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Solvability of convolution equations in K_{M}’
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Abstract. Net S be a convolution operator in the space K_{M}’, M is an
increasing continuous function, of distributions in R^{n} growing not faster
than e^{M(kx)} for some positive integer k . We give necessary and sufficient
condition on S to have S*K_{M}’=K_{M}’, then we use this condition to get neces-
sary and sufficient conditions for solvability of systems of convolution equa-
tions in K_{M}’.

1. Introduction

S. Sznajder and Z. Zielezny [6] characterized convolution operators in
the spaces K_{\acute{p}}, p>1 , having solutions in K_{\acute{p}}. The space K_{P}’, p>1 , is one of
the spaces K_{M}’ where M(x)=|x|^{p} , p>1 . The spaces K_{M}’ first appeared in the
work of Gelfand and Shilov [3], where they used them to study the Cauchy
problem. In [5], D. Pahk studied hypoelliptic convolution operators in the
space K_{M}’ after making a little modefication in the definition of the space K_{M}

of test functions. Here I will follow Pahk and use the Paley-Wiener type
theorem which he proved for the spaces. The results of this paper extend a
result of Sznajder and Zielezny [6].

2. Terminology and preleminary results

Let \mu(\xi) , 0\leq\xi\leq\infty , be a continuous, increasing function such that \mu(0)

=0, \mu(\infty)=\infty . For x\geq 0 the function M(x) is defined as

M(x)= \int_{0}^{x}\mu(\xi)d\xi .

It turns out the function M(x) is continuous, increasing and convex with
M(0)=0, M(\infty)=\infty , hence the function M is invertible. For negative x we
define M(x) to be M(-x) and for x=(x_{1}, \ldots. x_{n})\in R^{n} . n\geq 2 , we define
M(x_{1}, \ldots. x_{n}) to be M(x_{1})+\ldots+M(x_{n}) . We notice that M(x) grows faster
than any linear function of |x| as |x|arrow\infty , hence M^{-1}(x)\leq x whenever x\geq 0 and
large enough, where M^{-1} is the inverse of M. Let M and \Omega be functions
corresponding to \mu and \omega respectively, as in the above definition, the func-
tions M and \Omega are said to be dual in the sense of Young if and only if \mu\circ\omega=

\omega\circ\mu=the identity function. As example of functions dual in the sense of
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Young one has M(x)= \frac{x^{p}}{p} and \Omega(x)=\frac{x^{q}}{q} where \frac{1}{p}+\frac{1}{q}=1 . We list some of

the properties of the function M which are going to be used later in the
proofs.

(1) M(x)+M(y)\leq M(x+y) for all x , y\geq 0 .

(2) M( \frac{1}{k}x)\leq\frac{1}{k}M(x) for any k>0 .

(3) M(x+y)\leq M(2x)+M(2y) for all x , y\geq 0 .

For a function M as above, we define the space K_{M} to be the space of all
infinitely differentiate functions \psi on R^{n} so that

\nu_{k}(\psi)=\sup_{x\in R^{n},|a|\leq k’}e^{M(kX)}|D^{a}(\psi)(x)|<\infty
, k=1,2 , 3, \ldots-.

where D^{a}=(-i \frac{\partial}{\partial x_{1}})^{a_{1}}\ldots (-i \frac{\partial}{\partial x_{n}})^{an} , \alpha=(\alpha_{1}, \ldots-. \alpha_{n})\in N^{n}- The space K_{M}

will be provided with the topology generated by the semi-norms \iota/_{k} : k=1 ,

2, \ldots It follows that K_{M} is a Frechet space with the embeddings
DCK_{M}CE being continuous, where D and E are Schwartz’s spaces [5].
By K_{M}’ we denote the space of all continuous linear functionals on K_{M} and we
provide K_{M}’ with the strong dual topology. It follows that E’\subset K_{M}’\subset D’ . The
following theorem characterizes the elements of K_{M}’.

THEOREM A. [5, Theorem 1. 2. 3]. A distribution T\in D’ is in K_{M}’ if
and only if there exist positive integers m, k and a bounded continuous
function f(x) on R^{n} so that

T= \frac{\partial^{mn}}{\partial x_{1}^{m}\ldots\partial x_{n}^{m}}[e^{M(kx)}f(x)] .

THEOREM B. [5, Theorem 1. 3. 2]. For any distribution S\in K_{M}’ the
following three conditions are equivalent:

(i) The distributions S_{1}=e^{M(kX)}S;k=1,2,3 , \ldots are in S’ . the space of
tempered distributions.

