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Transitive Lie algebras admitting differential systems
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Introduction.

In this paper we define the transitive filtered Lie algebras of depth \mu and
prove the structure theorems on these Lie algebras.

According to Guillemin-Sternberg [2], a Lie algebra L is called a transi-
tive Lie algebra if it possesses a filtration \{L^{p}\}_{p\in Z} satisfying: 0) L=L^{-1} .
i) L^{p}\supset L^{p+1} , ii)[L^{p} L^{q}]\subset L^{p+q} , iii) dim L^{p}/L^{p+1}<\infty , iv ) p \bigcap_{\in Z}L^{p}=0 ,

v) L^{p+1}= {x\in L^{p}|[x, L^{a}]\subset L^{p+a+1} for all a<0} for p\geq 0 . As well-known,
to a transitive Lie pseud0-group corresponds a transitive Lie algebra as its
formal algebra and algebraic theories of transitive Lie algebras have been
adequately developed by many authors, in particular by Guillemin-Sternberg
[2] and Singer-Sternberg [11].

On the other hand if a transitive Lie pseud0-group acting on a manifold
M admits (i . e. , leaves invariant) a sequence \{D^{p}\}_{p<0} of differential systems
(i . e. , subbundles of the tangent bundle TM of M) such that 0) TM=D^{-\mu}

for an integer \mu\geq 1 , i ) D^{p}\supset Dp+1 , ii ) [\mathscr{D}^{p}, \mathscr{D}q]\subset \mathscr{D}^{p+q} , where \mathscr{D}^{p}

denotes the sheaf of the local sections of D^{p} , then the transitive Lie algebra
L corresponding to this pseud0-group admits in a natural way another
filtration \{L^{p}\} more refined than the usual one (See \S 1). This new filtra-
tion starts with L^{-\mu} instead of L^{-1} :

L=L^{-\mu}\supset\cdots\supset L^{-1}\supset L^{0}\supset\cdots

and satisfies the same conditions i ), ii ) \cdots , v) as mentioned above. A
Lie algebra endowed with such a filtration will be called a transitive filtered
Lie algebra of depth \mu . If \mu=1 the filtration reduces to a usual one. The
contact Lie algebra C(n) (See \S 5) is a typical example of transitive Lie
algebras possessing transitive filtrations of depth 2. This filtration has
already played an important r\^ole in the classification of the infinite primitive
Lie algebras ([6]). Moreover there appear many examples of transitive
filtered Lie algebras of depth greater than 1 in geometry of differential
systems (cf. Tanaka [12], [14]) and in higher order contact geometry (cf.

Yamaguchi [15], [16] ) .
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This leads us to the general study of transitive filtered Lie algebras of
depth \mu . Our results will show that the structure theorems on transitive
filtered Lie algebras established in the case \mu=1 (such as in Guillemin-
Sternberg [2], Singer-Sternberg [11], Rim [10], Hayashi [3] ) can be general
alized quite naturally to the case of arbitrary \mu\geq 1 .

Recall that in the case \mu=1 the algebraic theory of Guillemin-Sternberg
and others is buit on three pillars: First the notion of prolongation concern-
ing the associated graded Lie algebras, second the Spencer cohomology
group attached to the graded Lie algebra, especially its finiteness (i. e. , finite
dimensionality), and third the notion of truncated structures of filtered Lie
algebras.

Now in the case \mu\geq 1 , the theory can be developed in the parallel way.
Let L=(L, \{L^{p}\}) be a transitive filtered Lie algebra of depth \mu . Then the
associated graded Lie algebra gr L= \bigoplus_{p\in Z}gr_{p}L belongs to those Lie algebras

that are called graded Lie algebras of the \mu -th kind and studied by Tanaka
in geometry of differential systems. Thus the notion of prolongation to
these Lie algebras is already familiar (See [12], [13]). Moreover the Spen-
cer cohomology group is generalized as the cohomology group H(gr-L,
gr L) associated with the adjoint representation on gr L of the nilpotent Lie
algebra gr-L = \bigoplus_{p<0}gr_{p}L , which is, by means of the gradation of gr L, end-

owed with a natural bigradation: H(gr-L, gr L) = \bigoplus_{p,r\in Z}H_{r}^{p}, where H_{r}^{p} is the

cohomology group at Hom (\Lambda^{p}gr-L, grL)_{r} (the subspace of Hom ( \Lambda^{p} gr-L,
gr L) consisting of all elements of degree r ) (See \S 2). This cohomology
group was first introduced by Tanaka [14] with the following bigradation:
H=\oplus H^{s,p} where H^{s,p}=H_{s+p-1}^{p} . Note that if \mu=1 then gr-L is abelian
and H^{s,p} is just the Spencer cohomology group at (s, p) .

Our starting-point is the finiteness of this generalized Spencer c0-

homology group:

THEOREM I. Let L be a transitive fifittered Lie algebra of depth \mu, then
H_{r}(gr-L, gr L) =0 for sufficientty large r. In other words, there exists an
integer k such that H^{s,p}(gr-L, gr L) =0 for all p if s\geq k.

The proof is based on the fact that the universal enveloping algebra of
a finite dimensional Lie algebra is noetherian and will be given in section 2.

Now our main results may be stated as follows: For a transitive filtered
Lie algebra L, let k_{0} be the smallest non-negative integer such that

H_{r}^{1}(gr-L, gr L) =H_{r}^{2}(gr-L, gr L) =H_{s}^{3}(gr-L, gr L) =0

for r\geq k_{0}+1 , s\geq{\rm Max}\{k_{0},1\}+1 and call the integer k_{0} the structural order of
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L. Then we have

THEOREM II . A transitive fifittered Lie algebra L of depth \mu can be
completely determined, up to isomorphism, by its truncated Lie algebra
Trun_{k}L of order k if k is greater than or equal to the structural order of L.

The truncated Lie algebra Trun_{k}L is, roughly speaking, obtained from
L by forgetting the structures of L of order higher than k. Thus Theorem
I and II reduce the equivalence problem of (in general) infinite dimensional
objects to that of finite dimensional ones.

To make precise the statement of Theorem II, we must define the trun-
cated (transitive filtered) Lie algebras. The precise definition will be given
in section 3 (Definition 3. 2). This notion is closely related to the structure
functions occurring in prolongation schemes of geometric structures. Our
formulation of the truncated Lie algebras is better adapted to our prolonga-
tion scheme developed in [8] and [9] rather than that of Singer-Sternberg
[11], therefore even in the case \mu=1 it is somewhat different from the formu-
lation of Guillemin-Sternberg [2]. (See Remarks 3. 1, 3. 2)

In section 3 we shall then investigate how a truncated Lie algebra of
order k can be constructed from that of order k-1 (Proposition 3. 1 and
Proposition 3. 2) and obtain a criterion for two truncated Lie algebras of
order k to be isomorphic (Theorem 3. 1).

In secction 4, as immediate cosequences of Proposition 3. 1 and Proposi-
tion 3. 2, we obtain our main results (Existence Theorem 4. 1, Embedding
Theorem 4. 2, Theorem 4. 3) which give the precise meaning to the above
Theorem II and clarify the structure of a transitive filtered Lie algebra of
depth \mu . In particular it gives us the information how to construct transitive
filtered Lie algebras starting from a graded Lie algebra. As a byproduct we
also obtain some sufficient conditions for a transitive filtered Lie algebra to
be graded (Proposition 4. 1) generalizing the result of Kobayashi-Nagano
[4].

Once the notion of truncated Lie algebra is well settled, the proofs of
Theorems 4. 1, 4. 2, 4. 3 (or rather those of Proposition 3. 1 and Proposition
3. 2) are somewhat routine. The most cumbersome part would be to verify
some cohomological identities (cocycle conditions), which however
becomes much simplified and transparent, thanks to the elegant technique of
Rim [10], by employing the calculus of skew-graded Lie algebras or super
Lie algebras.

Since the contact Lie algebra C(m, n;\nu) of order \nu with m unknown
funcitons and n independent variables is a fundamental example of transitive
filtered Lie algebras of depth \nu+1 , in the last section 5 we shall calculate the
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cohomology group H(gr_{-}C(m, n;1’) , gr C(m, n;\nu)) . The results of the
computation, combined with the above theorems, give cohomological inter-
pretation of geometric properties of the higher order contact Lie algebras.

A geometric counterpart of the present algebraic study will be found in
the forthcoming paper [9], in which we shall develop a prolongation scheme
for those geometric structures that have defferential systems as underlying
structures.

\S 1. Transitive filtered Lie algebras of depth \mu .
We begin by defining the transitive filtered Lie algebras of depth \mu which

are the central object of the present study.
Let Z denote the set of integers. Let L be a Lie algebra over a field F

of characteristic 0. Let \mu be a non-negative integer. A transitive fifittration
of L of depth \mu is a sequence \{L^{p}\}_{p\in Z} of subspaces of L satisfying the
following conditions:

(FO) L=L^{-\mu} .
(F1) L^{p}\supset L^{p+1} ,
(F2) [L^{p}. L^{q}]\subset L^{p+q} ,
(F3) dim L^{p}/L^{p+1}<\infty ,
(F4) \bigcap_{p\in Z}L^{p}=0 ,

(F5) L^{p+1}= {X\in L^{p}|[X, L^{a}]\subset L^{p+a+1} for all a<0}, for any p\geq 0 .

A transitive fifittered Lie algebra (abbreviated to TFLA) of depth \mu is a
pair L=(L, \{L^{p}\}) consisting of a Lie algebra L and its transitive filtration
\{L^{p}\} of depth \mu .

Morphisms of transitive filtered Lie algebras are defined in the natural
manner ; a homomorphism of a TFLA L=(L, \{L^{p}\}) into another
L’=(L’, \{L^{\prime p}\}) is a Lie homomorphism f:Larrow L’ which preserves the filtra-
tions, namely f(L^{p})\subset L^{rp} for all p. In particular we call the homomorphism

f an embedding if f induces an isomorphism of L/L^{0} onto L’/L^{\prime 0} . Note that
an embedding is necessarily injective by (F4) and (F5).

If L=(L, \{L^{p}\}) is a TFLA, then L can be endowed with a natural
uniform topology and becomes a topological Lie algebra by assigning \{L^{p}\}

as a fundamental system of neighbourhoods of the origin. L is called
complete if L is complete with respect to the uniform topology. If we set
\overline{L}=proj lim L/L^{k}.\overline{L}^{p}=proj lim L^{p}/L^{k} , then \overline{L}=(\overline{L}, \{\overline{L}^{p}\}) is a complete
TFLA called the completion of L and there is a canonical embedding \iota : Larrow

\overline{L} .
The definitions being settled, several remarks are in order.
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REMARK 1. 1. If L is a TFLA of depth \mu , then it is also of depth \nu for
any integer \nu\geq\mu . We might say that L is properly of depth \mu if \mu is the
smallest integer satisfying (FO). But this distinciton will not matter in what
follows.

REMARK 1. 2. In our terminology, it is the TFLA’s of depth 1 that have
been customarily called transitive (filtered) Lie algebras and studied by
many authors, (cf. [2], [4], [11])

REMARK 1. 3. The condition (F5) implies that a transitive filtration
\{L^{p}\}_{p\in Z} is uniquely determined by its lower parts \{L^{p}\}_{p<0} . More generally,
given a family \{L^{p}\}_{p\leq 0} of subspaces of L which satisfies the conditions (FO)

-(F3) only for p\leq 0 . Then, defining L^{p} for p>0 inductively by (F5), we
obtain a filtration \{L^{p}\}_{p\in Z} , which, as easily seen, satisfies all the conditions
of a transitive filtration except (F4) ; in general the ideal \bigcap_{p\in Z}L^{p} does not

vanish.

REMARK 1. 4. If (L, \{L^{p}\}) is a TFLA of depth \mu\geq 1 , then L always
admits a transitive filtration of depth 1. In fact, put \hat{L}^{p}=L for p<0 and
\hat{L}^{0}=L^{0} and define \hat{L}^{p} for p>0 by

\overline{L}^{p+1}=\{x\in\hat{L}^{p}|[x,\hat{L}^{-1}]\subset\hat{L}^{p}\} ,

then it is easy to verify that

(1. 1) L^{p}\supset\hat{L}^{p}\supset L^{p\mu} for p\geq 0 .

Hence \bigcap_{p\in Z}\hat{L}^{p}=0 , so that \{\hat{L}^{p}\} is a transitive filtration of depth 1. It follows

also from (1. 1) that the topology defined by \{\hat{L}^{p}\} coincides with the one
defined by \{L^{p}\} . Hence L, viewed as a topological Lie algebra, is an
(abstract) transitive Lie algebra in the sense of Guillemin-Sternberg [2],
provided that L is complete.

Now we mention briefly the geometric background of transitive filtered
Lie algebras of depth \mu . (cf. [12], [9] for more details). Let M be a
differentiable manifold and denote TM the tangent bundle of M. A vector
subbundle of TM is called a differential system on M. Now suppose that we
are given a sequence of differential systems \{D^{p}\}_{p<0} satisfying:

\{

0) D^{-\mu}=TM

i) D^{p}\supset D^{q}

ii) [\mathscr{D}^{p}. \mathscr{D}^{q}]\subset \mathscr{D}^{p+q}

for p<q<0
for p, q<0 ,

where \mathscr{D}^{p} denotes the sheaf of sections of D^{p} .
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Let \mathscr{L} be a Lie algebra subsheaf of \mathscr{T}M (the Lie algebra sheaf of the
sections of TM) and suppose that \mathscr{L} leaves invariant \{D^{p}\} , namely,

[\mathscr{L}, \mathscr{D}^{p}]\subset \mathscr{D}^{p} for all p<0 .

Then for each stalk \mathscr{L}_{x}(x\in M) we can introduce the natural filtration
\{\mathscr{L}_{x}^{p}\}_{p\in Z} by defiining

\{

\mathscr{L}_{\chi}^{p},=\{[X]_{x}\in \mathscr{L}_{x}|X_{x}\in D_{x}^{p}\} for p<0
\mathscr{L}_{X}^{9}=\{[X]_{x}\in \mathscr{L}_{x}|X_{x}=0\}

\mathscr{L}_{x}^{p} : by (F5) for p>0

where for a vector field X we have denoted by [X]_{x} the germ of X at x and
by X_{x} the value (i . e. , the tangent vector) of X at x . Then one can verify
without difficulty

[\mathscr{L}_{x}^{p}, \mathscr{L}_{x}^{q}]\subset \mathscr{L}_{x}^{p+q} for p, q\leq 0 .

From this and Remark 1. 3 follows that the filtration \{\mathscr{L}_{x}^{p}\}_{p\in Z} satisfies the
conditions of transitive filtration except (F4). If we pass to the projective
limit by setting L(x)=proj lim \mathscr{L}_{x}/\mathscr{L}_{X}^{k}, L^{p}(x)=proj lim \mathscr{L}_{x}^{p}/\mathscr{L}_{x}^{k}, we obtain
a Lie algebra L(x) and its filtration \{L^{p}(x)\}_{p\in Z} . It is now straightforward:

PROPOSITION 1. 1. Let \{D^{p}\} and \mathscr{L} be as above, then the pair
L(x)=(L(x), \{L^{p}(x)\}) is a complete transitive fifittered Lie algebra of depth \mu .

L(x) is called the forml algebra of \mathscr{L} at x. It should be remarked that
if \mathscr{L} is transitive at x(i. e. , the evaluation map \mathscr{L}_{x}\ni[X]_{x}arrow X_{x}\in T_{x}M is
surjective) then the formal algebra L(x) inherits all the algebraic informa-
tion of \mathscr{L}_{\chi} , in the sense that the kernel of the natural projection \mathscr{L}_{X}arrow L(x)

consists of null vector fields X(i. e. , in local coordinates the Tayler expan-
sions at x of the coefficients of X vanish identically). This follows easily
from (1. 1).

