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Expansive homeomorphisms of solenoidal groups
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\S 1. Introduction

Our investigation will be related to a conjugacy problem in a class of
expansive homeomorphisms of solenoidal groups. Every compact connected
finite-dimensional abelian group is called solenoidal (classical solenoid).
Thus finite-dimensional tori are solenoidal.

Let X be a metric space with metric d . A homeomorphismf : Xarrow X is
called expansive if there is a constant c>0 such that x\neq y implies d(f^{n}(x) ,
f^{n}(y))>c for some integer n . Such a constant c is an expansive constant of
f , A continuous surjection f:Xarrow X is positively expansive if there is a
constant c>0 such that if x\neq y then d(f^{n}(x), f^{n}(y))>c for some non-
negative integer n (here c is called an expansive constant of f). For f :
Xarrow X a continuous surjection, we let X_{f}=\{(x_{i}) : x_{i}\in X and f(x_{i})=x_{i+1} ,
i\in Z\} . then f : Xarrow X is called c expansive if there is a constant c>0 such
that for (x_{i}) , (y_{i})\in X_{f} if d(x_{i}, y_{i})\leqq c for i\in Z then (x_{i})=(y_{i}) . For compact
spaces these notions are independent of a compatible metric used. c-
expansiveness for continuous surjections is weaker than positive expansive-
ness. For homeomorphisms c-expansiveness implies expansiveness.

A sequence of points \{x_{i} : a<i<b\} of a metric space X is called a
\delta-pseudo orbit of a continuous surjection f if d(f(x_{i}), x_{i+1})\leqq\delta for i\in(a,
b-1) . For \epsilon>0 a \delta-pseudo orbit \{x_{i}\} is called to be \epsilon -traced by a point
x\in X if d(f^{i}(x), x_{i})\leq\epsilon for i\in(a, b) . Here the symbols a and b are taken
as -\infty\leq a<b\leq\infty if f is bijective and as 0\leq a<b\leq\infty if f is not bijective.
We call f to have the pseudo orbit tracing property (abbrev: POTP) if for
every \epsilon>0 there is \delta>0 such that each \delta-pseudo orbit of f can be \epsilon -traced
by some point of X . For compact spaces this is independent of a compatible
metric used.

We say a continuous covering map f : Xarrow X is a c map if f is c-
expansive and satisfies POTP. A c map f : Xarrow X is called special if f
satisfies the following: for every (x_{i}) , (y_{i})\in X_{f} with x_{1}=y_{0} ,

W^{u}((x_{i}))=W^{u}((y_{i}))

where W^{u}((x_{i}))=\{z_{0}\in X : there is (z_{i})\in X_{f} such that d(x_{-i}, z_{-i})-0 as i
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arrow\infty\} .
For a conjugacy problem, a problem of whether every Anosov

diffeomorphism of an infra-nil-manifold is topologically conjugate to an
algebraic hyperbolic map has been studied by Shub [12], Franks [6, 7] ,
Manning [10] and etc. For continuous maps of finite-dimensional tori, the
following was proved in [3, 4, 9]:

(i) every homeomorphism with both expansiveness and POTP is
topologically conjugate to a hyperbolic toral automorphism ([9]),

(ii) every positively expansive map is topologically conjugate to an
expanding toral endomorphism ([3]),

(iii) every special c -map, which is neither bijective nor positively
expansive, is topologically conjugate to a hyperbolic toral endomorphism
([4]),

(iv) for every c-map which is not special, there is a finite cover and a
c -map on which their inverse limit is topologically conjugate to a solenoidal
automorphism ([4]).

For continuous surjection f of an n-solenoidal group, the following is
known [2].

FACT 1. 1. Assume that f is a local homeomorphism and f(0)=0
where 0 denotes the identity of X , then there is a totally disconnected
subgroup F such that

(a) X/F is an w-torus,
and for each \lambda>0 there exist

(b)\backslash a continuous map \varphi_{f} : F\cross Xarrow X with diam (\varphi_{f}(F\cross X))<\lambda and
(c) a group endomorphism \sigma_{f} : Xarrow X (if f is a homeomorphism then

\sigma_{f} is a group automorphism)
such that

f(x+y)=f(x)+\varphi_{f}(y, x)+\sigma_{f}(y) (x\in X, y\in F) .

FACT 1. 2. Let d_{n} denote the euclidean metric of R^{n} Under the
assumption of Fact 1. 1, there exist a continuous homomorphism \psi : R^{n}arrow X

and a d_{n} -biuniformly continuous bijection \overline{f} : R^{n}arrow R^{n} such that the diagram

\overline{f}

R^{n} R^{n}

\psi\downarrow \downarrow\psi commutes,

\psi(R^{n})\psi(R^{n})\overline{f}

and for \lambda>0 there are a subgroup C of finite index in Z^{n} . a linear map \overline{\sigma}_{f} :
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R^{n}arrow R^{n} and a continuous map \overline{\varphi}_{f} : C\cross R^{n}arrow B(0, \lambda) , where B(0, \lambda)=\{v\in

R^{n} : d_{n}(0, v)<\lambda\} such that the diagram

\overline{\sigma}_{f}

R^{n} R^{n}

\psi\downarrow \downarrow\psi commutes and
\psi(R^{n})\psi(R^{n})\overline{\sigma_{f}}

\overline{f}(v+l)=\overline{f}(v)+\overline{\varphi}_{f}(l, v)+\overline{\sigma}_{f}(l) (v\in R^{n}l\in C) .

FACT 1. 3. If in addition \overline{f} : R^{n}arrow R^{n} is positively expansive, then so is
\overline{\sigma}_{f} : R^{n}arrow R^{n} and f is topologically conjugate to a solenoidal group endomor-
phism \sigma_{f} .

Thus it will be natural to ask whether Fact 1. 3 holds for a homeomor-
phism which provides expansiveness and POTP. The purpose of this paper
is to discuss this problem.

THEOREM 1. Let f : Xarrow X be a homeomorphism of an n-solenoidal
group with f(0)=0, and \sigma_{f},\overline{\sigma}_{f} and \overline{f} be as in Facts 1. 1 and 1. 2. Assume
that f is expansive and has POTP. Then \overline{f} : R^{n}arrow R^{n} is expansive and has
POTP with respect to the euclidean metric. If in addition \overline{\sigma}_{f} : R^{n}arrow R^{n} is
hyperbolic and an expansive constant of \overline{f} is arbitrary, then f is topologically
conjugate to a solenoidal automo7phism\sigma_{f}.

In Theorem 1 it seems likely that f has a fixed point, and that two the
assumptions of the second statement can be dropped. However the authors
can not follow them. For one-dimensional case we have the following:

THEOREM 2. Let X be a one-dimensional solenoidal group and f : X
arrow X be an expansive homeomorphism with POTP. If f has a fixed point, then

f is topologically conjugate to a solenoidal automo2phism\sigma_{f} which is found as
in Fact 1. 1.

\S 2. Topological properties derived from expansiveness and POTP.

Let Y be a metric space with metric d and f : Yarrow Y be a (bijective)
homeomorphism. If \epsilon>0 and x\in Y . then a local stable set W_{\epsilon}^{s}(x, f, d) and
a local unstable set W_{\epsilon}^{u}(x, f, d) are defined by

W_{\epsilon}^{s}(x, f, d)=\{y\in Y:d(f^{i}(x), f^{i}(y))\leqq\epsilon, i\geq 0\} ,
W_{\epsilon}^{u}(x, f, d)=\{y\in Y:d(f^{-i}(x), f^{-i}(y))\leqq\epsilon, i\geq 0\} .

