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\S 1. Introduction and preliminaries

Let E be a locally convex Hausdorff space and E’ be the topological dual
space. We denote by C(E, E’) the minimal \sigma-algebra of subsets of E that
makes all elements x’ in E’ measurable. Let \mu be a probability measure on
C(E, E’) . Then L^{0}(_{\mu}) denotes the set of all \mu -measurable functions on E :
here two measurable functions are identified if they agree \mu -almost every-

here (\mu- a. e.) . As usual we put on L^{0}(\mu) the topology of convergence in
measure, and then L^{0}(_{\mu}) is a complete linear metric space. Let 0<p<\infty .
We also denote by L^{p}(\mu) the set of all measurable functions on E having p-
integrable absolute value; L^{p}(\mu) is a complete quasi-normed space (a

Banach space for p\geqq 1 ), and the identity map: L^{p}(_{\mu})arrow L^{0}(\mu) is continu-
ous.

Let R_{\mu} : E’arrow L^{0}(\mu) be the canonical map defined by (R_{\mu}x’)(x)=\langle x, x’\rangle

\in L^{0}(\mu) . If \mu is of weak r-th order (0\leqq r<\infty) , that is, R_{\mu}(E’)\subset L^{r}(\mu) ,
then the r measurable dual \Lambda_{r}(\mu) of E is defined as the closure of R_{\mu}(E’) in
L^{r}(\mu) , and the vector topology \tau_{\mu}^{r} on E’ is also defined as the inverse image
of the L^{r}(_{\mu}) -topology under R_{\mu} . Since \Lambda_{r}(_{\mu}) is a closed linear subspace of
L^{r}(\mu) , it is a complete linear metric space (a Banach space for r\geqq 1 ).

Let \mu and \nu be two probability measures on C(E, E’) of weak p-th
order, 0\leqq p<\infty . After Dudley [7], we say \mu is p -subordinate to \nu (denoted
by \mu Sp\nu) if the identity (E’\tau_{\nu}^{p})arrow(E’, \tau_{\mu}^{p}) is continuous, that is, \tau_{\nu}^{p} is finer
than \tau_{\mu}^{p} .

For each A in C(E, E’) with \mu(A)>0 , \mu_{A} denotes a probability measure
on C(E, E’) defined by \mu_{A}(B)=\mu(A\cap B)/\mu(A) . Let \mu be of weak p -th
order, \circ\leqq p<\infty . We say \mu is p -uniform if \mu s_{p}\mu_{A} whenever \mu(A)>0 .

The notion of p -uniformness was first introduced by Dudley [7], and
0-uniform measures (called simply uniform measures) were mainly inves-
tigated connecting with the absolute continuity of measures. But the case
p>0 was not considered further since the p -uniformness is not compatible
with the absolute continuity.

In [32], the authors studied 0-uniform measures in terms of 0-llaws. In
this paper, we shall study the p -uniformness for 0<p<\infty , and give charac-
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terizations of the p -uniformness.
In Secticn 2, we characterize the p -uniformness by a 0-1 law. It is

shown that \mu is p -uniform if and only if for each sequence \{x_{\acute{n}}\} in E’. \mu(x ;
\sum_{n}|x_{\acute{n}}(x)|^{p}<\infty)=1 or 0 according as the series \sum_{n}||R_{\mu}x_{\acute{n}}||_{p}^{p} converges or not;
here ||\cdot||_{p} denotes the L^{p}(\mu) -norm (quasi-norm for p<1 ). The p-
uniformness is also characterized as follows; \mu is p -uniform if and only if \mu

is 0-uniform and \Lambda_{0}(_{\mu})\subset L^{p}(_{\mu}) . In particular, Gaussian measures are p-
uniform for every p\geqq 0 , r -stable measures are p -uniform (0\leqq p<r\leqq 2) , and
s-convex measures are p -uniform (0\leqq p<-1/s, -\infty<s\leqq 0) .

In section 3, we investigate the Banach spaces \Lambda_{p}(\mu) , 1\leqq p<\infty . Sup-
pose that \mu is 0-uniform and of weak p -th order. Then it is shown that \mu is
p -uniform (p\neq 2) if and only if \Lambda_{p}(_{\mu}) contains no subspace isomorphic to
t^{p} . The p-uniformness is also characterized as follows; for 1\leqq p<2 , \mu is
p -uniform if and only if \Lambda_{p}(_{\mu}) is of type p -stable, and for p>2 , \mu is p-
uniform if and only if \Lambda_{p}(\mu) is isomorphic to a Hilbert space.

In Section 4, we generalize a result of Chevet [3], Chobanjan and Tar-
ieladze [4] and Maurey [15] on the structure of Gaussian measures on
cotype 2 spaces. Suppose that E is a Banach space of cotype 2. It is shown
that if E has the G. L. P. (Gordon-Lewis property), then every 2-unif0rm
Radon probability measure on E has a Hilbertian support; the same is true
if E is an S-space, as remarked by Mushtari [18]. Let us mention that every
S-space imbeds in some L^{0}-space, but there are cotype 2 spaces not contained
in any L^{0}-space, see [18]. Let 1\leqq p<2 and suppose that E is of type p-
stable. Then it is also shown that every p -uniform Radon probability
measure on E has a Hilbertian support if and only if E is isomorphic to a
Hilbert space. Remark that if every Radon probability measure on E has a
Hilbertian support, then E is isomorphic to a Hilbert space, see Sato [27].

Throughout the paper, we assume that all linear spaces are with real
coefficients.