(ii) For every integer k\geq 0 , there exists an integer m\geq 0 such that

S= \sum_{|a|\leq m}D^{a}f_{a},

where the f_{a}’s;\alpha\in N^{n} are continuous functions in R^{n} whose products with
e^{M(kx)} are bounded

(iii) For every \phi\in K_{M}, the convolution S*\phi is in K_{M} and the mapping
\phiarrow S*\phi from K_{M} into itself is continuous, where (S*\phi)(x)=<S_{y},

\phi(x-y)> .
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By O_{c}’(K_{M}’ : K_{M}’) we denote the space of all S\in K_{M}’ which satisfy any of the
above conditions. Then it follows from (iii) that O_{c}’(K_{M}’ : K_{M}’) is the space of
convolution operators in K_{M}’. For S\in O_{c}’(K_{M}’ : K_{M}’) and T\in K_{M}’ we defifine the
convolution S*T by

<S*T_{J}\phi>=<T,\check{S}*\phi> , \phi\in K_{M},

where <S\vee, \psi>=<S,\check{\psi}>for all \psi\in K_{M},\check{\psi}(x)=\psi(-x) .
For \phi\in K_{M}, the Fourier transform \hat{\phi} is defifined by

\hat{\phi}(\xi)=\int_{R^{n}}e^{-i<X,\xi>}\phi(x)dx,

as usual, and for S\in O_{c}’(K_{M}’ : K_{M}’) it follows that S\in S’ and its Fourier
transform is well-defifined by the formula

<\hat{S}, \phi>=<S,\hat{\phi}> , \phi\in K_{M}

Also, we defifine the Fourier transform a for any u\in K_{M}’ by the formula
<\^u, \hat{\phi}>=<u,\check{\phi}> , \phi\in K_{M}’,

we denote by K_{M}’ and K_{M} the Fourier transform of K_{M}’ and K_{M} respectively.
The elements of K_{M} and O_{c}’(K_{M}’ : K_{M}’) satisfy the following Paley-Wiener type
theorem :

THEOREM C. [5, Theorem 1. 4. 1].
(a) An entire function F(\zeta) is a Fourier transform of a function \phi in K_{M}

if and only if for every integer N\geq 0 and every \epsilon>0 there exists a constant
C such that

|F(\zeta)\leq C(1+|\zeta|)^{-N}e^{\Omega(\epsilon\eta)} , where \zeta=\xi+i\eta\in C^{n} .

and \Omega is dual to M in the sense of Young.
(b) An entire function F(\zeta) is the Fourier transform of a distribution S

in O_{c}’(K_{M}’ : K_{M}’) if and only if for every \epsilon>0 there exist constants C, N such
that

(*) |F(\zeta)|\leq C(1+|\zeta|)^{N}e^{\Omega(\epsilon\eta)} , where \zeta=\xi+i\eta\in C^{n}

and \Omega is dual to M in the sense of Young.
From the Paley-Wiener theorem it follows that the differential operator of
infifinite order exp(D) is an element of K_{M}’ for all M.

We provide K_{M} , the space of all \hat{\phi} where \phi\in K_{M} , with the locally convex
topology defined by the following family of semi-norms:
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\omega_{k}(\hat{\phi})=\sup_{\zeta=\xi+i\eta\in C^{n}}(1+|\zeta|)^{k}e^{-\Omega(\frac{\eta}{k})}|\hat{\phi}(\zeta)| : k=1,2,3 , \ldots

Since \Omega grows faster than any linear function in |\eta| whenever |\eta| is large
enough it follows that an equivalent family of semi-norms on K_{M} is

\beta_{k}(\phi\gamma_{=\sup_{\zeta=\xi+i\eta\in C^{n}}}(1+|\xi|)^{k}e^{-\Omega(\frac{\eta}{k})}|\hat{\phi}(\zeta)| : k=1,2,3 , \ldots

It follows that the Fourier transform is a topological isomorphism of K_{M} onto
K_{M} .

Let m be a positive integer greater than 1, and by K_{M}^{m}, K_{M}’m , K_{M}^{m}, O_{c}’(K_{M}’m :
K_{M}^{\prime m}) we denote the product of m-copies of K_{M} , K_{M}’, K_{M} and O_{c}’(K_{M}’ ; K_{M}’)

respectively. We peovide K_{M}^{m} with the topology generated by the following
family of semi-norms:

\nu_{k}(\hat{\phi})=\nu_{k}((\hat{\phi}_{1},\hat{\phi}_{2} , .. .^{\hat{\phi}_{m})^{t})=\sum_{j=1}^{m}\omega_{k}(\hat{\phi}_{j})} : k=1,2,3 , \ldots

In the proofs we will use the following improved version of a lemma of
H\"ormander.

THEOREM D. [1, Corollary II . 1.2]: Let f, g be entire functions in C^{n}

so that f/g is entire, then for every positive real number \rho and for every \zeta\in

C^{n} one has

| \frac{f(\zeta)}{g(\zeta)}|\leq|

z \in C\sup_{n},|f(z+\zeta)|z|\leq 3\rho|
z \in c\sup_{n},|g(z+\zeta)|/[ z|\leq 3\rho|z|\sup_{z\in C^{n}}|g(z+\zeta)|]^{2}\leq\rho

,

3. The results

The first result give necessary and sufficient conditions for the solvability
of convolution equations in K_{M}’. This generalizes the main theorem of [6].

A convolution operator which satisfies the conditions of the theorem is called
invertible.