The following is easily checked: if f : Yarrow Y has POTP, then for \epsilon_{0}>0

there is \delta_{1}>0 such that d(x, y)<fi(x, y\in Y) implies W_{\epsilon_{0}}^{s}(x, f, d)\cap W_{\epsilon 0}^{u}(y, f,

d)\neq\phi and if in addition f is expansive and c>0 is an expansive constant,
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for 0<\epsilon_{0}<c/2 the set W_{\epsilon 0}^{s}(x, f, d)\cap W_{\epsilon 0}^{u}(y, f, d) is a single point.
Therefore, for the case when f : Yarrow Y has expansiveness and POTP, a

map [ . ] : \Delta(\delta) - Y is defined by

[x, y]=W_{\epsilon_{0}}^{s}(x, f, d)\cap W_{\epsilon 0}^{u}(y, f, d)

where \Delta(\delta_{)})=\{(x, y)\in Y\cross Y:d(x, y)<\alpha) .
Write d=d_{n} for simplicity and assume that f : R^{n}arrow R^{n} has expansive-

ne.ss and POTP under the metric d=d_{n} . Then the following lemmas are well
known:

LEMMA 2. 1. [8] A map [_{\neg},]:\Delta(\delta)arrow R^{n} is continuous and for x, y, z
\in R^{n}

[x, x]=x, [[x, y], z]=[x, z] , [x, [y, z]]=[x, z] and
f([x, y])=[f(x), f(y)] ,

where the two sides of these relations are defined,

LEMMA 2. 2. [8] Under the above notations, there are 0<\delta_{1}<\alpha/3 and
0<\rho<\delta_{1} such that for x\in R^{n} letting

W_{\epsilon_{0},\delta_{1}}^{\sigma}(x, f, d)=\{y\in W_{\epsilon 0}^{\sigma}(x, f, d) : d(x, y)<\delta_{1}\}\sigma=s, u,
N(x)=[W_{\epsilon 0,\delta_{1}}^{u}(x, f, d), W_{\epsilon_{0},\delta_{1}}^{s}(x, f, d)] ,

the following holds :
(a) N(x) is an open subset of R^{n} .
(b) diam(N(x))<2\alpha/3 ,
(c) [, ] : W_{\epsilon 0,\delta_{1}}^{u}(x, f, d)\cross W_{\epsilon 0,\delta_{1}}^{s}(x, f, d)arrow N(x) is a homeomorphism,
(d) N(x) contains the ball B_{\rho}(x)=\{y\in R^{n} : d(x, y)<\rho\} .
For x\in R^{n} we let
D^{s}(x) is the connected component of x in W_{\epsilon_{0},\delta_{1}}^{s}(x, f, d) ,
D^{u}(x) is that of x in W_{\epsilon_{0},\delta_{1}}^{u}(x, f, d) ,

and define
\overline{N}(x)=[D^{u}(x), D^{s}(x)] .

LEMMA 2. 3. Under the above notations, for x\in R^{n}

(1) N-(x) is connected and open in R^{n},
(2) diam (\overline{N}(x))<2\delta/3 ,
(3) [, ] : D^{u}(x)\cross D^{s}(x)arrow\overline{N}(x) is a homeomorphism,
(4) \overline{N}(x)\supset B_{\rho}(x) .

The proof follows from Lemma 2. 2.
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LEMMA 2. 4. [11] Let c>0 be an expansive constant of f:R^{n}arrow R^{n} and
assume that

(*)\{
for \epsilon>0 there is m>0 such that
\max\{d(f^{j}(x), f^{j}(y)) : - n_{0}\leq j\leq n_{0}\}<c

implies d(x, y)<\epsilon .

then there exist a compatible metric \overline{D} of R^{n} . numbers \epsilon_{1}>0 , a_{1}>0 and 0<
\lambda_{1}<1 such that for x\in R^{n} and i\geq 0

\overline{D}(f^{i}(x), f^{i}(y))\leq a_{1}\lambda_{1}^{i}\overline{D}(x, y) for y\in W_{\epsilon 1}^{s}(x, f,\overline{D})

\overline{D}(f^{-i}(x), f^{-i}(y))\leq a_{1}\lambda_{1}^{i}\overline{D}(x, y) for y\in W_{\epsilon 1}^{u}(x, f,\overline{D})

Such a metric is called a hyperbolic metric.
Hereafter it will be assume that f has the condition (*) .

LEMMA 2. 5. [4] Let \epsilon_{1}>0 be as in Lemma 2. 4 and choose \delta_{1}>0 as in
Lemma 2. 2 such that \delta_{1}<\epsilon_{1} . Then we have

(1) if f:R^{n}arrow R^{n} is not positively expansive and f^{-1} : R^{n}arrow R^{n} has the
same condition, then D^{\sigma}(x)\neq(x) for \sigma=s, u,

(2) if f : R^{n}arrow R^{n} is positively expansive, then D^{s}(x)=\{x\} and D^{u}(x)=

\overline{N}(x) .
To define generalized foliations, as a space we consider a locally con-

nected metric space M . Let \mathscr{I}^{-} be a family of subsets of M . We call \mathscr{I}^{-} is
a generalized foliation if the following holds:

(i) \mathscr{T}^{arrow} is a decomposition of M ,
(ii) each L\in \mathscr{I}^{-} is arcwise connected,
(iii) if x\in M then there exist non-trivial connected subsets D_{X} and K_{\chi}

with D_{x}\cap K_{x}=\{x\} , a connected open neighborhood N_{x} of x in M , a
homeomorphism \varphi_{X} : D_{X}\cross K_{x}arrow N_{x} such that

(a) \varphi_{X}(x, x)=x,
(b) \varphi_{X}(y, x)=y(y\in D_{x}) , \varphi_{X}(x, z)=z(z\in K_{x}) ,

(c) for each L\in \mathscr{P}^{-} there exists at most countable set B\subset K_{\chi} such that
N_{x}\cap L=\varphi_{X}(D_{x}\cross B) .

Let \mathscr{P}^{arrow} be a generalized foliation of M . For fixed L\in \mathscr{I}^{-} . let \mathscr{O}_{L} be a
family of subsets of L such that for any D\in \mathscr{O}_{L} there is an open subset O of
M such that D is a connected component in O\cap L . Then the topology
generated by \mathscr{O}_{L} is called a leaf topology of L . The leaf topology has the
following properties:

(1) arcwise connected,
(2) locally connected,
(3) a countable base.



306 N. Aoki and K. Moriyasu

For x\in R^{n} define a stable set W^{s}(x, f) and an unstable set W^{u}(x, f) by

W^{s}(x, f)= {y\in R^{n} : d(f^{i}(x), f^{i}(y))arrow 0 as iarrow\infty },
W^{u}(x, f)= {y\in R^{n} : d(f^{-i}(x), f^{-i}(y))arrow 0 as iarrow\infty },

Then we have the following:

LEMMA 2. 6. [4] If f : R^{n}arrow R^{n} and f^{-1} : R^{n}arrow R^{n} are not positively
expansive and f has the condition (*) of Lemma 2, 4, then \mathscr{I}^{\sim s}=\{W^{s}(x, f) :
x\in R^{n}\} and \mathscr{I}^{-u}=\{W^{u}(x, f) : x\in R^{n}\} are generalized foliations.
\S 3. The structure of solenoidal groups.

The results of solenoidal groups that suffice for our needs are preparated
in this section and no new results are discussed here.

Let X be an n-solenoidal group and G be the dual group of X. The rank
of G is n (rank(G) =n) and G is torsion free. Thus there is a finite
sequence \Theta=\{e_{1}, e_{2}, \cdots, e_{n}\} such that rank (G/gp\Theta)=0 . Here gp\Theta is the smal-
lest subgroup generated by \Theta . This implies that each 0\neq\xi\in G is expressed
as a\xi=a_{1}e_{1}+\cdots+a_{n}e_{n} for some integers a\neq 0 and (a_{1}\cdots, a_{n})\neq(0,\cdots, 0) . Since
(a_{1}/a, \cdots, a_{n}/a) is uniquely determined, an isomorphism \varphi : Garrow R^{n} is defined
by \varphi(\xi)=(a_{1}/a,\cdots, a_{n}/a) . Identify \xi with (a_{1}/a,\cdots, a_{n}/a) . Then \Theta is the
canonical basis of Z^{n} so that gp\Theta=Z^{n}\subset G\subset Q^{n}\subset R_{r}^{n} For t=(t_{1},\cdots, t_{n})\in R^{n}

define a map \psi:R^{n}arrow X by \psi(t)\xi=t_{1}a_{1}/a+\cdots \dagger t_{n}a_{n}/a (addition mod 1) for
\xi= (a_{1}/a,\cdots, a_{n}/a)\in G . Then \psi(t)\in X and \psi:R^{n}arrow X is continuous. But
\psi^{-1} : \psi(R^{n})arrow R^{n} is not continuous even if \psi is one to one.

FACT 3. 1. [2] \psi(R^{n}) is dense in X . If X is a torus then \psi(R^{n})=X.
FACT 3. 2. [2] Let F= {x\in X:\xi(x)=0 for \xi\in gp\Theta }. Then the follow-

ing holds:
(i) F is totally disconnected and \psi^{-1}\{\psi(R^{n})\cap F\}=Z^{n} ,
(ii) X=\psi(R^{n})+F,
(iii) there is a small closed neighborhood U of 0 in R^{n} such that \psi(U)

\cap F=\{0\} , \psi(U)+F is a closed neighborhood of 0 in X and the direct
product U\cross F is homeomorphic to \psi(U)+F . in which case we write
\Psi(U)+F=\psi(U)\oplus F .

As an easy corollary of Fact 3. 2 we have the following:

FACT 3. 3. Let U be an open neighborhood of 0 in R^{n}- If diam(t/) is
small enough, then

(i) \psi:Uarrow\psi(U) is bijective,
(ii) \psi(U)\cross\psi(Z^{n}) is open in \psi(R^{n}) .

