$$

Hence we obtain (iii).

Q. E. D.

Let A be a strongly logmodular algebra on a compact Hausdorff Stonian space X and let $m \in M(A)$. We suppose that X = S(m), $P(m) \supseteq \{m\}$ and the Wermer embedding function Z belongs to A. Example 4, (ii) in § 8 is such an example.

By Proposition 5. 6 we have $\log |\mathscr{H}^{-1}| = \mathscr{L}_R$. Let T be the map which will be defined in (7.1) of § 7. Let $H = T(\mathscr{H})$, $L = T(\mathscr{L})$ and $L_R = T(\mathscr{L}_R)$. Then, by $T(\log |\mathscr{H}^{-1}|) = \log |(T(\mathscr{H}))^{-1}|$, we have $\log |H^{-1}| = L_R$. Hence H is a strongly logmodular algebra on M(L) such that $e^{i\theta} \in H$ and $A(\partial D) \subseteq H \subset H^{\infty}(D)$, where $A(\partial D)$ is the disk algebra on the unit circle ∂D .

PROBLEM. Does such an algebra H coincide with $H^{\infty}(D)$?

If this problem has an affirmative answer, then $\mathscr{H}=T^{-1}(H)=T^{-1}(H^{\infty}(\partial D))=\mathscr{H}^{\infty}$, i. e., the natural injection $\mathscr{H}\subseteq\mathscr{H}^{\infty}$ is an isometric

isomorphism of \mathscr{H} and \mathscr{H}^{∞} . Further we will obtain an algebraic direct sum decomposition $A = \mathscr{H} \oplus J$, where $J = J^{\infty} \cap C(X)$.

§ 7. A logmodular algebra A satisfying $A \circ \tau = H^{\infty}(D)$.

In this section, let A be a logmodular algebra on a compact Hausdorff space X and let $m \in M(A)$. We suppose that P = P(m) is nontrivial. Let Z be the Wermer embedding function, let \mathscr{H}^{∞} be the weak-* closure of the polynomials in Z in $L^{\infty}(m)$, and let \mathscr{L}^{∞} be the weak-* closure of the polynomials in Z and \overline{Z} in $L^{\infty}(m)$. Let $I^{\infty} = \{f \in H^{\infty}(m) : \phi(f) = 0 \ \forall \phi \in P\}$. Then, as we stated in the case 2.3 of § 2, we have $H^{\infty} = H^{\infty}(m) = \mathscr{H}^{\infty} \oplus I^{\infty}$.

The correspondence

$$(7.1) T: \sum_{k=-n}^{n} a_k Z^k \mapsto \sum_{k=-n}^{n} a_k e^{ik\theta}, \ a_k \in C$$

induces an isometric isomorphism T of \mathscr{L}^{∞} onto $L^{\infty}(d\theta)$, which carries \mathscr{H}^{∞} onto $H^{\infty}(D)$, where n ranges over all integers and $(1/2\pi)d\theta$ is the normalized Haar measure on the unit circle (cf. [16]). By Fatou's theorem, every function in $H^{\infty}(D)$ is identified with its boundary function on the unit circle ∂D .

THEOREM 7.1. Let A be a logmodular algebra on a compact Hausdorff space X, let P=P(m) be the nontrivial Gleason part of m for A, and let τ be an analytic map of D onto P. Let $\Gamma=\Gamma(A|\overline{P})$ be the Shilov boundary of $A|\overline{P}$. Suppose that $A \circ \tau = H^{\infty}(D)$. Then we have the following.

- (i) $\Gamma = \pi(Y)$, and Γ is a compact Hausdorff Stonian space, where $Y = \Gamma(H^{\infty}|\text{hull }I^{\infty})$ (see (3.4)).
 - (ii) $M(A|\Gamma) = \overline{P} = \text{hull } I, \text{ where } I = \{f \in A : \phi(f) = 0 \text{ for all } \phi \in P\}.$
 - (iii) $A|\Gamma$ is a strongly logmodular algebra on Γ .
- (iv) Let λ_m be a (unique) representing measure on Γ of m for $A|\Gamma$, and let $H^{\infty}(\lambda_m)$ be the weak-* closure of $A|\Gamma$ in $L^{\infty}(\lambda_m)$. Then, λ_m is a normal measure on Γ such that $S(\lambda_m) = \Gamma$, and the natural injection $A|\Gamma \subseteq H^{\infty}(\lambda_m)$ is an isometric isomorphism of $A|\Gamma$ and $H^{\infty}(\lambda_m)$.
- (v) If the Wermer embedding function Z belongs to A, then $A|\Gamma$ is the weak-* closure of the set of polynomials in Z in $L^{\infty}(\lambda_m)$.

