p-uniform measures on linear spaces $(0 \le p < \infty)$

Yoshiaki OKAZAKI and Yasuji TAKAHASHI (Received November 1, 1988, Revised February 22, 1989)

§1. Introduction and preliminaries

Let E be a locally convex Hausdorff space and E' be the topological dual space. We denote by C(E, E') the minimal σ -algebra of subsets of E that makes all elements x' in E' measurable. Let μ be a probability measure on C(E, E'). Then $L^0(\mu)$ denotes the set of all μ -measurable functions on E; here two measurable functions are identified if they agree μ -almost everywhere $(\mu$ -a.e.). As usual we put on $L^0(\mu)$ the topology of convergence in measure, and then $L^0(\mu)$ is a complete linear metric space. Let 0 . $We also denote by <math>L^p(\mu)$ the set of all measurable functions on E having pintegrable absolute value; $L^p(\mu)$ is a complete quasi-normed space (a Banach space for $p \ge 1$), and the identity map: $L^p(\mu) \to L^0(\mu)$ is continuous.

Let $R_{\mu}: E' \rightarrow L^{0}(\mu)$ be the canonical map defined by $(R_{\mu}x')(x) = \langle x, x' \rangle \in L^{0}(\mu)$. If μ is of weak *r*-th order $(0 \leq r < \infty)$, that is, $R_{\mu}(E') \subset L^{r}(\mu)$, then the *r*-measurable dual $\Lambda_{r}(\mu)$ of *E* is defined as the closure of $R_{\mu}(E')$ in $L^{r}(\mu)$, and the vector topology τ_{μ}^{r} on *E'* is also defined as the inverse image of the $L^{r}(\mu)$ -topology under R_{μ} . Since $\Lambda_{r}(\mu)$ is a closed linear subspace of $L^{r}(\mu)$, it is a complete linear metric space (a Banach space for $r \geq 1$).

Let μ and ν be two probability measures on C(E, E') of weak p-th order, $0 \le p < \infty$. After Dudley [7], we say μ is p-subordinate to ν (denoted by μ s_p ν) if the identity $(E', \tau_{\nu}^{p}) \rightarrow (E', \tau_{\mu}^{p})$ is continuous, that is, τ_{ν}^{p} is finer than τ_{μ}^{p} .

For each A in C(E, E') with $\mu(A) > 0$, μ_A denotes a probability measure on C(E, E') defined by $\mu_A(B) = \mu(A \cap B)/\mu(A)$. Let μ be of weak p-th order, $0 \le p < \infty$. We say μ is p-uniform if $\mu s_p \mu_A$ whenever $\mu(A) > 0$.

The notion of *p*-uniformness was first introduced by Dudley [7], and 0-uniform measures (called simply uniform measures) were mainly investigated connecting with the absolute continuity of measures. But the case p>0 was not considered further since the *p*-uniformness is not compatible with the absolute continuity.

In [32], the authors studied 0-uniform measures in terms of 0-1 laws. In this paper, we shall study the *p*-uniformness for 0 , and give charac-

terizations of the *p*-uniformness.

In Section 2, we characterize the *p*-uniformness by a 0-1 law. It is shown that μ is *p*-uniform if and only if for each sequence $\{x'_n\}$ in E', $\mu(x; \sum_n |x'_n(x)|^p < \infty) = 1$ or 0 according as the series $\sum_n ||R_\mu x'_n||_p^p$ converges or not; here $\|\cdot\|_p$ denotes the $L^p(\mu)$ -norm (quasi-norm for p < 1). The *p*uniformness is also characterized as follows; μ is *p*-uniform if and only if μ is 0-uniform and $\Lambda_0(\mu) \subset L^p(\mu)$. In particular, Gaussian measures are *p*uniform for every $p \ge 0$, *r*-stable measures are *p*-uniform $(0 \le p < r \le 2)$, and *s*-convex measures are *p*-uniform $(0 \le p < -1/s, -\infty < s \le 0)$.

In section 3, we investigate the Banach spaces $\Lambda_p(\mu)$, $1 \le p < \infty$. Suppose that μ is 0-uniform and of weak *p*-th order. Then it is shown that μ is *p*-uniform $(p \ne 2)$ if and only if $\Lambda_p(\mu)$ contains no subspace isomorphic to l^p . The *p*-uniformness is also characterized as follows; for $1 \le p < 2$, μ is *p*-uniform if and only if $\Lambda_p(\mu)$ is of type *p*-stable, and for p > 2, μ is *p*-uniform if and only if $\Lambda_p(\mu)$ is isomorphic to a Hilbert space.

In Section 4, we generalize a result of Chevet [3], Chobanjan and Tarieladze [4] and Maurey [15] on the structure of Gaussian measures on cotype 2 spaces. Suppose that E is a Banach space of cotype 2. It is shown that if E has the G. L. P. (Gordon-Lewis property), then every 2-uniform Radon probability measure on E has a Hilbertian support; the same is true if E is an S-space, as remarked by Mushtari [18]. Let us mention that every S-space imbeds in some L^0 -space, but there are cotype 2 spaces not contained in any L^0 -space, see [18]. Let $1 \le p < 2$ and suppose that E is of type pstable. Then it is also shown that every p-uniform Radon probability measure on E has a Hilbertian support if and only if E is isomorphic to a Hilbert space. Remark that if every Radon probability measure on E has a Hilbertian support, then E is isomorphic to a Hilbert space, see Sato [27].