FACT 3. 4. [2] Let U be as in Fact 3. 3. Assume that \psi:R^{n}arrow\psi(R^{n})
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is bijective. If F(\delta) is an open subgroup of F contained in an open set with
radius \delta , then

(i) C(\delta)=\psi^{-1}\{F(\delta)\cap\psi(R^{n})\} is a subgroup of Z^{n} ,
(ii) Z^{n}/C(\delta) is finite (i. e . C(\delta) is a subgroup of finite index in Z^{n}).

FACT 3. 5. [2] The following holds:
(i) \psi(Z^{n}) is closed under the relative topology of \psi(R^{n}) ,
(ii) \psi(Z^{n}) is dense in F ,
(iii) X=\psi(R^{n})+F_{0} for each open subgroup F_{0} of F .

FACT 3. 6. [2] If X contains no torus subgroup, then \psi:R^{n}arrow\psi(R^{n})

is bijective.

FACT 3. 7. [1] If V is the maximal torus subgroup of X , then there
exists a solenoidal group S without tori such that X splits into a direct sum
X=S\oplus V

Let s=\dim(S) , then S is expressed as S=\psi_{1}(R^{s})+F by Fact 3. 2, and
by Fact 3. 6, \psi_{1} : R^{s}arrow\psi_{1}(R^{s}) is bijective. Thus a homomorphism \psi:R^{s}\cross

Varrow\psi_{1}(R^{s})\oplus V is defined by

\psi(v, x)=\psi_{1}(v)+x((v, x)\in R^{s}\cross V) .

Obviously \psi is bijective and continuous.
Let d denote the translation invariant metric for X and d_{s} denote the

euclidean metric for R^{s} . For \delta>0 put
U(0, \delta)=\{v\in R^{s} : d_{s}(v, 0)\leq\delta\} ,
V(0, \delta)=\{x\in V : d(x, 0)\leq\delta\} ,
F(0, \delta)=\{x\in F:d(x, 0)\leq\delta\} .

Since F is totally disconnected and F(0, \delta) is symmetric, F(0, \delta) contains
an open subgroup of F . Therefore, to avoid complication we promise that
every closed neighborhood F(0, \delta) of 0 itself is an open subgroup of F .

By Fact 3. 2 we can find \alpha_{0}>0 such that \psi_{1}( U(0, \alpha_{0}))\cap F(0, \alpha_{0})=\{0\} and
W(0, \alpha_{0})=\psi_{1}(U(0, \alpha_{0}))\oplus F(0, \alpha_{0})\oplus V(0, \alpha_{0}) is an open neighborhood of 0
in X .

Hereafter we fix the number \alpha_{0}>0 and define a function \chi by

\kappa(x)=\max\{d_{s}(v_{S}, 0), d(v_{V}, 0), d(v_{F}, 0)\}

for x=\psi_{1}(v_{S})+v_{F}+v_{V}\in W(0, \alpha_{0}) . For x, y\in X put

d_{0}(x, y)=\{
\kappa(x-y) for for x-y\in W(0, \alpha_{0})

(3. 1).
\alpha 0 otherwise

Then d_{0} is uniformly equivalent to the original metric d for X and a transla-
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tion invariant metric for X . If in particular v, v’\in U(0, \alpha_{0}) then we have
d_{0}(\psi_{1}(v), \psi_{1}(v’))=d_{s}(v, v’) .

For the direct product space R^{s}\cross V we define a metric d_{1} by

d_{1}((v, x) , (v ’. x ’) ) = \max\{d_{s}(v, v’), d(x, x’)\} (3.2)
for (v, x) , (v ’. x’)\in R^{s}\cross V If d_{1}((v, x), (v’. x’))<\alpha_{0} then we have

d_{0}(\psi(v, x) , \psi(v’ x’))=d_{1}((v, x), (v’, x’)) . (3.3)

For simplicity we write

K=\psi(R^{s}\cross V)=\psi_{1}(R^{s})\oplus V

K(0, \alpha)=\psi_{1}(U(0, \alpha))\oplus V(0, \alpha)(0<\alpha\leq\alpha_{0}) . (3. 4)

If in particular x, x’\in K(0, \alpha_{0}) then we have

d_{0}(x, x’)=d_{1}(\psi^{-1}(x), \psi^{-1}(x’)) . (3. 5)

Let f : Xarrow X be a (bijective) homeomorphism. Then for 0<\epsilon<\alpha 0

there is \delta>0 such that

f(K(0, \delta)+x)\subset K(0, \epsilon)+f(x)(x\in X) . (3.6)

FACT 3. 8. [1] If f(O)\in K then f(K)=K.

FACT 3. 9. [1] For 0<\lambda_{0}<\alpha_{0}/3 there exist \delta_{f}>0 , a continuous injective
homomorphism \sigma_{f} : F(0, \delta_{f})arrow F(0, \lambda_{0}) and a continuous map \varphi_{f} : F(0 ,
\delta_{f})\cross Xarrow K(0, \lambda_{0}) such that

f(x+y)=f(x)+\varphi_{f}(y, x)+\sigma_{f}(y)

for all x\in X and all y\in F(0, \delta_{f}) .
Since C(\epsilon)=\psi_{1}^{-1}(F(0, \epsilon)\cap\psi_{1}(R^{s})) is of finite index by Fact 3. 4, we

have \sigma_{f}(\psi_{1}(C(\delta_{f}))\subset\psi_{1}(C(\lambda_{0})) whenever f(O)\in K . For, since f(K)=K
by Fact 3. 8 and \psi_{1}(C(\delta_{f}))\subset\psi_{1}(C(\lambda_{0}))\subset K , for y\in\psi_{1}(C(\delta_{f})) we have

f(y)=f(0+y)=f(0)+\varphi_{f}(y, 0)+\sigma_{f}(y)

and so \sigma_{f}(y)=f(y)-\varphi_{f}(y, O)-f(O)\in K . Since \sigma_{f}(y)\in F(0, \lambda_{0}) , conse-
quently \sigma_{f}(y)\in F(0, \lambda_{0})\cap K=F(0, \lambda_{0})\cap\{\psi_{1}(R^{s})\oplus V\}=\psi_{1}(C(\lambda_{0})) because
F(0, \lambda_{0})\cap V=\{0\} .

In the rest of this section, we prepare some lemmas under the assumption
f(0)\in K .

Since \psi:R^{s}\cross V-arrow\psi_{1}(R^{s})\oplus V is bijective, we have the commutative
diagram
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\tilde{f}

R^{s}\cross V R^{s}\cross V

\psi\downarrow \downarrow\psi

\psi_{1}(R^{s})\oplus V\psi_{1}(R^{s})\oplus V\overline{f}.

Then the following is easily checked.

FACT 3. 10. \tilde{f} is d_{1} -biuniformly continuous.

FACT 3. 11. Let \tilde{\sigma}_{f} : C(\delta_{f})arrow C(\lambda_{0}) be defined by \tilde{\sigma}_{f}=\psi_{1}^{-1}\circ\sigma_{f}\circ\psi .
Then \tilde{\sigma}_{f} is a homomorphism and \tilde{\sigma}_{f}(C(\delta_{f})) is of finite index.

Obviously \tilde{\sigma}_{f} is a homomorphism and \tilde{\sigma}_{f}(C(\delta_{f})) is a subgroup of Z^{s}

To see that \tilde{\sigma}_{f}(C(\delta_{f})) is of finite index, we use (3. 6), then there is \delta>0

suc‘ h that f(K(0, \delta))\subset K(0, \lambda_{0}))+f(0) . Let \delta_{f}>0 and \delta_{1}>0 be numbers
such that 0<\delta_{f}<\delta and W(0, \delta_{1})+f(0)\subset f( W(0, \delta_{f})) . Then we have

\psi_{1}( U(0, \delta_{1}))+F(0, \delta_{1}))+f(0)

\subset f(\psi_{1}( U(0, \delta_{f}))+F(0, \delta_{f}))

\subset f(\psi_{1}(U(0, \delta_{f}))+\varphi f(F(0, \delta_{f}), \psi_{1}(U(0, \delta_{f})))+\sigma_{f}(F(0, \delta_{f}))

\subset\psi_{1}(U(0, \lambda_{0}))+f(0)+\psi_{1}(U(0, \lambda_{0}))+\sigma_{f}(F(0, \delta_{f}))

=\psi_{1}( U(0,2\lambda_{0}))+\sigma_{f}(F(0, \delta_{f}))+f(0)

\subset\psi_{1}( U(0,2\lambda_{0}))+F(0, \lambda_{0})+f(0)

from which
F(0, \delta_{1})\subset\sigma_{f}(F(0, \delta_{f}))\subset F(0, \lambda_{0}) .