Proof. (i), (ii) By the map

$$f|\Gamma \mapsto f|\overline{P} \mapsto f|P \mapsto f \circ \tau \in H^{\infty}(D), f \in A$$

the algebra $A|\Gamma$ is isometrically isomorphic to the Banach algebra $H^{\infty}(D)$. Hence $A|\Gamma$ is a uniform algebra on Γ . By a general theory, we have $M(A|\Gamma) = \{\phi \in M(A) : |\phi(f)| \le ||f||_{\Gamma} \text{ for all } f \in A\}$ (cf. [15], p. 166). By $A \circ \tau =$

 $H^{\infty}(D)$, we have hull $(I) = \overline{P}$ (cf. [12], Theorem 4.4). Hence, by $M(A|\Gamma) \subset$ hull I and $\overline{P} \subset M(A|\Gamma)$, we have

(7.2)
$$M(A|\Gamma) = \text{hull } I = \overline{P}.$$

From $H^{\infty}(D) = \{f \circ \tau : f \in A\} \subset \{f \circ \tau : f \in H^{\infty}(m)\} = \{f \circ \tau : f \in \mathscr{H}^{\infty}\} \subset H^{\infty}(D),$ we obtain $\{f \circ \tau : f \in A\} = \{f \circ \tau : f \in \mathscr{H}^{\infty}\}.$ Hence we have

$$(7.3) A|\overline{\mathscr{F}} = \mathscr{H}^{\infty}|\overline{\mathscr{F}}.$$

The map π is a homeomorphism of $\overline{\mathcal{P}}$ onto \overline{P} (cf. [12], Theorem 4.1), and, for every f in A, we have

(7.4)
$$f(\tilde{\phi}) = f(\pi(\tilde{\phi})), \ \tilde{\phi} \in \overline{\mathscr{F}}.$$

Further, by $\overline{\mathscr{F}}$ =hull I^{∞} (cf. [12], Theorem 3.1), we have

$$(7.5) Y = \Gamma(\mathscr{H}^{\infty}|\overline{\mathscr{F}}).$$

Hence, by (7.3), (7.4) and (7.5), we obtain

$$\Gamma = \pi(Y)$$
.

Since Y is a compact Hausdorff Stonian space, Γ is a compact Hausdorff Stonian space too.

(iii) Let $\pi_Y = \pi | Y$. Then π_Y^0 is a one-to-one map of $C_R(\Gamma)$ onto $C_R(Y)$ (see (5.1)), and we have

$$\pi_Y^0(\log|(A|\Gamma)^{-1}|) = \log|(A|Y)^{-1}|$$

= $\log|(\mathscr{H}^{\infty}|Y)^{-1}| = C_R(Y)$ on Y .

Hence we have

$$\log|(A|\Gamma)^{-1}| = C_R(\Gamma).$$

Since $A|\Gamma$ is a uniform algebra on Γ , the algebra $A|\Gamma$ is a strongly log-modular algebra on Γ .

(iv) Let $\lambda_{\tilde{m}} = \tilde{\pi}^*(\tilde{m})$ (see (5.2)). Then $\lambda_{\tilde{m}}$ is a normal measure on Y (cf. [13], p. 77). For any $f \in A$, we have

$$m(f) = \int_{X} f \, dm = \int_{\widetilde{X}} \widehat{f} \, d\widetilde{m} = \int_{\widetilde{X}} \widehat{g} \, d\widetilde{m}$$

$$= \int_{\widetilde{X}} \widehat{g} \circ \pi \, d\widetilde{m} = \int_{Y} \widehat{g} \, d\lambda_{\widetilde{m}} = \int_{Y} (\widehat{g} + \widehat{h}) \, d\lambda_{\widetilde{m}}$$

$$= \int_{Y} \widehat{f} \, d\lambda_{\widetilde{m}} = \int_{Y} f \circ \pi \, d\lambda_{\widetilde{m}} = \int_{\Gamma} f \, d(\pi^{*}(\lambda_{\widetilde{m}}))$$

$$= \int_{\Gamma} f \, d\lambda_{m},$$

where f=g+h a.e. (m), $g\in \mathscr{H}^{\infty}$ and $h\in I^{\infty}$. Hence we see that λ_m is a normal measure on the compact Stonian space Γ and $S(\lambda_m)=\Gamma$. Hence, the natural injection $C(\Gamma)\subseteq L^{\infty}(\lambda_m)$ is an isometric isomorphism of $C(\Gamma)$ and $L^{\infty}(\lambda_m)$. So, by Theorem 5.5, we have $A|\Gamma=H^{\infty}(\lambda_m)\cap C(\Gamma)=H^{\infty}(\lambda_m)$.

(v) For every function $f \in H^{\infty}(D)$, there is a sequence $\{f_n\} \subset A(\partial D)$ such that $||f_n|| < ||f||$ for all n and $f_n \to f$ a. e. $(d\theta)$, where $A(\partial D)$ is the disc algebra on the unit circle ∂D . Then, from

$$\begin{aligned} &|\int_{\partial D} gf \, d\theta| = \lim_{n} |\int_{\partial D} gf_{n} \, d\theta| \\ &\leq \underline{\lim}_{n} ||f_{n}|| \int_{\partial D} |g| \, d\theta, \ g \in L^{1}(d\theta), \end{aligned}$$

we have $||f|| \le \underline{\lim}_n ||f_n|| \le \overline{\lim}_n ||f_n|| \le ||f||$, and hence $\lim_n ||f_n|| = ||f||$.

For every $n=1, 2, \cdots$, let ε_n be a number such that $0 < \varepsilon_n < \|f\| - \|f_n\|$. For every f_n , there is a polynomial $P_n(e^{i\theta})$ in $e^{i\theta}$ on the unit circle ∂D such that $\|P_n - f_n\| < \varepsilon_n$. Then we have $\|P_n\| < \|f\|$ $(n=1, 2, \cdots)$ and $P_n \to f$ a. e. $(d\theta)$.