Throughout the paper, we assume that all linear spaces are with real coefficients.

§ 2. Characterization of *p*-uniformness (0

Let *E* be a locally convex Hausdorff space, μ be a probability measure on C(E, E') of weak *p*-th order, and $R_{\mu}: E' \rightarrow L^{p}(\mu)$ be the canonical map. First we characterize the *p*-uniformness by the 0-1 laws.

THEOREM 1. Let 0 . Then the following conditions are equivalent.

(1) μ is p-uniform.

(2) For each sequence $\{x'_n\}$ in E', $\mu(x; \sum_n |x'_n(x)|^p < \infty) = 0$ or 1 according as $\sum_n ||R_\mu x'_n||_p^p = \infty$ or $<\infty$.

(3) For each sequence $\{x'_n\}$ in E', $\mu(x; x'_n(x) \rightarrow 0) > 0$ implies that $\sum_j \|R_\mu x'_{n_j}\|_p^p < \infty$ for a suitable subsequence $\{x'_{n_j}\}$ of $\{x'_n\}$.

(4) For each sequence $\{x'_n\}$ in E', $\mu(x; x'_n(x) \rightarrow 0) > 0$ implies that $x'_{n_j} \rightarrow 0$ in τ^p_{μ} for a suitable subsequence $\{x'_{n_j}\}$.

PROOF. (1)=>(2): Suppose that μ is *p*-uniform and let $\mu(x; \sum_n |x'_n(x)|^p < \infty) > 0$. Then there exists C > 0 such that $\mu(x; \sum_n |x'_n(x)|^p \le C) > 0$. We set $A = \{x; \sum_n |x'_n(x)|^p \le C\}$. Since μ is *p*-uniform, $\tau^p_{\mu_A}$ is finer than $\tau^p_{\mu_A}$ and so there exists D > 0 such that

$$\int_{E} |x'(x)|^{p} d\mu(x) \leq D \int_{A} |x'(x)|^{p} d\mu(x) \text{ for all } x' \in E'.$$

Thus we have

$$\sum_{n} \|R_{\mu}x'_{n}\|_{p}^{p} = \int_{E} \left(\sum_{n} |x'_{n}(x)|^{p}\right) d\mu(x)$$
$$\leq D \int_{A} \left(\sum_{n} |x'_{n}(x)|^{p}\right) d\mu(x)$$
$$\leq D \cdot C < \infty,$$

which proves (2).

(2) \Longrightarrow (3): Suppose that (2) holds and let $\mu(x; x'_n(x) \rightarrow 0) > 0$. If we set $A = \{x; x'_n(x) \rightarrow 0\}$, then by the Egorov's theorem, there exist a subset B of A with $\mu(B) > 0$, and a subsequence $\{x'_{n_j}\}$ such that for each j, $|x'_{n_j}(x)|^p \leq 2^{-j}$ for all $x \in B$. Since $\mu(x; \sum_j |x'_{n_j}(x)|^p < \infty) > 0$, by assumption (2) we have $\sum_j ||R_{\mu}x'_{n_j}||_p^p < \infty$, proving (3).

(3) \Longrightarrow (4) is clear, and (4) \Longrightarrow (1) follows from the fact that for each A in C(E, E') with $\mu(A) > 0$, $x'_n \rightarrow 0$ in $\tau^p_{\mu_A}$ implies $x'_{n_j}(x) \rightarrow 0$ μ_A -a.e. for a suitable subsequence $\{x'_{n_j}\}$.

This completes the proof.

COROLLARY 1. If μ is p-uniform, then for each sequence $\{x'_n\}$ in E', $\mu(x; \sum_n |x'_n(x)|^p < \infty) = 0$ or 1. In particular, every p-uniform measure is 0-uniform.

REMARK 1. The measure μ is 0-uniform if and only if for every fixed $p \in (0, \infty), \ \mu(x; x'_n(x) \rightarrow 0) > 0$ implies that $\mu(x; \sum_j |x'_{n_j}(x)|^p < \infty) = 1$ for a suitable subsequence $\{x'_{n_j}\}$, see Takahashi and Okazaki [32].

COROLLARY 2. Let $\{a_n\}$ be a real sequence such that $\sum_n |a_n|^p < \infty$. If μ is p-uniform, then for each sequence $\{x'_n\}$ in E', $\mu(x; a_n^{-1}x'_n(x) \rightarrow 0) > 0$ implies $\mu(x; x'_n(x) \rightarrow 0) = 1$.

PROOF. Let us set $A = \{x ; a_n^{-1} x'_n(x) \rightarrow 0\}$. Then we have $\mu(x ;$

 $\sum_{n} |x'_{n}(x)|^{p} < \infty \ge \mu(A) > 0$. Thus the assertion follows from Corollary 1.

Now we shall give examples of *p*-uniform measures. Let μ be a Radon probability measure on *E*. For a real number α ($\alpha \neq 0$), $T_{\alpha\mu}$ denotes the measure on *E* defined by $T_{\alpha\mu}(A) = \mu(\alpha^{-1}A)$ for all Borel sets *A* of *E*.

