Construction of a parametrix for a weakly hyperbolic differential operator

Fausto SEGALA (Received April 7, 1987, Revised June 23, 1987)

1. Introduction

In this paper we construct a microlocal parametrix for the Cauchy problem:

(1.1)
$$\begin{cases} (D_t^2 - A(t, x, D_x)) u(t, x) = 0, & (t, x) \in [0, T] \times \mathbb{R}^N \\ u(0, x) = g_0(x) & , x \in \mathbb{R}^N \\ \partial u / \partial t(0, x) = g_1(x) & , x \in \mathbb{R}^N \end{cases}$$

for small T>0, where $A(t, x, D_x)$ is a second order differential operator whose principal symbol $A_2(t, x, \xi)$ satisfies the following conditions:

(1.2)
$$A_2(t, x, \xi) \ge 0 \text{ for } t \ge 0$$

(1.3)
$$\frac{\partial A_2}{\partial t}(0, x, \boldsymbol{\xi}) \neq 0 \text{ where } A_2(0, x, \boldsymbol{\xi}) = 0, \boldsymbol{\xi} \neq 0$$

Conditions (1.2), (1.3) imply that in a conic neighborhood of a point (x_0, ξ_0) for which $A_2(0, x_0, \xi_0) = 0$ and for small $t \ge 0$, we can factor A_2 as

$$(1.4) A_2(t, x, \xi) = (t + B(x, \xi))C(t, x, \xi)$$

with B homogeneous of degree 0, $B \ge 0$ and C is homogeneous of degree 2 with C > 0. We recall that a parametrix for (1, 1), under conditions (1, 2), (1, 3) is already known in some particular cases.

When $B \equiv 0$, i. e. $A_2(t, x, \xi) = tC(t, x, \xi)$ (TRICOMI operator), a parametrix for (1.1) was given by IMAI [2], who treated also the case when B does not depend on x (cfr. IMAI [3]). Furthermore, if B does not depend on ξ , a parametrix for (1,1) has been constructed in SEGALA [6] (see also YOSHIKAWA [8]). We point out that ESKIN [1] and MELROSE [4] treated the "diffractive" case, where A_2 is factored as in (1.4) and B satisfies $\nabla_{\xi} B \neq 0$ where B = 0.

Here we will treat the general case when conditions (1.2), (1.3) are satisfied. Precisely, for every point $(x_0, \xi_0) \in T^* \mathbb{R}^N \setminus \{0\}$ where $A_2(0, x_0, \xi_0) = 0$, we will find a conic neighborhood Γ of (x_0, ξ_0) and for small T > 0 construct a continuous operator

E:
$$\mathscr{E}'_{\Gamma}(\mathbf{R}^N) \times \mathscr{E}'_{\Gamma}(\mathbf{R}^N) \to C^{\infty}([0, T], \mathscr{D}'(\mathbf{R}^N))$$

such that

(1.5)
$$\begin{cases} PE(g_0, g_1) \in C^{\infty}([0, T] \times \mathbf{R}^N) \\ E(g_0, g_1)_{|t=0} - g_0 C^{\infty}(\mathbf{R}^N) \\ \frac{\partial E}{\partial t}(g_0, g_1)_{|t=0} - g_1 C^{\infty}(\mathbf{R}^N) \end{cases}$$

We use the notation $\mathscr{E}'_{\Gamma} = \{ v \in \mathscr{E}'(\mathbf{R}^N) | WF(v) \subset \Gamma \}.$

2. Eikonal equation

We consider the eikonal equation associated with the operator $D_t^2 - A$:

(2.1)
$$\left(\frac{\partial \boldsymbol{\varphi}}{\partial t}(t, x, \boldsymbol{\xi})\right)^2 = A_2(t, x, \nabla_x \boldsymbol{\varphi}(t, x, \boldsymbol{\xi})).$$

Let $(x_0, \xi_0) \in T^* \mathbb{R}^N \setminus \{0\}$ for which $B(x_0, \xi_0) = 0$. We have the following non-trivial result proved by IMAI[3].

Proposition 2.1.

There exist a conic neighborhood $[0, T] \times \Gamma$, $\Gamma \subset T^* \mathbb{R}^N \setminus \{0\}$, of $(0, x_0, \xi_0)$ and two real functions $\theta(t, x, \xi)$, $\rho(t, x, \xi) \in C^{\infty}(\mathbb{R}^{N+1} \times \mathbb{R}^N \setminus \{0\})$ homogeneous of degree 1 and 2/3 respectively, such that

(2.2)
$$\rho(t, x, \xi) = 0 \text{ on } t + B(x, \xi) = 0$$

$$(2.3) \qquad \frac{\partial \rho}{\partial t}(0, x_0, \xi_0) > 0$$

(2.4)
$$\frac{\partial \theta}{\partial t}(t, x, \xi) = 0 \text{ on } t + B(x, \xi) = 0$$

(2.5)
$$\det (\theta_{x\xi}(0, x_0, \xi_0)) \neq 0.$$

Moreover, putting $\varphi_{\pm} = \theta \pm 2/3 \rho^{3/2}$, we have

(2.6)
$$\left(\frac{\partial \varphi_{\pm}}{\partial t}(t, x, \xi) \right)^2 = A_2(t, x, \nabla_x \varphi_{\pm}(t, x, \xi))$$

for $(t, x, \xi) \in [0, T] \times \Gamma \cap \{(t, x, \xi) | \rho(t, x, \xi) \ge 0\} = X$.