Let $F = T^{-1}(f)$ and let $P_n(Z) = T^{-1}(P_n(e^{i\theta}))$ (for T see (7.1)). Then by [16, p. 464], we have

$$\begin{split} \int_{\partial D} &|P_n(e^{i\theta}) - f(e^{i\theta})| d\theta = \int_X |P_n(Z) - F| dm \\ &= \int_{\widetilde{X}} |\widehat{P_n(Z)} - \widehat{F}| d\widetilde{m} = \int_{\widetilde{X}} |\widehat{P_n(Z)} - \widehat{F}| \circ \widetilde{\pi} |d\widetilde{m}| \\ &= \int_Y |\widehat{P_n(Z)} - \widehat{F}| d\lambda_{\widetilde{m}} \to 0 \ (n \to \infty). \end{split}$$

Hence (by passing to a subsequence) there is a sequence $\{P_n(Z)\}$ such that $\widehat{P_n(Z)} \rightarrow \widehat{F}$ a. e. $(\lambda_{\widetilde{n}})$ and $\|\widehat{P_n(Z)}\|_Y \leq \|\widehat{F}\|_Y$.

For any $g \in A | \Gamma$ there is a function $f \in A$ such that $g = f | \Gamma$. Let f = G + H a. e. (m), where $G \in \mathcal{H}^{\infty}$ and $H \in I^{\infty}$. Then, for every $\tilde{\phi} \in Y$, we have $[g \circ \pi](\tilde{\phi}) = g(\phi) = f(\phi) = f(\tilde{\phi}) = G(\tilde{\phi})$, where $\phi = \pi(\tilde{\phi})$. That is, we have $g \circ \pi = G$ on Y. Then, there is a sequence of polynomials $\{P_n(Z)\}$ (= $\{P_n(Z)\}$) in Z such that $P_n(Z) \rightarrow G$ a. e. $(\lambda_{\tilde{m}})$ and $\|P_n(Z)\|_Y \leq \|G\|_Y$. Since Z belongs to A we have

$$\int_{Y} |P_{n}(Z) - G| d\lambda_{\tilde{m}} = \int_{Y} |P_{n}(Z) \circ \pi - g \circ \pi| d\lambda_{\tilde{m}}$$

$$= \int_{\Gamma} |P_{n}(Z) - g| d\lambda_{m} \to 0 \quad (n \to \infty).$$

Hence (by passing to a subsequence) there is a sequence of polynomials

 $\{P_n(Z)\}\$ in Z such that $P_n(Z) \rightarrow g$ a. e. (λ_m) and $\|P_n(Z)\|_{\Gamma} \leq \|g\|_{\Gamma}$. Hence $A|\Gamma$ is the weak-* closure the set of polynomials in Z in $L^{\infty}(\lambda_m)$. Q. E. D For the examples such that $A \circ \tau = H^{\infty}(D)$, see Example 4, (ii) in § 8.

COROLLARY 7.2. Let X, A, P=P(m), Γ , and τ be as in Theorem 7. 1, and suppose that $A \circ \tau = H^{\infty}(D)$. Then we have the following.

- (i) If $P(\phi)$ ($\phi \in \overline{P}$), the Gleason part of ϕ for $A|\Gamma$, is nontrivial, then $P(\phi)$ is a nontrivial Gleason part of ϕ even for A.
- (ii) There is a one-to-one map from the set of nontrivial Gleason parts for $H^{\infty}(D)$ onto the set of nontrivial Gleason parts for $A|\Gamma$.
- (iii) $G = \bigcup \{P(\phi); P(\phi) \text{ is the nontrivial Gleason part for } A|\Gamma\}$ is an open dense subset in the subspace \overline{P} .

PROOF. (i) By Theorem 7.1, (i)~(iii), there is an analytic map σ of D onto $P(\phi)$. Let $G(\phi)$ be the Gleason part of ϕ for A. Then, by $d_{A|\Gamma}(\phi_1,\phi_2) \ge d_A(\phi_1,\phi_2)$, we have $P(\phi) \subset G(\phi)$ (see (2,1)). Let ρ be an analytic map of D onto $G(\phi)$. The map σ (resp. ρ) is an isometry of D with the pseudo-hyperbolic metric onto $P(\phi)$ (resp. $G(\phi)$) with the metric $d_{A|\Gamma}(\phi_1,\phi_2)$ (resp. $d_A(\phi_1,\phi_2)$) (cf. [11], Theorem 3). Hence $\xi = \rho^{-1} \circ \sigma$ is a one-to-one continuous map of D into D.

Let $K = \{z \in D : |z| \le 1/2\}$. Then $\xi(K)$ is a compact subset of D. Hence there is a sequence of distinct points $\{z_n\}(\subset \xi(K))$ which converges to some point in $\xi(K)$. There is a point $\lambda_n \in K$ such that $z_n = \xi(\lambda_n)$ for every n. For every $f \in I$, we have $f \circ \rho \in H^{\infty}(D)$ and $(f \circ \rho)(z_n) = (f \circ \rho)(\rho^{-1} \circ \sigma)(\lambda_n) = (f \circ \sigma)(\lambda_n) = 0$ ($n = 1, 2, \cdots$). Hence we have $f \circ \rho = 0$ in D, and hence $G(\phi) = \rho(D) \subset \text{hull } I$. From hull $I = \overline{P} = M(A|\Gamma)$, we have $f \circ \rho \in H^{\infty}(D)$ for every f in $A|\Gamma$. Hence we have $G(\phi) \subset P(\phi)$, and hence $P(\phi) = G(\phi)$.