\S 2. Transitive graded Lie algebras and their cohomology groups.

In this section we consider the graded Lie algebra associated with a
transitive filtered Lie algebra and study its cohomology group.

2. 1. Let L=(L, \{L^{p}\}) be a TFLA of depth \mu . Let gr L= \bigoplus_{p\in Z}gr_{p}L be

its associated graded Lie algebra, where gr_{p}L=L^{p}/L^{p+1} , and the bracket
operation of gr L is defined in the obvious manner. Then gr L is a transitive
graded Lie algebra of depth \mu is the following sense:

DEFINITION 2. 1. A graded Lie algebra \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is called a transitive
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graded Lie algebra (TGLA) of depth \mu if it satisfies the following condi-
tions:

(G1) \mathfrak{g}_{p}=0 for p<-\mu ,
(G2) dim \mathfrak{g}_{p}<\infty

(G3) For i\geq 0 , x_{i}\in \mathfrak{g}_{i} , if [x_{i}, \mathfrak{g}-]=0 then x_{i}=0 ,

where we set : \mathfrak{g}_{-}=\bigoplus_{p<0}\mathfrak{g}_{p} .

REMARK 2. 1. TGLA’s of depth \mu are alternatively called graded Lie
algebras of the \mu -th kind and studied by Tanaka ([12], [13], [14]), espe-
cially with the additional condition that \mathfrak{g}- is generated by \mathfrak{g}_{-1} .

Let us now recall the notion of prolongation concerning a TGLA of depth
\mu , due to Guillemin-Sternberg [2] and Singer-Sternberg [11] for \mu=1 and
Tanaka (loc cit) for arbitrary \mu\geq 1 .

For this purpose we begin with the following:

DEFINITION 2. 2. Let k be an integer or \infty . A truncated graded Lie
algebra of order k is a graded vector space \mathfrak{g}(k)=\bigoplus_{p\leq k}\mathfrak{g}_{p} equipped with a

bracket operation (skew-symmetric bilinear map)

[ ]:\mathfrak{g}_{p}\cross \mathfrak{g}_{q}arrow \mathfrak{g}_{p+q}

defined partially for p, q , p+q\leq k , satisfying the partial Jacobi identity:

\mathfrak{S}[[x_{p}, y_{p}], z_{r}]=0

for x_{p}\in \mathfrak{g}_{p} , y_{q}\in \mathfrak{g}_{q} , z_{r}\in \mathfrak{g}_{r} , whenever p, q , r , p+q , q+r , r+p, p+q+r\leq k ,

where \mathfrak{S} denotes the cyclic sum in x_{p} , y_{q} , Zr .
If moreover the conditions (G1) (G2) (G3) of Definition 2. 1 are

satisfied, \mathfrak{g}(k) is called a truncated transitive graded Lie algebra (truncated

TGLA) of order k of depth \mu .

Note that a truncated TGLA of order \infty is just a TGLA. If \mathfrak{g}(k)=\bigoplus_{p\leq k}\mathfrak{g}_{p}

is a truncated TGLA of order k , then for each integer t \leq k,\bigoplus_{p\leq l}\mathfrak{g}_{p} becomes a

truncated TGLA of order l with respect to the induced bracket operation,
which we will denote by Trun_{l}\mathfrak{g}(k) . Morphisms of truncated TFLA’s can be
defined in the natural manner. In particular, a homomorphism \phi:\mathfrak{h}(k)arrow

\mathfrak{g}(k) will be called an embedding if \phi induces an isomorphism of \mathfrak{h}_{-}=\bigoplus_{p<0}\mathfrak{h}_{p}

onto \mathfrak{g}_{-}=\bigoplus_{p<0}\mathfrak{g}_{p} . Note that an embedding is necessarily injective by (G3).

Now let us define the prolongation of a truncated TGLA \mathfrak{g}(k)=\bigoplus_{p\leq k}\mathfrak{g}_{p} of



52 T. Morimoto

order k\geq-1 . Put \mathfrak{g}_{-}=\bigoplus_{p<0}\mathfrak{g}_{p} , we define Der_{k+1}\mathfrak{g}(k) to be the vector space

consisting of all \alpha\in Hom(\mathfrak{g}_{-}, \mathfrak{g}(k)) such that

(2. 1) \{

\alpha(\mathfrak{g}_{p})\subset \mathfrak{g}_{p+k+1} (p<0)
\alpha([x, y])=[\alpha(x), y]+[x, \alpha(y)] , x , y\in \mathfrak{g}_{-} ,

and we set
p\mathfrak{g}(k)=\mathfrak{g}(k)\oplus Der_{k+1}\mathfrak{g}(k) .

It is then easy to see that there exists a unique bracket operation on p\mathfrak{g}(k)

which makes p\mathfrak{g}(k) into a truncated TGLA of order k+1 such that
Trun_{k}(p\mathfrak{g}(k))=\mathfrak{g}(k) and [\alpha, x]=\alpha(x) for \alpha\in Der_{k+1}\mathfrak{g}(k) , x\in \mathfrak{g}- .

By iterating this construction, we obtain a truncated TGLA of order
k+i, p^{i}\mathfrak{g}(k)(=p(p^{i-1}\mathfrak{g}(k))) , and a TGLA p^{\infty}\mathfrak{g}(k) ( =ind lim p^{i}\mathfrak{g}(k) ), w.hich are
characterized by the following universal properties:

PROPOSITION 2. 1. For a truncated TGLA \mathfrak{g}(k) of order k\geq-1 , there
exists, uniquely up to isomorphism, a truncated TGLA p^{i}\mathfrak{g}(k) of order k+i
(0\leq i\leq\infty) , which satisfifies the following conditions :

i) Trun_{k}(p^{i}\mathfrak{g}(k))=\mathfrak{g}(k)

ii) If \mathfrak{h}(k+i) is a truncated TGLA of order k+i and if there is an
embedding \phi_{k} : Trun_{k}\mathfrak{h}(k+i)arrow \mathfrak{g}(k) , then there exists a unique embedding
\phi_{k+i} : \mathfrak{h}(k+i)arrow p^{i}\mathfrak{g}(k) such that \phi_{k+i}|_{Trun_{k}\mathfrak{h}(k+i)}=\phi_{k} .

The proof is straightforward from the above construction.
The truncated TGLA p^{i}\mathfrak{g}(k) is called the prolongation of \mathfrak{g}(k) . p^{\infty}\mathfrak{g}(k)

will be often denoted by Prol \mathfrak{g}(k) . We say also that a TGLA \mathfrak{g} is the
prolongation of Trun_{k}\mathfrak{g} if \mathfrak{g}=Pro1Trun_{k}\mathfrak{g} . Note that, by the above proposi-
tion \mathfrak{g} can be always identified with a graded subalgebra of Prol Trun_{k}\mathfrak{g} .

2. 2. Now we proceed to the study of the cohomology group of a TGLA
\mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} . We set

\mathfrak{m}=\mathfrak{g}_{-}=\bigoplus_{p<0}\mathfrak{g}_{p} ,

which is a nilpotent subalgebra of \mathfrak{g} , and consider the cohomology group
associated with the adjoint representation of nt on \mathfrak{g} , namely the cohomology
group H(\mathfrak{m}, \mathfrak{g})=\oplus H^{p}(\mathfrak{m}, \mathfrak{g}) of the cochain complex (C(\mathfrak{m}, \mathfrak{g})=\oplus C^{p}(\mathfrak{m}, \mathfrak{g}), \partial) ,
where

C^{p}(\mathfrak{m}, \mathfrak{g})=Hom(\Lambda^{p}\mathfrak{m}, \mathfrak{g})

and the coboundary operator \partial:Hom(\Lambda^{p}\mathfrak{m}, \mathfrak{g})-arrow Hom(\Lambda^{p+1}\mathfrak{m}, \mathfrak{g}) is defined by
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(2.2) ( \partial\omega)(X_{1}, X_{2},\cdots, X_{p+1})=\sum_{i=1}^{n+1}(-1)^{i-1}[X_{i}, \omega(X_{1},\cdots,\hat{X}_{i},\cdots, X_{p+1})]

+ \sum_{1\leq i<j\leq p+1}(-1)^{i+j}\omega([X_{i}, X_{j}], X_{1},\cdots,\hat{X}_{i},\cdots,\hat{X}_{j},\cdots, X_{p+1})

for \omega\in Hom(\Lambda^{p}\mathfrak{m}, \mathfrak{g}) , X_{1} , X_{2},\cdots , X_{p+1}\in \mathfrak{m} .
Since both rn and \mathfrak{g} are graded, we can define a bigradation \oplus H_{r}^{p}(\mathfrak{m}, \mathfrak{g})

of H(\mathfrak{m}, \mathfrak{g}) as follows: Denote by Hom(\Lambda^{p}\mathfrak{m}, \mathfrak{g})_{r} the set of all homogeneous
p-cochains \omega of degree r(i.e., \omega(\mathfrak{g}_{a_{1}}\wedge\cdots\wedge \mathfrak{g}_{a}p)\subset \mathfrak{g}_{a_{1}+\cdots+a}p+r for any a_{1},\cdots , a_{p}

<0) , and set

C_{r}( \mathfrak{m}, \mathfrak{g})=Hom(\Lambda \mathfrak{m}, \mathfrak{g})_{r}=\bigoplus_{p}Hom(\Lambda^{p}\mathfrak{m}, \mathfrak{g})_{r}

Note that \partial preserves the degree. Hence C_{r}(\mathfrak{m}, \mathfrak{g}) is a subcomplex and the
direct sum decomposition

C(\mathfrak{m}, \mathfrak{g})=\oplus C_{r}(\mathfrak{m}, \mathfrak{g})

yields that of the cohomology group:

H(\mathfrak{m}, \mathfrak{g})=\oplus H_{r}(\mathfrak{m}, \mathfrak{g})=\oplus H_{r}^{p}(\mathfrak{m}, \mathfrak{g}) .

This cohomology group H(\mathfrak{m}, \mathfrak{g}) was introduced by Tanaka [14] with
another gradation:

H^{s,p}(\mathfrak{m}, \mathfrak{g})=H_{s+p-1}^{p}(\mathfrak{m}, \mathfrak{g}) .

It should be remarked that if \mu(the depth of \mathfrak{g} ) =1 then rn is abelian and
H^{s,p}(\mathfrak{m}, \mathfrak{g}) is known as the Spencer cohomology group. Thus the following
theorem is a generalization of the result known in the case \mu=1 to the case
of arbitrary \mu (cf. [2], [11]).

THEOREM 2. 1. Let \mathfrak{g} be a TGLA of depth \mu . Then there exists an
integer r_{0} such that H_{r}(\mathfrak{m}, \mathfrak{g})=0 , for all r\geq r_{0} .

The proof of the theorem is based on the fact that the universal envelop-
ing algebra U(\mathfrak{l}) of a finite dimensional Lie algebra \mathfrak{l} is noetheian (See for
example Dixmier [1] pp. 76). We shall give the proof by dividing it into
several steps.

1) First of all we introduce for X\in \mathfrak{m} the operators

i(X) , \theta(X) : C(\mathfrak{m}, \mathfrak{g})arrow C(\mathfrak{m}, \mathfrak{g})

by defining, for \omega\in C^{p}(\mathfrak{m}, \mathfrak{g}) , X_{1},\cdots , X_{p}\in \mathfrak{m} ,

(2.3) (i(X)\omega)(X_{1},\cdots, X_{p-1})=\omega(X, X_{1},\cdots, X_{p-1})

(2.4) (\theta(X)\omega)(X_{1^{ }},\cdots, X_{p})=[X, \omega(X_{1},\cdots, X_{p})]

- \sum_{i=1}^{p}\omega(X_{1^{ }},\cdots, [X, X_{i}], \cdots, X_{p}) .



54 T. Morimoto

Then we have the following standard formulae:

(2.5) \theta(X)=i(X)\cdot \partial+\partial\cdot i(X) .
(2.6) \partial\cdot\theta(x)=\theta(X)\cdot\partial .
(2.7) \theta([X, Y])=\theta(X)\cdot \theta(Y)-\theta(Y)\cdot \theta(X) , for X, Y\in \mathfrak{m} .

Note that C(\mathfrak{m}, \mathfrak{g}) has a left U(\mathfrak{m})-module structure by the representation \theta .
2) Passage to the dual. Let \mathfrak{g}^{*}=\bigoplus_{p\in Z}\mathfrak{g}_{p}^{*} be the dual of \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} , which

is a right U(\mathfrak{m}) -module by the coadjoint reperesentation of \mathfrak{m} . Identifying
\Lambda \mathfrak{m}\otimes \mathfrak{g}^{*} with the dual of C(\mathfrak{m}, \mathfrak{g})=Hom(\Lambda \mathfrak{m}, \mathfrak{g}) , we obtain the chain comlex
(\Lambda \mathfrak{m}\otimes \mathfrak{g}^{*}. \partial^{*}) and the associated homology group denoted by H^{*}(\mathfrak{m}, \mathfrak{g}) ,

where the boundary operater (the dual of \partial)

\partial^{*}: \Lambda^{p}\mathfrak{m}\otimes \mathfrak{g}^{*}arrow\Lambda^{p-1}\mathfrak{m}\otimes \mathfrak{g}^{*}

can be written explicitly as: for X_{i}\in \mathfrak{m} , \alpha\in \mathfrak{g}^{*} .

(2.2^{*}) \partial^{*}(X_{1}\wedge\cdots\wedge X_{p}\otimes\alpha)=\Sigma(-1)^{i-1}X_{1}\wedge\cdots\wedge\hat{X}_{i}\wedge\cdots\wedge X_{p}\otimes\alpha X_{i}

+ \sum_{i<j}(-1)^{i+j}[X_{i}, X_{j}]\wedge X_{1}\wedge\cdots\wedge\hat{X}_{i}\wedge\cdots\wedge\hat{X}_{j}\wedge\cdots\wedge X_{p}\otimes\alpha .

Put (\Lambda \mathfrak{m}\otimes \mathfrak{g}^{*})_{r}=\Sigma(\Lambda^{p_{1}}\mathfrak{g}_{a_{1}})\wedge\cdots\wedge(\Lambda^{pt}\mathfrak{g}_{a_{t}})\otimes \mathfrak{g}_{q}^{*} , where the sum is taken over all
t\geq 0 , p_{i}\geq 0 , a_{i}<0 and q\in Z such that q- \sum_{i=1}^{t}p_{i}a_{i}=r . Since \partial^{*} preserve

the degree, we have the direct sum decomposition of the complex \Lambda \mathfrak{m}\otimes \mathfrak{g}^{*}

into subcomplexes:

\Lambda \mathfrak{m}\otimes \mathfrak{g}^{*}=\oplus(\Lambda \mathfrak{m}\otimes \mathfrak{g}^{*})_{r} .

which yields the decomposition of the homology group:

H^{*}(\mathfrak{m}, \mathfrak{g})=\oplus H_{r}^{*}(\mathfrak{m}, \mathfrak{g}) .

Since (\Lambda \mathfrak{m}\otimes \mathfrak{g}^{*})_{r} can be identified with the dual of C_{r}(\mathfrak{m}, \mathfrak{g}) , H_{r}^{*}(\mathfrak{m}, \mathfrak{g}) is
isomorphic to the dual space of H_{r}(\mathfrak{m}, \mathfrak{g}) .

Observe also that the duals of i(X) and \theta(X) :
i^{*}(X) , \theta(X)^{*}: \Lambda \mathfrak{m}\otimes \mathfrak{g}^{*}arrow\Lambda \mathfrak{m}\otimes \mathfrak{g}^{*}

are given by : for X_{i}\in \mathfrak{m} , \alpha\in \mathfrak{g}^{*} .
(2.3^{*}) i^{*}(X)(X_{1}\wedge\cdots\wedge X_{p}\otimes\alpha)=X\wedge X_{1}\wedge\cdots\wedge X_{p}\otimes\alpha .
(2.4^{*}) \theta^{*}(X)(X_{1}\wedge\cdots\wedge X_{p}\otimes\alpha)=X_{1}\wedge\cdots\wedge X_{p}\otimes\alpha X

- \sum_{i=1}^{p}X_{1}\wedge\cdots\wedge[X, X_{i}]\wedge\cdots\wedge X_{p}\otimes\alpha .