THEOREM 1. Let S\in O_{c}’(K_{M}’ : K_{M}’) , the following conditions are equiva-
le t :

(a) There exist positive constants C, N and A so that

(I)
|z| \leq A\Omega^{-1}\sup_{z\in C^{n}}|\hat{S}(z+{?}_{)}l1og(2+|\xi } |\geq C(1+|\xi|)^{-N} ; \xi\in R^{n} ,

where \Omega^{-1} is the inverse of \Omega , which is the dual to M in the sense of young.
(b) S*K_{M}’=K_{M}’ .

THEOREM 2. Let S be an invertible convolution operator of K_{M}’, let v
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be another convolution operator of K_{M}’ with \hat{v}/\hat{S} an entire function, then there
exists a u\in O_{\acute{c}}(K_{M}’ : K_{M}’) so that S*u=v. Moreover, if v\in K_{M} then u\in K_{M}.

We use Theorem 1 to prove the main result of the paper, it provides
necessary conditions and sufficient conditions for solvability of determined
systems of convolution equations in K_{M}’.

One can represent such system of convolution equations in K_{M}’ by an
equation of the form S*U=V where S=(S_{ij})\in O_{c}’(K_{M}’m, K_{M}^{\prime m}) , U=(u_{1} , \ldots ,
u_{m}) , V=(v_{1}, \ldots. v_{m})\in K_{M}’m . For S as above, S^{t} will denote the matrix (\check{S}_{ji}) ,

we recall that det (\hat{S}^{t}) is an entire function which satisfies the growth
condition (*) .

THEOREM 3. Let S\in O_{\acute{c}}(K_{M}^{\prime m} ; K_{M}^{\prime m}) , among the following properties of
S, the implications (a)arrow(b)-arrow(c)-(b) hold,

(a) det(\hat{S}^{t}) satisfy the growth condtion (I).
(b) The map S^{t}*\phiarrow\phi from S^{t}*K_{M}^{m} into K_{M}^{m} is continuous,

(c) S*K_{M}’m=K_{M}^{\prime m} .

4. Proofs of the results

PROOF OF THEOREM 1: The implication (a)\supset(b) .
From the Hahn-Banach theorem and the continuity of the Fourier transform
it suffices to prove that the map T\hat{\phi}arrow\hat{\phi} from TK_{M} into K_{M} is continuous;
where T=\check{S} . Let k be any positive integer, we would like to show that
there exist positive numbers l , c so that \omega_{k}(\hat{\phi})\leq c\omega_{l}(T\hat{\phi}),\hat{\phi}\in K_{M}. Let \zeta=

(\zeta_{1}, \ldots. \zeta_{n}) be any given point of C^{n} , \zeta_{j}=\xi_{j}+i\eta_{j} , by applying Theorem D to
the function \hat{\phi}=T\hat{\phi}/T with \rho=A\Omega^{-1}[\log(2+|\xi|)]+|\eta| , one has

(4)
| \hat{\phi}(\zeta)|\leq\sup_{n,z\in C},|(T\hat{\phi})(z+\zeta)|\cdot\sup_{z\in D^{n}}|T(z+\zeta)|/[\sup_{1|z|\leq 3\rho|z|\leq 3\rho z|\leq\rho,z\in D^{n}},|T(z+\zeta)|]^{2}

.

From condition (I) it follows that

\sup_{|z|\leq\rho}|T(z+\zeta)|\geq\sup_{|z|\leq A\Omega^{-1}[\log(2+|\xi|)]}|T(z+\zeta)|\geq c_{1}(1+|\xi|)^{-N}\geq c_{1}(1+|\zeta|)^{-N} .

hence (4) becomes

(5) | \hat{\phi}(\zeta)|\leq c_{1}^{-2}(1+|\zeta|)^{2N}\sup_{|z|\leq 3\rho}|(T\hat{\phi})(z+\zeta)|\sup_{|z|\leq 3\rho}|T(z+\zeta)| .

From the definition of semi-norms on K_{M} it follows that for every positive
integer l and z=x+iy\in C^{n} ; |z|\leq 3\rho one has

(6) |(T\hat{\phi})(z+\zeta)|\leq(1+|z+\zeta|)^{-l}e^{\Omega(\frac{y+\eta}{l})}\omega_{l}(T\hat{\phi}) ;
\leq(1+|z|)^{l}(1+|\zeta|)^{-l}e^{\Omega(\frac{y+\eta}{l})}\omega_{l}(T\hat{\phi}) .
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We will determine l later. By (6) and the Paley-Wiener theorem applied to
T. inequality (5) gives

(7) | \hat{\phi}(\zeta)\leq c_{2}(1+|\zeta|)^{2N-l}\omega_{l}(T\hat{\phi})\sup_{|z|\leq 3\rho}(1+|z+\zeta|)^{N_{2}}e^{\Omega(\frac{y+\eta}{80k2^{n+1}})}\sup_{|z|\leq 3\rho}(1+|z|)^{l}e^{\Omega(\frac{y+\eta}{l})} ,

where C_{2} , N_{2} are positive constants depending on k only and n is the dimen-
sion. From the properties of \Omega one has for any y=Imz, y=(y_{1}, \ldots, y_{n}) , |z|