The measure μ is said to be stable if for each $\alpha > 0$, $\beta > 0$, there exist $\gamma > 0$ and $x \in E$ such that $(T_{\alpha\mu})*(T_{\beta\mu})=(T_{\gamma\mu})*\delta_x$, where δ_x denotes the Dirac measure concentrated at x. In particular, μ is said to be p-stable $(0 if for each <math>\alpha > 0$, $\beta > 0$, the choice $\gamma = (\alpha^p + \beta^p)^{1/p}$ is possible. Of course, every Gaussian measure is 2-stable.

Let ψ be a μ -measurable seminorm on E (not necessarily everywhere finite) and suppose that $\mu(x; \psi(x) < \infty) > 0$. As well known, if μ is a Gaussian measure, then $\psi \in L^p(\mu)$ for every p > 0; and if μ is an r-stable measure, $0 < r \le 2$, then $\psi \in L^p(\mu)$ for every $p \in (0, r)$, see Acosta [1]. It is also known that if μ is an s-convex measure, $-\infty < s \le 0$, then $\psi \in L^p(\mu)$ for every $p \in (0, -1/s)$, see Borell [2]. We shall see that these measures are p-uniform.

Suppose that μ is a Radon probability measure on E such that for each measurable seminorm ψ on E, $\mu(x; \psi(x) < \infty) > 0$ implies $\psi \in L^p(\mu)$. Then μ is p-uniform. In fact, let $\{x'_n\}$ be any sequence in E' such that $\mu(x; x'_n(x) \to 0) > 0$. Taking a subsequence, we may assume $\mu(x; \sum_n |x'_n(x)| < \infty) > 0$. If we put $\psi(x) = \sum_n |x'_n(x)|$ for $x \in E$, then ψ is a measurable seminorm on E, and so by assumption, it follows that $\psi \in L^p(\mu)$. But this implies $\psi < \infty \mu$ -a.e., and in particular, $x'_n \to 0 \mu$ -a.e. From the Lebesgue's dominated convergence theorem we deduce that $x'_n \to 0$ in τ^p_{μ} . Hence μ is p-uniform, see Theorem 1, (4).

Thus we have the following examples :

EXAMPLE 1. Every Gaussian measure is p-uniform for all p > 0.

EXAMPLE 2. Every *r*-stable measure, $0 < r \le 2$, is *p*-uniform for all $p \in (0, r)$.

EXAMPLE 3. Every s-convex measure, $-\infty < s \le 0$, is *p*-uniform for all $p \in (0, -1/s)$.

The *p*-uniformness is also characterized by the equivalence of the topologies τ^{0}_{μ} and τ^{p}_{μ} . By the same way as in the proof of Theorem 1, we have

THEOREM 2. Let $0 and suppose that <math>\mu$ is of weak p-th order. Then μ is p-uniform if and only if μ is 0-uniform and the topologies τ^0_{μ} and τ^p_{μ} on E' are equivalent.

COROLLARY 3. Let $0 \le q \le p < \infty$. Then every p-uniform measure is

q-uniform.

As mentioned before, $\Lambda_0(\mu)$ is the closure of $R_{\mu}(E')$ in $L^0(\mu)$. Each element in $\Lambda_0(\mu)$ is called a μ -measurable linear functional. The *p*-uniformness is characterized by the integrability of μ -measurable linear functionals.

THEOREM 3. Let $0 . Then <math>\mu$ is p-uniform if and only if μ is 0-uniform and $\Lambda_0(\mu) \subset L^p(\mu)$.

PROOF. By Theorem 2, it suffices to show that the condition $\Lambda_0(\mu) \subset L^p$ (μ) implies that τ^0_{μ} is finer than τ^p_{μ} . Suppose that the inclusion $\Lambda_0(\mu) \subset L^p$ (μ) holds. Since the identity map $L^p(\mu) \rightarrow L^0(\mu)$ is continuous and $\Lambda_0(\mu)$ is a closed subspace of $L^0(\mu)$, the inclusion map $\Lambda_0(\mu) \rightarrow L^p(\mu)$ has the closed graph, and so it is continuous by the closed graph theorem, see Yosida [35, Ch. II, 6]. Thus we have the assertion.

Using the above theorem, we shall give examples of *p*-uniform product measures on R^{∞} . Let R^{∞} be the countable product of the real numbers Rwith the product topology. Let $\{\mu_n\}$ be a sequence of probability measures on R and $\mu = \bigotimes \mu_n$ be the product measure on R^{∞} . In the following, we assume that for each n, μ_n is symmetric and has no atom. It is well known that μ satisfies the 0-1 law for measurable subspaces, see Hoffmann-J ϕ rgensen [12, Theorem 3.1], and hence μ is 0-uniform, see [32]. Thus μ is *p*-uniform if and only if $\Lambda_0(\mu) \subset L^p(\mu)$, see Theorem 3.

EXAMPLE 4. Suppose that each μ_n is symmetric and has no atom. If $\sup_n \int |t|^2 d\mu_n(t) < \infty$, then $\mu = \bigotimes \mu_n$ is 2-uniform. In fact, by [12, Theorem 4. 9], $\Lambda_0(\mu) \subset L^2(\mu)$ holds.

EXAMPLE 5. Suppose that each μ_n is symmetric and has no atom. Moreover, if we assume that the following conditions

(1) $\sup_{n} \mu_n([-a, a]) < 1$ for a suitable a > 0, and

(2)
$$\int \|x\|_{\infty}^{p} d\mu(x) < \infty$$
, where $\|x\|_{\infty} = \sup_{n} |x_{n}|$,

hold, then $\mu = \bigotimes \mu_n$ is *p*-uniform.