Clearly we have
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(2.5^{*}) \theta^{*}(X)=\partial^{*}\cdot i^{*}(X)+i(X)^{*}\cdot\partial^{*}

(2.6^{*}) \theta^{*}(X)\cdot\partial^{*}=\partial^{*}\cdot\theta^{*}(X)

(2.7^{*}) \theta^{*}([X, Y])=-\theta^{*}(X)\cdot \theta^{*}(Y)+\theta^{*}(Y)\cdot \theta^{*}(X) , for X, Y\in \mathfrak{m} .

Note that \Lambda \mathfrak{m}\otimes \mathfrak{g}^{*} has a right U(\mathfrak{m}) -module structure by the (anti-)represen-
tation \theta^{*} .

3) LEMMA 2. 1. \Lambda \mathfrak{m}\otimes \mathfrak{g}^{*} is fifinitely generated as a right U(m) -module.

PROOF. First we observe that \mathfrak{g}^{*} is finitely generated as a right
U(\mathfrak{m}) -module. In fact, the map

\mathfrak{g}_{p}arrow Hom(\mathfrak{m}, \mathfrak{g}_{p-\mu}\oplus\cdots\oplus \mathfrak{g}_{p-1})

is injective for p\geq 0 by (G3), therefore the dual map

(\mathfrak{g}_{p}^{*}-\mu\oplus\cdots\oplus \mathfrak{g}_{p}^{*}-1)\otimes \mathfrak{m}arrow \mathfrak{g}_{p}^{*}

is surjective. Noting that this map is just the multiplication of \mathfrak{m} by the
right, we see

\mathfrak{g}^{*}=(\bigoplus_{a<0}\mathfrak{g}_{a}^{*})U(\mathfrak{m}) .

From this follows the first assertion.
In order to see \Lambda \mathfrak{m}\otimes \mathfrak{g}^{*} is finitely generated, we put

(\Lambda \mathfrak{m})^{j}=\Sigma(\Lambda^{p_{1}}\mathfrak{g}_{a_{1}})\wedge\cdots\wedge(\Lambda^{p_{t}}\mathfrak{g}_{ae}) ,

where the sum runs over all t\geq 0 , p_{i}\geq 0 , a_{i}<0 such that - \sum_{i=1}^{t}p_{i}a_{i}\geq j . By

the formula (2. 4^{*}) for \theta^{*}(X) , it follows that (\Lambda \mathfrak{m})^{j}\otimes \mathfrak{g}^{*} is a U(\mathfrak{m})-

submodule and that the action of \theta^{*}(X) on the quotient module
((\Lambda \mathfrak{m})^{j}\otimes \mathfrak{g}^{*})/((\Lambda \mathfrak{m})^{j+1}\otimes \mathfrak{g}^{*}) is exactly the multiplication by X by the right.
Hence this quotient module is finitely generated, therefore so is \Lambda \mathfrak{m}\otimes \mathfrak{g}^{*}

because (\Lambda \mathfrak{m})^{0}=\Lambda \mathfrak{m} and (\Lambda \mathfrak{m})^{j}=0 for large j.

4) Now we can finish the proof of the theorem: Let Z^{*} be the cycles of
\Lambda \mathfrak{m}\otimes \mathfrak{g}^{*} . Since \theta^{*}(X)\cdot \partial^{*}=\partial^{*}\cdot\theta^{*}(X) , Z^{*} is a right U(\mathfrak{m}) -submodule of
\Lambda \mathfrak{m}\otimes \mathfrak{g}^{*} . As U(\mathfrak{m}) is noetherian and \Lambda \mathfrak{m}\otimes g^{*} is finitely generated by
Lemma 2. 1, Z^{*} is also finitely generated. Hence there exists an integer r_{0}

such that Z^{*} is generated as a right U(\mathfrak{m}) -module by \bigoplus_{l\leq r_{0}}Z_{t}^{*} , where Z_{t}^{*}

denotes the cycles of degree t . Observe now that if \xi is a cycle then \theta^{*}(X)\xi

is a boundary because of the Stokes’ fromula (2.5^{*}) . It then follows that
H_{r}^{*}(\mathfrak{m}, \mathfrak{g})=0 for r>r_{0} . Hence H_{r}(\mathfrak{m}, \mathfrak{g})=0 for r>r_{0} , which proves the the-
orem.
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COROLLARY 2. 1. Let g be a TGLA, then there exists an integer k\geq 0

such that g is the prolongation of Trun_{k-1}\mathfrak{g} .

In fact, according to the definition of the cohomology group H(\mathfrak{m}, \mathfrak{g}) , we
see that for k\geq 0

H_{k}^{1}(\mathfrak{m}, \mathfrak{g})=Der_{k}(Tmn_{k-1}\mathfrak{g})/\mathfrak{g}_{k} .

Hence Trun_{k}\mathfrak{g} is the prolongation of Trun_{k-1}\mathfrak{g} if and only if
H_{k}^{1}(\mathfrak{m}, \mathfrak{g})=0 . Therefore the corollary follows from Theorem 2. 1.

\S 3. Truncated transitive filtered Lie algebras.

In this section we define the truncated transitive filtered Lie algebras and
study the structures of these algebras.

3. 1. Let A be a vector space. For \alpha , \beta\in Hom(\Lambda^{2}A, A) define \alpha\circ\beta\in

Hom(\Lambda^{3}A, A) by

(\alpha\circ\beta)(x, y, z)=\mathfrak{S}\alpha(\beta(x, y) , z) ,

where \mathfrak{S} denotes the cyclic sum in x , y , z\in A . Define then a quadratic map

J : Hom(\Lambda^{2}A, A)arrow Hom(\Lambda^{3}A, A) .

by J(\gamma)=\gamma^{\circ}\gamma for \gamma\in Hom(\Lambda^{2}A, A) . Note that to define a Lie algebra struc-
ture on A is to pick out a \gamma\in Hom(\Lambda^{2}A, A) satisfying J(\gamma)=0 .

Now suppose that A is endowed with a descending filtration \{f1^{p}\}_{p\in Z} ,
that is, a sequence of subspaces of A such that A^{p}\supset A^{p+1} . Then it induces
on Hom(\Lambda rA, A) a natural filtration \{Hom(\Lambda rA, A)^{k}\}_{k\in Z} , where
Hom(\Lambda^{r}A, A)^{k} consists of all \alpha\in Hom(\Lambda^{r}A, A) satisfying \alpha(A^{p_{1}}\wedge\cdots\wedge A^{p_{r}})

\subset A^{p_{1}+\cdots+pr+k} for any (p_{1^{ }},\cdots, p_{r})\in Z^{r}

Let us define on Hom(\Lambda^{r}A, A)^{0} another filtration \{I^{k}Hom(\Lambda^{r}A, A)^{0}\}_{k\in Z}

which will play an important r\^ole in the sequel. We set, for k, p_{1},\cdots , p_{r}\in Z ,

(3. 1) \tau(k;p_{1},\cdots, p_{r})

={\rm Min}\{k, k-p_{i_{1}}-\cdots-p_{i\iota}(1\leq i_{1}<\cdots<i_{l}\leq r, 1\leq l\leq r)\}

We then define I^{k}Hom(\Lambda^{r}A, A)^{0} to be the subspace of Hom(\Lambda^{r}A, A)^{0} con-
sisting of all \alpha\in Hom(\Lambda^{r}A, A)^{0} such that

\alpha(A^{p_{1}}\wedge\cdots\wedge A^{p_{\gamma}})\subset A^{p_{1}+\cdot\cdot+p_{r}+\tau(k,p_{1}}p_{r})

for any (p_{1},\cdots, p_{r})\in Z^{r} It is easy to check that if \alpha-\beta\in I^{k}Hom(\Lambda^{2}A, A)^{0}

for \alpha , \beta\in Hom(\Lambda^{2}A, A)^{0} then J(\alpha)-J(\beta)\in I^{k}Hom(\Lambda^{3}A, A)^{0} Therefore if
we put
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[Hom(ArA, A)^{0}]^{k}=Hom(\Lambda^{r}A, A)^{0}/I^{k+1}Hom(\Lambda^{r}(A, A)^{0} ,

we have the induced map

J : [Hom(\Lambda^{2}A, A)^{0}]^{k}arrow[Hom(\Lambda^{3}A, A)^{0}]^{k}

defined by J[\alpha]^{k}=[I(\alpha)]^{k} for \alpha\in Hom(\Lambda^{2}A, A)^{0} , where [\beta]^{k} denotes the
equivalence class of \beta\in Hom(\Lambda^{r}A, A)^{0} modulo I^{k+1}Hom(\Lambda^{r}A, A)^{0_{\wedge}}

DEFINITION 3. 1. A truncated filtered Lie algebra of order k(0\leq k\leq\infty)

is a vecter space A endowed with a descending filtration \{A^{p}\}_{p\in Z} and a
“truncated bracket” [\gamma]^{k}\in[Hom(\Lambda^{2}A, A)^{0}]^{k} satisfying the following condi-
tions:

1) A^{k+1}=0

2) J([\gamma]^{k})=0 (truncated Jacobi identity).

Note that if A(k)=(A, \{A^{p}\}, [\gamma]^{k}) is a truncated filtered Lie algebra then
gr A has the induced structure of a truncated graded Lie algebra, which will
be denoted by gr A(k) .

DEFINITION 3. 2. A truncated filtered Lie algebra A(k) is called a trun-
cated transitive filtered Lie algebra (truncated TFLA) if gr A(k) is transi-
tive.

Note that a truncated TFLA of order \infty is just a TFLA.
Let A(k)=(A, \{A^{p}\}, [\gamma]^{k}) be a truncated TFLA of order k(0\leq k\leq\infty) .

For an integer l(0\leq l\leq k) we set A(l)=A/A^{l+1} and define on it a filtration
\{A(l)^{p}\} by A(l)^{p}=A^{p}/A^{p}\cap A^{l+1} . If we identify A(l) with a subspace W of
A complementary to A^{l+1} and define \gamma_{W}\in Hom(\Lambda^{2}A(l), A(l))^{0} by

\gamma_{W}(x, y)=W- component of \gamma(x, y) for x , y\in W ,

where \gamma is a representative of [\gamma]^{k} . then [\gamma_{W}]^{l}\in[Hom(\Lambda^{2}A(l), A(l))^{0}]^{l} does
not depend on the choice of W and \gamma , and satisfies J([\gamma_{W}]^{l})=0 . Thus
(A(l), \{A(l)^{p}\}, [\gamma_{W}]^{l}) becomes a truncated TFLA of order l , which will be
denoted by Trun_{l} A(k) .

Morphisms of truncated TFLA’s can be defined in the natural manner.
Let A(k)=(A, \{A^{p}\}, [\gamma]^{k}) , B(k)=(B, \{B^{p}\}, [\delta]^{k}) be truncated TFLA’s of
order k . A filtration preserving linear map \phi:Aarrow B is called a homomor-
phism of A(k) to B(k) if

\phi(\gamma[x_{p}, y_{p}])\equiv\delta(\phi(x_{p}), \phi(y_{q})) mod B^{p+q+\tau(k+1,p,q)}

for x_{p}\in A^{p} , y_{q}\in A^{q} . Note that this condition does not depend on the choice
of representatives \gamma , \delta . Two homomorphisms \emptyset , \phi’ of A(k) to B(k) are
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said to be congruent (denoted as \phi\equiv\phi’) if

\phi(x_{p})\equiv\phi’(x_{p}) (mod B^{p+\tau(k+1,p)}), for any x_{p}\in A^{p} .

If \emptyset:A(k)arrow B(k) is a homomorphism then it induces for each 0\leq l\leq k a
homomorphis : Trun_{l}A(k)arrow Trun_{l}B(k) denoted by Trun_{l}\phi and also a
homomorphism gr A(k)arrow grB(k) denoted by gr \emptyset . A homomorphism \emptyset :
A(k)arrow B(k) is called an embedding if gr \emptyset is an embedding.

3. 2. For a truncated TFLA A(k) , the cohomology group
H_{r}^{p}((Prol gr A(k)) , Prol gr A(k)) associated to the TGLA Prol gr A(k) will
be simply denoted by H_{r}^{p}(grA(k)) . Our main goal of this section is to prove
the following propositions:

PROPOSITION 3. 1 Let A(k) be a truncated TFLA of order k(0\leq k<\infty)

satisfying :

\{

H_{k+1}^{2}(grA(k))=0 ,
H_{k+1}^{3}(grA(k))=0 (if k\geq 1 ).

Then there exists a truncated TFLA A(k+1) of order k+1 such that
Tmn_{k}A(k+1)=A(k) and that gr A(k+1) is the prolongation of gr A(k) .

PROPOSITION 3. 2. Let A(k+1) , B(k+1) be truncated TFLA ’s of
order k+1(k\geq 0) and assume that

H_{k+1}^{1}(grB(k+1))=H_{k+1}^{2}(grB(k+1))=0 .

If there is an embedding \psi_{k} : Trun_{k}A(k+1)arrow Trun_{k}B(k+1) then there exists
an embedding \phi_{k+1} : A(k+1) -arrow B(k+1) such that Trun_{k}\phi_{k+1}\equiv\phi_{k} .

Before entering into the proof of the above propositions, we shall first
recall, following Rim [10], several formulae in skewgraded Lie algebras,
and then we shall prepare a lemma for the proof of Proposition 3. 1.

Let V be a vector space. For f^{(m)}\in Hom( \Lambda^{m+1} V. V) and f^{(n)}\in

Hom( \Lambda^{n+1} V. V), define f^{(n)}\circ f^{(m)}\in Hom(\Lambda^{m+n+1}V_{j}V) by the following rule:

f^{(n)}\circ f^{(m)}(x_{1},\cdots,x_{m+n+1})=\Sigma sign(\sigma)f^{(n)}(f^{(m)}(_{X\sigma(1)X\sigma(m+1)}\cdots)_{ X\sigma(m+2)X\sigma(m+n+1)},\cdots)

where \sigma runs through all permutations of (1, 2,\cdots, m+n+1) such that
\sigma(1)<\cdots<\sigma(m+1) and \sigma(m+2)<\cdots<\sigma(m+n+1) . Then we put

[f^{(n)}, f^{(m)}]=f^{(n)}\circ f^{(m)}-(-1)^{nm}f^{(m)}\circ f^{(n)} .

By this bracket Hom(\Lambda V, V)=\oplus Hom(\Lambda^{n}V, V) becomes a skew-graded
Lie algebras; we have
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(3.2) [f^{(n)}, f^{(m)}]=-(-1)^{nm}[f^{(m)}, f^{(n)}]

(3.3) (-1)^{mp}[[f^{(m)}, f^{(n)}], f^{(p)}]+(-1)^{nm}[[f^{(n)}, f^{(p)}] , f^{(m\rangle}]

+(-1)^{pn}[[f^{(p)}, f^{(m)}], f^{(n)}]=0 .

If V is endowed with a Lie algebra structure by \gamma\in Hom(\Lambda^{2}V, V) , the
coboundary operator \partial:Hom(\Lambda^{n+1}V, V)arrow Hom( \Lambda^{n+2} V. V) can be written
as,

(3.4) \partial f^{(n)}=(-1)^{n}[\gamma, f^{(n)}] , for f^{(n)}\in Hom( \Lambda^{n+1} V. V).