\leq 3\rho

\Omega(\frac{y+\eta}{80k2^{n+1}})=\sum_{j=1}^{n}\Omega(\frac{y_{j}+\eta_{j}}{80k2^{n+1}})\leq\sum_{j=1}^{n}\Omega(\frac{3A\Omega^{-1}[1og(2+|\xi|)]+3|\eta|}{40k2^{n+1}})

+ \Omega(\frac{|\eta_{j}|}{40k2^{n+1}})

\leq n\Omega(\frac{3|\eta|}{20k2^{n+1}})+\frac{3A}{40k}\log(2+|\xi|)+\Omega(\frac{\eta}{40k})

\leq n\Omega(\frac{3\eta}{40k})+\Omega(\frac{\eta}{40k})+\frac{3A}{40k}\log(2+|\zeta|) ,

hence

\sup_{|z|\leq 3\rho}e^{\Omega(\frac{y+\eta}{80k2^{n+1}})}\leq(2+|\zeta|)^{\frac{3A}{40k}}e^{\Omega(\frac{3n+1}{40k}\eta}) .

And similarly

\sup_{|z|\leq 3\rho}e^{\Omega(\frac{y+\eta}{l})}\leq(2+|\zeta|)^{\frac{6A}{l}}e^{\Omega(\frac{3n2^{n+2}+2}{l}\eta}) .

On the other hand, since \Omega^{-1}(x)\leq x for large x and \Omega(\eta) grows faster than
any linear function of |\eta| for large |\eta| it follows that

\sup_{|z|\leq 3\rho}(1+|z|)^{l}\leq C_{l}e^{\frac{|z|}{3}}\leq C_{l}eA^{\Omega^{-1}[\log(2+|\xi|)]+|\eta|}

\leq C_{l}(2+|\xi|)^{A}e^{|\eta|}\leq C_{l}^{1}2^{A}(1+|\zeta|)^{A}e^{\Omega(\frac{\eta}{20k})} ,

where C_{l} , C_{l}^{1} are constants which depend on k and l only. Thus (7)

becomes

(8)
| \hat{\phi}(\zeta)|\leq 2_{l}^{2A1}(1+|^{2N+N_{2}+\frac{3A}{40k}+\frac{6A}{l}+2A-l}\cross\cross e^{\Omega(\frac{C_{3}C3n+1}{40k}+\frac{\omega_{l}(T\hat{\phi})2+3n2^{n+2}}{l})}\eta+2\Omega(\frac{\zeta 1)\eta}{20k})

,

where C_{3} is a constant which depends on k only. Hence

(9)
(1+|\zeta|)^{k(\frac{\eta}{k})}\leq^{2A}C_{3}C\omega_{l}.(T\hat{\phi})(1+|\zeta|)^{[-l+k+2N+N_{2}+\frac{3A}{40k}+\frac{6A}{l}+2A]}\cross\cross e^{\Omega[(\frac{e_{3n+1}^{-\Omega}}{40k}+\frac{2+2n2^{n+2}|\hat{\phi}(\zeta)|}{l}+\frac{12}{10k})]-\Omega(\frac{1l\eta}{k})}\eta
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By taking l= \max\{2+k+2N+N_{2}+\frac{3A}{40k}+8A, 13 2^{n+2}k\} it follows from (9)

that
\omega_{k}(\hat{\phi})\leq C\omega_{l}(T\hat{\phi}) ,

where C is a constant which depends on k only.
The implication (b)\Rightarrow(a) .
Here I am going to use a technique which was introduced by Ehrenpreise [2]

and was used by many other authors. First we remark that condition ( I)

is implied by the condition: there exist positive constants N, A, L so that

(II) \sup_{|z|\leq A\Omega^{-1}(\log(2+|\xi|))}|\hat{S}(z+\xi)|\geq(1+|\xi|)^{-N} . \xi\in R^{n} . |\xi|\geq L .

The proof will be by contradiction. If ( II) does not hold, then for all j\in N ,

there exists \xi_{j}\in R^{n} so that |\xi_{j}|>e^{j} and

(10) \sup_{|z|\leq A_{j}a_{j}}|\hat{S}(z+\xi_{j})|<(1+|\xi_{j}|)^{-j} ,

where A_{j}=e^{2j} and \alpha_{j}=\Omega^{-1}(\log(2+|\xi_{j}|)) . For each j\in N we define k_{j} to be
the greatest integer equal or less than log \alpha_{j}+1 . Let \phi\in D so that supp \phi\subset

B(0,1) , \phi\geq 0 and \hat{\phi}(0)=1 . For each j\in N we define the function \phi_{j} by \phi_{j}(\xi)

=\alpha_{j}\phi(\alpha_{j}\xi) , thus supp \phi_{j}\subset B(0, \frac{1}{\alpha_{j}}) , we also define the function \psi_{j}^{1} by

\psi_{j}^{1}(\xi)=e^{i<\xi_{j},\xi>}(\phi_{j^{*}}\phi_{j}*\ldots*\phi_{j})(\xi) ,

where the convolution product is being taken k_{j}-times. Hence, supp \psi_{j}^{1}\subset

B(0, \frac{k_{j}}{\alpha_{j}})\subset B(0,1) . Define the function \psi_{j} as the convolution \psi_{j}^{1}*\psi_{j}^{1} , thus

supp \psi_{j}\subset B(0,2) .
From the above definitions it follows that

\hat{\psi}_{j}^{1}(z+\xi_{j})=\int e^{-i<z,\xi>}(\phi_{j}*\ldots*\phi_{j})(\xi)d\xi=(\phi_{j}\hat{*..*}\phi_{j})(z)\wedge. :
=(\hat{\phi}_{j}(z))^{k_{j}} ,

and

\hat{\phi}_{j}(z)=\int e^{-i<\frac{z}{a_{j}},\xi>}\phi(\xi)d\xi=\hat{\phi}(\frac{z}{\alpha_{j}}) .