From (2.4) and (2.6) it follows that on a conic neighborhood of (x_0, ξ_0) , we have:

(2.7)
$$B(x, \xi) = B(x, \nabla_x \tilde{\theta}(x, \xi))$$

where $\tilde{\theta}(x, \xi) = \theta(-B(x, \xi), x, \xi)$.

3. Transport equations

For simplicity, we assume in the sequel that $A(t, x, \xi) = A_2(t, x, \xi) = \sum_{p,q=1}^{N} a_{pq}(t, x) \xi_p \xi_q$. This is not a restriction, because we shall see that adding terms of degree 1 and 0 to A will not influence the construction. Our aim is to find two amplitudes k_{\pm} in such a way that

$$(D_1^2 - A)(e^{i\varphi_{\pm}}k_{\pm}) \equiv 0$$

on some conic neighborhood $[0, T'] \times \Gamma' \subset [0, T] \times \Gamma$ of $(0, x_0, \xi_0)$.

From (2.6) it follows that on X (We omit \pm and use the notation $g_t = \partial g/\partial t$, $g_q = \partial g/\partial x_q$);

$$(3.1) (D_t^2 - A)(e^{i\varphi}k) = e^{i\varphi} \{ 2\varphi_t D_t k - 2 \sum_{pq} a_{pq} \varphi_p D_q k - i\varphi_{tt}k + i \sum_{pq} a_{pq} k + D_t^2 k - \sum_{pq} a_{pq} D_p D_q k \}.$$

Our idea is to seek k as an asymptotic expansion $\sum_{0}^{\infty} k_{-\nu}$ with $k_{-\nu}$ homogeneous (in ξ) of degree- ν . Therefore, collecting terms according to their homogeneity, the relevant contribution to the right hand side of (3.1) is given by

$$e^{i\varphi}\{2\varphi_tD_tk-2\sum a_{pq}\varphi_pD_qk-i(\varphi_{tt}-\sum a_{pq}-\varphi_{pq})k\}$$

Since $\varphi_{tt} = \theta_{tt} + 1/2 \ \rho^{-1/2} \rho_t^2 + \rho^{1/2} \rho_{tt}$, the coefficient $P\varphi$ of k has a singularity of the type $\rho^{-1/2}$. To overcome this obstacle we seek formally k of the form $\rho(t, x, \xi)^{-1/4} \sum_{0}^{\infty} k_{-\nu}(t, x, \xi)$.

with $k_{-\nu}(t, x, \xi)$ homogeneous (in ξ) of degree- ν . Consider the change of variable $t \rightarrow \rho(t, x, \xi)$ with its inverse $\rho \rightarrow t(\rho, x, \xi)$ and put

$$\tilde{k}_{-\nu}(\rho, x, \xi) = k_{-\nu}(t(\rho, x, \xi), x, \xi)$$

The transport equation for $\tilde{k_0}$ becomes:

$$\begin{split} &-ie^{i\varphi}\rho^{-/4}\{2(\sqrt{\rho}\,\rho_t^2\!+\theta_t\!\rho_t\!-\!\sum\;a_{pq}\theta_p\!\rho_q\!-\!\sqrt{\rho}\;\sum\;a_{pq}\rho_p\!\rho_q)\frac{\partial\tilde{k}_0}{\partial\rho}\\ &-2\;\sum\;(a_{pq}\theta_p\!+\!\sqrt{\rho}\;a_{pq}\!\rho_p)\frac{\partial\tilde{k}_0}{\partial\chi_q}\\ &+(-\frac{1}{2}\theta_t\,\rho_t\,\rho^{-1}\!+\theta_{tt}\!-\!\sqrt{\rho}\,\rho_{tt}\!-\!\sum\;a_{pq}\theta_{pq}\!-\!\sqrt{\rho}\;\sum\;a_{pq}\\ &+\frac{1}{2}\;\sum\;a_{pq}\theta_p\!\rho_q\!\rho^{-1})\tilde{k}_0\}\!=\!0. \end{split}$$

By the results of sect. 2 it follows that the coefficient of $\frac{\partial \tilde{k}_0}{\partial \rho}$ can be written

as $2\sqrt{\rho}$ $a(\sqrt{\rho}, x, \xi) + <\tilde{\theta}_{x\xi}^{-1}(x, \xi)\nabla_{\xi}B(x, \xi)$, $\nabla_{x}B(x, \xi) > q(x, \xi)$, where $a(t, x, \xi)$ is C^{∞} and elliptic for $s \ge 0$ and for (x, ξ) in a conic neighborhood of $(x_0, \xi_0)(<, >$ denotes the scalar product in \mathbb{R}^N). Moreover $a(\sqrt{\rho}(t, x, \xi), x, \xi)$ is homogeneous of degree 4/3. Finally $q(x, \xi)$ is homogeneous of degree 8/3 and elliptic in a conic neighborhood of (x_0, ξ_0) .