\S 2. Characterization of p-uniformness (0<p<\infty)

Let E be a locally convex Hausdorff space, \mu be a probability measure
on C(E, E’) of weak p -th order, and R_{\mu} : E’arrow L^{p}(\mu) be the canonical map.
First we characterize the p -uniformness by the 0-1 laws.

THEOREM 1. Let\circ<p<\infty . Then the following conditions are equiva-
lent.

(1) \mu is p-uniform.
(2) For each sequence \{x_{\acute{n}}\} in

according as \Sigma_{n}||R_{\mu}x_{\acute{n}}||_{p}^{p}=\infty or<\infty .
E’ . \mu(x;\Sigma_{n}|x_{\acute{n}}(x)|^{p}<\infty)=0 or 1
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(3) For each sequence \{x_{\acute{n}}\} in E’-\mu(x;x_{\acute{n}}(x)arrow 0)>0 implies that
\Sigma_{j}||R_{\mu}x_{\acute{n}_{j}}||_{p}^{p}<\infty for a suitable subsequence \{x_{\acute{n}_{J}}\} of \{x_{\acute{n}}\} .

(4) For each sequence \{x_{\acute{n}}\} in E’\mu(x,\cdot x_{\acute{n}}(x)arrow 0)>0 implies that x_{\acute{n}_{f}}arrow

0 in \tau_{\mu}^{p} for a suitable subsequence \{x_{\acute{n}_{j}}\} .

PROOF. (1)\Rightarrow(2) : Suppose that \mu is p -uniform and let \mu(x :
\Sigma_{n}|x_{\acute{n}}(x)|^{p}<\infty)>0 . Then there exists C>0 such that \mu(x:\Sigma_{n}|x_{\acute{n}}(x)|^{p}\leqq

C)>0 . We set A=\{x:\Sigma_{n}|x_{\acute{n}}(x)|^{p}\leqq C\} . Since \mu is p -uniform \tau_{\mu A}^{p} is finer
than \tau_{\mu}^{p} , and so there exists D>0 such that

\int_{A^{\neg}}|x’(x)|^{p}d\mu(x)\leqq D\int_{A}|x’(x)|^{p}d\mu(x) for all x’\in E’

Thus we have

\Sigma_{n}||R_{\mu}x_{\acute{n}}||_{p}^{p}=\int_{E}(\Sigma_{n}|x_{\acute{n}}(x)|^{p})d\mu(x)

\leqq D\int_{A}(\Sigma_{n}|x_{\acute{n}}(x)|^{p})d\mu(x)

\leqq D\cdot C<\infty ,

which proves (2).
(2)\supset(3) : Suppose that (2) holds and let \mu(x:x_{\acute{n}}(x)arrow 0)>0 . If we

set A=\{x;x_{\acute{n}}(x)arrow 0\} , then by the Egorov’s theorem, there exist a subset B
of A with \mu(B)>0 , and a subsequence \{x_{\acute{n}_{J}}\} such that for each j, |x_{\acute{n}_{J}}(x)|^{p}\leqq

2^{-j} for all x\in B . Since \mu(x:\Sigma_{j}|x_{\acute{n}_{J}}(x)|^{p}<\infty)>0 , by assumption (2) we
have \Sigma_{j}||R_{\mu}x_{\acute{n}_{j}}||_{p}^{p}<\infty , proving (3).

(3)\supset(4) is clear, and (4)\supset(1) follows from the fact that for each
A in C(E, E’) with \mu(A)>0 , x_{\acute{\vec{n}}}0 in \tau_{\mu_{A}}^{p} implis x_{\acute{n}_{J}}(x)-0 \mu_{A}- a . e . for a
suitable subsequence \{x_{\acute{n}_{j}}\} .

This completes the proof.

COROLLARY 1. If \mu is p-uniform, then for each sequence \{x_{\acute{n}}\} in E’
\mu(x,\cdot\sum_{n}|x_{\acute{n}}(x)|^{p}<\infty)=0 or 1. In particular, every p-uniform measure is
-uniform.

REMARK 1. The measure \mu is 0-uniform if and only if for every fixed
p\in(0, \infty) , \mu(x;x_{\acute{n}}(x)arrow 0)>0 implies that \mu(x:\Sigma_{j}|x_{\acute{n}_{J}}(x)|^{p}<\infty)=1 for a
suitable subsequence \{x_{\acute{n}_{f}}\} , see Takahashi and Qkazaki [32].

COROLLARY 2. Let \{a_{n}\} be a real sequence such that \Sigma_{n}|a_{n}|^{p}<\infty . If \mu

is p-uniform, then for each sequence \{x_{\acute{n}}\} in E’\mu (x ; a_{n}^{-1}x_{\acute{n}}(x)arrow 0)>0

implies \mu(x;x_{\acute{n}}(x)arrow 0)=1 .

PROOF. Let us set A= {x: a \overline{n}x_{\acute{n}}(1x)-0 }. Then we have \mu(xj
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\sum_{n}|x_{\acute{n}}(x)|^{p}<\infty)\geqq\mu(A)>0 . Thus the assertion follows from Corollary 1.
Now we shall give examples of p -uniform measures. Let \mu be a Radon

probability measure on E . For a real number \alpha(\alpha\neq 0) , T_{a}\mu denotes the
measure on E defined by T_{a}\mu(A)=\mu(\alpha^{-1}A) for all Borel sets A of E .