Thus

(11) \hat{\psi}_{j}^{1}(z+\xi_{j})=\hat{\phi}(\frac{z}{\alpha_{j}})^{k_{j}}and\psi_{j}^{1}(\xi_{j})=(\hat{\phi}(0))^{k_{j}}=1 .
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Since S*K_{M}’=K_{M}’ it follows that S*E=\delta for some E\in K_{M}’, and since \hat{E} is a
continuous linear functional on K_{M} there exist positive integers A, k so that

(12) |\psi_{j}(\xi)|=|<\delta , \tau_{\xi}\check{\psi}_{j}>|=<S*E , \tau_{\xi}\check{\psi}_{j}>|=|<\hat{E}, \tau_{-\xi}(S*\hat{\psi}_{j})>|

\leq A\omega_{k}(\tau_{-\xi}\hat{(S*}\psi_{j}))\leq A\sup_{z\in C^{n}}(1+|z|)^{k}e^{-\Omega(\frac{y}{k})}|\hat{S}(z)|\cdot|\hat{\psi}_{j}(z)|\wedge

\leq A\sup_{z\in C^{n}}(1+|z+\xi_{j}|)^{k}e^{-\Omega(\frac{y}{k})}|\hat{S}(z+\xi_{j})|\cdot|\hat{\psi}_{j}(z+\xi_{j})|+|z|\leq A_{j}a_{j}

,

+ASu|z|>P_{a_{j}}^{(1+|z+\xi_{j}|)^{k}e^{-\Omega(\frac{y}{k})}|\hat{S}(z+\xi_{j})|\cdot|\hat{\psi}_{j}(z+\xi_{j})|}J^{\cdot}

Now we estimate each of the terms on the right hand side of (12). For the
first term we apply the Paley-Wiener theorem to \psi_{j} as element of D, use (10)

and the fact that \Omega grows faster than any linear function of |y| as |y| gets
large, one has for j large enough

(13) A \sup_{|z|\leq A_{j}a_{j}}(1+|z+\xi_{j}|)^{k}e^{-\Omega(\frac{y}{k})}|\hat{S}(z+\xi_{j})||\hat{\psi}_{j}(z+\xi_{j})|

\leq AC_{k}\sup_{|z|\leq A_{j}a_{j}}(1+|z+\xi_{j}|)^{k-2k}e^{-\Omega(\frac{y}{k})+\Omega(\frac{y}{k})}\sup_{|z|\leq A_{j}a_{j}}|\hat{S}(z+\xi_{j})|

\leq AC_{k}(1+|\xi_{j}|)^{-j}<\frac{1}{2}e^{-j},

where C_{k} is constant which depends on k only. Next, we estimate the
second term. By the Paley-Wiener theorem applied to \phi_{j} , \psi_{j}^{1} as elements of
D and S as element of O_{c}’(K_{M}’ : K_{M}’) and the definition of k_{j} , \alpha_{j} it follows from
(11) that

(14) A _{1>}^{su}|z’ PJa_{j}(1+|z+\xi_{j}|)^{k}e^{-\Omega(\frac{y}{k})}|\hat{S}(z+\xi_{j})|\cdot|\hat{\psi}_{j}(z+\xi_{j})

\leq AC_{k}^{1}su|z|>P_{J3}^{(1+|z+\xi_{j}|)^{k+N}e^{-\Omega(\frac{y}{k})+\Omega(\frac{y}{6k})}|\hat{\psi}_{j}^{1}(z+\xi_{j})|\cdot|\hat{\psi}_{j}^{1}(z+\xi_{j})|}a

\leq AC_{k}^{2}suP_{J}a_{j}(1+|z+\xi_{j}|)^{k+N-(2k+N)}e^{-\Omega(\frac{y}{k})+2\Omega(\frac{y}{6k})}|\hat{\psi}_{j}^{1}(z+\xi_{j})||z|>

\leq AC_{k}^{2su}P_{J}a_{j}e^{-\Omega(\frac{y}{k})+2\Omega(\frac{y}{6k})}(C_{1}(1+|\frac{z}{\alpha_{j}}|)_{e^{\frac{|y|}{a_{j}})^{k_{j}}}}^{-1}|z|>

\leq AC_{k}^{3}suP_{J}a_{j}e^{-\Omega(\frac{y}{k})+3\Omega(\frac{y}{6k})}C_{1}^{k_{J}}(1+|\frac{z}{\alpha_{j}}|)^{-k_{j}}|z|>