The coefficient of $\frac{\partial k_0}{\partial x_q}$ is a C^{∞} function of $(\sqrt{\rho}, x, \xi)$ and the coefficient of $\tilde{k_0}$ can be written as a sum of the type $c(\sqrt{\rho}, x, \xi) + \rho^{-1}e(x, \xi)$, where c is a C^{∞} function and $e(x, \xi) = \langle \tilde{\theta}_{x\xi}^{-1} \nabla_{\xi} B(x, \xi), \nabla_{x} B(x, \xi) > p(x, \xi)$, with p elliptic of order 8/3. We rewrite the equation for $\tilde{k_0}$ as:

$$(3.2) \qquad (2\sqrt{\rho} \ a+b)\frac{\partial \tilde{k}_0}{\partial \rho} + < L, \ \frac{\partial \tilde{k}_0}{\partial x} > + (c+\rho^{-1}e)\tilde{k}_0 = 0.$$

We seek $\tilde{k}_0(\rho, x, \xi)$ as a sum $\sum_{0}^{\infty} \tilde{k}_0^j(\rho, x, \xi)$ with $\tilde{k}_0^j(\rho(t, x, \xi)x, \xi)$ homogeneous of degree 0.

Precisely we have the following equations (we add the initial condition for \tilde{k}_0^0)

$$(3.3)_{0} \begin{cases} 2\sqrt{\rho} \ a\frac{\partial \tilde{k}_{0}^{0}}{\partial \rho} + \langle L, \frac{\partial \tilde{k}_{0}^{0}}{\partial x} \rangle + c \ \tilde{k}_{0}^{0} = 0 \\ \tilde{k}_{0|\rho=0}^{0} = 1 \end{cases}$$

$$(3.3)_{j} \qquad 2\sqrt{\rho} \ a\frac{\partial \tilde{k}_{0}^{j}}{\partial \rho} + \langle L, \frac{\partial \tilde{k}_{0}^{j}}{\partial x} \rangle + c \ \tilde{k}_{0}^{j}$$

$$(3.3)_{j} 2\sqrt{\rho} a\frac{\partial \tilde{k}_{0}^{j}}{\partial \rho} + \langle L, \frac{\partial \tilde{k}_{0}^{j}}{\partial x} \rangle + c \tilde{k}_{0}^{j}$$
$$= -b\frac{\partial \tilde{k}_{0}^{j-1}}{\partial \rho} - \rho^{-1}e \tilde{k}_{0}^{j-1}, j \geq 1.$$

By the change of variable $\rho = s^2$, and by writing $\hat{k}(s, x, \xi) = \tilde{k}(s, x, \xi)$, we obtain the following equations with new a, b, c, L, e

$$(3.4)_0 \qquad \left\{ \frac{\partial \hat{k}_0}{\partial s} + \langle \frac{L}{a}, \frac{\partial \hat{k}_0^0}{\partial s} \rangle + \frac{c}{a} \hat{k}_0^0 = 0 \\ \hat{k}_{0|s=0}^0 = 1 \qquad \hat{a} \right\}$$

$$(3.4)_{j} \frac{\partial \hat{k}_{0}}{\partial s} + \langle \frac{L}{a}, \frac{\partial \hat{k}_{0}^{j}}{\partial x} \rangle + \frac{c}{a} \hat{k}_{0}^{j}$$

$$= -\frac{1}{a} \left[\frac{b}{2s} \frac{\partial \hat{k}_{0}^{j-1}}{\partial s} + \frac{e}{s^{2}} \hat{k}_{0}^{j-1} \right] = \hat{f}_{0}^{0}, \ j \geq 1.$$

The solution of $(3.4)_0$ is a C^{∞} function $\hat{k}_0^0(s, x, \xi)$ and $\hat{k}_0^0(\sqrt{\rho}(t, x, \xi), x, \xi)$ is homogeneous of degree 0.