The measure \mu is said to be stable if for each \alpha>0 , \beta>0 , there exist \gamma>

0 and x\in E such that ( T_{a}\mu)*(T_{\beta}\mu)=(T_{\gamma}\mu)*\delta_{X} , where \delta_{X} denotes the Dirac
measure concentrated at x . In particular, \mu is said to be p stable (0<p\leqq 2)

if for each \alpha>0 , \beta>0 , the choice \gamma=(\alpha^{p}+\beta^{p})^{1/p} is possible. Of course,
every Gaussian measure is 2-stable.

Let \psi be a \mu -measurable seminorm on E (not necessarily everywhere
finite) and suppose that \mu(x;\psi(x)<\infty)>0 . As well known, if \mu is a
Gaussian measure, then \psi\in L^{p}(_{\mu}) for every p>0 ; and if \mu is an r-stable
measure, 0<r\leqq 2 , then \psi\in L^{p}(_{\mu}) for every p\in(0, r) , see Acosta [1]. It is
also known that if \mu is an s -convex measure, -\infty<s\leqq 0 , then \psi\in L^{p}(\mu) for
every p\in (0, - 1/s) , see Borell [2]. We shall see that these measures are
p uniform.

Suppose that \mu is a Radon probability measure on E such that for each
measurable seminorm \psi on E , \mu(x;\psi(x)<\infty)>0 implies \psi\in L^{p}(_{\mu}) .
Then \mu is p -uniform. In fact, let \{x_{\acute{n}}\} be any sequence in F_{J}’ such that
\mu (x:x_{\acute{n}}(x) - 0)>0 . Taking a subsequence, we may assume \mu(x ;
\Sigma_{n}|\chi_{\acute{n}}(\chi)|<\infty)>0 . If we put \psi(x)=\Sigma_{n}|x_{\acute{n}}(x)| for x\in E , then \psi is a measur-
able seminorm on E , and so by assumption, it follows that \psi\in L^{p}(\mu) . But
this implies \psi<\infty\mu- a . e. , and in particular, x_{\acute{\vec{n}}}0\mu- a . e . From the Lebes-
gue’s dominated convergence theorem we deduce that x_{\acute{\vec{n}}}0 in \tau_{\mu}^{p}. Hence \mu

is p -uniform, see Theorem 1, (4).

Thus we have the following examples:

EXAMPLE 1. Every Gaussian measure is p -uniform for all p>0 .

EXAMPLE 2. Every r-stable measure, 0<r\leqq 2 , is p -uniform for all
p\in(0, r) .

EXAMPLE 3. Every s -convex measure, -\infty<s\leqq 0 , is p -uniform for
all p\in(0, -1/s) .

The p -uniformness is also characterized by the equivalence of the topol-
ogies \tau_{\mu}^{0}aI_{1d}\tau_{\mu}^{p}. By the same way as in the proof of Theorem 1, we have

THEOREM 2. Let 0<p<\infty and suppose that \mu is of weak p-th order.
Then \mu is p-uniform if and only if \mu is -uniform and the topologies \tau_{\mu}^{0} and
\tau_{\mu}^{p} on E’ are equivalent.

COROLLARY 3. Let 0\leqq q\leqq p<\infty . Then every p-uniform measure is
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q-uniform.

As mentioned before, \Lambda_{0}(\mu) is the closure of R_{\mu}(E’) in L^{0}(\mu) . Each
element in \Lambda_{0}(_{\mu}) is called a \mu -measurable linear functional. The p-
uniformness is characterized by the integrability of \mu -measurable linear
functionals.

THEOREM 3. Let 0<p<\infty . Then \mu is p-uniform if and only if \mu is
onlyform and \Lambda_{0}(_{\mu})\subset L^{p}(\mu) .

PROOF. By Theorem 2, it suffices to show that the condition \Lambda_{0}(_{\mu})\subset L^{p}

(\mu) implies that \tau_{\mu}^{0} is finer than \tau_{\mu}^{p} . Suppose that the inclusion \Lambda_{0}(\mu)\subset L^{p}

(_{\mu}) holds. Since the identity map L^{p}(_{\mu})arrow L^{0}(_{\mu}) is continuous and \Lambda_{0}(\mu)

is a closed subspace of L^{0}(_{\mu}) , the inclusion map \Lambda_{0}(_{\mu})-L^{p}(_{\mu}) has the
closed graph, and so it is continuous by the closed graph theorem, see Yosida
[35, Ch. II , 6]. Thus we have the assertion.

Using the above theorem, we shall give examples of p -uniform product
measures on R^{\infty} Let R^{\infty} be the countable product of the real numbers R
with the product topology. Let \{\mu_{n}\} be a sequence of probability measures
on R and \mu=\otimes\mu_{n} be the product measure on R^{\infty} . In the following, we
assume that for each n , \mu_{n} is symmetric and has no atom. It is well known
that \mu satisfies the 0-1 law for measurable subspaces, see Hoffmann-
J\phi rgensen [12, Theorem 3. 1], and hence \mu is 0-uniform, see [32]. Thus \mu

is p -uniform if and only if \Lambda_{0}(\mu)\subset L^{p}(\mu) , see Theorem 3.

EXAMPLE 4. Suppose that each \mu_{n} is symmetric and has no atom. If
\sup_{n}\int|t|^{2}d\mu_{n}(t)<\infty , then \mu=\otimes\mu_{n} is 2-uniform. In fact, by [12, Theorem 4.
9], \Lambda_{0}(\mu)\subset L^{2}(_{\mu}) holds.