Since C(\delta_{1}) and C(\lambda_{0}) are of finite index, so is \tilde{\sigma}_{f}(C(\delta_{f})) .
By Fact 3. 11 the extension of \tilde{\sigma}_{f} is an automorphism of R^{s} which is

denoted by the same symbol.
Define \tilde{\varphi}_{f} : (C(\delta_{f}))\cross(R^{s}\cross V)arrow U(0, \lambda_{0}))\cross V(0, \lambda_{0}) by

\tilde{\varphi}f(l, v)=\psi^{-1}\circ\varphi f(\psi(l), \psi(v))((l, v)\in C(\delta_{f})\cross(R^{s}\cross V)) .

Then \tilde{\varphi}_{f} is continuous and by Fact 3. 9 we have

\tilde{f}(v+l)=\tilde{f}(v)+\tilde{\varphi}f(l, v)+\tilde{\sigma}_{f}(l)(v\in R^{s}\cross V, l\in C(\delta_{f})) .

Let t=\dim(V) and \pi_{1} : R^{t}arrow V be the natural projection. Then a cover-
ing projection \pi:R^{s}XR^{t}arrow R^{s}\cross V is defined by \pi(p, q)=(p, \pi_{1}(q)) for p\in

R^{s} and q\in R^{t} . and by [5] we can find a translation invariant complete
metric \overline{d} for R^{s}\cross R^{t} satisfying the conditions for some \alpha_{1}>0

(i) d-(p^{-},\overline{q})\leq\alpha_{1}(p^{-},\overline{q}\in R^{s}XR^{t}) implies d_{1}(\pi(p^{-}), \pi(\overline{q}))=\overline{d}(p^{-},\overline{q}) ,

(ii) for p^{-}\in R^{s}\cross R^{t} and \overline{q}\in R^{s}\cross V with d_{1}(\pi(p^{-}), q)\leq\alpha_{1} there is a
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unique \overline{q}\in\pi^{-1}(q) such that d_{1}(\pi(p^{-}), q)=\overline{d}(p^{-},\overline{q}) , (3.8)
(iii) \’all the covering transformations are \overline{d}-isometries.

Note that \overline{d} is uniformly equivalent to d_{n} . Let p^{-}\in R^{s}\cross R^{t} satisfy \overline{d}(\overline{0}, p^{-})=

d_{1}(0,\tilde{f}(0)) where \overline{0} denotes the zero point in R^{s}\cross R^{t} . Then there is a lift \overline{f} :
R^{s}\cross R^{t}arrow R^{s}\cross R^{t} of f such that \overline{f}(\overline{0})=p^{-},\overline{f} is bijective and \overline{d}-biuniformly
continuous and

R^{s}\cross R^{\underline{t}}R^{s}\cross R^{t}\overline{f}

\pi\downarrow \downarrow\pi commutes.
R^{s}\cross VR^{s}\cross V\overline{\tilde{f}}

Note that the group of all the covering transformations of R^{s}\cross R^{t} is
isomorphic to Z^{t} because \pi is the identity on R^{s}\cross\{0\} . For the simplicity we
identify such two groups.

Then there is a group automorphism \sigma_{f}

’ : Z^{t}arrow Z^{t} such that
\overline{f}(v+z)=(0, \sigma_{f}’(z))+\overline{f}(v)(v\in R^{s}\cross R^{t}. z\in Z^{t}) .

Let \tilde{\sigma}_{f}

’ be the extension of \sigma_{f}

’ and define an automorphism \overline{\sigma}_{f} : R^{s}\cross R^{t}arrow R^{s}\cross

R^{t} by

\overline{\sigma}_{f}(v_{s}, v_{t})=(\tilde{\sigma}_{f}(v_{s}),\tilde{\sigma}_{f}’(v_{t}))(v_{s}\in R^{s}. v_{t}\in R^{t}) .

We define a continuous map \overline{\varphi}_{f} : (C(\delta_{f})\cross Z^{t})\cross(R^{s}\cross R^{t})arrow D(\overline{0}, \lambda_{0}) by
\overline{\varphi}_{f}((l_{s}, l_{t}) , v)=\tilde{\varphi}_{f}(l_{s}, \pi(v)) (l_{s}\in C(\delta_{f}), l_{t}\in Z^{t}. v\in R^{s}\cross R^{t}) ,

where D(\overline{0}, \lambda_{0})=\{v\in R^{s}\cross R^{t} : \overline{d}(\overline{0}, v)<\lambda_{0}\} . Then we have
\overline{f}(v+l)=\overline{f}(v)+\overline{\varphi}_{f}(l, v)+\overline{\sigma}_{f}(l) (l\in C(\delta_{f})\cross Z^{t}v\in R^{s}\cross R^{t}) .

Then the following holds.

FACT 3. 12. [1] \overline{\sigma} : R^{s}\cross R^{t}arrow R^{s}\cross R^{t} induces a solenoidal automor-
phism.

\S 4. Expansiveness and POTP on solenoidal groups.

As before let X be an n solenoidal group and f : Xarrow X be a (bijective)
homeomorphism. If f is expansive and has POTP, then the following
propositions are established.

PROPOSITION 4. 1. Let K be as in (3. 4). If f(K)=K, then a lift \overline{f} :
R^{n}arrow R^{n} of f is expansive and has POTP {under the euclidean metric).

PROPOSITION 4. 2. [4] There exist a continuous function \overline{D}^{\sigma} : \cup\{W^{\sigma}



Expansive homeomorphisms of solenoidal groups 311

(x,\overline{f})\cross W^{\sigma}(x,\overline{f}) : x\in R^{n}}arrow R(\sigma=s, u) and constants a_{2}>0,0<\lambda_{2}<1 such
that for i\geq 0

\overline{D}^{s}(\overline{f}^{i}(x),\overline{f}^{i}(y))\leq a_{2}\lambda_{2}^{i}\overline{D}^{s}(x, y) (y\in W^{s}(x,\overline{f}) ,
\overline{D}^{u}(\overline{f}^{-i}(x),\overline{f}^{-i}(y))\leq a_{2}\lambda_{2}^{i}\overline{D}^{u}(x, y) (y\in W^{u}(x,\overline{f}) ,

and for any \epsilon_{2}>0 there exists& >0 such that if \overline{D}^{\sigma}(x, y)\leq\ (y\in W^{\sigma}(x,\overline{f}))

then d_{n}(x, y)\leq\epsilon_{2}(\sigma=s, u) .

Proposition 4. 1 shows the first statement of our Theorem 1. For the
second statement Proposition 4. 2 is prepared. For the proof of Proposition
4. 1 we need the following five lemmas.

LEMMA 4. 3. Let \tilde{f}:R^{s}\cross Varrow R^{s}\cross V be as in Fact 3. 10. Then f is
expansive.

Let d_{0} and d_{1} be metrics for X and R^{s}\cross V respectively defined by (3. 1)
and (3. 2). Let 0<c<\alpha_{0} be an expansive constant of f under d_{0} . To see
expansiveness of \tilde{f}_{\wedge} if d_{1}(\tilde{f}^{i}(v),\tilde{f}^{i}(v’))\leq c for i\in Z(v, v’\in R^{s}\cross V) . Then
by (3. 3), for i\in Z

d_{1}\sigma^{i}(v),\tilde{f}^{i}(v’))=d_{)}(\psi\circ\tilde{f}^{i}(v), \psi\circ\tilde{f}^{i}(v’))

=d_{0}(f^{i}\circ\psi(v), f^{i}\circ\psi(v’))\leq c ,

from which \psi(v)=\psi(v’) and so v=v ’ (since \psi is bijective).

LEMMA 4. 4. \tilde{f} has a hyperbolic metric \tilde{D} which is uniformly equivalent
to d_{1} .

By (3. 3) it is easily checked that \tilde{f} has the condition (*) of Lemma 2.
4.