To solve $(3.4)_j$, we write $\hat{k}_0^j = h_j \hat{k}_0^0$ and then we have

$$(3.5) \qquad \frac{\partial h_j}{\partial s} + \langle \frac{L}{a}, \frac{\partial h_j}{\partial x} \rangle = \frac{\hat{f}_0^i}{\hat{k}_0^0}$$

Now consider the system

$$\begin{cases} \dot{x}(s) = L(s, x(s), \xi) \\ x(0) = x_0 \end{cases}$$

and let $x(s, x, \xi)$ be its solution. If $x_0(s, x, \xi)$ is the inverse map, we solve (3.5) by taking

$$(3.6)_0^j h_j(s, x, \xi) = \int_{|a| 1/3}^s (\hat{f}_0^i / \hat{k}_0^0)(z, x(z, x_0(s, x, \xi), \xi), \xi) dz.$$

The problem to sum $\sum_{0}^{\infty} \hat{k}_{0}^{i}$ will be examined later on. Now consider the transport equation for $\tilde{k}_{-\nu}$, $\nu \ge 1$. By (3.1) we have the equation

$$(3.7) \qquad (2\sqrt{\rho} \ a+b)\frac{\partial \tilde{k}_{-\nu}}{\partial \rho} + \langle L, \frac{\partial \tilde{k}_{-\nu}}{\partial x} \rangle + (c+\rho^{-1}e)\tilde{k}_{-\nu}$$

$$= \frac{5}{16}\rho^{-2}(\rho_t^2 - \sum a_{ij}\rho_i\rho_j)\tilde{k}_{-\nu+1}$$

$$-\frac{1}{4}\rho^{-1}(2\rho_t^2\frac{\partial \tilde{k}_{-\nu+1}}{\partial \rho} + \rho_{tt}\tilde{k}_{-\nu+1} - 2\sum a_{ij}\rho_i\rho_j\frac{\partial \tilde{k}_{-\nu+1}}{\partial \rho}$$

$$-\sum a_{ij}\rho_{ij}\tilde{k}_{-\nu+1} - 2\sum a_{ij}\rho_i\frac{\partial \tilde{k}_{-\nu+1}}{\partial x_j}$$

$$+\frac{\partial^2 \tilde{k}_{-\nu+1}}{\partial \rho^2}\rho_t^2 - \frac{\partial \tilde{k}_{-\nu+1}}{\partial \rho}\rho_{tt} - \sum a_{ij}\rho_i\rho_j\frac{\partial^2 \tilde{k}_{-\nu+1}}{\partial \rho^2}$$

$$-2\sum a_{ij}\rho_i\frac{\partial^2 \tilde{k}_{-\nu+1}}{\partial \rho\partial x_j}\frac{\partial^2 \tilde{k}_{-\nu+1}}{\partial \rho} - \sum a_{ij}-\sum a_{ij}\rho_{ij}\frac{\partial^2 \tilde{k}_{-\nu+1}}{\partial x_j\partial x_j} = f_{-\nu}^0.$$

Formally, we write $\tilde{k}_{-\nu} = \sum_{0}^{\infty} \tilde{k}_{-\nu}^{j}$ with $\tilde{k}_{-\nu}^{j}$ ($\rho((t, x, \xi), x, \xi)$ homogeneous of degree 0. Then

$$(3.8)^{0}_{\nu} \qquad 2\sqrt{\rho} \ a \frac{\partial \tilde{k}^{0}_{-\nu}}{\partial \rho} + \langle L, \nabla_{x} \tilde{k}^{0}_{-\nu} \rangle + c \ \tilde{k}^{0}_{-\nu} = f^{0}_{-\nu}.$$

$$(3.8)_{\nu}^{j} \quad 2\sqrt{\rho} \ a \frac{\partial \tilde{k}_{-\nu}^{j}}{\partial \rho} + \langle L, \nabla_{x} \tilde{k}_{-\nu}^{j} \rangle + c \ k_{-\nu}^{j}$$
$$= -b \frac{\partial \tilde{k}_{-\nu}^{j-1}}{\partial \rho} - \rho^{-1} \ c \ \tilde{k}_{-\nu}^{j-1}$$

We make the change of variable $\rho = s^2$ and so, $(3.8)_{\nu}$, $(3.9)_{\nu}$ assume the form

$$(3.9)_{\nu}^{j} \quad \frac{\partial \hat{k}_{-\nu}^{j}}{\partial s} + < \frac{L}{a}, \ \nabla_{x} \hat{k}_{-\nu}^{j} > + \frac{C}{a} \hat{k}_{-\nu}^{j} = \hat{f}_{-\nu}^{j}$$

for $j=0, 1, 2, \dots$ We seek a solution of $(3.9)^j_{\nu}$ on the form $\hat{k}^j_{-\nu} = h^j_{-\nu} k^0_0$. Then, we can take

$$(3.10)^{j}_{\nu} \quad h^{j}_{-\nu}(s, x, \xi) = \int_{|\xi|^{1/3}}^{s} (\hat{f}^{j}_{-\nu}/\hat{k}^{0}_{0})(z, x(z, x_{0}(s, x, \xi), \xi), \xi) dz.$$

To give a meaning to the sum $\sum_{\nu} \sum_{j} \hat{k}_{-\nu}^{j}$, we introduce a class of symbols. We say that a function $p(s, x, \xi) \in C^{\infty}([1, \infty] \times \mathbb{R}^{N} \times \mathbb{R}^{N})$ is a symbol of class $S^{M,q}(M, Q \in \mathbb{R})$ if

$$|D_s^j D_{\xi}^{\alpha} D_x^{\beta} p(s, x, \xi)| \le C s^{M-j} |\xi|^{Q-2|\alpha|/3+|\xi|/3}$$

for $s \ge 1$, $x \in \mathbb{R}^N$, $|\xi| \ge 1$.