EXAMPLE 5. Suppose that each \mu_{n} is symmetric and has no atom.
Moreover, if we assume that the following conditions

(1) \sup_{n}\mu_{n}([-a, a])<1 for a suitable a>0 , and

(2) \int||x||_{\infty}^{p}d\mu(.x)<\infty , where ||x||_{\infty}= \sup_{n}|x_{n}| ,

hold, then \mu=\otimes\mu_{n} is p -uniform.

PROOF. If suffices to show that each \xi in \Lambda_{0}(_{\mu}) is p -integrable. Since
each \mu_{n} is symmetric and has no atom, each \xi in \Lambda_{0}(\mu) is represented as

\xi(x)=\Sigma_{n}a_{n}x_{n}, x=(x_{n})\in R^{\infty}-

where the infinite sum converges \mu- a . e. , see [12, Theorem 4. 3]. By the
three series theorem of Kolmogorov, it follows that
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\Sigma_{n}\mu(x\in R^{\infty} ; |a_{n}x_{n}|\geqq 1)<\infty ,

and in particular, \mu_{n} (t ; |a_{n}t|\geqq 1)-0. Hence the sequence \{a_{n}\} must be
bounded by assumption (1). It follows from assumption (3) that \sup_{n}|a_{n}x_{n}|

\in L^{p}(\mu) , and so we get \xi\in L^{p}(\mu) , see Hoffmann-J \phi rgensen [11, Corollary
3. 3]. Thus \mu is p -uniform.

Finally we characterize the p -uniformness by the absolute continuity or
the non-singularity.

Let \mu and \nu be two probability measures on C(E, E’) , \mu is said to be
absolutely continuous with respect to \nu(_{\mu}<\nu) if for each A in C(E, E’) ,
\nu(A)=0 implies \mu(A)=0 . If \mu and \nu are mutually absolutely continuous,
then we say \mu and \nu are equivalent (_{\mu}\sim\nu) . The measures \mu and \nu are said
to be singular if there exists a measurable set A such that \nu(A)=1 and
\mu(A)=0 .

THEOREM 4. Let 0<p<\infty and suppose that \mu is of weak p-th order.
Then the following conditions are equivalent.

(1) \mu is p-uniform.
(2) For each probability measure \nu such that \mu and \nu are not singular,

\tau_{\nu}^{0} is finer than \tau_{\mu}^{p} .
(3) For each probability measure \nu<\mu, \tau_{U}^{0} and \tau_{\mu}^{p} are equivalent.

PROOF. (1)\supset(2) : Suppose that \mu is p -uniform, and the measures \mu

and \nu are not singular. Let \{x_{n}’\} be a sequence in E’ such that x_{\acute{\vec{n}}}0 in \tau_{\nu}^{0}.
Taking a subsequence, we may assume x_{\acute{n}}(x)arrow 0\nu- a . e . Since \mu and \nu are
not singular, it follows that \mu(\chi:x_{\acute{n}}(x)arrow 0)>0 , and hence x_{\acute{\vec{n}}}0 in \tau_{\mu}^{p} by the
p -uniformness, see Theorem 1.

(2)\supset(3) and (3)\supset(1) are clear.
This completes the proof.

COROLLARY 4. Let \mu and \nu be p-uniform measures on C(E, E’) .
Then \mu and \nu are singular, or \tau_{\mu}^{p} and \tau_{\nu}^{p} are equivalent.

\S 3. The spaces \Lambda_{p}(\mu)

Let E be a locally convex Hausdorff space and \mu be a probability
measure on C(E, E’) of weak p -th order, 0<p<\infty . As mentiond in Section
1, the p measurable dual \Lambda_{p}(\mu) is the closure of R_{\mu}(E’) in L^{p}(_{\mu}) , where
R_{\mu} : E’arrow L^{p}(_{\mu}) is the canonical map. Since \Lambda_{p}(_{\mu}) is a closed subspace of
L^{p}(\mu) , it is a complete quasi-normed space (Banach space for p\geqq 1 ) with
the quasi-norm ||\cdot||_{p} . If 0\leqq q<p , then we have the inclusion \Lambda_{p}(\mu)\subset\Lambda_{q}(\mu) ,
but in general, the converse inclusion is not valid.
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THEOREM 5. Let 0<p<\infty and suppose that \mu is of weak p-th order.
Then \mu is p-unifom if and only if \mu is 0-uniform and \Lambda_{p}(\mu)=\Lambda_{q}(\mu) for
some q\in[0, p) .

PROOF. If \Lambda_{p}(\mu)=\Lambda_{q}(\mu) for some q<p , then by the closed graph
theorem, the topologies L^{p} and L^{q} on R_{\mu}(E’) are equivalent, and hence the
topologies L^{p} and L^{0} on R_{\mu}(E’) are also equivalent, see Schwartz [29,
Lemma 15. 1]. But this means that \tau_{\mu}^{p} and \tau_{\mu}^{0} on E’ are equivalent. Thus the
assertion follows from Theorem 2.

COROLLARY 5. Let 0<p<\infty and suppose that R_{\mu}(E’) is of finite
dimension. Then \mu is p-uniform if and only if \mu is 0-uniform and of weak
p-th order.

Of course if R_{\mu}(E’) is of infinite dimension, then the above result is
false. In the following we shall consider such cases.