PROOF. If suffices to show that each ξ in $\Lambda_0(\mu)$ is *p*-integrable. Since each μ_n is symmetric and has no atom, each ξ in $\Lambda_0(\mu)$ is represented as

$$\boldsymbol{\xi}(\boldsymbol{x}) = \sum_{n} a_n \boldsymbol{x}_n, \qquad \boldsymbol{x} = (\boldsymbol{x}_n) \in \boldsymbol{R}^{\infty},$$

where the infinite sum converges μ -a.e., see [12, Theorem 4.3]. By the three series theorem of Kolmogorov, it follows that

 $\sum_{n\mu} (x \in \mathbb{R}^{\infty}; |a_n x_n| \ge 1) < \infty,$

and in particular, $\mu_n(t; |a_nt| \ge 1) \rightarrow 0$. Hence the sequence $\{a_n\}$ must be bounded by assumption (1). It follows from assumption (3) that $\sup_n |a_nx_n| \in L^p(\mu)$, and so we get $\xi \in L^p(\mu)$, see Hoffmann-J ϕ rgensen [11, Corollary 3.3]. Thus μ is p-uniform.

Finally we characterize the p-uniformness by the absolute continuity or the non-singularity.

Let μ and ν be two probability measures on C(E, E'), μ is said to be absolutely continuous with respect to ν ($\mu < \nu$) if for each A in C(E, E'), $\nu(A)=0$ implies $\mu(A)=0$. If μ and ν are mutually absolutely continuous, then we say μ and ν are equivalent ($\mu \sim \nu$). The measures μ and ν are said to be singular if there exists a measurable set A such that $\nu(A)=1$ and $\mu(A)=0$.

THEOREM 4. Let $0 and suppose that <math>\mu$ is of weak p-th order. Then the following conditions are equivalent.

(1) μ is p-uniform.

(2) For each probability measure v such that μ and v are not singular, τ^{0}_{ν} is finer than τ^{p}_{μ} .

(3) For each probability measure $\nu < \mu$, τ^{0}_{ν} and τ^{p}_{μ} are equivalent.

PROOF. (1)=>(2): Suppose that μ is *p*-uniform, and the measures μ and ν are not singular. Let $\{x'_n\}$ be a sequence in E' such that $x'_n \rightarrow 0$ in τ^0_{ν} . Taking a subsequence, we may assume $x'_n(x) \rightarrow 0$ ν -a. e. Since μ and ν are not singular, it follows that $\mu(x; x'_n(x) \rightarrow 0) > 0$, and hence $x'_n \rightarrow 0$ in τ^p_{μ} by the *p*-uniformness, see Theorem 1.

 $(2) \Longrightarrow (3)$ and $(3) \Longrightarrow (1)$ are clear.

This completes the proof.

COROLLARY 4. Let μ and ν be p-uniform measures on C(E, E'). Then μ and ν are singular, or τ^{p}_{μ} and τ^{p}_{ν} are equivalent.

§ 3. The spaces $\Lambda_p(\mu)$

Let *E* be a locally convex Hausdorff space and μ be a probability measure on C(E, E') of weak *p*-th order, 0 . As mentiond in Section1, the*p* $-measurable dual <math>\Lambda_p(\mu)$ is the closure of $R_{\mu}(E')$ in $L^p(\mu)$, where $R_{\mu}: E' \rightarrow L^p(\mu)$ is the canonical map. Since $\Lambda_p(\mu)$ is a closed subspace of $L^p(\mu)$, it is a complete quasi-normed space (Banach space for $p \ge 1$) with the quasi-norm $\|\cdot\|_p$. If $0 \le q < p$, then we have the inclusion $\Lambda_p(\mu) \subset \Lambda_q(\mu)$, but in general, the converse inclusion is not valid. THEOREM 5. Let $0 and suppose that <math>\mu$ is of weak p-th order. Then μ is p-unifom if and only if μ is 0-uniform and $\Lambda_p(\mu) = \Lambda_q(\mu)$ for some $q \in [0, p)$.

PROOF. If $\Lambda_p(\mu) = \Lambda_q(\mu)$ for some q < p, then by the closed graph theorem, the topologies L^p and L^q on $R_{\mu}(E')$ are equivalent, and hence the topologies L^p and L^0 on $R_{\mu}(E')$ are also equivalent, see Schwartz [29, Lemma 15.1]. But this means that τ^p_{μ} and τ^0_{μ} on E' are equivalent. Thus the assertion follows from Theorem 2.

COROLLARY 5. Let $0 and suppose that <math>R_{\mu}(E')$ is of finite dimension. Then μ is p-uniform if and only if μ is 0-uniform and of weak p-th order.

Of course if $R_{\mu}(E')$ is of infinite dimension, then the above result is false. In the following we shall consider such cases.

From now on we assume that μ is of weak p-th order and $\Lambda_p(\mu)$ is an infinite dimensional Banach space, where $1 \le p < \infty$. Let us denote by $\|\cdot\|_p$ the usual L^p -norm.