Then, we can write

88

(3.11)
$$\hat{k}_0^0(s, x, \xi) = 1 + s \ m_0^0(s, x, \xi)$$

with $m_0 \in S^{1,-1/3}$. This follows from the fact that m_0 is C^{∞} for $s \ge 0$ and m_0 $(\sqrt{\rho}(t, x, \xi), x, \xi)$ is homogeneous of degree -1/3. Now observe that for $t \ge 0$,

$$(3.12) \quad |\langle \widetilde{\theta}_{x\xi}^{-1} \nabla_{\xi} B(x, \xi), \nabla_{x} B(x, \xi) \rangle | q(x, \xi)$$

$$\leq CB(x, \xi) |\xi|^{5/3} \leq C(t + B(x, \xi)) |\xi|^{2/3} |\xi| \leq C' \rho |\xi|.$$

From (3.11) and (3.12), by using an inductive argument as in [5], we conclude that for $j \ge 1$:

$$(3.13)_{b}^{j} \qquad \qquad \hat{k}_{b}^{j} \in S^{j,-j/3}$$

We observe that for $s|\xi|^{-1/3} \le 1/2$, $S^{j+1,-(j+1)/3} \subset S^{j,-j/3}$. Then it is possible to define $\hat{k}_0' \in S^{1,-1/3}$ in such a way that $\hat{k}_0' - \sum_1^N \hat{k}_0^j \in S^{N+1,-(N+1)/3}$ for every $N \in \mathbb{N}$. Similarly, for $\nu \ge 1$ we can write (see [5])

$$(3.14) \qquad \hat{k}_{-\nu} = (-1)^{\nu} \frac{\prod_{1}^{\nu} (6m-5) \prod_{1}^{\nu} (6m-1)}{\nu ! 48^{\nu}} (s^{-3\nu} + \hat{k}'_{-\nu})$$

with $k'_{-\nu} \in S^{1,-1/3}$. We introduce the notation $f^*(s, x, \xi) = f(t(s^2, x, \xi), x, \xi)$. By $p(t, x, \xi) \cong \sum p_j(t, x, \xi)$, we mean that $p^* \cong \sum p_j^*$. We denote by $\alpha^{\pm}_{-\nu}$ the coefficient of the asymptotic expansion of the Airy functions $A_{\pm}(z) = 2\pi e^{\pm i2\pi 3}$ $Ai(e^{\pm i2\pi 3}(-z))$ (see WASOW [7]).

Summing up, we have the following result

Proposition 3.1.

There exist $\mu_{-\nu}^{\pm} \in S^{0,-1/3}$ such that k_{\pm} defined by

(3.15)
$$k_{\pm}(t, x, \xi) \cong \rho(t, x, \xi)^{-1/4} \times \sum_{0}^{\infty} \rho(t, x, \xi)^{-3\nu/3} (\alpha_{-\nu}^{\pm} + \sqrt{\rho} \mu_{-\nu}^{\mp} (\sqrt{\rho(t, x, \xi)}, x, \xi)),$$

satisfy:

$$(3.16) (D_t^2 - A)(e^{i\varphi_{\pm}}k_{\pm}) = e^{i\varphi_{\pm}}(|\xi|^{4/3}h_{\pm} + n_{\pm})$$

With $h_{\pm}^* \in S^{-\infty,0}$ and $n_{\pm}^* \in \bigcap_{0}^{\infty} S^{j,-j/3}$ for (x, ξ) microlocally near to (x_0, ξ_0) and $s|\xi|^{-1/3} \in [0, T]$.

From (3.15) it follows that

$$(3.17) \qquad (e^{i\varphi_{\pm}}k_{\pm}/A_{\pm}-1)^{\#} \in S^{1,-1/3} \oplus S^{-\infty,0}.$$

Since $\varphi_{\pm}(t, x, \xi) = \tilde{\theta}(x, \xi) + \rho(t, x, \xi)^2 \delta(t, x, \xi) \pm 2\rho(t, x, \xi)^{3/2}/3$ with $\tilde{\theta}$ homogeneous of degree 1 and δ homogeneous of degree-1/3, we can write (from (3.16)):

$$(3.18) \qquad (D_t^2 - A)(e^{i\varphi_{\pm}}k_{\pm}) = |\xi|^{4/3}e^{i\tilde{\theta}_{\pm}}h_{\pm} + e^{i\varphi_{\pm}}n_{\pm}$$

for some new $h_+^* \in S^{-\infty,0}$.