\leq AC_{k}^{3}C_{1}^{k_{J}}\sup_{|z|>A_{J}a_{j}}(1+|\frac{z}{\alpha_{j}}|)^{-k_{j}} ,

where C_{k}^{1} , C_{k}^{2} and C_{k}^{3} are constants which depend on k only. For any z\in C^{n} .

|z|>A_{j}\alpha_{j} one has 1+| \frac{z}{\alpha_{j}}|>1+A_{j} , hence \sup_{|z|>A_{j}a_{j}}(1+|\frac{z}{\alpha_{j}}|)^{-k_{j}}\leq(1+A_{j})^{-k;} , and

(14) gives
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C(1+|\zeta|)^{k}e^{\Omega(\epsilon\eta)} : where \Omega is a function dual to M in the sense of Young. Let
\zeta\in C^{n} be given, by applying Hormander’s lemma with \rho=A\Omega^{-1}[\log(2+|\xi|)]

+|\eta| , where A is the constant of condition ( I) , one has from the inver-
tibility of S

(18)
| \hat{u}(\zeta)\leq C_{1}^{2}(1+|\zeta|)^{2N_{1}}|z|\leq 3\rho z\in C\sup_{n}\theta(z+\zeta)|z|\leq 3\rho\sup_{n,z\in C},

|\hat{S}(z+\zeta)| .

where C_{1} , N_{1} are the constants of condition ( I) above. By applying the
Paley-Wiener theorem to S and v it follows that there exist constants C_{2} , K_{2} ,
C_{3} and K_{3} which depend on \epsilon and the dimension n so that

(19)
|z| \leq 3\rho\sup_{n,z\in C},|\hat{v}(z+\zeta)|\leq C_{2}(1+|\zeta|)^{kz}e^{\Omega(\frac{\epsilon}{3}\eta})

,

and

(20)
|z| \leq 3\rho\sup_{n,z\in C},|\hat{S}(z+\zeta|\leq C_{3}(1+|\zeta|)^{k_{3}}e^{\Omega(\frac{\epsilon}{3}\eta}) .

Using (19) and (20) to estimate the right hand side of (18) one gets

|\hat{u}(\zeta)|\leq C(1+|\zeta|)^{k}e^{\Omega(\epsilon\eta)} ,

where C=C_{1}^{2}C_{2}C_{3} and k=2N_{1}+k_{2}+k_{3} are constants which depend on \epsilon only.

Next, we consider the case when v\in K_{M} . To show that u\in K_{M} we prove
that for any \epsilon>0 and k any positive integer there exists a C which depends
on k and \epsilon only so that |\hat{u}(\zeta)|\leq C(1+|\zeta|)^{-k}e^{\Omega(\epsilon\eta)} . Let N_{1} and k_{3} be the
constants of (18) and (20) respectively. Let k_{2}= \max\{2N_{1}+k_{3}+13A+k

+1 , \frac{24}{\epsilon}+1\} . By the Paley-Wiener theorem applied to v it follows that there

exists a constant C_{2}^{1} which depends on k_{2} only so that (with \rho as above)

(21)
|z| \leq s_{n}\sup_{z\in c^{\rho}}|\hat{v}(z+\zeta)|\leq C_{2}^{1}

\sup_{n,z\in C},

(1+|z+\zeta|)^{-k_{2}}|z|\leq 3\rho e^{\Omega(\frac{y+\eta}{2^{n}h})}

\leq C_{2}^{2}((1+|\zeta|)^{13A-k_{2}}e^{\Omega((\frac{\epsilon}{10}+\frac{12}{k_{2}}))}\eta ,

where C_{2}^{2} in a constant which depends on k_{2} (and A) only. Using (20) and
(21) to estimate the right hand side of (18) one gets by the choice of k_{2}

| \hat{u}(\zeta)|\leq C_{1}^{2}C_{2}^{2}C_{3}(1+|\zeta|)^{2N_{1}+k_{3}+13A-k_{2}}e^{\Omega}(\frac{\epsilon}{3}\eta)+\Omega((\frac{\epsilon}{10}+\frac{12}{h})\eta)

\leq C(1+|\zeta|)^{-k}e^{\Omega(\epsilon\eta)} ,

where C=C_{1}^{2}C_{2}^{2}C_{3} is a constant which depends on k and \epsilon only.
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(15) A|z|>suP_{JJ}^{(1+|z+\xi_{j}|)^{k}e^{-\Omega(\frac{y}{k})}|\hat{S}(z+\xi_{j})||\hat{\psi}_{j}(z+\xi_{j})|}a

\leq AC_{k}^{3}(\frac{1+A_{j}}{C_{1}})^{-k_{j}}<\frac{1}{2}e^{-j} .

whenever j is large enough. From (12), (13) and (15) one gets

(16) |\psi_{j}(\xi)|\leq e^{-j} whenever j is large enough.

From the definition of \phi , \phi_{j} , \psi_{j}^{1} , \psi_{j} and inequality (16) it follows that

(17) 1=| \hat{\phi}(0)|^{2k;}=|\hat{\psi}_{j}^{1}(\xi_{j})|\cdot|\hat{\psi}_{j}^{1}(\xi_{j})|=|\hat{\psi}_{j}(\xi_{j})|\leq\int|\psi_{j}(\xi)|d\xi

\leq e^{-j}\int_{B(0,2)}d\xi\leq 4^{n}e^{-j} .