(ii) Let $f \in A$, $F^*(\lambda) = f(\tau(\lambda))$, and F be the boundary value on ∂D of F^* . Let $\eta: f|\Gamma \to \hat{F}$ be the map derived by the chain of maps

$$f|\Gamma \mapsto f|\overline{P} \mapsto f|P \mapsto F^* \mapsto F \mapsto \widehat{F} \ (\in H^{\infty}(D)|M(L^{\infty}(\partial D))).$$

Then η is an isometric isomorphism of $A|\Gamma$ onto $\widehat{H^{\infty}(D)}|M(L^{\infty}(\partial D))$. Let η^* be the adjoint of η . Then η^* is a one-to-one map of the set of Gleason parts for $H^{\infty}(D)$ onto the set of Gleason parts for $A|\Gamma$.

(iii) Since the set G_1 of nontrivial Gleason parts for $H^{\infty}(D)$ is an open dense subset of $M(H^{\infty}(D))$, $G = \eta^*(G_1)$ is an open dense subset in the subspace \overline{P} (cf. [9], p. 89). Q. E. D.

Under the same condition as in Corollary 7.2, we could not decide that, when $\phi \in \overline{P} \setminus \Gamma$ and $P(\phi)$ is a trivial Gleason part of ϕ for $A \mid \Gamma$, then $P(\phi)$ is a trivial Gleason part of ϕ for A. (See Example 2, (iii) in § 8.)

COROLLARY 7.3. Let A be a logmodular algebra on a compact Hausdorff space X, and let the Gleason part P=P(m) of m for A be nontrivial, and let τ be an analytic map of D onto P. Then $A \circ \tau = H^{\infty}(D)$ if and only if $\mathscr{H}^{\infty} = \{g : f \in A, f = g + h \text{ a. e. } (m), \text{ where } g \in \mathscr{H}^{\infty} \text{ and } h \in I^{\infty}\}.$

PROOF. Let $H = \{g : f \in A, f = g + h \text{ a. e. } (m), \text{ where } g \in \mathcal{H}^{\infty} \text{ and } h \in I^{\infty}\}$. If $A \circ \tau = H^{\infty}(D)$, then by (7.3) we have $A|\overline{\mathcal{F}} = \mathcal{H}^{\infty}|\overline{\mathcal{F}}$. Hence we have $H|\overline{\mathcal{F}} = H^{\infty}|\overline{\mathcal{F}}$, and hence $H|Y = \mathcal{H}^{\infty}|Y$, and hence $H|\widetilde{X} = \mathcal{H}^{\infty}|\widetilde{X}$. Therefore we have $H = \mathcal{H}^{\infty}$.

Conversely let $\tau = \Sigma \circ T^*$. Then we have $\tau(D) = \mathscr{F}$, and for every $F = g + h \in H^{\infty}(m)$, where $g \in \mathscr{H}^{\infty}$ and $h \in I^{\infty}$, we have

$$F(\tau(\lambda)) = g(\tau(\lambda)) = g(\Sigma \circ T^*(\lambda)) = g(T^*(\lambda))$$

= $T(g)(\lambda) \in H^{\infty}(D)$, where $\lambda \in D$.

Hence τ is an analytic map of D onto \mathscr{F} . Since T is an isometric isomorphism of \mathscr{H}^{∞} onto $H^{\infty}(D)$, for every function F in $H^{\infty}(D)$, there is a function $g \in \mathscr{H}^{\infty}$ such that Tg = F. By the assumption, there is a function $f \in A$ such that f = g + h a. e. (m), where $g \in \mathscr{H}^{\infty}$ and $h \in I^{\infty}$. Hence we have $F(\lambda) = (Tg)(\lambda) = g(T^*(\lambda)) = g(\Sigma(T^*(\lambda))) = g(\tau(\lambda)) = f(\tau(\lambda))$. Hence we have $A \circ \tau = H^{\infty}(D)$.

A function f is called a bounded analytic function on P if f is a complex valued function defined on P and $f \circ \tau \in H^{\infty}(D)$, where τ is an analytic map of D onto P = P(m). Let $H^{\infty}(P)$ be the set of bounded analytic functions on P.

COROLLARY 7.4. Let X, A, P=P(m), and τ be as in Corollary 7.3. Then $A \circ \tau = H^{\infty}(D)$ if and only if $A \circ \tau = H^{\infty}(P)$.

PROOF. By [15, p. 154] we have $H^{\infty}(P) = H^{\infty}(m) \circ \tau$.

If $A \circ \tau = H^{\infty}(D)$, then by Corollary 7.3 we have $A \circ \tau = H^{\infty}(m) \circ \tau = H^{\infty}(P)$.

Conversely, by the proof of Corollary 7.3, we have $H^{\infty}(m) \circ \tau = H^{\infty}(D)$ and hence $A \circ \tau = H^{\infty}(D)$. Q. E. D.

COROLLARY 7.5. Let X, A, P=P(m), and τ be as in Corollary 7.3. Then $A \circ \tau = H^{\infty}(D)$ and $I = \{0\}$ if and only if $A = \mathcal{H}^{\infty} = H^{\infty}(m)$ on X.