As to the contraction i(x) by x\in V . we have

(3.5) \{

i(x)(f^{(n)}\circ f^{(m)})=(-1)^{m}(i(x)f^{(n)})\circ f^{(m)}+f^{(n)}\circ i(x)f^{(m)} .
i(x)[f^{(n)}, f^{(m)}]=(-1)^{m}[i(x)f^{(n)}, f^{(m)}]+[f^{(n)}, i(x)f^{(m)}] .

In what follows we will often use the following notation: For graded
vector spaces V=\oplus V_{p} , W=\oplus W_{p} , Hom(\Lambda^{m}V, W)_{l} will denote the set of
all \alpha_{l}\in Hom( \Lambda^{m} V. W) such that, for any p_{1},\cdots , p_{m}\in Z ,

\alpha_{l}(V_{p_{1}}\wedge\cdots\wedge V_{p_{m}})\subset W_{p_{1}+\cdots+pm+l} .

For \alpha\in Hom(\Lambda^{m} V_{-}W) , we will denote by \alpha_{l} the Hom(\Lambda^{m}V, W)_{l}-component
of \alpha and write formally as \alpha=\sum_{l\in Z}\alpha_{l} .

Now let A(k)=(A, \{A^{p}\}, [\gamma]^{k}) be a truncated TFLA of order k . Let us
study its structure a little more closely. We write (l=\bigoplus_{p\in Z}\mathfrak{a}_{p}=Pro1 gr A(k) .

By choosing a direct sum decomposition A= \bigoplus_{p\leq k}A_{p} such that A^{i}= \bigoplus_{i\leq p\leq k}A_{p} ,

we identify tlp with A_{p} , thus A= \bigoplus_{p\leq k}\mathfrak{a}_{p} . Let \gamma be a representative of [\gamma]^{k}

and consider it as an element of Hom(\Lambda^{2}t1, \mathfrak{a})^{0} . Write

\gamma=\sum_{l\geq 0}\gamma_{l} , with \gamma_{l}\in Hom(\Lambda^{2}\mathfrak{a}, 0)_{l} .

We may assume that \gamma_{0} coincides with the bracket of Q. The components of
\gamma which are effectively determined by [\gamma]^{k} are the following:

(3.6) \gamma_{l}(x_{p}, y_{q}) , for x_{p}\in \mathfrak{a}_{p} , y_{q}\in \mathfrak{a}_{q} , l\leq\tau(k;p, q) .

The truncated Jacobi identity may be written as
(3.7) (\gamma\circ\gamma)_{l}(Xp, y_{q}, z_{r})=0 for x_{p}\in \mathfrak{a}_{p} , y_{q}\in 0_{q} , z_{r}\in \mathfrak{a}_{r} , l\leq\tau(k;p, q, r) .
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More explicitly it may be expressed as

-i ) \iota_{\mathfrak{m}}^{*}(\gamma\circ\gamma)_{l}=0

ii) \iota_{\mathfrak{m}}^{*}i(x_{i})(\gamma\circ\gamma)_{l}=0

(3.8)
iii) \iota_{\mathfrak{m}}^{*}i(x_{i})i(y_{j})(\gamma\circ\gamma)_{l}=0

iv) (\gamma\circ\gamma)_{l}(x_{i}, y_{j}, z_{m})=0

(l\leq k)

(l\leq k-i)

(l\leq k-i-j)

(l\leq k-i-j-m)

for any x_{i}\in Q_{i} , y_{j}\in Q_{j} , z_{m}\in Qm , i , j , m\geq 0 , where we put \mathfrak{m}=\bigoplus_{p<0}t1p and denote

by \iota

\mathfrak{m}* the canonical restriction map: Hom(\Lambda tl, 0)arrow Hom(\Lambda \mathfrak{m}, (x) and denote
by i(x) the contraction by x\in Q .

LEMMA 4. 1. Let the notation be as above and denote by \partial the coboun-
dary operator of Hom(\Lambda \mathfrak{m}, Q) , then we have:

i) \partial\iota_{\mathfrak{m}}^{*}(\gamma\circ\gamma)_{k+1}=0

If moreover \iota_{\mathfrak{m}}^{*}(\gamma\circ\gamma)_{k+1}=0 , then for x_{i}\in(l_{i}(0\leq i\leq k+1) ,

ii) \partial\iota_{\mathfrak{m}}^{*}i(x_{i})(\gamma\circ\gamma)_{k+1-i}=0

PROOF. We set; J_{l}=(\gamma\circ\gamma)_{l} . Denoting by \partial_{0} the coboundary operator
of Hom(\Lambda Q, Q) , and using the notation of skew-graded Lie algebras, we
have:

J_{l}= \sum_{s,t\geq 0}\gamma_{s^{\circ}}\gamma_{t}s+t=l

=[ \gamma_{0}, \gamma_{l}]+\frac{1}{2},\sum_{s^{+}t>0’} _{t=l}s[\gamma_{s}, \gamma_{t}]

=- \partial_{0}\gamma_{l}+\frac{1}{2},\sum_{s^{+}t>0’} _{t=l}s[\gamma_{s}, \gamma_{t}] .

Then we have:
\partial\iota_{\mathfrak{m}}^{*}J_{k+1}=\iota_{\mathfrak{m}}^{*}\partial_{0}J_{k+1}

= \frac{1}{2}\iota_{\mathfrak{m}}^{*}\partial_{0}\sum_{s,\overline{t}>0}[\gamma_{S}, \gamma_{t}]s+t-k+1

= \frac{1}{2}\iota_{\mathfrak{m} s+}^{*}s,\overline{t}>0\sum_{t-k+1},[\gamma_{0}, [\gamma_{s}, \gamma_{t}]]

= \frac{1}{2}\iota_{\mathfrak{m}_{S+} ^{\{[[\gamma_{0}, \gamma_{t}], \gamma_{s}]+[[\gamma_{0}, \gamma_{s}], \gamma_{t}]\}}t-k+1}^{*}\sum_{s,\overline{t}>0}

,

(by skew Jacobi identity (3. 3) and (3. 2)).

= \iota_{\mathfrak{m}}^{*}\sum_{s,\overline{t}>0}[[\gamma_{0}, \gamma_{s}]s+t-k+1’

\gamma_{t}]
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= \iota_{\mathfrak{m}}^{*}\sum_{s,\overline{t}>0}[Js, \gamma_{t}]-\frac{1}{2}\iota_{\mathfrak{m}}^{*}\sum_{r,s,t>0}[[\gamma_{r}, \gamma_{S}]s+t-k+1r+s+t=k+1’

\gamma_{t}]

= \iota_{\mathfrak{m}}^{*}\sum_{s,\overline{t}>0}[J_{S}, \gamma_{t}]s+t-k+1

(by skew Jacobi identity).

But on account of the hypothesis \iota_{\mathfrak{m}}^{*}J_{l}=0(l\leq k) and \iota_{\mathfrak{m}}^{*}i(x_{i})J_{l}=0(l\leq k-1-i) ,

we see that
\iota_{\mathfrak{m}}^{*}[J_{S}, \gamma_{t}]=0 if s+t=k+1, s , t>0 .

In fact, for a , b , c , d<0 , [J_{s}, \gamma_{t}](x_{a}, y_{b}, z_{c}, w_{d}) is a sum of the following kind
of terms :

\gamma_{t}(J_{S}(x_{a}, y_{b}, z_{c}), w_{d}) and J_{S}(\gamma_{t}(x_{a}, y_{b}), Zc , w_{d}) .

Since s\leq k , from \iota_{\mathfrak{m}}^{*}J_{l}=0 ( l\leq k) it follows that J_{S}(x_{a}, y_{b}, z_{c})=0 and that
J_{s}(\gamma_{t}(x_{a},y_{b}) , Zc , w_{d})=0 if t+a+b<0 . If t+a+b\geq 0 , it follows from
\iota_{\mathfrak{m}}^{*}i(x_{i})J_{l}=0 ( l\leq k-1-i) that J_{S}(\gamma_{t}(x_{a}, y_{b}), Zc , w_{d})=0 because
k-1-(a+b+t)=s-2-(a+b)\geq s . Hence \iota_{\mathfrak{m}}^{*}[J_{S}, \gamma_{t}]=0 , which proves
\partial\iota_{\mathfrak{m}}^{*}J_{k+1}=0 .

Next we have
\partial\iota_{\mathfrak{m}}^{*}i(x_{i})J_{k+1-i}

=\iota_{\mathfrak{m}}^{*}\partial_{0}i(x_{i})J_{k+1-i}

=\iota_{\mathfrak{m}}^{*}(\theta(x_{i})-i(x_{i})\partial_{0})J_{k+1-i} (by Stokes’ formula (2. 5))

= \iota_{\mathfrak{m}}^{*}\theta(x_{i})J_{k+1-i}-\frac{1}{2}\iota_{\mathfrak{m}}^{*}i(x_{i})\sum_{s,t>0}[\gamma_{0}, [\gamma_{s}, \gamma_{t}]]s+t=k+1-i

= \iota_{\mathfrak{m}}^{*}\theta(x_{i})J_{k+1-i}-\iota_{\mathfrak{m}}^{*}i(x_{i})s+t=k+ ^{[J_{s}}\sum_{s,t>0}1-i
,

\cdot

By a similar arguement as above, we see that the last terms vanish because
of the hypothesis J_{l}(x_{p}, y_{q}, z_{r})=0(l\leq\tau(k;p, q, r)) and \iota_{\mathfrak{m}}^{*}J_{k+1}=0 , which
proves ii ).

3. 3. Proof of Proposition 3. 1. Let A(k)=(A, \{A^{p}\}, [\gamma]^{k}) be a trun-
cated TFLA of order k satisfying the assumption of the proposition.
Keeping the same notation as before we denote by Q^{=}\bigoplus_{p\in Z}Qp the prolongation

of gr A(k) , and identify A with \bigoplus_{p\leq k}Qp . We take a representative \gamma=\sum_{l\geq 0}\gamma_{l} of
[\gamma]^{k} as an element of Hom(\Lambda^{2}Q, Q)^{0} so that \gamma_{0} coincides with the bracket of
Q. To prove the proposition, we will define on \bigoplus_{p\leq k+1}\mathfrak{a}_{p} a truncated TFLA

A(k+1) of order k+1 satisfying the assertion of the proposition. In order
that, it suffices to show that there exists \hat{\gamma}=\sum_{l\geq 0}\hat{\gamma}_{l}\in Hom(\Lambda^{2}Q, Q)^{0} satisfying
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the following conditions:

(3.9) \{_{iii)}^{i)}ii) (\hat{\gamma}\circ\hat{\gamma})_{l}(Xp,y_{q},z_{r})=0\hat{\gamma}_{l}(Xp,y_{q})=\gamma_{l}(Xp,y_{q})\hat{\gamma}_{0}=\gamma_{0}=thebracket

of Q.

forl\leq\tau(k.+1,\cdot p, q, r)forl\leq\tau(k,p,q)

From i ) and ii ), we may express \hat{\gamma} as
(3. 10)

\hat{\gamma}=\gamma+\xi+\sum_{0\leq i\leq k}\eta_{i}+\sum_{+j\leq k} ii,j\geq 0’\zeta_{ij}
, with \xi\in Hom(\Lambda^{2}\mathfrak{m}, Q)_{k+1} ,

\eta_{i}\in Hom(Q_{i}, Hom(\mathfrak{m}, Q)_{k+1}) , \zeta_{ij}\in Hom(\mathfrak{a}_{i}\wedge Q_{j}, Q_{k+1}) .

Now we are going to determine \xi , \eta_{i} , \zeta_{ij} so as to satisfy C3. 9) iii )
Since it is obviously satisfied for l<\tau(k+1;p, q, r) , we have only to exam-
ine the case l=\tau(k+1; p, q, r) , that is, the following conditions must be
satisfied:

(3. 11)

’

i ) \iota_{m}^{*}(\hat{\gamma}\circ\hat{\gamma})_{k+1}=0

ii) \iota_{\mathfrak{m}}^{*}i(x_{i})(\hat{\gamma}\circ\hat{\gamma})_{k+1-i}=0 (0\leq i\leq k+1)

iii) \iota_{\mathfrak{m}}^{*}i(x_{i})i(y_{j})(\hat{\gamma}\circ\hat{\gamma})_{k+1-i-j}=0 (i, j\geq 0, i+j\leq k+1)

iv) (\hat{\gamma}^{\circ}\hat{\gamma})_{k+1-i-j-m}(x_{i}, y_{j}, z_{m})=0 (i, j, m\geq 0, i+j+m\leq k+1)

Note that since \hat{\gamma}_{0} is the bracket of Q the above conditions ii ), iii ), or iv )

are satisfied if i=k+1 , i+j=k+1, or i+j+m=k+1 respectively.
To check the above condition i ), we note that, taking account of (3.

10), we have:

(3. 12) \iota_{\mathfrak{m}}^{*}(\hat{\gamma}\circ\hat{\gamma})_{k+1}=-\partial\xi+\iota_{\mathfrak{m}}^{*}(\gamma\circ\gamma)_{k+1} .

But by Lemma 3. 1 \iota_{\mathfrak{m}}^{*}(\gamma\circ\gamma)_{k+1} is a cocycle (in case k=0\iota_{\mathfrak{m}}^{*}(\gamma\circ\gamma)_{1}(=-\partial\iota_{\mathfrak{m}}^{*}\gamma_{1})

is a fortiori a coboundary). Hence our hypothesis H_{k+1}^{3}(Q)=0 (if k\geq 1 )
allows us to find \xi so as to satisfy C3. 11) i ).

Now choose such a \xi and put \tilde{\gamma}=\gamma+\xi . Then, noting that \iota_{\mathfrak{m}}^{*}(\tilde{\gamma}^{\circ}\tilde{\gamma})_{k+1}

=0, we have, for x_{i}\in \mathfrak{a}_{i}(0\leq i\leq k) ;

(3. 12’) \iota_{\mathfrak{m}}^{*}i(x_{i})(\hat{\gamma}\circ\hat{\gamma})_{k+1-i}=\partial\eta_{i}(x_{i})+\iota_{\mathfrak{m}}^{*}i(x_{i})(\hat{\gamma}\circ\overline{\gamma})_{k+1-i} .

In fact,

\iota_{\mathfrak{m}}^{*}i(x_{i})((\hat{\gamma}\circ\hat{\gamma})_{k+1-i}-(\tilde{\gamma}\circ\tilde{\gamma})_{k+1-i})

=-\iota_{\mathfrak{m}}^{*}i(x_{i})\partial(\hat{\gamma}_{k+1-i}-\gamma_{k+1-i})

=-\iota_{\mathfrak{m}}^{*}\theta(x_{i})(\hat{\gamma}_{k+1-i}-\gamma_{k+1-i})+\partial\iota_{\mathfrak{m}}^{*}i(x_{i})(\hat{\gamma}_{k+1-i}-\gamma_{k+1-i})

=\partial\eta_{i}(x_{i}) .