From now on we assume that \mu is of weak p -th order and \Lambda_{p}(\mu) is an
infinite dimensional Banach space, where 1\leqq p<\infty . Let us denote by ||\cdot||_{p}

the usual L^{p}-norm.
Following Kadec and Pelczy\acute{n}ski[13] , for each \epsilon>0 , we set

M_{\epsilon}^{p}=\{f.\in L^{p}(_{\mu}) ; \mu(x : [f(x)|\geqq\epsilon|\psi||_{p})\geqq\epsilon\} .
LEMMA 1. The following conditions are equivalent.
(1) The topologies L^{p} and L^{0} on \Lambda_{p}(\mu) are equivalent.
(2) \Lambda_{p}(\mu)\subset M_{\epsilon}^{p} for some \epsilon>0 .

PROOF. (1)\supset(2) : Suppose that (1) holds. For \epsilon>0 , we set
V_{\epsilon}=\{f\in\Lambda_{p}(\mu) : \mu(x:\triangleright^{j}(x)|\geqq\epsilon)<\epsilon\} .

Then by assumption (1), there exists an \epsilon>0 such that V_{\epsilon}\subset\{f\in\Lambda_{p}(_{\mu}) ;
|\psi||_{p}<1\} . We show \Lambda_{p}(\mu)\subset M_{\epsilon}^{p}. In fact, let f\in\Lambda_{p}(\mu) and put g=f/|\psi||_{p} .
Since ||g||_{p}=1 , V_{\epsilon} does not contain g, that is,

\mu(x;|g(x)|\geqq\epsilon)\geqq\epsilon .

But this means that f\in M_{\epsilon}^{p} .
(2)\Rightarrow(1) : If \Lambda_{p}(\mu)\subset M_{\epsilon}^{p} for some \epsilon>0 , then it is easy to see that

f\in V_{\epsilon} implies |\psi||_{p}\leqq 1 . Hence the topologies L^{p} and L^{0} on \Lambda_{p}(_{\mu}) are equiva-
lent.

This completes the proof.

PROPOSITION 1. Let 1\leqq p<\infty(p\neq 2) and suppose that \mu is of weak
p-th order. If \Lambda_{p}(\mu) contains no subspace isomorphic to l^{p}, then it holds
\Lambda_{p}(\mu)=\Lambda_{0}(\mu) .
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PROOF. If \Lambda_{p}(_{\mu}) does not contain l^{p}r then by Kadec and Pelczynski
[13, Theorem 2], there exists an \epsilon>0 such that \Lambda_{p}(\mu)\subset M_{\epsilon}^{p} . It follows from
Lemma 1 that the topologies L^{p} and L^{0} on \Lambda_{p}(_{\mu}) are equivalent, and so we
have \Lambda_{p}(\mu)=\Lambda_{0}(\mu) .

REMARK 2. For the case p=2 , \Lambda_{2}(\mu) is a Hilbert space, and hence it
always contains a subspace isomorphic to l^{2}- For the case p>2 , it is known
that \Lambda_{p}(_{\mu}) contains no subspace isomorphic to l^{p} if and only if it is isomor-
phic to a Hilbert space; and if and only if \Lambda_{p}(\mu)\subset M_{\epsilon}^{p} for some \epsilon>0 , see [13,
Theorem 3].

As mentioned above, for the case p>2 , \Lambda_{p}(_{\mu}) contains no subspace
isomorphic to l^{p} if and only if \Lambda_{p}(_{\mu})=\Lambda_{0}(\mu) . In the following we show this
is also true for the case 1\leqq p<2 .

Two Banach spaces X and Y are said to be \lambda -isomorphic, 1<\lambda<\infty , if
there exists an isomorphism S:Xarrow Y such that ||S||\cdot||S^{-1}||\leqq\lambda . We say that
Y is finitely representable in X if for some \lambda>1 , each finite dimensional
subspace of Y is \lambda -isomorphic to a suitable subspace of X .

Let 0<p\leqq 2 and denote by \{\theta_{n}^{(p)}\} a sequence of independent identically
distributed real random variables with the characteristic function
exp (-|t|^{p}) , t\in R . We say that a Banach space X is of type p -stable if for
each sequence \{x_{n}\} in X such that \sum_{n}||x_{n}||^{p}<\infty , the series \sum_{n}x_{n}\theta_{n}^{(p)} converges
almost surely (a. s.) . Let \{\epsilon_{n}\} be the Bernoulli sequence. We say that X is
of cotype q , 2\leqq q<\infty , if the a . s . convergence of \Sigma_{n}x_{n}\epsilon_{n} implies \Sigma_{n}||x_{n}||^{q}<\infty .
Here we list the well-known facts which are used in the ensuing discussion:
For 1\leqq p<2 , X is of type p -stable if and only if l^{p} is not finitely representable
in X ; in particular l^{p} is not of type p -stable (this is false for p=2). Type
interval is open, that is, type p -stable with p<2 implies type r -stable for
some r>p . For the duality of type and cotype, type p -stable implies cotype
q , where 1/p+1/q=1 : the converse is false ( l^{q} has cotype q , but not cotype
r if 2\leqq r<q). For more information on type and cotype, we refer to [15],
[16], [17], [22] and [29].

THEOREM 6. Let 1\leqq p<2 and suppose that \mu is 0-uniform and of weak
p-th order. Then the following conditions are equivalent.

(1) \mu is p-uniform.
(2) \Lambda_{p}(\mu) is of type p-stable.
(3) There exist a q\in(p, 2] and an integrable function \phi on E with

\phi(x)>0(_{\mu}- a. e.) such that

\int_{E}\psi(x)|^{q}\phi(x)^{1-q/p}d\mu(x)<\infty for all f\in\Lambda_{p}(\mu) .
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(4) There exist a q\in(p, 2] and a q-uniform measure \nu on C(E, E’)
such that \Lambda_{p}(\mu) is isomorphic to a subspace of L^{q}(\nu) .