Following Kadec and Pelczyński [13], for each $\varepsilon > 0$, we set

 $M^{p}_{\varepsilon} = \{ f \in L^{p}(\mu) ; \ \mu(x; |f(x)| \ge \varepsilon ||f||_{p}) \ge \varepsilon \}.$

LEMMA 1. The following conditions are equivalent.

(1) The topologies L^{p} and L^{0} on $\Lambda_{p}(\mu)$ are equivalent.

(2) $\Lambda_{p}(\mu) \subset M_{\varepsilon}^{p}$ for some $\varepsilon > 0$.

PROOF. (1) \Longrightarrow (2): Suppose that (1) holds. For $\varepsilon > 0$, we set

 $V_{\varepsilon} = \{ f \in \Lambda_{p}(\mu) ; \ \mu(x; |f(x)| \ge \varepsilon) < \varepsilon \}.$

Then by assumption (1), there exists an $\varepsilon > 0$ such that $V_{\varepsilon} \subset \{f \in \Lambda_{p}(\mu); \|f\|_{p} < 1\}$. We show $\Lambda_{p}(\mu) \subset M_{\varepsilon}^{p}$. In fact, let $f \in \Lambda_{p}(\mu)$ and put $g = f/\|f\|_{p}$. Since $\|g\|_{p} = 1$, V_{ε} does not contain g, that is,

 $\mu(x; |g(x)| \geq \varepsilon) \geq \varepsilon.$

But this means that $f \in M^p_{\varepsilon}$.

(2) \Longrightarrow (1): If $\Lambda_p(\mu) \subset M_{\varepsilon}^p$ for some $\varepsilon > 0$, then it is easy to see that $f \in V_{\varepsilon}$ implies $||f||_p \leq 1$. Hence the topologies L^p and L^0 on $\Lambda_p(\mu)$ are equivalent.

This completes the proof.

PROPOSITION 1. Let $1 \le p < \infty$ $(p \ne 2)$ and suppose that μ is of weak *p*-th order. If $\Lambda_p(\mu)$ contains no subspace isomorphic to l^p , then it holds $\Lambda_p(\mu) = \Lambda_0(\mu)$.

PROOF. If $\Lambda_p(\mu)$ does not contain l^p , then by Kadec and Pelczyński [13, Theorem 2], there exists an $\varepsilon > 0$ such that $\Lambda_p(\mu) \subset M_{\varepsilon}^p$. It follows from Lemma 1 that the topologies L^p and L^0 on $\Lambda_p(\mu)$ are equivalent, and so we have $\Lambda_p(\mu) = \Lambda_0(\mu)$.

REMARK 2. For the case p=2, $\Lambda_2(\mu)$ is a Hilbert space, and hence it always contains a subspace isomorphic to l^2 . For the case p>2, it is known that $\Lambda_p(\mu)$ contains no subspace isomorphic to l^p if and only if it is isomorphic to a Hilbert space; and if and only if $\Lambda_p(\mu) \subset M^p_{\epsilon}$ for some $\epsilon > 0$, see [13, Theorem 3].

As mentioned above, for the case p > 2, $\Lambda_p(\mu)$ contains no subspace isomorphic to l^p if and only if $\Lambda_p(\mu) = \Lambda_0(\mu)$. In the following we show this is also true for the case $1 \le p < 2$.

Two Banach spaces X and Y are said to be λ -isomorphic, $1 < \lambda < \infty$, if there exists an isomorphism $S: X \to Y$ such that $||S|| \cdot ||S^{-1}|| \le \lambda$. We say that Y is finitely representable in X if for some $\lambda > 1$, each finite dimensional subspace of Y is λ -isomorphic to a suitable subspace of X.

Let $0 and denote by <math>\{\theta_n^{(p)}\}$ a sequence of independent identically distributed real random variables with the characteristic function $\exp(-|t|^p)$, $t \in \mathbb{R}$. We say that a Banach space X is of type p-stable if for each sequence $\{x_n\}$ in X such that $\sum_n ||x_n||^p < \infty$, the series $\sum_n x_n \theta_n^{(p)}$ converges almost surely (a. s.). Let $\{\varepsilon_n\}$ be the Bernoulli sequence. We say that X is of cotype q, $2 \le q < \infty$, if the a. s. convergence of $\sum_n x_n \varepsilon_n$ implies $\sum_n ||x_n||^q < \infty$. Here we list the well-known facts which are used in the ensuing discussion : For $1 \le p < 2$, X is of type p-stable if and only if l^p is not finitely representable in X; in particular l^p is not of type p-stable (this is false for p=2). Type interval is open, that is, type p-stable with p < 2 implies type r-stable for some r > p. For the duality of type and cotype, type p-stable implies cotype q, where 1/p+1/q=1; the converse is false (l^q has cotype q, but not cotype r if $2 \le r < q$). For more information on type and cotype, we refer to [15], [16], [17], [22] and [29].

THEOREM 6. Let $1 \le p < 2$ and suppose that μ is 0-uniform and of weak p-th order. Then the following conditions are equivalent.

(1) μ is p-uniform.

(2) $\Lambda_{P}(\mu)$ is of type p-stable.

(3) There exist a $q \in (p, 2]$ and an integrable function ϕ on E with $\phi(x) > 0$ (μ -a. e.) such that

$$\int_{E} |f(x)|^{q} \boldsymbol{\phi}(x)^{1-q/p} d\boldsymbol{\mu}(x) < \infty \text{ for all } f \in \Lambda_{p}(\boldsymbol{\mu}).$$

(4) There exist a $q \in (p, 2]$ and a q-uniform measure ν on C(E, E') such that $\Lambda_{P}(\mu)$ is isomorphic to a subspace of $L^{q}(\nu)$.