Hence, by lemma 3. 1 and our hypothesis H_{k+1}^{2}((l)=0 , we can find \eta_{i}

(0\leq i\leq k) so as to satisfy C3. 11) ii ).
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Finally let us define \zeta_{i,j} by induction on h=i+j. For an integer h\geq 0 ,
put

\gamma^{(h)}=\gamma+\xi+\sum_{0\leq i\leq k}\eta_{i}+\sum_{\dotplus_{j<h}i^{ij\leq 0}}\zeta_{i,j}

and suppose \gamma^{(h)} satisfies:

(3. 13)

-\iota_{\mathfrak{m}}^{*}(\gamma^{(h)_{O}}\gamma^{(h)})_{l}=0 (l\leq k+1)

\iota_{\mathfrak{m}}^{*}i(x_{i})(\gamma^{(h)_{O}}\gamma^{(h)})_{l}=0 (l\leq k+1-i)

\iota_{\mathfrak{m}}^{*}i(x_{i})i(y_{j})(\gamma^{(h)_{O}}\gamma^{(h)})_{l}=0

( l\leq k-i-j , or l=k+1-i-j and i+j<h )
-(\gamma^{(h)_{O}}\gamma^{(h)})_{l}(x_{i}, y_{j}, z_{m})=0 (l\leq k-i-j-m)

for x_{i}\in Q_{i} , y_{j}\in Q_{j} , z_{m}\in Qm , i , j , m\geq 0 .
Again similar arguements as in the proofs of (3. 12’) and of Lemma 3. 1

will show that, for i+j=h, i, j\geq 0 ,

\iota_{\mathfrak{m}}^{*}i(x_{i})i(x_{j})(\gamma\circ\gamma)_{k+1-i-j}(h+1)\cdot h+1)

=\partial\zeta_{ij}(x_{i}, y_{j})+\iota_{\mathfrak{m}}^{*}i(x_{i})i(y_{j})(\gamma^{(h)_{O}}\gamma^{(h)})_{k+1-i-j}

and that \partial\iota_{\mathfrak{m}}^{*}i(x_{i})i(y_{j})(\gamma^{(h)_{\circ}}\gamma^{(h)})_{k+1-i-j}=0 . Therefore, noting that H_{k+1}^{1}(Q)

=0 since Q is the prolongation of \bigoplus_{p\leq k}Qp , we can determine \zeta_{ij} (i+j=h,

i , j\geq 0) so that we have
\iota_{\mathfrak{m}}^{*}i(x_{i})i(x_{j})(\gamma^{(h+1)}\circ\gamma^{(h+1)})_{l}=0

for l=k+1-i-j, i+j<h+1 , which completes the induction.
Thus we have shown that we can find \hat{\gamma} satisfying i ), ii ) and iii ) of

(3. 11). It remains to check iv ). But this is a direct consequence of i ),
ii) , iii) . In fact, we see, by repeated application of the truncated Jacobi
dientity (i. e., i ) , ii) , iii)) , that

\hat{\gamma}((\hat{\gamma}\circ\hat{\gamma})(x_{i}, y_{j}, z_{m}), v_{a})\equiv 0 (mod \bigoplus_{p\geq k+2+a}Qp )

for i+j+m\leq k , i , j , m\geq 0 , a<0 , which, by virtue of (G3), implies iv ).

Thus we have completed the proof of Proposition 3. 1.

3. 4. Proof of Proposition 3. 2. Write Trun kA(k+1)=A(k) ,
Trun B(k+1)=B(k) . For a given embedding \psi_{k} : A(k)arrow B(k) , take any
filtration preserving injective linear map \phi_{k+1} : A(k+1)arrow B(k+1) such that
Trun \phi_{k+1}\equiv\phi_{k} . Our task is to modify it so as to obtain an embedding
\phi_{k+1} : A(k+1)arrow B(k+1) .

Write: Prol gr A(k+1)= \mathfrak{a}=\bigoplus_{p\in Z}Qp , Prol gr B(k+1)= b=\bigoplus_{p\in Z}b_{p} . By
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fixing a direct sum decomposition of A(k+1) compatible with the filtration,
we identify once and for all A(k+1) with \bigoplus_{p\leq k+1}t1p . Furthermore, by choos-

ing a direct sum decomposition B(k+1)= \bigoplus_{p\leq k+1}B_{p} compatible with the filtra-

tion such that \phi_{k+1}(Qp)\subset B_{p} for p\leq k+1 , we identify b_{p} with B_{p} . We also
identify A(k+1) with \phi_{k+1}(A(k+1)) via \phi_{k+1} . Thus by these
identifications (depending on \phi_{k+1}), we have

(3. 14) \{

A(k+1)= \bigoplus_{p\leq k\dagger 1}t1p , B(k+1)= \bigoplus_{p\leq k+1}b_{p} ,

()p^{=b_{p}}(p<0) , Qp\subset b_{p}(0\leq p\leq k+1)

Let \gamma , \delta be representatives of the truncated brackets of A(k+1) and
B(k+1) respectively and write (depending on the above identifications) \gamma=

\sum_{l\geq 0}\gamma_{t} , \delta=\sum_{l\geq 0}\delta_{l} , with \gamma_{l}\in Hom(\Lambda^{2}Q, Q)_{l} , \delta_{l}\in Hom(\Lambda^{2}b, b)_{l} .

Then, since \dot{\varphi}_{k} is a homomorphism and Trun_{k}\phi_{k+1}\equiv\phi_{k} , we have

(3. 15) \gamma_{l}(x_{p}, y_{q})=\delta_{l}(x_{p}, y_{q}) if l<\tau(k+1;p, q) ,

for x_{p}\in rx_{p} , y_{q}\in_{t1q} , p, q\leq k+1 .
Let \phi_{k+1} be another filtration preserving linear map: A(k+1) -arrow B(k+1)

such that Trun_{k}\phi_{k+1}\equiv\psi_{k} . Then there is a linear map f:A(k+1)arrow B(k+1)

such that

(3. 16) \{

f(_{Qp})\subset b_{\tau(k\dagger 1,p)+p} (p\leq k) ,
\phi_{k+1}(x_{p})\equiv x_{p}+f(x_{p}) (mod A(k+1)^{p+\tau(k+1,p)+1} ) for x_{p}\in Qp .

If we define K\in Hom(\Lambda^{2}A(k+1), B(k+1)) by

K(x, y)=\phi_{k+1}(\gamma(x, y))-\delta(\psi_{k+1}(x), \phi_{k+1}(y)) ,

then K(x_{p}, y_{q})\in B(k+1)^{\tau(k+1,p,q)+p+q} for any x_{p}\in A(k+1)^{p} . y_{q}\in A(k+1)^{q} .
Therefore \phi_{k+1} is an embedding if and only if

(3. 17) K_{\tau(k+1} , p,q)(Xp, y_{q})=0 , for \chi_{p}\in Qp , y_{q}\in_{t1q} , p, q<k+1 .

On the other hand it follows easily from (3. 15) and (3. 16) that we
have, for p, q<0 ,

K_{\tau(k+1,p,q)(Xp, y_{q})=\gamma_{k+1}(Xp, y_{q})-\delta_{k+1}(Xp, y_{q})}

-\{\delta_{0}(x_{p}, f(x_{q}))+\delta_{0}(f(x_{p}), y_{q})-f(\gamma_{0}(x_{p}, y_{q}))\} ,

or
\iota_{\mathfrak{m}}^{*}K_{k+1}=\iota_{\mathfrak{m}}^{*}(\gamma_{k+1}-\delta_{k+1})-\partial\iota_{\mathfrak{m}}^{*}f ,

where \mathfrak{m}=\bigoplus_{p<0}Qp^{=}\bigoplus_{p<0}b_{p} and \partial stands for the coboundary operator of
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Hom(\Lambda \mathfrak{m}, b) .
Let us show that \iota_{\mathfrak{m}}^{*}(\gamma_{k+1}-\delta_{k+1}) is a cocycle. In fact, recalling that

(\gamma^{\circ}\gamma)_{l}=-\partial_{0}\gamma_{l}+_{s}

,
_{t>0^{l}} \sum_{s^{+t=}’}\gamma_{s^{\circ}}\gamma_{t}

,

we have

\iota_{\mathfrak{m}}^{*}(\gamma\circ\gamma)_{k+1}=-\partial\iota_{\mathfrak{m}}^{*}\gamma_{k+1}+\iota_{\mathfrak{m}}^{*}\sum_{s,\overline{t}>0}\gamma_{s}\circ\gamma_{t}s+t-k+1^{\cdot}

But \iota_{\mathfrak{m}}^{*}(\gamma^{\circ}\gamma)_{k+1}=0 , for \gamma defines a truncated Lie algebra of order k+1 .
Hence we have

\partial\iota_{\mathfrak{m}}^{*}\gamma_{k+1}=\iota_{\mathfrak{m}}^{*}\sum_{s,\overline{t}>0}\gamma_{s}\circ\gamma_{t}s+t-k+1 ’

and the same formula for \delta . But it follows from (3. 15) that

\iota_{\mathfrak{m}}^{*}\sum_{s,\overline{t}>0}\gamma_{S}\circ\gamma_{t}=\iota_{\mathfrak{m}_{S+t-k+1}}^{*}\sum_{s,\overline{t}>0}\delta_{S}\circ\delta ts+t-k+1^{\cdot}

which implies that \partial\iota_{\mathfrak{m}}^{*}(\gamma_{k+1}-\delta_{k+1})=0 .
Hence, on account of our assumption that H_{k+1}^{2}(grB(k+1))=0 , there

exists an f_{-}\in Hom(\mathfrak{m}, b)_{k+1} such that \partial f_{-}=\iota_{\mathfrak{m}}^{*}(\gamma_{k+1}-\delta_{k+1}) .
Now put \overline{\phi}_{k+1}=id+f_{-} and make the identifications (3. 14) via \overline{\phi}_{k+1}

instead of \phi_{k+1} . Then we have, in addition to (3. 15),

(3. 18) \gamma_{k+1}(x_{p}, y_{q})=\delta_{k+1}(x_{p}, y_{q}) for p, q<0 .

We are again looking for \phi_{k+1} : A(k+1)arrow B(k+1) that satisfies (3. 17) and
that has, in this time, the following form:

(3.19) \phi_{k+1}=id+f_{+} , with f_{+} \in Hom(\bigoplus_{0\leq p\leq k+1}Qp, b_{k+1}) .

It then follows from (3. 15), (3. 18) and (3. 19) that (3. 17) is already
satisfied for p, q<0 , while for 0\leq i\leq k+1 , q<0 we have

K_{\tau(k+1,i,q)}(x_{i}, y_{q})

=\gamma_{k+1-i}(x_{i}, y_{q})-\delta_{k+1-i}(x_{i}, y_{q})-\gamma_{0}(f+(x_{i}), y_{q}) ,
or

\iota_{\mathfrak{m}}^{*}i(x_{i})K_{k+1-i}=\iota_{\mathfrak{m}}^{*}i(x_{i})(\gamma_{k+1-i}-\delta_{k+1-i})-\partial f_{+}(x_{i}) .
Again let us show that \iota_{\mathfrak{m}}^{*}i(x_{i})(\gamma_{k+1-i}-\delta_{k+1-i}) is a cocycle: Recall that

\partial\iota_{\mathfrak{m}}^{*}i(x_{i})\gamma_{k+1-i}=\iota_{\mathfrak{m}}^{*}i(x_{i})(\gamma\circ\gamma))_{k+1-i}

+ \iota_{\mathfrak{m}}^{*}\theta(x_{i})\gamma_{k+1-i}-\iota_{\mathfrak{m}}^{*}i(x_{i})\sum_{s,t>0}\gamma_{s^{\circ}}\gamma_{t}s+t=k+1-i ’
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which, \gamma replaced by \delta , also holds. But clearly \iota_{\mathfrak{m}}^{*}i(x_{i})(\gamma\circ\gamma)_{k+1-i}

=\iota_{\mathfrak{m}}^{*}i(x_{i})(\delta^{\circ}\delta)_{k+1-i}=0 . Furthermore from (3. 15) and (3. 18) we see that

\{

\iota_{\mathfrak{m}}^{*}\theta(x_{i})(\gamma_{k+1-i}-\delta_{k+1-i})=0

\iota_{\mathfrak{m}}^{*}i(x_{i})\sum_{s,t>0}(\gamma_{s^{\circ}}\gamma_{t}-\delta_{s^{\circ}}\delta_{t})=0s+t=k+1-i
.

It then follows that \partial\iota_{\mathfrak{m}}^{*}i(x_{i})(\gamma_{k+1-i}-\delta_{k+1-i})=0 . Hence, if H_{k+1}^{1}(grB(k+1))

=0, one can find f_{+} \in Hom(\bigoplus_{0\leq p\leq k+1}Qp, b_{k+1}) so that \iota_{\mathfrak{m}}^{*}i(x_{i})K_{k+1-i}=0 for x_{i}\in

\mathfrak{a}_{i}(0\leq i\leq k+1) . Thus we have found \phi_{k+1} such that

(3.20) K_{\tau(k+1,p,q)}(Xp, y_{q})=0 for p<0 or q<0 .

It is not difficult to verify that (3. 17) is a consequence of (3. 20) and there-
fore \phi_{k+1} is an embedding of A(k+1) into B(k+1) . q . e . d .

3. 5. The proof of Proposition 3. 2 also yields the following criterion
for two truncated TFLA’s to be isomorphic.

THEOREM 3. 1 Let A(k+1) , B(k+1) be truncated TFLA ’s of order
k+1(k\geq 0) . Suppose that there exist isomorphisms \phi_{k} : Trun kA(k+1)arrow

Trun B(k+1) and h_{k+1} : gr A(k+1)arrow grB(k+1) such that h_{k+1} is an
extension of gr \phi_{k} . Then, denoting \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} a TGLA isomorphic to

Prol gr A(k+1) , we may assume A(k+1) and B(k+1) are defifined on
\mathfrak{g}(k+1)^{\oplus}=_{p\leq k+1}\mathfrak{g}_{p} respectively by \gamma=\sum_{l\geq 0}\gamma_{l} and \delta=\sum_{l\geq 0}\delta_{l}(\gamma_{l}, \delta_{l}\in Hom(\Lambda^{2}\mathfrak{g}, \mathfrak{g})_{l})

satisfying the following conditions.-

i) \gamma_{l}(x_{p}, y_{q})=\delta_{l}(x_{p,yq}) , for l\leq\tau(k;p, q) , x_{p}\in \mathfrak{g}_{p} , y_{q}\in \mathfrak{g}_{q} .

ii) \gamma_{0}=\delta_{0}=the bracket of \mathfrak{g} .

Under this condition, A(k+1) and B(k+1) are isomorphic if and only if
the cocycles :

\{

\iota_{9-}^{*}(\gamma_{k+1}-\delta_{k+1})\in Hom(\Lambda^{2}\mathfrak{g}-, \mathfrak{g})_{k+1} ,
\iota_{\mathfrak{g}-}^{*}i(x_{i})(\gamma_{k+1-i}-\delta_{k+1-i})\in Hom(\mathfrak{g}-, \mathfrak{g})_{k+1}(x_{i}\in \mathfrak{g}_{i}, 0\leq i\leq k)

are exact.

Finally, to illustrate the preceding discussion, let us examine truncated
TFLA’s of lower orders.

It is clear that a truncated TFLA of order 0 is determined, up to isomor-
phism, by a truncated TGLA of order 0, namely a finite dimensional graded
Lie algebra \bigoplus_{p\leq 0}\mathfrak{g}_{p} such that the adjoint representation of \mathfrak{g}_{0} on \mathfrak{g}_{-}=\bigoplus_{p<0}\mathfrak{g}_{p} is
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faithful.
To examine truncated TFLA’s of order 1 and 2, we make somewhat

general observation which follows immediately from the preceding discus-
sion, especially from the proof of Proposition 3. 1.

Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be a TGLA and let \gamma=\sum_{l\geq 0}\gamma_{l}\in Hom(\Lambda^{2}\mathfrak{g}, \mathfrak{g}) be such that \gamma_{0}

coincides with the bracket operation of \mathfrak{g} . Suppose that for an integer
k\geq 1 , [\gamma]^{k-1} defines on \mathfrak{g}(k-1)=\bigoplus_{p\leq k-1}\mathfrak{g}_{p} a truncated TFLA of order k-1 .