LEMMA 4. 5. Under the assumption of Proposition 4. 1, there exists \alpha_{2}>

0 such that for 0<\epsilon<\alpha_{2}

\psi(W_{\epsilon}^{\sigma}(v,\tilde{f,}d_{1}))=W_{\epsilon}^{\sigma}(\psi(v), f, d_{1})\cap\{K(0, \alpha_{0}/2)+\psi(v)\}

for v\in R^{s}\cross V and \sigma=s, u.
For the proof use (3. 6). Then we can find \alpha_{2}>0 such that f(K(0, \alpha_{2})+

x)\subset K(0, \alpha_{0}/2)+f(x) and f^{-1}(K(0, \alpha_{2})+x)\subset K(0, \alpha_{0}/2)+f^{-1}(x) for x\in X .
(3. 3) ensures that for 0<\epsilon<\alpha_{2} ,

\psi(W_{\epsilon}^{\sigma}(v,\tilde{f,}d_{1}))\subset L_{v}^{\sigma}(v\in R^{s}\cross v, \sigma=s, u)

where L_{v}^{\sigma}=W_{\epsilon}^{\sigma}(\psi(v), f, d_{0})\cap\{K(0, \alpha_{0}/2)+\psi(v)\} . If y\in L_{v}^{s}, then d_{0}(f^{i}(y) ,
f^{i}\circ\psi(v))\leq\epsilon for i\geq 0 and y\in K(0, \alpha_{0}/2)+\psi(v) . This implies y\in K(0, \epsilon)+

\psi(v) . Since \epsilon<\alpha_{2} , we have f(y)\in K(0, \alpha_{0}/2)+f\circ\psi(v) and hence f(y)\in
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K(0, \epsilon)+f\circ\psi(v) since d_{0}(f(y), f\circ\psi(v))\leq\epsilon . Repeating in this process,
we have f^{i}(y)\in K(0, \epsilon)+f^{i}\circ\psi(v) for i\geq 0 and by (3. 5), d_{1}(\psi^{-1_{\circ}}f^{i}(y) ,
\psi^{-1_{\circ}}f^{i}\circ\psi(v))\leq\epsilon for i\geq 0 . Thus \psi^{-1}(y)\in W_{\epsilon}^{s}(v,\tilde{f,}d_{1}) and so y\in\psi(W_{\epsilon}^{s}

(v,\tilde{f,}d_{1})) .

LEMMA 4. 6. Let \alpha_{2}>0 be as in Lemma 4. 5. Then \tilde{f}:R^{s}\cross Varrow R^{s}\cross

V has POTP if and only if for 0<\epsilon<\alpha_{2} there is \delta>0 such that for each
x\in Ky\in K(0, \delta)+x implies W_{\epsilon}^{s}(y,f, d_{I})\cap W_{\epsilon}^{u}(x, f, d_{1})\cap\{K(0, \alpha_{0})+x\}\neq\phi .

If \tilde{f}:R^{s}\cross V-R^{s}\cross V has POTP, then for 0<\epsilon<\alpha_{2} there is \delta>0 such
that d_{1}(v, w)<\delta(v, w\in R^{s}\cross V) implies W_{\epsilon}^{s}(v,\tilde{f,}d_{1})\cap W_{\epsilon}^{u}(w,\tilde{f,}d_{1})\neq\phi .
Since y\in K(0, \delta)+x(x\in K) implies that d_{1}(\psi^{-1}(y), \psi^{-1}(x))=h(y, x)<\delta

(by (3. 3)), we have \phi\neq\psi(W_{\epsilon}^{s}(\psi^{-1}(y),\tilde{f,}d_{1}))\cap\psi(W_{\epsilon}^{u}(\psi^{-1}(x),\tilde{f,}d_{1}))=W_{\epsilon}^{s}

(y, f, d_{0})\cap\{K(0, \alpha_{0}/2))+y\}\cap W_{\epsilon}^{u}(x, f, d_{0})\cap\{K(0, \alpha_{0}/2)+x\}=W_{\epsilon}^{s}(y, f, d_{0})\cap

W_{\epsilon}^{u}(x, f, d_{)})\cap\{K(0, \alpha_{0})+x\} .
The converse follows from the facts that f has canonical coordinates

(by Lemma 4. 5.) and a hyperbolic metric \tilde{D} and R^{s}\cross V is the complete
metric space under \tilde{D} .

LEMMA 4. 7. F:R^{s}\cross Varrow R^{s}\cross V has POTP.
As before let c>0 be an expansive constant of \tilde{f} Then for 0<\epsilon_{0}<c/2

there is \delta_{)}>0,0<\delta_{1}<\delta_{1} and 0<\rho<\delta_{1} such that all the statements of Lemma
2. 2 hold. We define the sets A_{x}, B_{x} and C_{x} as

A_{x} is the connected component of x in W_{\epsilon_{0},\delta_{1}}^{u}(x, f, d_{)}) ,
B_{X} is that of x in W_{\epsilon 0,\delta_{1}}^{s}(x, f, h) ,
C_{x} is that of x in N(x) .

By Lemma 2. 2.(c) we have [r. ]|_{Ax\cross B_{X}} : A_{x}\cross B_{x}arrow C_{x} is a homeomorphism
and A_{x}\subset W_{\epsilon 0,\delta_{1}}u(x, f, d_{0})\subset W_{\epsilon_{0}}u(x, f, d_{0})=W\epsilon_{0}(ux, f, d_{0})\cap\{K(0, \alpha_{0})+F(0 ,
\alpha_{0})+x\} . Thus we have A_{x}\subset W_{\epsilon 0}^{u}(x, f, d_{1})\cap\{K(0, \alpha_{0})+x\} since A_{x} is con-
nected and x\in A_{x} . Similarly B_{x}\subset W_{\epsilon_{0}}^{s}(x, f, h)\cap\{K(0, \alpha_{0})+x\} . Since B_{\rho}(x)

\subset N(x) by Lemma 2. 2 ( d) , we have K(0, \rho)+x\subset C_{x} and then for y\in K

(0, \rho)+x there are z_{1}\in A_{x} and z_{2}\in B_{x} with y=[z_{1}, z_{2}];i . e . \{y\}=W_{\epsilon 0}^{s}(z_{1}, f, d_{)})

\cap W_{\epsilon_{0}}^{u}(z_{2}, f, d_{)})\cap C_{x} . Thus z_{1}\in W_{\epsilon 0}^{s}(y, f, d_{1}) and since z_{1}\in K(0, \alpha_{0})+x , we
have z_{1}\in W_{\epsilon_{0}}^{s}(y, f, d_{)})\cap\{K(0, \alpha_{0})+x\} . Lemma 4. 6 implies that \tilde{f} has POTP.

We are in a position to prove Proposition 4. 1. Applying Lemma 4. 3,
we see that \overline{f} : R^{n}arrow R^{n} is expansive under the metric \overline{d} . To see POTP, let

\overline{d} and \alpha_{1}>0 as in (3. 8). Then we can find \epsilon>0 such that
\overline{d}(p, q)\leq\epsilon(p, q\in R^{n}) implies

\max\{\overline{d}(\overline{f}(p),\overline{f}(q)),\overline{d}(\overline{f}^{-1}(p),\overline{f}^{-1}(q))\}\leq\alpha_{1}/3 .
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Choose \delta>0 small enough and let \{p_{i}\} be a \delta-pseudo orbit of \overline{f} If y_{i}=\pi(p_{i})

(where \pi:R^{n}arrow R^{s}\cross V is the projection), then \{y_{i}\} is a \delta-pseudo orbit of \tilde{f} .
Since \tilde{f} has POTP, there is z\in R^{s}\cross V such that d_{1}\sigma^{i}(z) , y_{i})\leq\epsilon for all i .

The fact that d_{1}(z, y_{0})\leq\epsilon ensures the existence of q_{0}\in B_{a_{1}}(b) such that
\pi(q_{0})=z where B_{a_{1}}(p_{1})=\{p\in R^{n} : \overline{d}(b, p)\leq\alpha_{1}\} . Then we have \overline{d}(\overline{f}^{i}(q_{0}) ,

p_{i}))\leq\epsilon for all i (this is shown by induction on i).
If \overline{d}(\overline{f}^{i-1}(q_{0}), p_{i-1})\leq\epsilon for i\geq 1 , then \overline{d}(\overline{f}^{i}(q_{0}),\overline{f}(p_{i-1}))\leq_{\alpha_{1}}/3 . Since

\overline{d}(\overline{f}(p_{i-1}), p_{i})\leq\delta\leq\alpha_{1}/3 , we have \overline{d}(\overline{f}^{i}(q_{0}), p_{i})\leq_{\alpha_{1}} and so
\overline{d}(\overline{f}^{i}(q_{0}), p_{i})=d_{1}(\pi\circ\overline{f}^{i}(q_{0}), \pi(p_{i}))=d_{1}\sigma^{i}\circ\pi(q_{0}) , y_{i})

=d_{1}\sigma^{i}(z) , y_{i})\leq\epsilon (i\geq 0) .

Similarly the same conclusion is proved for i<0 . Furthermore expansive-
ness and POTP are independent of a uniformly equivalent metric. Thus the
proof of Proposition 4. 1 is completed.

\S 5. The existence of semi-conjugacy maps.