(5) $\Lambda_{P}(\mu)$ contains no subspace isomorphic to l^{P} .

PROOF. (1) \Longrightarrow (2): Suppose that μ is *p*-uniform. Then by Theorem 2, the topologies L^p and L^0 on $\Lambda_p(\mu)$ are equivalent. Hence $\Lambda_p(\mu)$ is of type *p*-stable, see Maurey [16, Théorème 98].

(2) \implies (3): Suppose that $\Lambda_p(\mu)$ is of type *p*-stable. Then $\Lambda_p(\mu)$ does not contain l^p .

By Rosenthal [26, Theorem 8], there exists an r > p such that $\Lambda_p(\mu)$ is isomorphic to a subspace of $L^r(\mu)$. Let p < q < r. We use the Maurey's factorization theorem for the identity map: $\Lambda_p(\mu) \rightarrow L^p(\mu)$. By Maurey [16, Théorèmes 8 and 50], there exists a measurable function g on E with $g \in L^s(\mu)$ such that

$$\int_{E} |f(x)/g(x)|^{q} d\mu(x) < \infty \text{ for all } f \in \Lambda_{p}(\mu).$$

where 1/p = 1/q + 1/s. Here we may assume $|g(x)| > 0 \mu$ -a.e. If we put $\phi = |g|^s$, then ϕ satisfies the condition (3).

(3) \Longrightarrow (4): Suppose that (3) holds. We may assume $\int \phi d\mu = 1$. Let $d\sigma = \phi d\mu$, and define a linear isometry $V : \Lambda_p(\mu) \rightarrow L^p(\mu)$ by $V(f) = f/\phi^{1/p}$. Since

$$\int |Vf|^q d\sigma = \int |f|^q \phi^{1-q/p} d\mu < \infty \text{ for all } f \in \Lambda_p(\mu),$$

we have $V(\Lambda_p(\mu)) \subset L^q(\sigma)$, and hence by the closed graph theorem, $V: \Lambda_p(\mu) \to L^q(\sigma)$ is continuous. Thus the topologies $L^q(\sigma)$ and $L^p(\sigma)$ are equivalent on $V(\Lambda_p(\mu))$, and so the topologies $L^q(\sigma)$ and $L^0(\sigma)$ are also equivalent on $V(\Lambda_p(\mu))$, see [29, Lemma 15, 1]. Let $\psi = \min(1, \phi^{1-q/p})$, and define a probability measure ν on C(E, E') by $d\nu = C\psi d\mu$, where C is a normalized constant. Then μ and ν are clearly equivalent. We show ν is q-uniform. In fact, ν is 0-uniform since μ is 0-uniform. To prove the q-uniformness, it suffices to show that the topologies $L^0(\nu)$ and $L^q(\nu)$ are equivalent on $\Lambda_p(\mu)$. Let $\{f_n\}$ be a sequence in $\Lambda_p(\mu)$ such that $f_n \to 0$ in $L^0(\sigma)$. Since the topologies $L^0(\sigma)$ and $L^q(\sigma)$ are equivalent on $V(\Lambda_p(\mu))$, we have $V(f_n) \to 0$ in $L^q(\sigma)$. But the inequality

 $||f||_{L^{q}(\nu)} \leq C ||V(f)||_{L^{q}(\sigma)} \quad \text{for all } f \in \Lambda_{p}(\mu)$

clearly holds, and hence $f_n \rightarrow 0$ in $L^q(\nu)$, which proves the q-uniformness.

By the same way as above, we can show that the topologies $L^{p}(\mu)$ and $L^{q}(\nu)$ are equivalent on $\Lambda_{p}(\mu)$, and so $\Lambda_{p}(\mu)$ is isomorphic to a subspace of $L^{q}(\nu)$.

Since L^q does not contain l^p with $1 \le p < q \le 2$, (4) \implies (5) holds, and (5) \implies (1) follows from Theorem 5 and Proposition 1.

This completes the proof.

By the same way as in the proof of Theorem 6, we have

THEOREM 7. Let $1 \le p < q < 2$ and suppose that μ is p-uniform. Then the following conditions are equivalent.

(1) $\Lambda_{P}(\mu)$ is of type q-stable.

(2) There exists a q-uniform measure on C(E, E') which is equivalent to μ .

REMARK 3. In Theorem 7, if $\Lambda_{\mathcal{P}}(\mu)$ is not of type q-stable, then for each q-uniform measure ν , μ and ν are singular, see Corollay 4.

Finally we shall consider the case 2 .

THEOREM 8. Let $2 and suppose that <math>\mu$ is 0-uniform and of weak p-th order. Then the following conditions are equivalent.

- (1) μ is p-uniform.
- (2) The dual space $\Lambda_{P}(\mu)'$ is of type p'-stable, where 1/p+1/p'=1.

(3) $\Lambda_{P}(\mu)$ contains no subspace isomorphic to l^{P} .

PROOF. (1) \Longrightarrow (2): If μ is *p*-uniform, then by Theorem 5, $\Lambda_p(\mu)$ is isomorphic to a Hilbert space $\Lambda_2(\mu)$. Hence (2) clearly holds.