Then [\gamma]^{k} defines on \mathfrak{g}(k) a truncated TFLA of order k if and only if the
following conditions are satisfied;

(2.21) k

i)
\partial\iota_{\mathfrak{m}}^{*}\gamma_{k}=\iota_{\mathfrak{m}_{S+t=k}}^{*}\sum_{s,t>0}\gamma_{s^{\circ}}\gamma_{t}

,

ii)
\partial\iota_{\mathfrak{m}}^{*}i(x_{i})\gamma_{k-i}=\iota_{\mathfrak{m}}^{*}\theta(x_{i})\gamma_{k-i}-\iota_{\mathfrak{m}}^{*}i(x_{i})\sum_{s,\overline{t}>0}\gamma_{s^{\circ}}\gamma_{t}s+t-k-i ’

for x_{i}\in \mathfrak{g}_{i}(0\leq i\leq k-1) ,
iii) \partial i(x_{i})i(y_{j})\gamma_{k-i-j}=\iota_{\mathfrak{m}}^{*}(\theta(x_{i})i(y_{j})-i(x_{i})\theta(y_{j}))\gamma_{k-i-j}

+ \iota_{\mathfrak{m}}^{*}i(x_{i})i(yj)s+t=k ^{\gamma_{s^{\circ}}\gamma_{t}}s,t>0i-j\sum_{-}

,

for x_{i}\in \mathfrak{g}_{i} , y_{j}\in \mathfrak{g}_{j}(i, j\geq 0, i+j\leq k-1) .

Note that the right hand side of i ) is a cocycle and that of ii ) (resp. iii ) ) ,
involving \iota_{\mathfrak{m}}^{*}\gamma_{k} (resp, \iota_{\mathfrak{m}}^{*}i(x_{i})\gamma_{k-i}), is a cocycle provided that i ) (resp. ii ) )

is satisfied.
Now in the case k=1 , (2. 21)_{k} reduces to:

(2.21)_{1}\{

i) \partial\iota_{\mathfrak{m}}^{*}\gamma_{1}=0

ii) \partial\iota_{\mathfrak{m}}^{*}i(x_{0})\gamma_{1}=\theta(x_{0})\iota_{\mathfrak{m}}^{*}\gamma_{1}

iii) \partial i(x_{0})i(y_{0})\gamma_{1}=\iota_{\mathfrak{m}}^{*}(\theta(x_{0})i(y_{0})-i(x_{0})\theta(y_{0}))\gamma_{1} .

Thus, to define a truncated TFLA of order 1, we have to choose a cocycle
\iota_{\mathfrak{m}}^{*}\gamma_{1} so that \theta(x_{0})\iota_{\mathfrak{m}}^{*}\gamma_{1} is a coboundary for any x_{0}\in \mathfrak{g}_{0} . Then determine
\iota_{\mathfrak{m}}^{*}i(x_{0})\gamma_{1} by ii ) (not necessarily uniquely). By this choice, if the right hand
side of iii ) is a coboundary (for instant it is always the case if \mathfrak{g}(1) is the
prolongation of \mathfrak{g}(0)) , we can determine i(x_{0})i(y_{0})\gamma_{1} by iii ), to obtain a trun-
cated TFLA of order 1.

In the case k=2, the first condition i ) reduces to:

(3.21)_{2} i) \partial\iota_{\mathfrak{m}}^{*}\gamma_{2}=(\iota_{\mathfrak{m}}^{*}\gamma_{1})\circ(\iota_{\mathfrak{m}}^{*}\gamma_{1})

Note that, if \mu(the depth of \mathfrak{g}) =1 , (3. 21)_{1}i) is always satisfied and
(3. 21)_{1}ii) , (3. 21)_{2}i) coincide with (4. 5) and (4. 6) of [2].

REMARK 3. 1. In the definition of the truncated Lie algebras, there are
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several reasonable choices for truncation. For instance set
\sigma(k;p_{1},\cdots, p_{r})

={\rm Min}\{k+1, k+1-l-p_{1}-\cdots-p_{i\iota}(1\leq i_{l}\leq r, 1\leq l\leq r)\}

for k , p_{1} , \cdots , p_{r}\in Z (cf. (3. 1)), and define the truncated Lie algebras by
using \sigma instead of \tau . Then we can as well develop the theory with this
\sigma-truncation, to which the notation H^{s,p}(=H_{s+p-1}^{p}) , rather than H_{r}^{p}, is well
adapted.

REMARK 3. 2. In the case when \mu=1 , the notion of truncated Lie alge-
bra (of order 1) was introduced by Guillemin-Sternberg [2] and extended to
higher order by Hayashi [3]. A truncated Lie algebra in the sense of [2] is,
in our terminology, a \sigma-truncated TFLA of order 1 of depth 1 which is
extendable to order 2. A truncated Lie algebra of order k in the sense of [3]
is a \sigma-truncated TFLA of order k of depth 1.

\S 4. Main theorems.

We are now ready to obtain our main theorems:

THEOREM 4. 1. Let A(k) be a truncated TFLA of order k\geq 0 , and
assume that

H_{r}^{2}(grA(k))=0(r\geq k+1) , and H_{r}^{3}(grA(k))=0(r\geq{\rm Max}\{k, 1\}+1) .

Then there exists, uniquely up to isomorphism, a complete TFLA L, such that
Trunk L=A(k) and that gr L=Pro1 gr A(k) .

PROOF. The existence follows from Proposition 3. 1 and uniqueness
follows from Proposition 3. 2.

THEOREM 4. 2. Let L be a complete TFLA. Let k be a non-negative
integer such that

H_{r}^{1}(grL)=H_{r}^{2}(grL)=0 , for r\geq k+1 .

For a TFLA K, if there is an embedding \psi_{k} : Trun_{k} Karrow Trun_{k} L, there
exists an embedding \phi:Karrow L such that Trun_{k}\phi\equiv\phi_{k} . Moreover two such
extensions differ by an inner automorphism of L which fifixes Tmn_{k} L.

PROOF. The existence follows from Proposition 3. 2. As regards the
rigidity, we first note that for an element X\in L^{l+1}(l\geq 0) ,

exp ad X= \sum_{n=0}^{\infty}\frac{1}{n!}(ad X)^{n} is a well-defined automorphism of L and

Trun l (\exp ad X) \equiv id . of Trun lL. If \phi_{k+1} , \psi\prime k+1 are embeddings:
Trunk Karrow Trun_{k+1}L , covering \phi_{k} , then from the proof of Proposition 3. 2
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and from our hypothesis H_{k+1}^{1}(grL)=0 . We see that there exists X_{k+1}\in

L^{k+1} such that

\phi_{k+1}’\equiv Trun_{k+1} (\exp ad X_{k+1} ) \circ\phi_{k+1} .

Therefore if \emptyset , \phi’ are embeddings: Karrow L, covering \phi_{k} , then there exists a
sequence \{X_{l}\}_{l\geq k+1}(X_{l}\in L^{l}) such that \phi’=\alpha\circ\phi , where \alpha=\lim_{larrow\infty}(\exp ad X_{t} ) \circ

\ldots\circ (\exp ad X_{k+1} ) is a well-defined automorphism of L and satisfies Trun_{k}\alpha\equiv

id.
As an immediate consequence of Theorem 4. 2, we have:

THEOREM 4. 3. Let L_{i}(i=1,2) be complete TFLA \prime s, and let k be an
integer \geq 0 such that

H_{r}^{1}(grL_{i})=H_{r}^{2} (gr L_{i} ) =0, for i=1,2 , r\geq k+1 .

Then L_{1} and L_{2} are isomorphic if and only if Tmn_{k} L_{1} and Tmn_{k} L2 are
isomo7phic.

COROLLARY 4. 1. Let L be a complete TFLA satisfying:

H_{r}^{1}(grL)=H_{r+1}^{2}(grL)=0 for r\geq 0 .

For a TFLA K, if there is an embedding \psi_{-1} : gr_{-}(K)arrow gr_{-}(L) , there exists,
uniquely up to inner automorphism of L, an embedding \phi:Karrow L such that
Tmn_{-1}(gr\phi)=\phi_{-1} .

PROOF. By Proposition 2. 1 and by the assumption H_{0}^{1}(grL) , the em-
bedding \phi_{-1} is uniquely extended to an embedding \phi_{0} : Truno Karrow Trun_{0}L ,

so that the assertion follows from Theorem 4. 2.

REMARK 4. 1. Examples of the TFLA’s satisfying the assumption of
Corollary 4. 1 are the Lie algebra of all formal vector fields in n variables
(\mu=1) , the contact Lie algebras (\mu=2) and some special class of higher
order contact Lie algebras. (See Corollary 5. 3. iii ) )

As a special case of Theorem 4. 3, we have

COROLLARY 4. 2. Let L be TFLA satisfying H_{r}^{1}(grL)=H_{r}^{2}(grL)=0 for
r\geq 1 , then L is graded, that is, L can be embedded into the completion of the
graded Lie algebra gr L.

We have also, from Theorem 3. 1, the following

PROPOSITION 4. 1. Let L be a TFLA. If gr_{0}L contains an element E
such that [E, x_{p}]=px_{p} for x_{p}\in gr_{p} L, then L is graded.

PROOF Write \mathfrak{g}=\oplus \mathfrak{g}_{p}=grL . If we choose \{G_{p}\}_{p\in Z} such that L^{p}=
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G_{p}\oplus L^{p+1} , we can identify \mathfrak{g}_{p} with G_{p} and we can decompose the bracket \gamma

of L as \gamma=\sum_{l\geq 0}\gamma_{t} with \gamma_{l}\in Hom(\Lambda^{2}\mathfrak{g}, \mathfrak{g})_{l} . To prove the proposition, we shall

show by induction on k\geq 0 that we can choose \{G_{p}\} so that we have:

(4. 1) \gamma_{l}(x_{p}, y_{q})=0 , for x_{p}\in \mathfrak{g}_{p} , y_{q}\in \mathfrak{g}_{q} , 0<l\leq\tau(k;p, q) .

Assumte this valid for a k . To show it for k+1 , it suffices, by virtue of
Theorem 3. 1, to see that \iota_{\mathfrak{m}}^{*}\gamma_{k+1} , \iota_{\mathfrak{m}}^{*}i(x_{i})\gamma_{k+1-i}(0\leq i\leq k, x_{i}\in \mathfrak{g}_{i}) are coboun-
daries.

First of all note that \theta(E)\alpha=l\alpha for \alpha\in Hom(\Lambda \mathfrak{g}, \mathfrak{g})_{l} . Now from Jacobi
identity and from (4. 1) we see:

0=\iota_{\mathfrak{m}}^{*}i(E)(\gamma\circ\gamma)_{k+1}

= \iota_{\mathfrak{m}}^{*}i(E)(-\partial_{\mathfrak{g}}\gamma_{k+1}+_{s+t-k+1}\sum_{s,\overline{t}>0}\gamma_{s}\circ\gamma_{t})

=-\iota_{\mathfrak{m}}^{*}i(E)\partial_{9}\gamma_{k+1}

=-\iota_{\mathfrak{m}}^{*}\theta(E)\gamma_{k+1}+\partial\iota_{\mathfrak{m}}^{*}i(E)\gamma_{k+1}

Hence (k+1)\iota_{\mathfrak{m}}^{*}\gamma_{k+1}=\partial\iota_{\mathfrak{m}}^{*}i(E)\gamma_{k+1} .
We, therefore, replace \{G_{p}\} by \{G_{p}’\} , where

\{

G_{\acute{p}}= \{y_{p}-\frac{1}{k+1}\gamma_{k+1}(E, v_{p})|v_{p}\in G_{p}\} , for p<0 ,

G_{\acute{p}}=G_{p} , for p\geq 0 ,

and we decompose \gamma as \gamma=\Sigma\gamma_{l}
’ according to the identification via \{G_{\acute{p}}\} .

Then, recalling the proof of Proposition 3. 2, we have (4. 1) ( \gamma replaced by
\gamma’) and \iota_{\mathfrak{m}}^{*}\gamma_{k+1}’=0 . Moreover we have:

(4.2) \iota_{\mathfrak{m}}^{*}i(E)\gamma_{\acute{k}+1}=0 .

In fact, for v_{\acute{p}}=v_{p}- \frac{1}{k+1}\gamma_{k+1}(E, v_{p})\in G_{\acute{p}}, we have

\gamma(E, v_{\acute{p}})=\sum_{l\geq 0}\{\gamma_{l}(E, v_{p})-\frac{1}{k+1}\gamma_{l}(E, \gamma_{k+1}(E, v_{p}))\}

\equiv[E, v_{p}]’+\frac{1}{k+1}\gamma_{k+1}(E, v_{p})+\gamma_{k+1}(E, v_{p})

- \frac{1}{k+1}[E, \gamma_{k+1}(E, v_{p})] (mod L^{k+2+p} )

\equiv[E, v_{p}]^{r} (mod L^{k+2+p} )

where we set [E, v_{p}]’=[E, v_{p}]- \frac{1}{k+1}\gamma(E, [E, v_{p}]) . This implies (4. 2).

Next let us show that \iota_{\mathfrak{m}}^{*}i(x_{i})\gamma_{\acute{k}+1-i}(0\leq i\leq k) are coboundaries. We
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have:
0=\iota_{\mathfrak{m}}^{*}i(x_{i})i(E)(\gamma’\circ\gamma’)_{k+1-i}

=-\iota_{\mathfrak{m}}^{*}i(x_{i})i(E)\partial_{\mathfrak{g}}\gamma_{k+1-i}’

=-\partial\iota_{\mathfrak{m}}^{*}i(x_{i})i(E)\gamma_{k+1-i}’+\iota_{\mathfrak{m}}^{*}\theta(x_{i})i(E)\gamma_{k+1-i}’-(k+1-i)\iota_{\mathfrak{m}}^{*}i(x_{i})\gamma_{k+1-i}’ .

But we see that \iota_{\mathfrak{m}}^{*}\theta(x_{i})i(E)\gamma_{k+1-i}’=0 , for this follows from (4. 1) if i>0
and form (4. 2) if i=0. Hence \iota_{\mathfrak{m}}^{*}i(x_{i})\gamma_{k+1-i}’ are coboundaries. Therefore
by Theorem 3. 1 (or proof of Proposition 3. 2), we can choose \{G_{p}\} so that
(4. 1) is satisfied for 0<l\leq\tau(k+1;p, q) , completing the induction, q. e . d .

REMARK 4. 1. If we restrict ourselves to the transitive filtered Lie
algebras of depth 1 (i. e., \mu=1) , the results obtained in this section reduce to
the well-known ones: If \mu=1 , Theorem 4. 1 essentially coincides with the
Existence and Uniqueness Theorem of Guillemin-Sternberg [2], and TheO-
rem 4. 2 coincides with the Embedding Theorem of Hayashi [3] which
improves the Realization theorem of Guillemin-Sternberg [2]. Proposition
4. 1 is also known in the case \mu=1 by Kobayashi-Nagano [4] (See also C.
Buttin, C. R. Acad. Sc. Paris. 264 (1967), 496–498).

\S 5. Contact Lie algebras of higher order.

5. 1 In higher order contact geometry there can be found many exam-
ples of filtered Lie algebras of depth greater than one. Among them the most
fundamental are the contact Lie algebras of higher order: in this section we
shall calculate their cohomology groups.

Let \pi:Marrow N be a fibred manifold and let J^{\nu}(M, N) the bundle of v-jets
of cross-sections of \pi:Marrow N . As well known, J^{1J}(M, N) has the contact
structure of order \nu , that is, the flag of differential systems:

Jy(M, N)=D^{-\nu-1}\supset D^{-\nu}\supset\cdots\supset D^{-1} .

In local coordinates, it is defined as follows: Let (u^{1},\cdots, u^{n}) be a local
coordinate system of N and (u^{1},\cdots, u^{n}, w^{1},\cdots, w^{m}) that of M (we write \pi^{*}u^{i}

just as u^{i}), then we have a local coordinate system (u^{1},\cdots, u^{n},\cdots, p_{a}^{\rho}\cdots) of
J^{\nu}(M, N) , where 1\leq\rho\leq m , \alpha=(\alpha_{1},\cdots, \alpha_{n}) with |\alpha|=\Sigma\alpha_{i}\leq 1/ and p_{0}^{\rho}=w^{\rho} Put

\omega_{a}^{\rho}=dp_{a}^{\rho}-\sum_{i=1}^{n}p_{a+1_{i}}^{\rho}dx^{i} (1 \leq\rho\leq m, 0\leq|\alpha|\leq\nu-1)

where \alpha+1_{i}=(\alpha_{1},\cdots, \alpha_{i}+1,\cdots, \alpha_{n}) . Then the differential system D^{a}(a\leq-1)

is defined by

D^{a}=\{\omega_{a}^{\rho}=0, \rho=1,\cdots, m, |\alpha|\leq\nu+a\} .