PROOF. If $A \circ \tau = H^{\infty}(D)$ and $I = \{0\}$, then we have $\overline{P} = \text{hull } (I)$ and hull I = M(A). Hence we have $\overline{P} \supset X$, and hence $\Gamma = \Gamma(A|\overline{P}) = X$. Hence, by Theorem 7.1, (iv), $A|X = A|\Gamma$ is the weak-* closure of $A|\Gamma$ in $L^{\infty}(m) = L^{\infty}(\lambda_m)$. Hence we have $A = H^{\infty}(m)$ and hence $Z \in A$. Hence by Theorem 7.1, (v) we have $A = \mathcal{H}^{\infty}$.

Conversely, if $A = \mathcal{H}^{\infty} = H^{\infty}(m)$ on X, then $I \subset I^{\infty} = \{0\}$ implies $I = \{0\}$. And we have $A \circ \tau = H^{\infty}(m) \circ \tau = H^{\infty}(D)$. Q. E. D.

Finally we will state a proposition which is an immediate consequence of Proposition 3. 9.

PROPOSITION 7.6. Let X, A, P, and Γ be as in Theorem 7.1. Suppose that X = S(m). Then $\bigcup \{S(\phi) : \phi \in \Gamma\}$ is dense in X.

§ 8. Examples.

EXAMPLE 1. Let K be the Bohr compactification of the real line K. Let K be the Dirichlet algebra of continuous, complex valued functions on K = $K \times K$ which are uniform limits of the polynomials in $\chi_{\tau_1} \chi_{\tau_2}$, where

$$(\tau_1, \tau_2) \in S = \{(\tau_1, \tau_2) : \tau_2 > 0\} \cup \{(\tau_1, 0) : \tau_1 \ge 0\},$$

and χ_{τ_i} are the characters of K determined by $\tau_i \in R$. We denote by m the normalized Haar measure on X, and we also denote by m the complex homomorphism of A defined by the measure m. We denote by $H^{\infty}(m)$ the weak-* closure of A in $L^{\infty}(m)$.

The Gleason part P(m) of $m \in M(A)$ is trivial (cf. [15], p. 149). Further H_{\min}^{∞} is the weak-* closure of $\bigcup_{\tau_1 \geq 0} \bar{\chi}_{\tau_1} H^{\infty}(m)$. Hence we have $H^{\infty}(m) \subseteq H_{\min}^{\infty} \subseteq L^{\infty}(m)$. (Cf. [19] p. 166.)

EXAMPLE 2. (i) Let $A(T^2)$ be the Dirichlet algebra of continuous, complex valued functions on the torus $T^2 = \{(z, w) : |z| = |w| = 1\}$, which are uniform limits of the polynomials in $z^i w^j$, where $(i, j) \in S = \{(i, j) : j > 0\} \cup \{(i, 0) : i \ge 0\}$. Then the maximal ideal space of $A(T^2)$ can be identified with $(\{z : |z| = 1\} \times \{w : |w| \le 1\}) \cup (\{z : |z| \le 1\} \times \{0\})$, with the normalized Haar measure m identified with (z, w) = (0, 0).

The Gleason part P=P(m) of m is $\{z:|z|<1\}\times\{0\}$. For each $z\in\{z:|z|=1\}$, $D_z=\{z\}\times\{w:|w|<1\}$ is a nontrivial Gleason part. The closure $\overline{P}=\{z:|z|\leq 1\}\times\{0\}$ of P does not meet T^2 . Every point $(z_0,0)$ of $\partial P=\overline{P}\setminus P=\{z:|z|=1\}\times\{0\}$ is a point of D_{z_0} . Therefore \overline{P} is not a union of Gleason parts.

(ii) Let $(1/2\pi)d\theta$ be the normalized Haar measure on the unit circle T, and let $H^{\infty}(d\theta)$ be the weak-* closure of the disc algebra A(T) in $L^{\infty}(d\theta)$.

Let $A(T^2)$ and $m=(1/4\pi^2)d\theta d\phi$ be as in (i). Let $H^{\infty}=H^{\infty}(m)$ be the weak-* closure of $A(T^2)$ in $L^{\infty}(m)$. As in (2.6), we have

$$(8.1) H^{\infty} = \mathcal{H}^{\infty} \oplus I^{\infty},$$

where \mathscr{H}^{∞} and I^{∞} are the weak-* closure in $L^{\infty}(m)$ of the sets $\{\sum_{i=0}^{n} a_i z^i : a_i \in I^{\infty}\}$

C $(i=1,2,\cdots,n)$ and $\{\sum_{j=1}^{m}w^{j}g_{j}(z):g_{j}\in L^{\infty}(d\theta),\ (j=1,2,\cdots,m)\}$ respectively, where $z=e^{i\theta}$ and $w=e^{i\phi}$. Let τ be the natural homeomorphism of $M(H^{\infty}(d\theta))$ and $M(L^{\infty}(d\theta))$ onto $M(\mathscr{X}^{\infty})$ and $M(\mathscr{L}^{\infty})$ respectively, which is induced by the correspondence between $z=e^{i\theta}$ on T^{2} and $z=e^{i\theta}$ on T. We will identify $\lambda \in M(H^{\infty}(d\theta))$ with $\tau(\lambda) \in M(\mathscr{X}^{\infty})$.