Now set $\xi(t, x, \xi) = (t + B(x, \xi))A'_t(-B(x, \xi)^{1/3}$ and introduce a cut-off function $\chi(\xi)$ which equals 0 for $\xi \le 1$ and equals 1 for $\xi \ge M > 1$. Then, by defining $B_+ = e^{i(\theta - \tilde{\theta} \pm 2\rho^{3/2}/3)}$ k_+ , we obtain

$$\begin{split} (3.19) \quad & (D_t^2 - A)(e^{i\varphi_\pm}(\chi k_\pm)) = (D_t^2 - A)(\chi e^{i\tilde{\theta}}e^{i\theta - \tilde{\theta} \pm 2\rho^{3/2}/3)}k_\pm) \\ & = e^{i\theta}A_t'(-B(x,\xi),x,\xi)^{1/3}(-\chi''B_\pm - 2\chi'\frac{\partial B_\pm}{\partial \xi} + \Sigma^\pm) \\ & + e^{i\tilde{\theta}}|\xi|^{4/3}\chi h_\pm + e^{i\varphi_\pm}\chi n_\pm, \text{ with } \Sigma^\pm \in S^{0,-1/3} \end{split}$$

Eq. (3.19) is a consequence of (3.18) and of the fact that if $g(s) \in S^{M,Q}$, and q(s) has compact support, then $(qg)(s) \in S^{-\infty,Q}$.

Finally,we try to construct two amplitudes $a_{\pm}(t, x, \xi) \in S^0_{2/3,2/3,1/3}$ (in the sense that $|D_t^j D_\xi^{\alpha} D_x^{\beta} a| \le C (1+|\xi|)^{2j/3-2|\alpha|/3+|\beta|/3}$) such that

$$(3.20) (D_t^2 - A)(e^{i\varphi_{\pm}}(\chi k_{\pm}) + e^{i\tilde{\theta}}a_{\pm}) \in S_{2/3,2/3,1/3}^{\infty}$$

We seek \tilde{a}_{\pm} as an asymptotic development $\sum_{0}^{\infty} a_{\nu}^{\pm}$ with $a_{\nu}^{\pm} \in S_{2/3,2/3,1/3}^{\nu/3}$. By putting $a_{\pm}(\xi(t, x, \xi), x, \xi) = a_{\pm}(t, x, \xi)$, we have

$$\begin{split} &(D_t^2 - A)(e^{i\tilde{\theta}}a_\pm) \\ &= e^{i\tilde{\theta}}A_t'(-B(x,\,\xi),\,x,\,\xi)^{2/3}\frac{\partial^2\tilde{a}_\pm}{\partial\xi^2} \\ &- e^{i\theta}\{A(t,\,x,\,\nabla_x\tilde{\theta}(x,\,\xi))\,\tilde{a}_\pm - <\!\nabla_x\!A(t,\,x,\,\nabla_x\tilde{\theta}(x,\,\xi)),\\ &\frac{\partial\tilde{a}_\pm}{\partial\xi}\nabla_x\xi(t,\,x,\,\xi)\!> - <\!\nabla_x\!A(t,\,x,\,\nabla_x\tilde{\theta}(x,\,\xi),\,\,\nabla_x\tilde{a}\!> + \dots\} \end{split}$$

Observe that $A(-B(x, \xi), x, \nabla_x \tilde{\theta}(x, \xi)) = 0$ and hence we can write (at least formally), $A(t, x, \xi) = \sum_{1}^{\infty} (t + B(x, \xi))^i A^{(j)} (-B(x, \xi), x, \xi)/j!$. This implies that the transport equations for \tilde{a}_{\pm} are of the following type:

$$\frac{\partial^2 \tilde{a}_{\pm}}{\partial \xi^2} + \xi \tilde{a}_{\pm} + A'_{t}(-B(x, \xi), x, \xi)^{-2/3} L \tilde{a}_{\pm} = F_{\pm} + G_{\pm}$$

where $F_{\pm} = \chi'' B_{\pm} + 2\chi' \frac{\partial B_{\pm}}{\partial \xi} + \Sigma^{\pm} + \chi h_{\pm}$, $G_{\pm} = \chi |\xi|^{-4/3} e^{i[\theta - \tilde{\theta} + \frac{2}{3}\rho^{2/3}]} n_{\pm}$ and $L = [B'_{\xi} (x, \nabla_x \tilde{\theta}(x, \xi)) C(x, \xi) \nabla_x B(x, \xi) + \xi \nabla_x C(x, \xi) \nabla_x B(x, \xi)] \frac{\partial}{\partial \rho} + \dots$ Then a_{\pm}^0 will be a solution of

$$(3.21)_0$$
 $\frac{\partial^2 \tilde{a}_{\pm}^0}{\partial \xi^2} + \xi \tilde{a}_{\pm}^0 = F_{\pm} + G_{\pm}$

and a_{\pm}^{ν} , for $\nu \ge 1$, will be a solution of

$$(3.21)_{\nu} \quad \frac{\partial^2 \tilde{a}_{\pm}^{\nu}}{\partial \zeta^2} + \zeta \tilde{a}_{\pm}^{\nu} = L \tilde{a}_{\pm}^{\nu-1}$$