Assume that f(0)=0. As we saw in Fact 3. 9 and 3. 12 for \lambda_{0}>0 there
exist \delta_{f}>0 , continuous maps \overline{\varphi}_{f} : (C(\delta_{f})XZ^{t})\cross R^{n}arrow B(0, \lambda_{0}) and \overline{\varphi}_{f^{-1}} : (C
(\delta_{f})\cross Z^{t})\cross R^{n}arrow B(0, \lambda_{0}) , and an automorphism \overline{\sigma}_{f} : R^{n}arrow R^{n} such that

\overline{f}(v+l)=\overline{f}(v)+\overline{\varphi}_{f}(l, v)+\overline{\sigma}_{f}(l) and
\overline{f}^{-1}(v+l)=\overline{f}^{-1}(v)+\overline{\varphi}_{f^{-1}}(l, v)+\overline{\sigma}_{f}^{-1}(l) (5. 1)

(l\in C(\delta_{f})\cross Z^{t}-v\in R^{n}) .

Thus we have
|| \overline{\sigma}_{f}-\overline{f}||_{R^{n}}=\sup\{d_{n}(\overline{\sigma}_{f}(v),\overline{f}(v)) : v\in R^{n}\}

=M<\infty . (5.2)

If \overline{\sigma}_{f} : R^{n}arrow R^{n} is hyperbolic, then \overline{\sigma}_{f} is expansive under the metric d_{n}

and its expansive constant is arbitrary. This fact derives easily that for
every M>0 there is \delta_{M}>0 such that each M-pseudo orbit \{x_{i}\} of \overline{\sigma}_{f} is \delta_{M} -

traced by some point x (i . e . d_{n} ( \overline{\sigma}_{f}^{i}(x) , x_{i})\leq\delta_{M} for i). Using this fact, we
have

LEMMA 5. 1. [4] If \overline{\sigma}_{f} : R^{n}arrow R^{n} is hyperbolic, then there exists a contin-
uous surjection \overline{h}:R^{n}arrow R^{n} such that

(i) \sigma-f^{\circ\overline{h}=\overline{h}\circ\overline{f}}

(ii) d_{n}( \overline{h}(v), v)\leq\delta_{M} for v\in R^{n}

LEMMA 5. 2. The following holds :
(1) \overline{h}:R^{n}arrow R^{n} is d_{n} -uniformly continuous,
(2) \overline{h}(v+l)=l+\overline{h}(v) for v\in R^{n} and l\in\{0\}\cross Z^{t},
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(3) for \lambda_{3}>0 small there is &>0, and a continuous map \overline{\eta} : C(\delta_{3})\cross

R^{n}arrow B(0, \lambda_{3}) such that

\overline{h}(v+l)=l+\overline{h}(v)+\overline{\eta}(l, v) (l\in C(\delta_{3}), v\in R^{n}) .

(1) and (2) follow from [4]. To check (3), let M and \delta_{M} be as above.
Then we can find N>0 such that for v, w\in R^{n} . d_{n}(\overline{\sigma}_{f}^{j}(v),\overline{\sigma}_{f}^{j}(w))\leq 2\delta_{M}+\lambda_{3}

(|j|\leq N) implies d_{n}(v, w)\leq\epsilon . Since f : Xarrow X is d_{0}-biuniformly continuous,
for small 0<\lambda_{3}’<\lambda_{3}/2 such that d_{0}(x, y)\leq\lambda_{3}’(x, y\in X) implies \max hU^{i}|j|\leq N

(x) , f^{i}(y))\leq\lambda_{3} . By Fact 3. 9, there exists \delta_{N}>0 such that for |j|\leq N there
exist a continuous map \varphi_{j} : F(0, \delta_{N})\cross X- K(0, \lambda_{3}) and a homomorphism
\sigma_{j} : F(0, \delta_{N})arrow F(0, \lambda_{3}’) so that

f^{j}(x+y)=f^{j}(x)+\varphi_{j}(y, x)+\sigma_{j}(y) (5.3)

for x\in X and y\in F(0, \delta_{N}) . Thus there exist a continuous map \overline{\varphi}_{j} : (C(\delta_{N})\cross

Z^{t})\cross(R^{s}\cross R^{t})arrow B(0, \lambda_{3}) and an automorphism \overline{\sigma}_{j} : R^{n}arrow R^{n} which satisfy
\overline{f}^{j}(v+l)=\overline{f}^{j}(v)+\overline{\varphi}_{j}(l, v)+\overline{\sigma}_{j}(l) for l\in C(\delta_{N})\cross Z^{t} . v\in R^{s}\cross R^{t} . Then
we have&>0 such that \overline{\sigma}_{j|C(\delta_{3})\cross\{0\}}=\overline{\sigma}_{f|C(\delta_{3})\cross\{0\}}^{j} for |j|\leq N . Indeed, choose&>
0 such that d_{0}(0, x)<\ (x\in F(0, \delta_{f})) implies d_{0}(0, \sigma_{f}^{j}(x))<\delta_{N} for |j|\leq N .
Let l\in C (&), then we have

f(\psi_{1}(l))=f(0+\psi_{1}(l))=\varphi_{f}(\psi_{1}(l), 0)+\sigma_{f}(\psi_{1}(l))

and since d_{0}(\sigma_{f}(\psi_{1}(l), 0)\leq\delta_{N},

f^{2}(\psi_{1}(l))=f(_{\varphi f}(\psi_{1}(l), 0)+\sigma_{f}\psi_{1}(l)))

=f(\varphi_{f}(\psi_{1}(l), 0))+\varphi f(\sigma_{f}(\psi_{1}(l)), \varphi f(\psi_{1}(l)), 0)+\sigma_{f}^{2}(\psi_{1}(l))

By the choice of \lambda_{3}

’ we have

f(\varphi f(\psi_{1}(l), 0))+\varphi_{f}(\sigma_{f})\psi_{1}(l)) , \varphi_{f}(\psi_{1}(l), 0))\in K(0, \lambda_{3})

and
f^{2}(\psi_{1}(l))=\varphi_{2}(\psi_{1}(l), 0)+\sigma_{2}(\psi_{1}(l))\in K(0, \lambda_{3})\oplus F(0, \lambda_{3})

from which
\sigma_{f}^{2}\circ\psi_{1}(l)=\sigma_{2^{\circ}}\psi_{1}(l) .

Since \overline{\sigma}_{f|R^{s}\cross\{0\}}=\tilde{\sigma}_{f|R^{s}\cross\{0\}} and \tilde{\sigma}_{f} is an extension of \psi_{1}^{-1}\circ\sigma_{f}\circ\psi_{1} , the conclusion is
obtained. Repeating in this fashion, we obtain the conclusion for |j|\leq N .

By (5. 3) we have
\overline{f}^{j}(v+l)=\overline{\sigma}_{f}^{j}(l)+\overline{f}j(v)+\overline{\varphi}_{j}(l, v) for v\in R^{n}, l\in C(\delta_{3}) , and since

\{\overline{f}^{j}(v)\} , \{\overline{f}^{j}(v+l)\} are M-pseudo orbits of \overline{\sigma}_{f} , we can find points w, w’\in
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R^{n} satisfying d_{n}(\overline{f}^{j}(v),\overline{\sigma}_{f}^{j}(w’))\leq\delta_{M}, d_{n}(\overline{f}^{j}(v+l),\overline{\sigma}_{f}^{j}(w))\leq\delta_{M},\overline{h}(v)=w ’

and \overline{h}(v+l)=w . Put \tilde{w}=w-l , then we have
d_{n}(\overline{\sigma}_{f}^{j}(w’),\overline{\sigma}_{f}^{j}(\tilde{w}))

\leq d_{n}(\overline{\sigma}_{f}^{j}(w’),\overline{f}^{j}(v))+d_{n}(\overline{f}^{j}(v),\overline{f}^{j}(v)+\overline{\varphi}_{j}(l, v))

+d_{n}(\overline{f}^{j}(v)+\overline{\varphi}_{j}(l, v),\overline{\sigma}_{f}^{j}(w-l))

\leq 2\delta_{M}+\lambda_{3}

and hence d_{n} (w ’. \tilde{w})\leq\epsilon . Since \tilde{w}-w
’ depends on v and l , letting \overline{\eta}(l, v)=

\overline{w}-w ’. a map \overline{\eta}:C(\delta_{3})\cross R^{n}arrow B(0, \lambda_{3}’) is defined and so
\overline{h}(v+l)=w=\tilde{w}+l=w’+\overline{\eta}(l, v)+l

=\overline{h}(v)+l+\overline{\eta}(l, v)

from which the continuity of \overline{\eta} is obtained.

\S 6. Proof of Theorem.