For a fixed point w_0 with $|w_0| < 1$, each element $f \in H^{\infty}(m)$ uniquely can be decomposed as

(8.2)
$$f(z, w) = f_1(z) + wf_2(z) + (w - w_0)f_3(z, w)$$
 a. e. (m) , where $f_1 \in \mathcal{H}^{\infty}$, $f_2 \in \mathcal{L}^{\infty}$ and $f_3 \in I^{\infty}$. In fact, by (8.1), we have

$$f(z, w) = f_1(z) + f'_2(z, w),$$

where $f_1 \in \mathcal{H}^{\infty}$ and $f_2 \in I^{\infty}$. By the definition of I^{∞} , $f_2(z, w)/w$ is the boundary value of a bounded analytic function in w for almost every $z = e^{i\theta}$. We define

$$f_2(z) = \int_0^{2\pi} e^{-i\phi} f_2'(z, e^{i\phi}) P_{w_0}(\phi) \frac{d\phi}{2\pi},$$

where $P_{w_0}(\psi)$ is the Poisson kernel for w_0 . Then we have

$$\frac{f_2'(z, w)}{w} - f_2(z) = (w - w_0)f_3'(z, w),$$

where $f_3(z, w)$ is the boundary value of a bounded analytic function in w for almost every $z=e^{i\theta}$. Here we difine

$$f_3(z, w) = w f_3'(z, w),$$

then $f_3 \in I^{\infty}$, and this gives the decomposition (8.2) of f. It is easy to see the uniqueness of the decomposition from our construction.

Now, for $\xi \in M(H^{\infty})$, we difine a linear functional ϕ_{ξ} on $H^{\infty}(m)$ by

$$\phi_{\xi}(f) = \xi(f_1).$$

For $f, g \in H^{\infty}(m)$, the decomposition (8.2) of fg is given by

$$(8.3) (fg)(z, w) = (f_1g_1)(z) + w(f_1g_2 + f_2g_1 + w_0f_2g_2)(z) + (w - w_0)(f_1g_3 + f_3g_1 + wf_2g_2 + wf_2g_3 + wf_3g_2 + (w - w_0)f_3g_3)(z, w),$$

where $f(z, w) = f_1(z) + wf_2(z) + (w - w_0)f_3(z, w)$ and $g(z, w) = g_1(z) + wg_2(z) + (w - w_0)g_3(z, w)$. It follows from (8.3) that ϕ_{ξ} is multiplicative on $H^{\infty}(m)$. Hence $\phi_{\xi} \in M(H^{\infty}(m))$. Clearly the map

$$\Phi : \xi \! \mapsto \! \phi_{\ell}$$

is a continuous map from $M(\mathcal{H}^{\infty})$ into $M(H^{\infty}(m))$.

Similarly, for $(\xi, w_0) \in M(L^{\infty}(d\theta)) \times D$ $(D = \{w \in C : |w| < 1\})$, we define a linear functional ϕ_{ξ,w_0} on $H^{\infty}(m)$ by

$$\phi_{\xi,w_0}(f) = \xi(f_1) + w_0 \xi(f_2).$$

By (8.3), ϕ_{ξ,w_0} is also multiplicative on $H^{\infty}(m)$, and hence $\phi_{\xi,w_0} \in M(H^{\infty}(m))$. Moreover, the map

$$\psi: (\xi, w_0) \mapsto \phi_{\xi, w_0}$$

is a continuous map from $M(L^{\infty}(d\theta)) \times D$ into $M(H^{\infty}(m))$. Here we note that $\phi_{\xi,0} = \phi_{\xi}$ if $\xi \in M(L^{\infty}(d\theta)) = M(\mathscr{L}^{\infty})$.

Now, the Gleason part \mathscr{I} of $\phi_0 = \Phi(0)$ ($= \widetilde{m}$) is $\Phi(D)$, where \widetilde{m} is the complex homomorphism defined by the Radonization of the measure m. So,

$$\overline{\mathscr{F}} = \overline{\Phi(D)} = \Phi(\overline{D}) = \Phi(M(\mathscr{H}^{\infty})).$$

Hence $\overline{P} \ni \phi_{\xi} = \phi_{\xi,0}$ for $\xi \in M(L^{\infty}(d\theta))$. However $\phi_{\xi,0}$ and ϕ_{ξ,w_0} are in the same Gleason part whenever $|w_0| < 1$. Therefore $\overline{\mathscr{P}}$ is not a union of Gleason parts for $H^{\infty}(m)$.

The author would like to acknowledge his indebtedness to Dr. M. Hayashi for this part (ii).

(iii) Let $H^{\infty} = \mathcal{H}^{\infty} \oplus I^{\infty}$ and \mathcal{L}^{∞} be as in (ii). Let χ be a function in \mathcal{L}^{∞} with $\chi^2 = \chi$ and $\chi \neq 0$, 1, and let $A_1 = \mathcal{H}^{\infty} \oplus \chi I^{\infty}$. Then A_1 is a weak-* Dirichlet algebra. If we put $m_1 = \widetilde{m}|A_1$, then $m_1 \in M(A_1)$ and the Gleason part P_1 of m_1 for A_1 is nontrivial. If τ_1 is an analytic map of D onto P_1 , then $A_1 \circ \tau_1 = H^{\infty}(D)$. Let Γ_1 be the Shilov boundary of $A_1 | \overline{P}_1$. Then it follows from (ii) and [[13], § 4] that a certain point of Γ_1 belongs to some nontrivial Gleason part for A_1 and a certain point of Γ_1 composes trivial Gleason part for A_1 .