As j goes to infinity the left hand side of (17) remains one but the right hand
side converges to zero, the contradiction proves the implication. This com-
pletes the proof of the theorem.

If S\in O_{c}’(K_{M}’, K_{M}’) satisfies any of the above condtions we say that the
entire function \hat{S} is slowly increasing.

REMARK From the above proof it follows that an entire function which
satisfies the growth condition (*) is slowly increasing if and only if the map
f\hat{\phi}arrow\hat{\phi} from fK_{M} into K_{M} is continuous.

EXAMPLES :
(i) Let \hat{S}(\zeta)=e^{i\zeta}, then S\in O_{c}’(K_{M}’ : K_{M}’) for M(x)=e^{x}-x-1 , [51.

For any \xi\in R^{n} , |\xi|\geq e^{8} one has with \rho=\Omega^{-1}[\log(2+|\xi|)]=(\log(2+|\xi|)+1)\cross

(log [\log(2+|\xi|)+1] ) -\log(2+|\xi|) ,

\sup_{|z|\leq\rho,z\in C^{n}},|\hat{S}(z+\xi)|=\sup_{|z|\leq\rho,z\in C^{n}},

e^{-y}\geq 1\geq(1+|\xi|)^{-1}-

Thus S is invertible in K_{M}’.

(ii) Let \hat{S}(\zeta)=1+e^{-\zeta^{2}} then S\in O_{c}’(K_{M}^{\prime }:_{K_{M}’)} for M(x)=|x|^{\frac{4}{3}}, [5]. For
any \xi\in R^{n} one has

|z| \leq 5\Omega^{-1}[1og(2+|\xi|)]\sup_{z\in C^{n}}|\hat{S}(z+\xi)|=\sup_{z\in C^{n}}(1+e^{-(z+\xi)^{2}})\geq 1\geq(1+|\xi|)^{-1}|z|\leq 5[1og(2+|\xi|)]^{114}

Thus S is invertible in K_{M}’.

PROOF OF THEOREM 2: Since S is invertible there exists a u\in K_{M}’ so
that S*u=v . To show that u\in O_{c}’(K_{M}’ : K_{M}’) it suffices to show that for any
\epsilon>0 there exist positive constants k, C which depend on \epsilon so that |\hat{u}(\zeta)|\leq
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PROOF OF THEOREM 3: The implication (a)\Rightarrow(b) . From the continu-
ity of the Fourier transform it suffices to show that the map \hat{\psi}=\hat{S}^{t}\hat{\phi}arrow\hat{\phi} from
S^{t}K_{M}^{m} into K_{M}^{m} is continuous. Since K_{M} and K_{M}^{m} are metrizable continuity is
equivalent to sequential continuity. Suppose (\hat{\psi}_{j}) converges to 0 in K_{M}^{m} as
jarrow\infty . Then, by Cramer’s rule, we have
(22) \hat{\phi}_{lj}= h_{lj} ; l=1,2 , \ldots -m,

\overline{\det(\hat{S}^{t})}

where \hat{\phi}_{lj} is the l -th component of \hat{\phi}_{j} and h_{lj} is the determinant of the matrix
which one gets by replacing the l -th column of \hat{S}^{t} by \hat{\psi}_{j} . By definition of the
topology of K_{M}^{m}, to prove that (\hat{\phi}_{j}) converges to 0 it suffices to show that \hat{\phi}_{lj}

converges to 0 for each l=1,2 , \ldots , m. Let k be any given positive integer,
we prove that \rho_{k}(\hat{\phi}_{lj}) converges to zero as j goes to infinity, for l=1,2 , \ldots .
m.

Since \hat{\psi}_{j} converges to 0 in K_{M}^{m} and S^{t}\in O_{c}’(K_{M}’m:K_{M}’m) it follows from the
Paley-Wiener theorem and the definition of the topology of K_{M} that (h_{lj})

converges to 0 in K_{M} as j goes to infinity, for each l=1,2, \ldots . m . Let \zeta=\xi

+i\eta be any point in C^{n} , for each l=1,2 , \ldots . m, applying Theorem D to \hat{\phi}_{lj}

in (22) with \rho=A\Omega^{-1}[\log(2+|\xi|)]+|\eta| where A is the constant of condition
(I), which \det(\hat{S}^{t}) satisfy, it follows that

(23)
| \hat{\phi}_{lj}(\zeta)|\leq|z|\leq z\in C\sup_{n}h_{lj}(z+\zeta)|3\rho,|z|\leq 3\rho z\in C\sup_{n}|\det(\hat{S}^{t})(z+\zeta)|/[ \sup_{|z|\leq\rho,z\in C^{n}}, |\det(\hat{S}^{t})(z+\zeta)]^{2}-

Next we estimate each of the terms on the right hand side of (23). Since
\det(\hat{S}^{t}) is slowly increasing it follows that

(24) [ \sup_{|z|\leq\rho}|\det(\hat{S}^{t})(z+\zeta)|]^{-2}\leq C_{1}(1+|\zeta|)^{N_{1}} .

for some positive constants C_{1} , N_{1} .
By applying the Paley-Wiener theorem to the entries of \hat{S}^{t} and using the
properties of \Omega it follows that there exist positive constants C_{2} , N_{2} which
depend on k only, such that

(25) \sup_{|z|\leq 3\rho}|\det(\hat{S}^{t})(z+\zeta)|\leq C_{2}(1+|\zeta|)^{N_{2}}e^{\Omega(\frac{\eta}{10k})} .