Since f:Xarrow X is expansive and has POTP and f(0)=0,\overline{f} : R^{n}arrow R^{n}

satisfies one of the following cases:
(1) \overline{f} and \overline{f}^{-1} are not positively expansive,
(2) one of \overline{f} and \overline{f}^{-1} is positively expansive.
From now on we give the proof of the case (1). Since \overline{\sigma}_{f} : R^{n}arrow R^{n} is

hyperbolic, R^{n} splits into the direct sum R^{n}=\overline{L}^{s}(0)\oplus\overline{L}^{u}(0) of \overline{\sigma}_{f}-invariant
subspaces \overline{L}^{s}(0) and \overline{L}^{u}(0) where \overline{L}^{s}(0) is the sum of eigenspaces of \overline{\sigma}_{f}

which correspond to eigenvalues whose absolute value is smaller than one
and \overline{L}^{u}(0) is that of eigenvalues whose absolute value is greater than one.
Let \overline{L}^{\sigma}(x)(\sigma=s, u) denote the translation of \overline{L}^{\sigma}(0) to x . For \sigma=s, u the
family \overline{\mathscr{C}}^{\sigma}=\{\overline{L}^{\sigma}(x):x\in R^{n}\} is a generalized foliation of R^{n} Let \mathcal{J}^{-s} and

\mathscr{F}^{u} be as in Lemma 2. 6. Since \overline{h}:R^{n}arrow R^{n} is a d_{n} -uniformly continuous
surjection and \overline{\sigma}_{f}\circ\overline{h}=\overline{h}\circ\overline{f} holds (by \S 5), we have \overline{h}(\mathscr{T}^{\sigma})=\overline{\mathscr{C}}^{\sigma}(\sigma=s, u) ,
and since an expansive constant of \overline{f} is arbitrary, \overline{h} is injective and \overline{h}^{-1} is
continuous. Since \overline{f} is expansive and has POTP (by Fact 3. 8 and Proposi-
tion 4. 1), we can choose positive numbers \alpha , \delta_{1} and \rho as in Lemma 2. 2.
Then the following holds.

Lemma 6. 1. \overline{h}(W^{\sigma}(x,\overline{f}))=\overline{L}^{\sigma}(\overline{h}(x)) for x\in R^{n} and \sigma=s, u.
Assume that there exists x\in R^{n} such that \overline{h}(W^{s}(x,\overline{f}))\subsetneqq\overline{L}^{s}(\overline{h}(x)) ,

then there exists a subset A\subset R^{n} such that \bigcup_{y\in A}\overline{h}(W^{s}(y,\overline{f}))=\overline{L}^{s}(\overline{h}(x))

since \overline{h} is surjective. By the continuity of \overline{h}^{-1}.\bigcup_{y\in A}W^{s}(y,\overline{f}) is connected in
R^{n}-. and so there exist y_{1} , y_{2}\in A with W^{s}(y_{1},\overline{f})\neq W^{s}(y_{2},\overline{f}) and z_{1}\in

W^{s}(y_{1},\overline{f}) and z_{2}\in W^{s}(y_{2},\overline{f}) with d_{n}(z_{1}, z_{2})\leq\delta 0 . Since Wu(z_{1},\overline{f})\cap

W^{s}(z_{1},\overline{f}) and W^{u}(z_{1},\overline{f})\cap W^{s}(z_{2},\overline{f}) are one point sets, \overline{h}(W^{u}(z_{1},\overline{f})\cap
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W^{S}(z_{1},\overline{f}))=\overline{L}u(\overline{h}(z1))\cap\overline{L}s(\overline{h}(z1))=\overline{L}u(\overline{h}(z1))\cap\overline{L}s(\overline{h}(x))=\overline{h}

(W^{u}(z_{1},\overline{f})\cap W^{s}(z_{2},\overline{f})) and so W^{s}(z_{1},\overline{f})\cap W^{s}(z_{2},\overline{f})\neq\phi which is a con-
tradiction.

By Lemma 6. 1, the following is easily checked.

LEMMA 6. 2. Let x, y\in R^{n} . Then W^{u}(x,\overline{f})\cap W^{s}(y,\overline{f}) is the set of
one point.

By the definition of \overline{d,}\overline{f} satisfies the condition (*) of Lemma 2. 4.
Thus \overline{f} has a hyperbolic metric \overline{D} which is uniformly equivalent to d_{n} , and

\mathscr{I}^{-s} and \mathscr{I}^{-u} are generalized foliations. By Proposition 4. 2 there is a continu-
ous function

\overline{D}^{\sigma} : \cup\{W^{\sigma}(x,\overline{f})\cross W^{\sigma}(x,\overline{f}) : x\in R^{n}\}arrow R(\sigma=s, u) .

LEMMA 6. 3. For any \epsilon_{4}>0 there exists\delta_{4}>0 such that if d_{n}(x, y)\leq\delta_{4}

(y\in W^{\sigma}(x,\overline{f})) then \overline{D}^{\sigma}(x, y)\leq_{\epsilon_{4}}(\sigma=s, u) .
Since f : Xarrow X is expansive, by Lemma 2. 4 there is a metric D for X

such that the following holds:
(i) D is uniformly equivalent to d_{0} and
(ii) there are \kappa>0 , a’\geq 1 and 0<\lambda’<1 such that for x\in X

D(f^{j}(x), f^{j}(y))\leq a’\lambda’ jD(x, y)(y\in W_{\kappa}^{s}(x, f, D))

D(f^{-j}(x), f^{-j}(y))\leq a’\lambda’ jD(x, y)(y\in W_{\kappa}^{u}(x, f, D))

for all j\geq 0 .
We can assume that there exists r>0 such that x\leq r and if \overline{D}(x, y)\leq

r(x, y\in R^{n}) then D(\psi(x), \psi(y))=\overline{D}(x, y) . As Proposition 4. 2, we can
construct a continuous function

D^{\sigma} : \cup\{(D_{\kappa}^{\sigma}(x)\cap K(x, \alpha_{0}))\cross(D_{\kappa}^{\sigma}(x)\cap K(x, \alpha_{0}))) : x\in X\}arrow R

such that if v\in\overline{D}_{\kappa}^{\sigma}(u)(u, v\in R^{n}) then D^{\sigma}(\psi(u), \psi(v))=\overline{D}^{\sigma}(u, v) and if
\psi(v)\in D_{\kappa}^{\sigma}(\psi(u))\cap K(\psi(u), \alpha_{0}) then D^{\sigma}(\psi(u), \psi(v))=\overline{D}^{\sigma}(u, v)(\sigma=s,
u) . Here \overline{D}_{\kappa}^{\sigma}(u) and D_{\kappa}^{\sigma}(x) denote the connected component of u in W_{\kappa}^{\sigma}(u,
\overline{f,}\overline{D}) and that of x in W_{\kappa}^{\sigma}(x, f, D) . It is easily checked that for any \epsilon_{4}>0

there exists \delta_{4}’>0 such that D(x, y)\leq\delta_{4}’(y\in D_{\kappa}^{\sigma}(x)\cap K(x, \alpha_{0})) implies D^{\sigma}(x,
y)\leq\epsilon_{4} . Choose \rho>\delta_{4}>0 such that d_{n}(u, v)\leq\delta_{4} implies \overline{D}(u, v)\leq\delta_{4}’ . Since
an expansive constant of \overline{f} is arbitrary, for every u\in R^{n} . B_{\rho}(u)\cap W^{\sigma}(u,\overline{f})

is connected and so d_{n}(u, v)\leq\delta_{4}(v\in W^{\sigma}(u,\overline{f})) implies v\in W_{\kappa}^{\sigma}(u,\overline{f,}\overline{D}) .
Thus D(\psi(u), \psi(v))\leq\delta_{4}

’ and \psi(v)\in D_{\kappa}^{\sigma}(\psi(u))\cap K(\psi(u), \alpha_{0}) , and then
\overline{D}^{\sigma}(u, v)=D^{\sigma}(\psi(u), \psi(v))\leq\epsilon_{4} .

LEMMA 6. 4. For any M_{1}>0 there exists Mi>0 such that if d_{n}(u, v)\leq

M_{1}(v\in W^{\sigma}(u,\overline{f})) then \overline{D}^{\sigma}(u, v)\leq Mi(\sigma=s, u) .
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Let \epsilon_{4} and \delta_{4} be as in Lemma 6. 3 and fix u\in R^{n} . Since d_{n}(\overline{h}^{-1}(v), v)\leq

\delta_{M} for v\in R^{n} , we have
B_{M_{1}}(u)\cap W^{s}(u,\overline{f})\subset\overline{h}^{-1}(\overline{L}^{S}(u))\cap B_{M_{1}+\delta_{M}}( \overline{h}(u))\cap B_{M_{1}+2\delta_{M}}(u) .