EXAMPLE 3. Let A' be a weak-* Dirichlet algebra on a nontrivial probability measure space (X, \mathscr{A}, m) and let $H^{\infty} = H^{\infty}(m)$ be the weak-* closure of A' in $L^{\infty}(m)$. Let $\widetilde{X} = M(L^{\infty}(m))$ and $A = \widehat{H}^{\infty} | \widetilde{X}$. Then A is a strongly logmodular algebra on a compact Hausdorff Stonian space \widetilde{X} .

Let ϕ be any point of M(A) and let $X_1 = S(\phi)$. Then X_1 is a compact Hausdorff Stonian space (cf. [22], Theorem 2.2), and by Theorem 5.4 X_1 is a weak peak set of A. Let $A_1 = A|X_1$. Then A_1 is a uniform algebra on X_1 . From

$$C_R(X_1) = C_R(\widetilde{X})|X_1 = (\log|A^{-1}|)|X_1 \subset \log|A_1^{-1}| \subset C_R(X_1)$$

we have $\log |A_1^{-1}| = C_R(X_1)$. Therefore A_1 also is a strongly logmodular algebra on X_1 .

If the Gleason part P(m) of $m \in M(H^{\infty}(m))$ is nontrivial and τ is an analytic map of D onto P(m), then we have $H^{\infty}(m) \circ \tau = H^{\infty}(D)$.

EXAMPLE 4. We will identify a function in $H^{\infty}(D)$ with its boundary function on the unit circle ∂D . Let $(1/2\pi)d\theta$ be the normalized Lebesgue measure on ∂D . Let $\{z_n\}$ be a sequence in D such that $\overline{\lim_n |z_n|} = 1$. We denote by $\overline{\{z_n\}}$ the weak-* closure of $\{z_n\}$ in $M(H^{\infty}(D))$. $\{z_n\}$ is said to be interpolation and sparse if

$$\inf_{n} \prod_{m: m \neq n} \left| \frac{z_n - z_m}{1 - \overline{z}_m z_n} \right| > 0 \text{ and } \lim_{n \to \infty} \prod_{m: m \neq n} \left| \frac{z_n - z_m}{1 - \overline{z}_m z_n} \right| = 1$$

respectively.

- (i) Let m be any point in $\{\overline{z_n}\}\setminus D$. Then $P(m) \supseteq \{m\}$ if and only if $\{z_n\}$ is an interpolating sequence (cf. [9], Theorem 4.3.). In this case, there is a Blaschke product B such that $\widehat{B}=0$ on P(m). Hence the closure P(m) of P(m) does not meet the Shilov boundary $\widetilde{X}=M(L^{\infty}(d\theta))$ of $\widehat{H^{\infty}(D)}$ (cf. [9], p. 102). It is known from [3] that P(m) is a union of Gleason parts. Let μ_m be the representing measure on \widetilde{X} of m for $\widehat{H^{\infty}(D)}$, and let $X=S(\mu_m)$. Then, by Example 3, $A=H^{\infty}(D)|X$ is a strongly logmodular algebra on a compact Hausdorff Stonian space X.
- (ii) Let $\{z_n'\}$ be a sequence in D such that $\overline{\lim}_n |z_n'| = 1$. Then there is a subsequence $\{z_n\}$ of $\{z_n'\}$ such that $\{z_n\}$ is sparse (cf. [7], p. 106). Let m be any point in $\overline{\{z_n\}} \setminus D$. As in (i), let $X = S(\mu_m)$ and let $A = H^{\infty}(D)|X$. In this case, the Wermer embedding function Z belongs to A i. e., if B(z) is the Blaschke product with zero sequence $\{z_n\}$, then $Z = \alpha \widehat{B}(z)|X$ for some unimodular constant α (cf. [9], p. 106). Let f be any function in $H^{\infty}(D)$. Then $g = f \circ (\alpha B)$ belongs to $H^{\infty}(D)$. Hence for an analytic map $\tau = Z^{-1} = (\alpha \widehat{B}|P(m))^{-1}$ we have $\widehat{g}(\tau(t)) = f(\alpha \widehat{B}(\tau(t))) = f(t)$, $t \in D$ (cf. [9], Lemma 6.3). Hence we have $A \circ \tau = H^{\infty}(D)$.
- (iii) Let m be an element of $M(H^{\infty}(D))\backslash D$ such that the Gleason part P(m) is nontrivial and any analytic map τ of D onto P(m) is not a homeomorphism (cf. [9], p. 109). As in (i), let $X = S(\mu_m)$ and let $A = H^{\infty}(D)|X$. Then $Z \notin A$. Hence $Z \notin C(X)$, because, if $Z \in C(X)$, then by Theorem 5.5, we have $Z \in \mathscr{H}^{\infty} \cap C(X) \subset A$. From this, $\mathscr{H}^{\infty} \cap C(X) \subseteq \mathscr{H}^{\infty}(m)$. Further we have $A \circ \tau \subseteq H^{\infty}(D)$, because, if $A \circ \tau = H^{\infty}(D)$, then $\rho = \pi \circ \Sigma \circ T^*$ is an analytic map of D onto P (see the proof of Corollary 7.3), and ρ is a homeomorphism (cf. [12], Theorem 4.1), and hence τ is a homeomorphism (cf. [11], Theorem 2).