 $(2) \Longrightarrow (3)$: If $\Lambda_{p}(\mu)'$ is of type p'-stable, then it is of type r-stable for some r > p', since type interval is open, see [29, Theorem 12.7]. By the duality of type and cotype, it follows that $\Lambda_{p}(\mu)$ is of cotype r', where 1/r + 1/r' = 1. Since l^{p} is not of cotype r' with r' < p, (3) holds.

 $(3) \Longrightarrow (1)$ follows from Theorem 5 and Proposition 1.

This completes the proof.

By Theorems 6 and 8, we have

THEOREM 9. Let $1 \le p < \infty$ $(p \ne 2)$ and suppose that μ is 0-uniform and of weak p-th order. Then μ is p-uniform if and only if $\Lambda_p(\mu)$ contains no subspace isomorphic to l^p .

§ 4. Hilbertian support

Throughout this section, we assume that E is a Banach space and μ is a Radon probability measure on E; i. e. for each $\varepsilon > 0$, there exists a compact subset K of E such that $\mu(K) > 1 - \varepsilon$.

We say that μ has a Hilbertian support if there exists a continuous linear injective map T from a Hilbert space H into E such that $\mu(T(H))=1$. It is well-known that E is of cotype 2 if and only if every Gaussian Radon measure on E has a Hilbertian support, see Chevet [3], Chobanjan and Tarieladze [4] and Maurey [15]. We shall extend this result to p-uniform measures $(2 \le p < \infty)$.

Let ν be a cylindrical measure on E and $L_{\nu}: E' \rightarrow L^{0}(\Omega, P)$ be a random linear functional (r. l. f.) associated with ν , where (Ω, P) is a probability space. It is well-known that if L is any linear map from E' into $L^{0}(\Omega, P)$, then there exists a cylindrical measure ν on E such that $L_{\nu} = L$; ν is uniquely determined, see Dudley [8]. The cylindrical measure ν is said to be of type $p, 0 \leq p < \infty$, if ν is of weak p-th order and an r. l. f. $L_{\nu}: E' \rightarrow L^{p}(\Omega, P)$ is continuous; here we regard E' a Banach space.

Let T be a continuous linear operator from E into a Banach space F. Following Schwartz [28], T is p-radonifying if for each cylindrical measure ν on E of type p, the image $T(\nu)$ is a Radon measure on F; in this case $\mu = T(\nu)$ is of order p, i. e. $\int ||x||^p d\mu(x) < \infty$.

The operator $T: E \to F$ is said to be *p*-absolutely summing (*p*-summing), $0 , if for each sequence <math>\{x_n\}$ in *E* such that $\sum_n |\langle x_n, x' \rangle|^p < \infty$ for all $x' \in E'$, $\sum_n ||Tx_n||^p < \infty$. For p=1, we say "absolutely summing" instead of "1-absolutely summing". For the details of *p*-summing operators, we refer to Pietsch [20].

The relationship between *p*-radonifying and *p*-summing operators was studied by Schwartz [28], [29]. We only mention that every *p*-radonifying operator is *p*-summing, and the converse is true if p>1.

After Gordon and Lewis [10], we say that E has G. L. P. (Gordon-Lewis property) if every absolutely summing operator from E into any Banach space factors through some L^1 -space. Gordon and Lewis [10] proved that if E has local unconditional structure, then E has G. L. P. It is known that E has G. L. P. if and only if E' has it; and if E is of cotype 2 and has G. L. P., then every closed subspace of E has G. L. P., see Pisier [21]. In particular, every closed subspace of L^1 has G. L. P.

Let μ be a Radon probability measure on E of weak second order, and $R_{\mu}: E' \rightarrow L^{2}(\mu)$ be the canonical map. As mentioned before, $\Lambda_{2}(\mu)$ is the closure of $R_{\mu}(E')$ in $L^{2}(\mu)$. Now suppose that the topologies L^{2} and L^{0} are equivalent on $\Lambda_{2}(\mu)$, that is, $\Lambda_{2}(\mu) = \Lambda_{0}(\mu)$. Since μ is Radon, $R_{\mu}: E' \rightarrow \Lambda_{2}(\mu)$ is continuous with respect to the Mackey-topology $\tau_{k}(E', E)$. Hence the dual map R'_{μ} is a continuous linear map from $\Lambda_{2}(\mu)'$ into E.

LEMMA 2. The canonical map $R_{\mu}: E' \rightarrow \Lambda_2(\mu)$ is p-summing for all p > 0.

PROOF. Since $\Lambda_2(\mu) = \Lambda_0(\mu)$, the assertion follows from Okazaki and Takahashi [19, Lemma 1].

THEOREM 10. Let μ be a Radon probability measure on E such that $\Lambda_2(\mu) = \Lambda_0(\mu)$. If E is of cotype 2 and has G. L. P., then μ has a Hilbertian support.