(5) \Lambda_{p}(\mu) contains no subspace isomorphic to l^{p} .

PROOF. (1)\supset(2) : Suppose that \mu is p -uniform. Then by Theorem
2, the topologies L^{p} and L^{0} on \Lambda_{p}(_{\mu}) are equivalent. Hence \Lambda_{p}(_{\mu}) is of
type p -stable, see Maurey [16, Th\’eor\‘eme 98].

(2)\supset(3) : Suppose that \Lambda_{p}(\mu) is of type p -stable. Then \Lambda_{p}(\mu) does
not contain l^{p} .
By Rosenthal [26, Theorem 8], there exists an r>p such that \Lambda_{p}(_{\mu}) is
isomorphic to a subspace of L^{r}(_{\mu}) . Let p<q<r . We use the Maurey’s
factorization theorem for the identity map: \Lambda_{p}(\mu)-L^{p}(\mu) . By Maurey
[16, Th\’eor\‘emes 8 and 50], there exists a measurable function g on E with
g\in L^{s}(\mu) such that

\int_{E}\psi(x)/g(x)|^{q}d\mu(x)<\infty for all f\in\Lambda_{p}(\mu) .

where 1/p=1/q+1/s . Here we may assume |g(x)|>0\mu- a . e . If we put \phi=

|g|^{s} . then \phi satisfies the condition (3).

(3)\supset(4) : Suppose that (3) holds. We may assume \int\phi d\mu=1 . Let
d\sigma=\phi d\mu , and define a linear isometry V:\Lambda_{p}(\mu)-L^{p}(\mu) by V(f)=f/\phi^{1/p} .
Since

\int|Vf|^{q}d\sigma=\int\psi|^{q}\phi^{1-q/p}d\mu<\infty for all f\in\Lambda p(\mu) ,

we have V(\Lambda_{p}(\mu))\subset L^{q}(\sigma) , and hence by the closed graph theorem, V :
\Lambda_{p}(\mu)arrow L^{q}(\sigma) is continuous. Thus the topologies L^{q}(\sigma) and L^{p}(\sigma) are
equivalent on V(\Lambda_{p}(\mu)) , and so the topologies L^{q}(\sigma) and L^{0}(\sigma) are also
equivalent on V(\Lambda p(\mu)) , see [29, Lemma 15, 1]. Let \psi=\min(1, \phi^{1-q/p}) ,

and define a probability measure \nu on C(E, E’) by d\nu=C\psi d\mu , where C is a
normalized constant. Then \mu and \nu are clearly equivalent. We show \nu is
q-uniform. In fact, \nu is 0-uniform since \mu is 0-uniform. To prove the
q-uniformness, it suffices to show that the topologies L^{0}(\nu) and L^{q}(\nu) are
equivalent on \Lambda_{p}(_{\mu}) . Let \psi_{n} } be a sequence in \Lambda_{p}(_{\mu}) such that f_{n}arrow 0 in
L^{0}(\nu) . Then it clearly holds that V(f_{n})arrow 0 in L^{0}(\sigma) . Since the topologies
L^{0}(\sigma) and L^{q}(\sigma) are equivalent on V(\Lambda_{p}(\mu)) , we have V\varphi_{n}) arrow 0 in L^{q}(\sigma) .
But the inequality

|V||_{L^{q}(\nu)}\leqq C||V(f)||_{L^{q}(\sigma)} for all f\in\Lambda_{p}(_{\mu})

clearly holds, and hence f_{n}arrow 0 in L^{q}(\nu) , which proves the q-uniformness.
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By the same way as above, we can show that the topologies L^{p}(_{\mu}) and
L^{q}(\nu) are equivalent on \Lambda_{p}(\mu) , and so \Lambda_{p}(_{\mu}) is isomorphic to a subspace of
L^{q}(_{\mathcal{V}}) .

Since L^{q} does not contain l^{p} with 1\leqq p<q\leqq 2 , (4)\Rightarrow(5) holds, and (5)
\supset(1) follows from Theorem 5 and Proposition 1.

This completes the proof.
By the same way as in the proof of Theorem 6, we have

THEOREM 7. Let 1\leqq p<q<2 and suppose that \mu is p-uniform. Then
the following conditions are equivalent.

(1) \Lambda_{p}(\mu) is of type q-stable.
(2) There exists a q-uniform measure on C(E, E’) which is equivalent

to \mu .

REMARK 3. In Theorem 7, if \Lambda_{p}(\mu) is not of type q-stable, then for
each q-uniform measure \nu , \mu and \nu are singular, see Corollay 4.

Finally we shall consider the case 2<p<\infty .

THEOREM 8. Let 2<p<\infty and suppose that \mu is 0-uniform and of
weak p-th order. Then the following conditions are equivalent.

(1) \mu is p-uniform.
(2) The dual space \Lambda_{p}(\mu)’ is of type p’ -stable, where 1/p+1/p^{r}=1 .
(3) \Lambda_{p}(\mu) contains no subspace isomorphic to l^{p} .
PROOF. (1)\supset(2) : If \mu is p -uniform, then by Theorem 5, \Lambda_{p}(\mu) is

isomorphic to a Hilbert space \Lambda_{2}(\mu)1 Hence (2) clearly holds.
(2)\supset(3) : If \Lambda_{p}(\mu)’ is of type p’-stable, then it is of type r -stable for

some r>p^{r} , since type interval is open, see [29, Theorem 12. 7]. By the
duality of type and cotype, it follows that \Lambda_{p}(\mu) is of cotype \gamma_{r}’. where 1/r+
1/r’=1 . Since l^{p} is not of cotype r’ with r’<p , (3) holds.