(iv) Let m be any point in $M(H^{\infty}(D))\setminus (D\cup \widetilde{X})$, let $X=S(\mu_m)$ as in (i) and let $A=H^{\infty}(D)|X$. Let $H^{\infty}(m)$ be the weak-* closure of A in $L^{\infty}(\mu_m)$. It follows from [[5], p. 63] and the Tietze extension theorem that $|A|=C_R^+(X)(=\{u\in C_R(X):u\geq 0\})$. Since X is a Stonian space, X is totally disconnected. For any clopen set V in X with $0<\mu_m(V)<1$ there is a function $f\in A$ such that $|f|=\chi_V$. Then $f\in J^{\infty}=J^{\infty}(H^{\infty}(m))$ (see (2.1)). Hence $J^{\infty}\supsetneq\{0\}$.

Let E be the set of all clopen sets V with $0 < \mu_m(V) < 1$. Let $V \in E$, let $J_V = \{f \in A : |f| = \chi_V\}$, let $J_{V^c} = \{f \in A : |f| = \chi_{V^c}\}$ and let $J_V + J_{V^c} = \{f + g : f \in J_V, g \in J_{V^c}\}$. Then $J = \bigcup \{J_V + J_{V^c} : V \in E\} \subset J^{\infty}$. J separates the points of X, and we have $fg \in J$ for $f \in J$ and $g \in J$. Hence the linear span $\mathscr{V}(J)$ of J is an algebra. If $P(m) \supseteq \{m\}$, then the uniform closure of $\mathscr{V}(J)$ is contained in $I = \{f \in A : \phi(f) = 0 \ \forall \phi \in P(m)\}$. It is not known whether the weak-* closure of $\mathscr{V}(J)$ in $L^{\infty}(\mu_m)$ coincides with J^{∞} .

References

- [1] W. G. BADE: The Banach space C(S), Aarhus University Lecture Note Series, No. 26, 1971.
- [2] A. BERNARD, J. B. GARNNET and D. E. MARSHALL: Algebras generated by inner functions, J. Funct. Anal. 25 (1977), 275-785.
- [3] P. E. BUDDE: Support sets and Gleason parts of $M(H^{\infty})$, Ph. D. dissertation, University of California, Berkeley, 1982.
- [4] R. G. DOUGLAS and W. RUDIN: Approximation by inner functions, Pacific J. Math., 31 (1969), 313-320.
- [5] T. W. GAMELIN: Uniform algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969.
- [6] I. GELFAND, D. RAIKOV and G. SHILOV: Commutative normed rings (in Russian), Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1960; English translation, Chelsea, N. Y., 1964.
- [7] P. GORKIN: Decompositions of the maximal ideal spaces of L^{∞} , Trans. Amer. Math. Soc., 282 (1984), 33-44.
- [8] M. HASUMI: Interpolation sets for logmodular Banach algebras, Osaka J. Math., 3 (1966), 303-311.
- [9] K. HOFFMAN: Bounded analytic functions and Gleason parts, Ann. of Math., 86 (1967), 74-111.
- [10] R. KALLENBORN and H. KÖNIG, An invariant subspace theorem in the abstract Hardy algebra theory, Arch. Math. 39 (1982), 51-58.
- [11] K. KISHI: Analytic maps of the open unit disk onto a Gleason part, Pacific J. Math., 63 (1976), 417-422.
- [12] K. KISHI: The maximal ideal space of a certain algebra $H^{\infty}(m)$, J. Math. Soc. Japan, 30 (1978), 483-493.
- [13] K. KISHI: Some properties of the algebra $H^{\infty}(m)$, Hokkaido Math. J., 10 (1981), 75-82.
- [14] K. KISHI and T. NAKAZI: Some typical ideal in a uniform algebra, to appear in Archiv der Math.

- [15] G. M. LEIBOWITZ: Lectures on complex function algebra, Scott, Foresman and Co., Chicago, Ill., 1970.
- [16] S. MERRILL and N. LAL: Characterization of certain invariant subspaces of H^p and L^p spaces derived from logmodular algebras, Pacific J. Math., 30 (1969), 463-474.
- [17] P. S. MUHLY: Maximal weak-* Dirichlet algebras, Proc. Amer. Math. Soc., 36 (1972), 515-518.
- [18] T. NAKAZI: Superalgebras of weak-* Dirichlet algebras, Pacific J. Math., 68 (1977), 197-207.
- [19] T. NAKAZI: Invariant subspaces of weak-* Dirichlet algebras, Pacific J. Math., 69 (1978), 151-167.
- [20] T. NAKAZI: Quasi-maximal ideals and quasi-primary ideals of weak-* Dirichlet algebras, J. Math. Soc. Japan, 31 (1979), 677-685.
- [21] T. NAKAZI: Helson's existence theorem of function algebras, Arch. Math., 32 (1979), 386-390.
- [22] G. L. SEEVER: Measures on F-spaces, Trans. Amer. Math. Soc., 133 (1968), 267-280.
- [23] T. P. SRINIVASAN and Ju-Kwei WANG, Weak-* Dirichlet algebras, Proc. Internat. Sympos. on Function algebras (Tulane Univ., 1965), Scott, Foresman and Co., Chicago, Ill., 1966, pp. 216-249.

Faculty of Education Wakayama University