Using (24) and (25) to estimate the right hand side of (23) one gets

(26) | \hat{\phi}_{lj}(\zeta)|\leq C_{1}C_{2}(1+|\zeta|)^{N_{1}+N_{2}}e^{\Omega(\frac{\eta}{10k})}\sup_{|z|\leq 3\rho}|h_{lj}(z+\zeta)| .

Since (h_{lj}) converges to 0 in K_{M} as j goes to infinity, it follows that for any
s\in N one has
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(27) \rho_{s}(h_{lj})=\sup_{z=x+iy\in C^{n}}(1+|z+\zeta|)^{s}e^{-\Omega(\frac{y+\eta}{s})}|h_{lj}(z+\zeta)|arrow 0 as jarrow\infty .

The number s will be fixed later. One also has for any z\in C^{n}

|h_{lj}(z+\zeta)|\leq(1+|z+\zeta|)^{-s}e^{\Omega(\frac{\eta+y}{s})}\rho_{s}(h_{lj})\leq(1+|\zeta|)^{-S}(1+|z|)^{s}e^{\Omega(\frac{\eta+y}{s})}\rho_{s}(h_{lj}) ,

hence

(28)
|z| \leq 3\rho\sup_{n,z\in C},

|h_{lj}(z+ \zeta)|\leq\rho_{s}(h_{lg})(1+|\zeta|)^{-s}\sup_{|z|\leq 3\rho}(1+|z|)^{s}\sup_{|z|\leq 3\rho}e^{\Omega(\frac{\eta+y}{s})}

\leq C_{s}\rho_{s}(h_{\ell j})(1+|\zeta|)^{-s}2^{A}(1+|\zeta|)^{A}e^{\Omega(\frac{\eta}{s})}2^{\frac{12A}{s}}(1+|\zeta|)_{C^{\Omega(\frac{14}{s}\eta}}^{\frac{12A}{s}})

\leq C_{s}2^{13A}\rho_{s}(h_{lj})(1+|\zeta|)^{13A-S}e^{\Omega(\frac{15}{s}\eta}) ,

where C_{s} is a constant which depends on s only.
Using (28) to estimate the right hand side of (26) one gets

(29) |\hat{\phi}_{lj}(\zeta)|\leq C_{1}C_{2}C_{s}(1+|\zeta|)^{N_{1}+N_{2}+13A-S}e^{\Omega((\frac{15}{s}+\frac{1}{10k}))}\eta\rho_{s}(h_{lj}) ,

hence

(30) (1+|\zeta|)^{k}e^{-\Omega(\frac{\eta}{k})}|\hat{\phi}_{lj}(\zeta)|\leq C_{1}C_{2}C_{3}(1+|\zeta|)^{k+N_{1}+N_{2}+13A-S}

e^{\Omega((\frac{15}{s}+\frac{1}{10k}))-\Omega(\frac{\eta}{k})}\cross\eta\rho_{s}(h_{lj}) .

Let s= \max\{k+N_{1}+N_{2}+13A+1,30k\} , thus s depends on k only and the
same is true for the constant C=C_{1}C_{2}C_{S} . Thus one has

(31) \rho_{k}(\hat{\phi}_{lj})\leq C\rho_{s}(h_{lj}) .

From (27) and (31) it follows that for every l=1 , ... . m , the sequence
(\hat{\phi}_{lj}) converges to 0 in K_{M} . This proves the implication.
The implication (b)\Rightarrow(c) .
This follows immediately from the Hahn-Banach theorem.
The implication (c)\Rightarrow(b) .
Since K_{M}^{m} is metrizable it suffices to show that the map takes bounded sets
into bounded sets. By Mackey’s theorem the bounded sets are the same in
the strong and the weak topologies of K_{M}^{m}, hence we prove that the image of
every weakly bounded subset of S^{t}*K_{M}^{m} is weakly bounded in K_{M}^{m}. Let B be
weakly bounded in S^{t}*K_{M}^{m} and let v\in K_{M}^{\prime m} , since S*K_{M}’m=K_{M}’m there exist a u
\in K_{M}’m and a constant C which depends on u only such that

|<v , \phi>|=|<S*u , \phi>|=|<u , S^{t}*\phi>|\leq C

whenever S^{t}*\phi\in B . This proves the implication.
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Closing remarks: (1) I beleive that the implication (b)\Rightarrow(a) of TheO-
rem 3 is correct but I don’t have a complete proof for it.
(2) The question of finding necessary and sufficient conditions for
solvability of underdetermined systems of convolution equations in K_{M}’ is an
interesting one, and still open.
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