Since B_{M_{1}+28_{M}}(u) is compact, there exists a sequence \{u_{i}\}_{i=1}^{k}\subset R^{n} such that \bigcup_{i=1}^{k}

B_{\delta_{4}}(u+u_{i})\supset B_{M_{1}+2\delta_{M}}(u) , and hence \overline{D}^{\sigma}(u, v)\leq k\epsilon_{4} for v\in B_{M_{1}}(u)\cap W^{s}(u,
\overline{f}) .

PROPOSITION 6. 5. \overline{h}^{-1} is d_{n} -uniformly continuous.
Since \overline{f} : R^{n}arrow R^{n} is expansive, if we established the following:

for \epsilon>0 there is N>0 such that d_{n}(\overline{f}^{j}(x),\overline{f}^{j}(y))\leq 3\delta_{M} for
(6.1)|j|\leq N

implies d_{n}(x, y)\leq\epsilon ,

then by the continuity of \overline{\sigma}_{f} , we can find \delta>0 such that d_{n}(x, y)\leq\delta implies
d_{n}(\overline{\sigma}_{f}^{j}(x),\overline{\sigma}_{f}^{j}(y))\leq\delta_{M} for |j|\leq N . By the facts that \overline{h}^{-1}\circ\overline{\sigma}_{f}=\overline{f}\circ\overline{h}^{-1} and
d_{n}(\overline{h}^{-1}(x), x)\leq\delta_{M}(x\in R^{n}) , we have

d_{n}(\overline{f}^{j}\circ\overline{h}^{-1}(x),\overline{\sigma}_{f}^{j}(x))+d_{n}(\overline{f}^{j}\circ\overline{h}^{-1}(y),\overline{\sigma}_{f}^{j}(y))\leq 2\delta_{M} ,

and so
d_{n}(\overline{f}^{j}\circ\overline{h}^{-1}(x),\overline{f}^{j}\circ\overline{h}^{-1}(y))\leq 3\delta_{M} for |j|\leq N\tau

,

from which d_{n}(\overline{h}^{-1}(x),\overline{h}^{-1}(y))\leq\epsilon . Therefore \overline{h}^{-1} is d_{n} -uniformly continu-
ous.

From now on we give the proof of (6. 1). Since d_{n}(\overline{h}(x), x)\leq\delta_{M} for
x\in R^{n} and \overline{\sigma}_{f}\circ\overline{h}=\overline{h}\circ\overline{f,}W^{\sigma}(x,\overline{f})\subset b_{\delta_{M}}(\overline{L}^{\sigma}(\overline{h}(x)) for x\in R^{n} . and hence
there exists M_{1}>0 such that

if d_{n}(x, y)\leq 3\delta_{M}(x, y\in R^{n}) then \max\{d_{n}(x, W^{s}(x,\overline{f})\cap W^{u}(y,
\overline{f})) , d_{n}(y, W^{s}(x,\overline{f})\cap W^{u}(y,\overline{f}))\}\leq M_{1} . (6.2)

By Proposition 4. 2, for \epsilon>0 there exists \epsilon’>0 such that \overline{D}^{\sigma}(x, y)\leq\epsilon
’ implies

d_{n}(x, y)\leq\epsilon/2 , by Lemma 6. 4 there exists Mi>0 such that d_{n}(x, y)\leq M_{1}(y\in

W^{\sigma}(x,\overline{f})) implies \overline{D}^{\sigma}(x, y)\leq Mi(\sigma=s, u) . Let a2 and \lambda_{2} be as in Proposi-
tion 4. 2 and choose N>0 such that a2 \lambda_{2}-NMi\leq\epsilon

’ Suppose d_{n}(\overline{f}i(x) ,
\overline{f}^{i}(y))\leq 3\delta_{M} for |i|\leq N , then for |i|\leq N there exists z_{i}\in R^{n} such that W^{s}

(\overline{f}^{i}(x),\overline{f})\cap Wu(\overline{f}i(y),\overline{f})=\{zi\} (by Lemma 6. 2), and it is clear that
\overline{f}^{i}(z_{0})=z_{i} for |i|\leq N . By (6. 2) we have d_{n}(\overline{f}^{N}(y), z_{N})\leq M_{1} and hence \overline{D}^{u}

(\overline{f}^{N}(y), z_{N})\leq Mi and so \overline{D}(y, z_{0})\leq a_{2}\lambda_{2}^{N}Mi\leq\epsilon
’ from which d_{n}(y, z_{0})\leq\epsilon/2 .

Similary we have d_{n}(x, z_{0})\leq\epsilon/2 and so d_{n}(x, y)\leq\epsilon .
Let \overline{h}:R^{n}arrow R^{n} be as above and define a map \tilde{h}:R^{s}\cross Varrow R^{s}\cross V by \tilde{h}=
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\pi_{0^{\circ}}\overline{h}\circ\pi_{0}-1 where \pi 0^{=}\pi|R^{s}\cross l0,1 ). Since \overline{h} is d_{n} -biuniformly continuous and \overline{d} is
uniformly equivalent to d_{n},\overline{h} is \overline{d}-biuniformly continuous. Moreover we
have the following:

(1) \tilde{\sigma}_{f}\circ\tilde{h}=\tilde{h}\circ\tilde{f} and
(2) d_{1}(\tilde{h}(v), v)\leq\delta_{M}’ for v\in R^{s}\cross V

where \tilde{\sigma}_{f}=\pi_{0^{\circ}}\overline{\sigma}_{f}\circ\pi_{0}^{-1} and \delta_{M}
’ is a positive number such that d_{n}(x, y)\leq\delta_{M}

implies \overline{d}(x, y)\leq\delta_{M}’. Define a map h:\psi_{1}(R^{s})\oplus Varrow\psi_{1}(R^{s})\oplus V by h=\psi\circ\tilde{h}

\circ\psi , then h is bijective since so is \psi .

LEMMA 6. 6. h:\psi_{1}(R^{s})\oplus V-arrow\psi_{1}(R^{s})\oplus V and its inverse are both
d_{0^{-}} uniformly continuous.

As the proof of Lemma 5. 2(iii), for any \lambda_{3}>0 there exist &>0 and a
continuous map \tilde{\eta} : C(\delta_{3})\cross(R^{s}\cross V)-\tilde{B}(0, \lambda_{3}) such that \tilde{h}(v+l)=l+

\tilde{h}(v)+\tilde{\eta}(l, v)(l\in C (\ ), v\in R^{s}\cross V) . Since \tilde{h} is d_{1} -uniformly continuous,
so is \tilde{\eta} . And there exists \ \geq\delta_{3}’>0 such that d_{1}(x, y)\leq\delta_{3}

’ implies d_{1}(\tilde{h}(x) ,
\tilde{h}(y))\leq\lambda_{3} . If d_{0}(x, y)\leq\delta_{3}

’ then there exist l, l’\in C(\ ) and v, v’\in R^{s}\cross V

such that \psi(v+l)=x, \psi(v’+l’)=y and d_{1}(v, v’)\leq\delta_{3}’ . Then \tilde{h}(v+l)-

\tilde{h}(v’+l)=(l-l’)+(\tilde{h}(v)-\tilde{h}(v’))+(\tilde{\eta}(l, v)-\tilde{\eta} ( l ’-v ’) ) , d_{1}(\tilde{h}(v),\tilde{h}(v’))\leq

\lambda_{3} and d_{1} (\tilde{\eta}(l, v),\tilde{\eta}(l ’. v ’ ) ) \leq 2\lambda_{3} . Since d_{0}(\psi(l), \psi(l’))\leq 2\ , we have
d_{0}(h(x), h(y))\leq 3\lambda_{3}+2\ \leq 5\lambda_{3} and so h is d_{0}-uniformly continuous.

The d_{0}-uniformly continuity of h^{-1} is obtained in this fashion.
Lemma 6. 6 ensures the existence of a homeomorphism of X which is

denoted by the same symbol, and h\circ f=\sigma_{f}\circ h holds. Therefore the case (1)

was concluded.
The_{\backslash } conclusion of the case (2) follows from Fact 1. 3 and therefore

Theorem 1 was proved.
The proof of Theorem 2 is done as follows. Since \dim(X)=1 by the

assumption, one of the maps \overline{f} : Rarrow R and \overline{f}^{-1} : Rarrow R must be positively
expansive. For, assume that both \overline{f} and \overline{f}^{-1} are not positively expansive.
Then we have that D^{s}(x)\neq\{x\} and D^{u}(x)\neq\{x\} be Lemma 2. 5. Since D^{\sigma}(x)

is connected, D^{s}(x) contains an open interval I. Take y\in I and then D^{u}(y)

contains an open interval I. Thus y\in I\cap J\subset D^{s}(x)\cap D^{u}(y) . But D^{s}(x)\cap

D^{u}(y) is the set of one point, thus a contradiction.
Therefore the conclusion follows from Fact 1. 3.
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