(3)\supset(1) follows from Theorem 5 and Proposition 1.
This completes the proof.
By Theorems 6 and 8, we have

THEOREM 9. Let 1\leqq p<\infty(p\neq 2) and suppose that \mu is 0-uniform and
of weak p-th order. Then \mu is p-uniform if and only if \Lambda_{p}(_{\mu}) contains no
subspace isomo\psi hic to l^{p} .

\S 4. Hilbertian support

Throughout this section, we assume that E is a Banach space and \mu is
a Radon probability measure on E;i . e . for each \epsilon>0 , there exists a com-
pact subset K of E such that \mu(K)>1-\epsilon .



p-unifom measures on linear spaces (0\leqq p<\infty) 295

We say that \mu has a Hilbertian support if there exists a continuous linear
injective map T from a Hilbert space H into E such that \mu (T(H))=1 . It
is well-known that E is of cotype 2 if and only if every Gaussian Radon
measure on E has a Hilbertian support, see Chevet [3], Chobanjan and
Tarieladze [4] and Maurey [15]. We shall extend this result to p -uniform
measures (2\leqq p<\infty) .

Let \nu be a cylindrical measure on E and L_{\nu} : E’arrow L^{0}(\Omega, P) be a random
linear functional (r. 1. f.) associated with \nu , where (\Omega, P) is a probability
space. It is well-known that if L is any linear map from E’ into L^{0}(\Omega, P) ,
then there exists a cylindrical measure \nu on E such that L_{\nu}=L;\nu is uniquely
determined, see Dudley [8]. The cylindrical measure \nu is said to be of type
p , 0\leqq p<\infty , if \nu is of weak p -th order and an r. 1. f. L_{\nu} : E’arrow L^{p}(\Omega, P) is
continuous; here we regard E’ a Banach space.

Let T be a continuous linear operator from E into a Banach space F .
Following Schwartz [28], T is p -radonifying if for each cylindrical measure
\nu on E of type p , the image T(\nu) is a Radon measure on F : in this case \mu=

T(\nu) is of order p , i . e . \int||x||^{p}d\mu(x)<\infty .

The operator T:Earrow F is said to be p -absolutely summing (p-
summing 0<p<\infty , if for each sequence \{x_{n}\} in E such that \sum_{n}|\langle x_{n},
\chi’\rangle|^{p}<\infty for all x’\in E’ . \Sigma_{n}||Tx_{n}||^{p}<\infty . For p=1 , we say “ absolutely sum-
ming ” instead of “ 1-absolutely summing ” For the details of p summing
operators, we refer to Pietsch [20].

The relationship between p -radonifying and p-summing operators was
studied by Schwartz [28], [29]. We only mention that every p -radonifying
operator is p -summing, and the converse is true if p>1 .

After Gordon and Lewis [10], we say that E has G. L. P. (Gordon-
Lewis property) if every absolutely summing operator from E into any
Banach space factors through some L^{1} -space. Gordon and Lewis [10]
proved that if E has local unconditional structure, then E has G. L. P. It is
known that E has G. L. P. if and only if E’ has it; and if E is of cotype 2 and
has G. L. P., then every closed subspace of E has G. L. P., see Pisier [21]. In
particular, every closed subspace of L^{1} has G. L. P.

Let \mu be a Radon probability measure on E of weak second order, and
R_{\mu} : E’arrow L^{2}(_{\mu}) be the canonical map. As mentioned before, \Lambda_{2}(\mu) is the
closure of R_{\mu}(E’) in L^{2}(_{\mu}) . Now suppose that the topologies L^{2} and L^{0} are
equivalent on \Lambda_{2}(_{\mu}) , that is, \Lambda_{2}(\mu)=\Lambda_{0}(\mu) . Since \mu is Radon, R_{\mu} : E’arrow

\Lambda_{2}(\mu) is continuous with respect to the Mackey-topology \tau_{k}(E’-E) . Hence
the dual map R_{\acute{\mu}} is a continuous linear map from \Lambda_{2}(\mu)’ into E .
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LEMMA 2. The canonical map R_{\mu} : E’arrow\Lambda_{2}(_{\mu}) is p-summing for all
p>0 .

PROOF. Since \Lambda_{2}(_{\mu})=\Lambda_{0}(_{\mu}) , the assertion follows from Okazaki and
Takahashi [19, Lemma 1].

THEOREM 10. Let \mu be a Radon probability measure on E such that
\Lambda_{2}(\mu)=\Lambda_{0}(\mu) . If E is of cotype 2 and has G. L. P., then \mu has a Hilbertian
support.

PROOF. Let J : \Lambda_{2}(_{\mu})arrow L^{0}(\mu) be the identity map and \nu be a cylindri-
cal measure on \Lambda_{2}(\mu)’ such that L_{\nu}=J . Then \nu is clearly of type 2, and \mu=
R_{\acute{\mu}}(\nu) . Since E’ has G. L. P., by Lemma 2, the map R_{\mu} : E’arrow\Lambda_{2}(_{\mu}) is
factorized by continuous linear operators S:E’arrow L^{1} and T:L^{1}arrow\Lambda_{2}(\mu) .
Since E is of cotype 2, by [6, Proposition 2. 1] and [16, Corollaire 75], S’ :
L^{\infty}arrow E’ is 2-summing, and so is R_{\acute{\mu}} : \Lambda_{2}(\mu)’-E . By the factorization the0-
rem of Pietsch [20], there exist a Hilbert space H , a 2-summing map V :
\Lambda_{2}(\mu)’arrow H and a continuous linear map W : Harrow E such that R_{\acute{\mu}}=WV

Since the cylindrical measure \nu on \Lambda_{2}(_{\mu})’ is of type 2, the image V (\nu) is a
Radon measure on a Hilbert space H , see Schwartz [28]. Thus we have
\mu(W(H))=1 .