Of course the definition does not depend on the choice of local coordinates,
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and one can verify easily:

[\mathscr{D}^{a}. \mathscr{D}^{b}]\subset \mathscr{D}^{a+b} .

where \mathscr{D}^{a} denotes the sheaf of sections of D^{a} .
A (local) vector field X on J^{\nu}(M, N) is called a contact vector field of

order \nu if it infinitesimally leaves invariant each D^{a} (namely if Y is a
section of D^{a} so is [X, Y]) . We denote by \mathscr{C}(J^{\nu}(M, N)) the Lie algebra
sheaf of germs of contact vector fields of order l1 . Note that \mathscr{C}(J^{0}(M, N)) is
just the sheaf \mathscr{T}M of all germs of vector fields on M.

It is well known that every contact vector field X of order \nu can be lifted
to a contact vector field of order \nu+l (denoted by p_{\nu,\nu+l}(X) or X^{(l)}); it is
defined as follows: Let (\phi_{t}) be a local one parameter transformation group
generated by X and let \sigma be a section of \pi_{N}^{\nu} : J^{\nu}(M, N)arrow N , which, regarded
as a submanifold of J^{\nu}(M,N) , is transformed by \phi_{t} to another section \phi_{t}\sigma

(for t small enough). Thus \phi_{t} induces the map \phi_{t}^{(l)} : J^{l}(J^{\nu}(M, N), N)arrow

J^{l}(J^{\nu}(M, N) , N) by \phi\downarrow^{l)}(j_{x}^{l}\sigma)=j_{x_{t}}^{l}(\phi_{t}\sigma) where x_{t}=(\pi_{N}^{\nu}\circ\phi_{t}\circ\sigma)(x) . Then \phi\downarrow l
)

leaves invariant the submanifold J^{\nu+l}(M, N) of J^{l}(J^{\nu}(M, N), N) and more-
over the contact structure on it, thus yielding a contact vector field X^{(l)} on
J^{\nu+l}(M, N) . In this way we obtain an injective homomorphisn of Lie algebra
sheaves:

p_{\nu,\nu+t} : (\pi_{\nu}^{\nu+l})^{-1}\mathscr{C}(J^{\nu}(M, N))arrow \mathscr{C}(J^{\nu+l}(M, N)) ,

where \pi_{\nu}^{\nu+l} denotes the natural projection J^{\nu+l}(M, N)arrow J^{\nu}(M, N) . More-
over we have:

PROPOSITION 5. 1. p_{\nu,\nu+l} is an isomorphism for all \nu, l\geq 0 unless
dim M-dim N=1 and )/=0 .

For a geometric formulation and proof refer to Yamaguchi [15], [16].
We will denote by \mathscr{C}(J^{\nu}(M, N))^{(l)} the sheaf p_{\nu,\nu+t}(\pi_{\nu}^{\nu+l})^{-1}\mathscr{C}(J^{\nu}(M, N)) .

Let \mathscr{O}\in M and take a local coordinate system (u^{1},\cdots, u^{n}. w^{1},\cdots, w^{m}) of
the fibred manifold (M, N, \pi) centered at \mathscr{O} . Let \mathscr{O}^{\nu} a point of J^{\nu}(M, N)

such that \pi_{0}^{\nu}(\mathscr{O}^{\nu})=\mathscr{O} . Then we have easily:

LEMMA 5. 1. The vectors \{(u^{a}\frac{\partial}{\partial w^{\rho}})_{a\nu}^{(\nu)} , ( \frac{\partial}{\partial u^{i}})_{a^{y}}^{(\nu\rangle}\}(1\nearrow+a+1\leq|\alpha|\leq\nu,
\rho

=1, \cdots m, i=1 , \cdots n) form a basis of (D^{a})_{a^{y}} for -\nu-1\leq a\leq-1 . Further-
more
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\{

(u^{a}w^{\beta} \frac{\partial}{\partial w^{\rho}})_{\rho}^{(\nu)}\nu=0 if |\alpha|\geq_{1/}+1 or |\beta|\geq 1 ,

(u^{a}w^{\beta} \frac{\partial}{\partial u^{i}})_{\sigma^{y}}^{(\mu)}=0 \overline{1}f|\alpha|+|\beta|>0 .

From this lemma it follows immediately that \mathscr{C}(J^{0}(M, N))^{(\nu)} (and hence
\mathscr{C}(J^{\nu}(M, N)) is transitive. By Proposition 1. 1, the stalk \mathscr{C}(J^{\nu}(M, N))_{\sigma^{\nu}}

can be endowed with a filtration \{\Psi^{\rho}\mathscr{C}(J^{\nu}(M, N))_{a^{y}}\}_{p\in Z} compatible with the
contact structure \{D^{a}\} . Hence it yields the formal algebra at \mathscr{O}^{\nu} . denoted
by C(m, n;1’) (since this depends up to isomorphism only on dim M=n+m,

dim N=n and the order \nu), and it induces on C(m, n;\nu) a filtration
\{\Psi^{p}C(m, n;\nu)\} . Then the pair (C(m, n;\nu), \{\Psi^{p}C(m, n;\nu)\}) is a transitive
filtered Lie algebra of depth \nu+1 . Similarly from \mathscr{C}(J^{\nu-l}(M, N))^{(l\rangle} we
obtain a transitive filtered Lie algebra

(C(m, n, \nu-l)^{(l)}, \{\Psi^{p}C(m, n;\iota/-l)^{(l)}\}) ,

which is a subalgebra of C(m, n;\nu) .
In order to obtain the cohomology group H(grC(m, n;f\nearrow)) , we shall

calculate H(grC(m, n;0)^{(\nu)}) and H(grC(1, n;1)^{(\nu-1)}) since Proposition
5. 1 implies that

\{

C(m, n;J\nearrow)=C(m, n;0)^{(\nu)} for \nu\geq 0 , if m\geq 2

C(1, n;\nu)=C(1, n, 1)^{(\nu-1)} for \nu\geq 1 .

This fact, however, will be obtained as a byproduct of our calculation
(Corollary 5. 3. i ) ) . In what follows, we write as

C(m, n;0)=A(m, n)=A, C(1, n;1)=C(n)=C.

Note that A(m, n) is nothing but the Lie algebra of the formal vector fields
in (m+n)-variables and C(n) the contact Lie algebra of a (2n+1) -

dimensional contact manifold in the usual sense.

5. 2. The cohomology group H(grA(m, n)^{(\nu)}) .
First of all let us write down explicitly the graded structure of

gr A(m, n)^{(\mu)} . Let V be an (m+n)-dimensional vector space and V=
U\oplus W a direct sum decomposition with dim U=n, dim W=m. Take a

basis \{\frac{\partial}{\partial u^{1}},\cdots\frac{\partial}{\partial u^{n}} , \frac{\partial}{\partial w^{1}} , \cdots \frac{\partial}{\partial w^{m}}\} of U\oplus W and the dual basis \{u^{1},\cdots , u^{1} ,

w^{1},\cdots , w^{m}\} of U^{*}\oplus W^{*} , then any element

\Sigma a_{a\beta}^{i}u^{a}\otimes w^{\beta}\otimes\frac{\partial}{\partial u^{i}}+\Sigma b_{a\rho}^{\rho}u^{a}\otimes w^{\beta}\otimes\frac{\partial}{\partial w^{\rho}}
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of S(V^{*})\otimes V=S(U^{*})\otimes S(W^{*})\otimes(U\oplus W) being regarded as a polynomial
vector field, S(V^{*})\otimes V carries the natural Lie algebra structure. Now for
an integer )\supset\geq 0 , put

Q(W, U)b^{\nu)}=\bigoplus_{i+(\nu+1)j-1=p}S^{i}(U^{*})\otimes S^{j}(W^{*})\otimes U

\oplus\bigoplus_{i+(\nu+1)j-(\nu+1)=p}S^{i}(U^{*})\otimes S^{j}(W^{*})\otimes W

Then it is easy to verify:

[Q(W, U)b^{\nu)}, Q(W. U)_{q}^{(1J)}]\subset Q(W, U)t_{+q}^{\nu)} .

Therefore \bigoplus_{p\in Z}Q(W, U)b^{\nu)} becomes a graded Lie algebra. From Lemma 5. 1
and the definition of the filtration \{\Psi^{p}A(m, n)^{(\nu)}\} , we have imm\’ediately:

PROPOSITION 5. 2. gr A(m, n)^{(\nu)} \cong\bigoplus_{p\in Z}(l(W, U)b^{\nu)} as graded Lie algebras.

We shall therefore identify gr A(m, n)^{(\nu)} with \oplus(l(W, U)b^{y)} .
To state our results we need still some notation. We put,

\{

F_{a}(=F_{a}^{(\nu)})=S^{\nu+1+a}U^{*}\otimes W(\nu\leq a\leq-1) ,
F(=F^{(\nu)})=\oplus-1F_{a}^{(\nu)}

a=-\nu

If }/=0, it is understood that F^{(\nu)}=F (the ground field).

Let us define an operator

(5. 1) \delta:Hom(\Lambda^{p}F, U)arrow Hom(\Lambda^{p+1}F, W) .

For that, we first define
\delta:Hom(\Lambda^{q}(U^{*}\otimes W), U)arrow Hom(\Lambda^{q+1}(U^{*}\otimes W), W)

by ( \delta\omega)(A_{1},\cdots, A_{q+1})=\sum_{i=1}^{q+1}(-1)^{i+1}A_{i}(\omega(A_{1},\cdots,\hat{A}_{i},\cdots, A_{q+1})) for A_{1},\cdots , A_{q+1}\in

U^{*}\otimes W=Hom(U, W) . If )/\geq 1 , recalling that F_{-\nu}=U^{*}\otimes W . we extend
this to the operator \delta:Hom(\Lambda^{p}F, U)arrow Hom(\Lambda^{p+1}F, W) in the obvious man-
ner. Note that \delta preserves the degree r , that is, if we put

(5.2) Hom(\Lambda^{p}F, U)_{r}=
\Sigma p_{a}-p\bigoplus_{-1-\Sigma a\overline{p}_{a=r}},Hom(\bigotimes_{a=-\nu}^{-1}\Lambda^{p_{a}}F_{a}, U)

(5.3) Hom(\Lambda^{p}F, W)_{r}=
- \nu-1-\Sigma ap’ a=r\bigoplus_{\Sigma p_{a=}p}Hom(\bigotimes_{a=-\nu}^{-1}\Lambda^{p_{a}}F_{a}, W) ,

then \delta(Hom(\Lambda^{p}F, U)_{r}\subset Hom(\Lambda^{p+1}F, W)_{r} . If \nu=0 , we understand that \delta

=0 and that Hom(\Lambda F. U)=Hom(\Lambda^{0}F_{r}U)_{-1}=U , Hom(\Lambda F. W)=Hom(\Lambda^{0}F ,
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W)_{-1}=W .
Now we can state:

THEOREM 5. 1. One has the following long exact sequence:
\delta

\ldotsarrow Hom(\Lambda^{p}F^{(\nu)}, W)_{r}arrow H_{r}^{p}(grA^{(\nu)})-arrow Hom(\Lambda^{p}F^{(\nu)}, U)_{r}arrow

Hom(\Lambda^{p+1}F^{(\nu)}, W)_{r}arrow\cdots .

For the proof we use the following well-known facts:

PROPOSITION 5. 3. To an exact sequence of cohain complex 0- K’arrow Karrow

K’arrow 0 , there corresponds a long exact sequence:

\ldotsarrow H^{p}(K’)arrow H^{p}(K)-arrow H^{p}(K’)-arrow H^{p+1}(K’)arrow\cdots .

PROPOSITION 5. 4. The Koszul complex (Hom( \Lambda V. SV^{*} . \partial)) is exact
except at Hom(\Lambda V, S^{0}V^{*}) , where V is a fifinite dimensonal vector space and
the boundary operator

\partial :Hom( \Lambda^{p} V. S^{i}V^{*} ) (\cong S^{i}V^{*}\otimes\Lambda^{p}V^{*})

arrow Hom(\Lambda^{p+1}V, S^{i-1}V^{*})(\cong S^{i-1}V^{*}\otimes\Lambda^{p+1}V^{*})

is just defifined by skew-symmetrization.

Now let us proceed to the proof of Theorem 5. 1. Using the above
notation, the cochain complex in question can be expressed as

C(=C(gr_{-}A^{(\nu)} , gr A^{(\nu)} )
=Hom(\Lambda U\otimes\Lambda W\otimes\Lambda F, SU^{*}\otimes SW^{*}\otimes(U\oplus W)) .

Recalling the bracket rule in SV^{*}\otimes V , we have the following exact
sequence of cochain complexes:

Oarrow K\otimes Warrow Carrow K\otimes Uarrow 0 ,

where K=Hom(\Lambda U\otimes\Lambda W\otimes\Lambda F, SU^{*}\otimes SW^{*}) with the coboundary opera-
tor \partial defined in the natural manner.

Now let us compute the cohomology group of K. For \gamma=(\gamma_{-\nu},\cdots, \gamma_{-1})

we put \Lambda^{\gamma}F=\Lambda^{\gamma-\nu}F_{-\nu}\otimes\cdots\otimes\Lambda^{\gamma-1}F^{-1} . Then we have:
\partial Hom(\Lambda^{p}U\otimes\Lambda^{q}W\otimes\Lambda^{\gamma}F, S^{i}U^{*}\otimes S^{j}W^{*})

\subset Hom(\Lambda^{p\dagger 1}U\otimes\Lambda^{q}W\otimes\Lambda^{\gamma}F, S^{i-1}U^{*}\otimes S^{j}W^{*})

\oplus Hom(\Lambda^{p}U\otimes\Lambda^{q+1}W\otimes\Lambda^{\gamma}F, S^{i}U^{*}\otimes S^{j-1}W^{*})

\oplus\bigoplus_{a=-\nu}^{-1}Hom(\Lambda^{p}U\otimes\Lambda^{q}W\otimes\Lambda^{\gamma+1a}F, S^{i+\nu+1+a}U^{*}\otimes S^{j-1}W^{*})

\oplus\bigoplus_{a=-\nu+1}^{-1}Hom(\Lambda^{p+1}U\otimes\Lambda^{q}W\otimes\Lambda^{\gamma+1a-1a-1}F, S^{i}U^{*}\otimes S^{j}W^{*})

\oplus Hom(\Lambda^{p+1}U\otimes\Lambda^{q-1}W\otimes\Lambda^{\gamma+1-\nu}F, S^{i}U^{*}\otimes S^{j}W^{*}) .
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Accordingly we put, for s , t>0 ,

K(s, t)= \bigoplus_{q+j\leq s-1}Hom(\Lambda U\otimes\Lambda^{q}W\otimes\Lambda F, SU^{*}\otimes S^{j}W^{*})

\oplus

p+i \geq t\bigoplus_{q+j=s},Hom(\Lambda^{p}U\otimes\Lambda^{q}W\otimes\Lambda F, S^{i}U^{*}\otimes S^{j}W^{*})
.