We take as \tilde{a}_{\pm}^{0} , te following solutions of $(3.21)_{0}$:

$$(3.22)_{0} \quad \tilde{a}_{\pm}^{0}(\xi, x, \xi) = \frac{A_{+}(\xi)}{\gamma} \left[\int_{\xi}^{\infty} A_{-}(z) F_{\pm}(z, x, \xi) dz - \int_{0}^{\xi} A_{-}(z) G_{\pm}(z, x, \xi) dz \right] - \frac{A_{-}(\xi)}{\gamma} \left[\int_{\xi}^{\infty} A_{+}(z) F_{\pm}(z, x, \xi) dz - \int_{0}^{\xi} A_{+}(z) G_{\pm}(z, x, \xi) dz \right]$$

where $\gamma = A_+(\xi)A'_-(\xi) - A'_+(\xi)A_-(\xi)$ (which is a constant $\neq 0$). It is not difficult to see that

(3.23)
$$\tilde{a}_{\pm}^{0}(\xi, x, \xi) = b_{\pm}^{0}(\xi, x, \xi) + c_{\pm}^{0}(\xi, x, \xi) |\xi|^{-2/3}$$

with $b_{\pm}^{0} \in S^{-\infty,0}$ and $c_{\pm}^{0} \in \bigcap_{0}^{\infty} S^{j,-j/3}$.

Moreover we take

$$\begin{split} \tilde{a}_{\pm}^{1}(\xi, x, \, \xi) &= \frac{A_{+}(\xi)}{\gamma} \big[\int_{\xi}^{\infty} A_{-}(t) L b_{\pm}^{0}(z, \, x, \, \xi) \, dz \\ &- \int_{0}^{\xi} A_{-}(z) L(c_{\pm}^{0}(z, \, x, \, \xi) |\xi|^{-2/3} dz \\ &- \frac{A_{+}(\xi)}{\gamma} \big[\int_{\xi}^{\infty} A_{+}(z) L b_{\pm}^{0}(z, \, x, \, \xi) \, dz - \int_{0}^{\xi} A_{+}(z) L(c_{\pm}^{0}(z, \, x, \, \xi) |\xi|^{-2/3} dz \end{split}$$

and \tilde{a}_{\pm}^{1} can be written on the form $b_{\pm}^{1}+c_{\pm}^{1}|\xi|^{-2/3}$ with $b_{\pm}^{1}\in S^{-\infty,-1/3}$, $c_{\pm}^{1}\in \bigcap_{0}^{\infty}S^{j,-j/3}$. Now, the choice of a_{\pm}^{ν} for $\nu>1$ is obvious. From (3.23) it follows that $a_{\pm}^{0}\in S_{2/3,2/3,1/3}^{0}$ and by (3.22) $_{0}$ we obtain that the principal contribution to a_{\pm}^{0} is given by

$$\begin{split} &\frac{A_{+}(\xi)}{\gamma} \int_{\xi}^{\infty} A_{-}(\chi''B_{\pm} + 2\chi'\frac{\partial B_{\pm}}{\partial \xi}) dz \\ &+ \frac{A_{-}(\xi)}{\gamma} \int_{\xi}^{\infty} A_{-}(\chi''B_{\pm} + 2\chi'\frac{\partial B_{\pm}}{\partial \xi}) dz. \end{split}$$

Taking into account (3.17), we conclude that the principal part of a_{\pm}^{0} is given by

$$\begin{split} &\frac{A_{+}(\xi)}{\gamma} \int_{\xi}^{\infty} A_{-}(\chi'' A_{\pm} + 2\chi' \frac{\partial A_{\pm}}{\partial \xi}) dz \\ &+ \frac{A_{-}(\xi)}{\gamma} \int_{\xi}^{\infty} A_{-}(\chi'' A_{\pm} + 2\chi' \frac{\partial A_{\pm}}{\partial \xi}) dz. \end{split}$$