This completes the proof.

REMARK 4. Theorem 10 was proved by Diallo [5] for the case E=l^{p},
1\leqq p<2 .

COROLLARY 6. Let 2\leqq p<\infty and suppose that E is of cotype 2 and has
G. L. P. Then every p-uniform Radon probability measure on E has a
Hilbertian support. In particular, every s-convex Radon probability measure
on E has a Hilbertian support, where -1/2<s\leqq 0 .

REMARK 5. It is clear that Theorem 10 holds for a Banach space E
having the following property; (^{*}) every absolutely summing operator from
E’ into a Hilbert space is dual 2-summing. As shown in the proof of
Theorem 10, if E is of cotype 2 and has G. L. P., then E has the property (^{*}) .
We note that there is a cotype 2 space E which does not have the property
(^{*}) . In fact, suppose that every cotype 2 space E satisfies (^{*}) . Then it can
be proved that E is isomorphic to a Hilbert space if and only if both E and
E’ are of cotype 2; but this is false, as shown by Pisier [24].

REMARK 6. A Banach space E is said to have the Grothendieck prop-
erty (G. P.) if every continuous linear operator from L^{\infty} into E is 2-
summing. Grothendieck proved that L^{1} has G. P. In the proof of Theorem
10, we used the fact that every cotype 2 space has G. P., see Maurey [16]. It
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is known that if E has both G. P. and G. L. P., then it is of cotype 2, see
Reisner [25].

Finally we shall consider the case 1\leqq p<2 . Let L^{p}=L^{p}[0,1] . Then L^{p\prime}

is the dual of L^{p}r. where 1/p+1/p’=1 . We denote by ||\cdot||_{p} the usual L^{p} -norm.
Let \gamma p be a cylindrical measure on L^{pr} whose characteristic functional
\hat{\gamma}_{p}(x)=\exp(-||x||_{p}^{p}) , x\in L^{p} . We say that a linear operator T:L^{p}’arrow E is
\gamma_{p}-Radonifying if the image \mu=T(\gamma_{p}) is a Radon measure on E ; in this case
\mu is symmetric p -stable. It is well-known that if \mu is a symmetric p -stable
Radon probability measure on E , then there exists a \gamma_{p}-Radonifying opera-
tor T:L^{p\prime}arrow E such that \mu=T(\gamma_{p}) , see Linde [14]. It is clear that if \mu=

T(\gamma_{p}) has a Hilbertian support, then T:L^{p\prime}arrow E factors through a Hilbert-
Schmidt operator, that is, T is factorized by the bounded linear operators S :
L^{pr}arrow H, V:Harrow G and W : Garrow E , where H, G are Hilbert spaces and V is
of Hilbert-Schmidt type. Since every Hilbert-Schmidt operator is p -integral
(p>1) in the sense of Pietsch [20], we have the following:

LEMMA 3. Let 1<p<2 and suppose that every p-stable Radon probabil\lrcorner

ity measure on E has a Hilbertian support. Then eve\prime y\gamma_{p}-Radonifying
operator from L^{pr} into E is p-integral.

THEOREM 11. Let 1<p<2 and suppose that E is of type p-stable.
Then the following conditions are equivalent.

(1) E is isomorphic to a Hilbert space.
(2) Every p-stable Radon probability measure on E has a Hilbertian

support.
PROOF. (1)\supset(2) is clear. Suppose that (2) holds. Then by

Lemma 3, every \gamma_{p}-Radonifying operator from L^{p\prime} into E is p -integral.
Since E is of type p -stable, by Takahashi and Okazaki [33, Theorem 5. 1],
E is isomorphic to a quotient of some L^{p}-space (called Q_{p} -type). Since type
interval is open, E is of type r -stable for some r\in(p, 2) . Thus E’ is of
cotype r’ and isomorphic to a subspace of L^{pr} If E’ is not isomorphic to a
Hilbert space, then Kadec and Pelczynski [13, Theorem 3], E’ contains l^{p\prime}

But this is impossible because l^{p;} is not of cotype r’ with r’<p^{r} Hence E’
is isomorphic to a Hilbert space, proving (1).

This completes the proof.

THEOREM 12. Let 1<p<2 and suppose that E is of type p-stable.
Then the following conditions are equivalent.

(1) E is isomorphic to a Hilbert space.
(2) Every p-uniform Radon probability measure on E has a Hilbertian

support.
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PROOF. (1)\supset(2) is clear. Suppose that (2) holds. Since E is of
type p -stable, it is of type r -stable for some r\in(p, 2) . Since every r-stable
measure is p -uniform with p<r , see Example 2, it follows from assumption
(2) that every r -stable Radon probability measure on E has a Hilbertian
support. Thus the assertion follows from Theorem 11.

REMARK 7. Theorems 11 and 12 are true for the case p=2 ; this fol-
lows from the well-known fact that if a Banach space is of both type 2 and
cotype 2, then- it is isomorphic to a Hilbert space.
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