Then we see that K(s, t) is a subcomplex of K and that the quotient complex
K(s, t)/K(s, t+1) is isomorphic to K_{s,t}(U, W)\otimes(\Lambda F)^{*} , where

K_{s.t}(U, W)=_{p} \bigoplus_{+i=t} q+j=s’ Hom(\Lambda^{p}U\otimes\Lambda^{q}W, S^{i}U^{*}\otimes S^{i}W^{*})

is a d\dot{l}rect summand of the Koszul complex Hom(U\oplus W) , S(U\oplus W)^{*}) .
Hence by Proposition 5. 4, H(K(s, t)/K(s, t+1))=0 if (s, t)\neq(0, O)and

H(K(0, O)/K(0,1))=(\Lambda F)^{*} . which, in view of Proposition 5. 3, shows H(K)
\cong(\Lambda F)^{*} . Therefore we have the isomorphisms H(K\otimes W)arrow Hom(\Lambda F\cong’ W)

and H(K\otimes U)arrow Hom(\Lambda F. U)\cong and obtain the long exact sequence

\ldotsarrow Hom(\Lambda^{p}F, W)arrow H^{p}(C)-arrow Hom(\Lambda^{p}F, U)arrow Hom(\Lambda^{p+1}F. W)arrow\cdots .

It is easy to check that the connecting homomorphism coincides with \delta

defined previously in (5. 1), which proves Theorem 5. 1.
As an immediate consequence of the above theorem we have:

c_{oROLLARY}5.1 .

(1) H_{-1}^{0}(grA(m, n))\cong U\oplus W

H_{r}^{p}(grA(m, n))=0 if (p, r)\neq(0, -1)

(2) For 1/\geq 1 , if we write H_{r}^{p}=H_{r}^{p}(gr A(m\} n)^{(\nu)}) , then we have:

i) If m=1 , then for r\geq 0

H_{r}^{1}\cong\{
0 r\neq\nu-1

S^{2}U r=\nu-1^{\cdot}

ii) If m\geq 2 , then H_{r}^{1}=0 for r\geq 0 ,
iii) If m\geq 3 , then H_{r}^{2}=0 for r\geq )/.

PROOF. The assertion (1) follows immediately. If \nu\geq 1 , in the exact
sequence

.-\cdotarrow Hom(F^{(\nu)}, W)_{r}arrow H_{r}^{1}arrow Hom(F^{(\nu)}, U)_{r}arrow Hom(\Lambda^{2}F^{(\nu)}, W)_{r}8

8
arrow H_{r}^{2}arrow Hom(\Lambda^{2}F^{(\nu)}, U)_{r}arrow Hom(\Lambda^{3}F^{(\nu)}, W)_{r}arrow\cdots

observe that Hom(F^{(\nu)}, W)_{r}=0 for r\geq 0 and Hom(\Lambda 2F^{(\nu)}, W)_{r}=0 for
r\geq\nu . Indeed this follows immediately from (5. 3). Thus the vanishing of
H_{r}^{1} for r\geq 0 (or H_{r}^{2} for r\geq\nu ) is equivalent to the injectivity of
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\delta:Hom(F, U)_{r}arrow Hom(A2Fr,W)_{r} for r\geq 0 (resp. \delta : Hom(\Lambda 2F, U)_{r}arrow

Hom(\Lambda^{3}F, W)_{r} for r>\nu ). On the other hand it is easy to see that

\delta:Hom(\Lambda^{p}(U^{*}\otimes W), U)arrow Hom(\Lambda^{p+1}(U^{*}\otimes W), W)

is injective if dim W\geq p+1 , from which the assertion (2) is straight-
forward.

5. 3. The cohomology group H(grC(n)^{(\nu-1)})(\nu\geq 1) . To compute this
cohomology group, we first write down explicitly the graded structure of
gr C(n)^{(\nu-1)} by means of the bijective correspondence between the contact
vector fields and the infinitesimal generating functions. As previously let
(M, N, \pi) be a fibred manifold and here assume dim M=n+1 , dim N=n.
Fix a contact form \omega on J^{1}(M, N) , then to each function f on J^{1}(M, N) ,

there corresponds bijectively a contact vector field X_{f} by the following
condition:

\{

<X_{f} , \omega>=f

X_{f}\lrcorner d\omega\equiv-df (mod \omega ).

Let (u^{1},\cdots, u^{n}w) be a local coordinate system of the fibred manifold
(M, N, \pi) and (u^{1},\cdots, u^{n}. w, p_{1},\cdots, p_{n}) the associated local coordinates of
J^{1}(M, N) . Then by the above bijection C(n) is isomorphic to the formal
power series ring in the variables (\mathcal{U}^{1},\cdots, \mathcal{U}^{n}- w, p_{1},\cdots, p_{n}) , which therefore
inherits the bracket operation [ ] : we have

[f, g]=(1- \sum_{i=1}^{n}p_{i}\frac{\partial}{\partial p_{i}})f\cdot\frac{\partial g}{\partial w}-(1-\sum_{i=1}^{n}p_{i}\frac{\partial}{\partial p_{i}})g\cdot\frac{\partial f}{\partial w}

+ \sum_{i=1}^{n}(\frac{\partial f}{\partial u^{i}}\frac{\partial g}{\partial p_{i}}-\frac{\partial g}{\partial u^{i}}\frac{\partial f}{\partial p_{i}}) .

Let denote by U^{*} , W^{*} . W and P the vector spaces spanned respectively by
\{u^{1},\cdots, u^{n}\} , \{w\} , {1} and \{p_{1},\cdots, p_{n}\} , and put

cb^{\nu-1)}=\oplus S^{i}U^{*}\otimes S^{j}W^{*}\otimes S^{k}P

where the sum is taken over all i , j , k\geq 0 such that

i+(\nu+1)j+\iota/k-(\nu+1)=p

under the agreement that S^{0}P=W(=F1) .
Then it is easy to see that

[cb^{\nu-1)}, c_{q}^{(\nu-1)}]\subset cb^{\nu-1)}+q .

Hence \bigoplus_{p\in Z}cb^{\nu-1)} is a graded Lie algebra.
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Now observe that for the contact structure D^{a}(a<0) and \mathscr{O}^{\nu}\in

J^{\nu}(M, N) , D_{a^{\nu}}^{a}= \{(X\}^{\nu-1)})_{a\nu}|f\in\bigoplus_{p=a}^{-1}cb^{\nu-1)}\} and that (X\}^{\nu-1)})_{a\nu}=0 for f\in cb^{\nu-1)}

if p\geq 0 , then from the definition of the filtration \Psi^{p}C^{(\mu-1)} , we have immedi-
ately:

PROPOSITION 5. 5. gr C^{(\nu-1)} \cong\bigoplus_{p\in Z}c_{p^{(\nu-1)}} as graded Lie algebras.

This observation in due to [7] in the case \nu=1 and to Yamaguchi and
Yatsui for the case \nu>1 .

Henceforce we identify gr C^{(\nu-1)} with \oplus cb^{\nu-1)} . Thus

gr_{-}C^{(\nu-1)}=\bigoplus_{p<0}gr_{p}C^{(\nu-1)}

=W\oplus U^{*}\oplus S^{2}U^{*}\oplus\cdots\oplus(S^{\nu}U^{*}\oplus P)

where gr_{a}C^{(\nu-1)}=S^{\nu+a+1}U^{*} for a\leq-2 and gr_{-1}C^{(\nu-1)}=S^{\nu}U^{*}\oplus P .
Now we put

\{

E_{a}(=E_{a}^{(\nu-1)})=S^{\nu+1+a}U^{*} (-\nu+1\leq a\leq-1)

E(=E^{(\nu-1)})=\oplus-1E_{a}

-\nu+1

where we agree to put E^{(0)}=F (the base field). Then the complex
C=C(gr_{-}C^{(\nu-1)} , gr C^{(\nu-1)} ) is expressed as

C=Hom(\Lambda P\otimes\Lambda W\otimes\Lambda U^{*}\otimes\Lambda E, SU^{*}\otimes SW^{*}\otimes SP) .

Using the following identities:

\{

[p_{i}, f]=- \frac{\partial f}{\partial u^{i}}

[1, f]= \frac{\partial f}{\partial w}

[h(u), f]=h(u) \frac{\partial f}{\partial w}+\sum_{i=1}^{n}\frac{\partial h}{\partial u^{i}}\frac{\partial f}{\partial p_{i}}

we see that, for p, q , r , i , j , k\geq 0 and \alpha=(\alpha_{-\nu+1},\cdots, \alpha_{-1}) ,

\partial Hom(\Lambda^{p}P\otimes\Lambda^{q}W\otimes\Lambda^{r}U^{*}\otimes\Lambda^{a}E, S^{i}U^{*}\otimes S^{j}W^{*}\otimes S^{k}P)

\subset Hom(\Lambda^{p+1}P\otimes\cdots, S^{i-1}U^{*}\otimes\cdots)

\oplus Hom(\cdots\otimes\Lambda^{q+1}W\otimes\cdots, \cdots\otimes S^{j-1}W^{*}\otimes\cdots)

\oplus Hom(\cdots\otimes\Lambda^{r+1}U^{*}\otimes\cdots, \cdots S^{k-1}P)

\oplus Hom(\cdots\otimes\Lambda^{r+1}U^{*}\otimes\cdots, S^{i\dagger 1}U^{*}\otimes S^{j-1}W^{*}\otimes\cdots)

\oplus\bigoplus_{a=-\nu+1}^{-1}Hom(\cdots\otimes\Lambda^{a+1a}E, S^{i+\nu+a}U^{*}\otimes\cdots\otimes S^{k-1}P)
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\bigoplus_{a=-\nu+2}^{-1}Hom(\Lambda^{p+1}P\otimes\cdots\otimes\Lambda^{a+1a-1a-1}E,\cdots)

\oplus Hom(\Lambda^{p+1}P\otimes\cdots\otimes\Lambda^{r-1}U^{*}\otimes\Lambda^{a+1-\nu+1}E,\cdots)

\oplus Hom(\Lambda^{p+1}P\otimes\Lambda^{q-1}W\otimes\Lambda^{r+1}U^{*}\otimes\cdots, \cdots) ,

where unaltered terms are written by dots. In view of the above formula,
we put, for s , t\geq 0 ,

K(s, t)= \bigoplus_{q+j\leq s-1}Hom(\Lambda P\otimes\Lambda^{q}W\otimes\Lambda U^{*}\otimes\Lambda E, SU^{*}\otimes S^{j}W^{*}\otimes SP)

\oplus

p+i \geq t\bigoplus_{q+j=s},Hom(\Lambda^{p}P\otimes\Lambda^{q}W\otimes\Lambda U^{*}\otimes\Lambda E, S^{i}U^{*}\otimes S^{j}W^{*}\otimes SP)
.

Then we see that K(s, t) is a subcomplex of C and for q+j=s, p+i=t ,

\partial Hom(\Lambda^{p}P\otimes\Lambda^{q}W\otimes\Lambda^{r}U^{*}\otimes\Lambda^{a}E, S^{i}U^{*}\otimes S^{j}W^{*}\otimes S^{k}P)

\subset Hom(\Lambda^{p+1}P\otimes\cdots, S^{i-1}U^{*}\otimes\cdots)

\oplus Hom(\cdots\otimes\Lambda^{q+1}W\otimes\cdots, \cdots\otimes S^{j-1}W^{*}\otimes\cdots)

\oplus Hom(\cdots\otimes\Lambda^{r+1}U^{*}\otimes\cdots, \cdots\otimes S^{k-1}P)\oplus K(s, t+1) .

Noting that P (resp. W) is dual to U^{*} (resp. W^{*} ) with respect to the
bracket, we see easily that the quotient complex K(s, t)/K(s, t+1) is
isomorphic to K_{\acute{s},t}\otimes(\Lambda E)^{*} . where

K_{\acute{s},t}=_{p} \bigoplus_{+i=t} q+j=s’ Hom(\Lambda^{p}U\otimes\Lambda^{q}W\otimes\Lambda U^{*}. S^{i}U^{*}\otimes S^{j}W^{*}\otimes SU)

is a direct summand of the Koszul complex
Hom(\Lambda(U\oplus W\oplus U^{*}), S(U\oplus W\oplus U^{*})^{*}) , whose cohomology group vanishes
except at degree 0. Thus we have proved:

THEOREM 5. 2. H(grC(n)^{(\nu-1)})\cong Hom(\Lambda E^{(\nu-1)}, W) , or more precisely

H_{r}^{p}(grC(n)^{(\nu-1)})\cong
- \Sigma apa-\nu-1=r\bigoplus_{\Sigma p_{a,=}p}Hom(\bigotimes_{a=-\nu+1}^{-1}\Lambda^{p_{a}}(S^{\nu+1+a}U^{*}), W)

where U and W are vector spaces of dimension n and 1 respectively.

As an immediate consequence of this theorem, we have

c_{oROLLARY}5.2 .

i) H_{-2}^{0}(grC(n))=F . H_{r}^{p}(C(n))=0 if (p, r)\neq(0, -2)

ii) H_{r}^{1}(grC(n)^{(\nu-1)})=0 for r\geq 0

iii) H_{r}^{2}(grC(n)^{(\nu-1)})=0 for r\geq\nu-2

iv) H_{r}^{2}(grC(1)^{(\nu-1)})=0 for r\geq\nu-3 .

5. 4. Finally we summar\overline{l}ze some information on the contact Lie alge-
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bras which follows immediately f\overline{r}om the above computation.

c_{oROLLARY}5.3 .

i) C(m, n;\nu)=A(m, n)^{(\nu)} if m\geq 2 ,
C(1, n:\nu)=C(n)^{(\nu-1)} .

ii) gr C(m, n;\nu) is the prolongation of gv-C(m,n;1/).
iii) H_{r}^{1}=H_{r+1}^{2}=0 for r\geq 0 to the following Lie algebras: A(m, n) ,

C(m, n;1)(m\geq 3) , C(1, n;\nu) (0\leq\nu\leq 3) , C(1,1;4) .

In fact, since H_{r}^{1}(grA(m, n)^{(\nu\rangle})=0 for r\geq 0 and m\geq 2(Cor.\cdot 5.1. ii))

and H_{r}^{1}(grC(n)^{(\mu-1)})=0 for r\geq 0 (Cor. 5. 2. ii ) ) , taking into account
A(m, n)^{(\nu)} (resp. C(n)^{(\nu-1)} ) is an embedded subalgebra of C(m, n;\nu) (resp.
C(1, n;\nu)) , we have the above assertion i ). Then ii ) and iii ) are
straightforward from Corollary 5. 1 and 5. 2.

We remark that Corollary 5. 3. ii ) is known alternatively from the fact
that the contact structure on J^{k}(M, N) is a standard differential system
([12]).

The contact Lie algebras listed in Corollary. 5. 3. iii ) have some univer-
sal property in the sense that Corollary 4. 1 applies to these Lie algebras, (cf.

[16] Theorem 1. 6).

We also have:

COROLLARY 5. 4. Let (L, \{L^{p}\}) be a complete fifiltered Lie algebra. If
gr L is isomorphic to gr C(m, n;\nu) , then (L, \{L^{p}\}) is isomorphic to
C(m, n;1’) .

Since H_{0}^{1}(grC(m, n;l’))=0 , the derivation E\in Der_{0}(gr_{-}C(m, n;\nu)) is
contained \dot{1}ngr_{0}C(m, n:f\nearrow) . Hence the corollary above follows from PropO-
sition 4. 1.

We remark that Corollary 5. 4, as a special case of m=\nu=1 , gives
another (and more conceptual) proof of Proposition 5. 1 in [6].

REMARK 5. 1. In general it is difficult to compute the cohomology group
H(\mathfrak{g}) for a given transitive graded Lie algebra \mathfrak{g} of depth \mu . If \mathfrak{g} is finite
dimensional and simple then the method of Kostant [5] is applicable. If \mathfrak{g} is
of depth 1, the theorem of Serre [2], which states that H^{s,p}(\mathfrak{g})=0 for s>0
if and only if \mathfrak{g}_{0} has a quasi-regular basis (i . e , involutive), is useful to
compute the cohomology group when \mathfrak{g} is infinite dimensional. It would be
interesting if this sort of criterion could be obtained also for \mu\geq 2.*

)

*) Added in proof: Recently we have obtained such a criterion, generalizing the theorem of
Serre, which will be published elsewhere.
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