From the identity

$$\int_{\xi}^{\infty} A_{\pm}(Y'' + \rho Y) d\xi = \int_{\xi}^{\infty} (A_{\pm}Y'' - A_{\pm}''Y) d\xi = [A_{\pm}Y' - A_{\pm}'Y]_{\xi}^{\infty}$$

we obtain that the principal contribution to a_+^0 is given by

$$\begin{split} &\frac{A_{+}}{\gamma}[A_{-}\chi A'_{+} + A_{-}\chi' A_{+} - \chi A_{+}A'_{-}]^{\infty}_{\xi} + \\ &\frac{A_{-}}{\gamma}[A_{+}\chi' A_{+} + A_{+}\chi A'_{+} - \chi A_{+}A'_{+}]^{\infty}_{\xi} = \frac{A_{+}}{\gamma}[\chi \gamma]^{\infty}_{\xi} = (1 - \chi)A_{+} \end{split}$$

and therefore

$$(3.24) a_0^{\pm}(t, x, \xi) - (1 - \chi(\xi(t, x, \xi)) A_{\pm}(\xi(t, x, \xi)) \in S_{2/3, 2/3, 1/3}^{-2/3}$$

Since $\rho - \xi \in S^{2,-2/3}$ we conclude that

$$(3.25) \quad a_0^{\pm}(t, x, \xi) - (1 - \chi(\rho(t, x, \xi)) A_{\pm}(\rho(t, x, \xi)) \in S^{-2/3}_{2/3, 2/3, 1/3}$$

4. Construction of the microlocal parametrix

We define the operators

$$\begin{split} E_{\pm}(t) \ f(x) &= \iint e^{i[\theta(t,x,\xi)-\theta(0,y,\xi)]} \frac{a_{\pm}(t,x,\xi)}{A_{\pm}(\rho(0,x,\xi))} f(y) \ dy \ d\xi \\ &+ \iint e^{i[\theta(t,x,\xi)-\theta(0,y,\xi)\pm\frac{2}{3}\rho(t,x,\xi)^{2/3}]} \underline{\chi(\rho(t,x,\xi))k_{\pm}(t,x,\xi)} f(y) \ dy \ d\xi \end{split}$$

Clearly $E_{\pm}(0)$ is a pseudodifferential operator and (microlocally) $PE_{\pm}\equiv 0$. From (3.17) and (3.25) it follows that the principal contribution to $E_{\pm}(t)$ is given by

$$E_{\pm}^{*}(t) \ f(x) = \iint e^{i[\theta(t,x,\xi)-\theta(0,y,\xi)]} \frac{A_{\pm}(\rho(x,\xi))}{A_{\pm}(\rho(0,x,\xi))} f(y) \ dy \ d\xi$$

and the matrix

$$\begin{bmatrix} E_+^*(0) & E_-^*(0) \\ D_t E_+^*(0) & D_t E_-^*(0) \end{bmatrix}$$

is microlocally invertible. A detailed calculation in a similar case is given for example in [6].

We can write, for $\rho \ge 0$, $A_{\pm}(\rho) = e^{\pm i2\mu(\rho)\rho^{3/2}/3}$ $F_{\pm}(\rho)$, where $\mu(\rho) = 0$ for $\rho \le 1$, $\mu(\rho) = 1$, for $\rho \ge 2$ and $F_{\pm}(\rho) \in C^{\infty}[0, \infty]$, $F_{\pm}(\rho) \sim \rho^{-1/4} \sum_{0}^{+\infty} c_{\pm}^{-\nu} \rho^{-3\nu/2}$. So, we obtain

$$E_{\pm}^{*}(t) f(x) = \iint e^{i\Psi_{\pm}(t, x, y, \xi)} h_{\pm}(t, x, y, \xi) f(y) dy d\xi$$

where

and h_{\pm} is a pseudo-differential symbol of order 0. Then, we can describe the wave front set of $E_{\pm}^*(t)f$, for fixed t>0, by following MELROSE [4]. We denote by $\gamma_{\pm}(t, y, \eta)$, the null-bicharacteristics of $\tau \pm (t+B(x, \xi))^{1/2}C(t, x, \xi)^{1/2}$ passing through (y, η) . Therefore we have that, for fixed t>0,

$$WFE_{\pm}^{*}(t)f = \{ \gamma_{\pm}(t, y, \eta) | (y, \eta) \in WFf \}.$$

References

- [1] G. ESKIN, A parametrix for mixed problem for strictly hyperbolic equation of arbitrary order. Comm. In PDE, (16) (1976), 521-560.
- [2] M. IMAI, Cauchy problem for operators of Tricomi's type. Hokkaido Math. J. 8 (1979), 126-143.
- [3] M. IMAI, On a parametrix for a weakly hyperbolic operator. Hokkaido Math. J. 9 (1980), 190-216.
- [4] R. B. MELROSE, Local Fourier-Airy integral operators. Duke Math. J. 42 (4), 583-604.
- [5] F. SEGALA, Parametrices for a class of differential operators with multiple characteristics. Ann. Math. Pura e Appl. (to appear).
- [6] F. SEGALA, A simple construction of a parametrix for a regular hyperbolic operator (to appear).
- [7] W. WASOW, A symptotic expansions for ordinary differential equatins. Interscience 1965.
- [8] A. YOSHIKAWA, A parametrix for a completely regularly hyperbolic operator. Hokkaido Math. J. 10 (1981), 723-742.

Dipartimento di Matematica Università di Bologna