PROOF. Let $J: \Lambda_2(\mu) \to L^0(\mu)$ be the identity map and ν be a cylindrical measure on $\Lambda_2(\mu)'$ such that $L_{\nu} = J$. Then ν is clearly of type 2, and $\mu = R'_{\mu}(\nu)$. Since E' has G. L. P., by Lemma 2, the map $R_{\mu}: E' \to \Lambda_2(\mu)$ is factorized by continuous linear operators $S: E' \to L^1$ and $T: L^1 \to \Lambda_2(\mu)$. Since E is of cotype 2, by [6, Proposition 2.1] and [16, Corollaire 75], $S': L^{\infty} \to E''$ is 2-summing, and so is $R'_{\mu}: \Lambda_2(\mu)' \to E$. By the factorization theorem of Pietsch [20], there exist a Hilbert space H, a 2-summing map $V: \Lambda_2(\mu)' \to H$ and a continuous linear map $W: H \to E$ such that $R'_{\mu} = WV$. Since the cylindrical measure ν on $\Lambda_2(\mu)'$ is of type 2, the image $V(\nu)$ is a Radon measure on a Hilbert space H, see Schwartz [28]. Thus we have $\mu(W(H))=1$.

This completes the proof.

REMARK 4. Theorem 10 was proved by Diallo [5] for the case $E = l^p$, $1 \le p < 2$.

COROLLARY 6. Let $2 \le p < \infty$ and suppose that E is of cotype 2 and has G. L. P. Then every p-uniform Radon probability measure on E has a Hilbertian support. In particular, every s-convex Radon probability measure on E has a Hilbertian support, where $-1/2 < s \le 0$.

REMARK 5. It is clear that Theorem 10 holds for a Banach space E having the following property; (*) every absolutely summing operator from E' into a Hilbert space is dual 2-summing. As shown in the proof of Theorem 10, if E is of cotype 2 and has G. L. P., then E has the property (*). We note that there is a cotype 2 space E which does not have the property (*). In fact, suppose that every cotype 2 space E satisfies (*). Then it can be proved that E is isomorphic to a Hilbert space if and only if both E and E' are of cotype 2; but this is false, as shown by Pisier [24].

REMARK 6. A Banach space E is said to have the Grothendieck property (G. P.) if every continuous linear operator from L^{∞} into E is 2summing. Grothendieck proved that L^1 has G. P. In the proof of Theorem 10, we used the fact that every cotype 2 space has G. P., see Maurey [16]. It is known that if E has both G. P. and G. L. P., then it is of cotype 2, see Reisner [25].

Finally we shall consider the case $1 \le p < 2$. Let $L^p = L^p[0, 1]$. Then $L^{p'}$ is the dual of L^p , where 1/p + 1/p' = 1. We denote by $\|\cdot\|_p$ the usual L^p -norm. Let γ_p be a cylindrical measure on $L^{p'}$ whose characteristic functional $\hat{\gamma}_p(x) = \exp(-\|x\|_p^p)$, $x \in L^p$. We say that a linear operator $T : L^{p'} \to E$ is γ_p -Radonifying if the image $\mu = T(\gamma_p)$ is a Radon measure on E; in this case μ is symmetric p-stable. It is well-known that if μ is a symmetric p-stable Radon probability measure on E, then there exists a γ_p -Radonifying operator $T : L^{p'} \to E$ such that $\mu = T(\gamma_p)$, see Linde [14]. It is clear that if $\mu = T(\gamma_p)$ has a Hilbertian support, then $T : L^{p'} \to E$ factors through a Hilbert-Schmidt operator, that is, T is factorized by the bounded linear operators S : $L^{p'} \to H$, $V : H \to G$ and $W : G \to E$, where H, G are Hilbert spaces and V is of Hilbert-Schmidt type. Since every Hilbert-Schmidt operator is p-integral (p > 1) in the sense of Pietsch [20], we have the following :

LEMMA 3. Let $1 \le p \le 2$ and suppose that every p-stable Radon probability measure on E has a Hilbertian support. Then every γ_p -Radonifying operator from $L^{p'}$ into E is p-integral.

THEOREM 11. Let 1 and suppose that E is of type p-stable.Then the following conditions are equivalent.

(1) E is isomorphic to a Hilbert space.

(2) Every p-stable Radon probability measure on E has a Hilbertian support.

PROOF. $(1) \Longrightarrow (2)$ is clear. Suppose that (2) holds. Then by Lemma 3, every γ_p -Radonifying operator from $L^{p'}$ into E is p-integral. Since E is of type p-stable, by Takahashi and Okazaki [33, Theorem 5.1], E is isomorphic to a quotient of some L^p -space (called Q_p -type). Since type interval is open, E is of type r-stable for some $r \in (p, 2)$. Thus E' is of cotype r' and isomorphic to a subspace of $L^{p'}$. If E' is not isomorphic to a Hilbert space, then Kadec and Pelczyński [13, Theorem 3], E' contains $l^{p'}$. But this is impossible because $l^{p'}$ is not of cotype r' with r' < p'. Hence E'is isomorphic to a Hilbert space, proving (1).

This completes the proof.

THEOREM 12. Let 1 and suppose that E is of type p-stable.Then the following conditions are equivalent.

(1) E is isomorphic to a Hilbert space.

(2) Every p-uniform Radon probability measure on E has a Hilbertian support.

PROOF. (1) \implies (2) is clear. Suppose that (2) holds. Since *E* is of type *p*-stable, it is of type *r*-stable for some $r \in (p, 2)$. Since every *r*-stable measure is *p*-uniform with p < r, see Example 2, it follows from assumption (2) that every *r*-stable Radon probability measure on E has a Hilbertian support. Thus the assertion follows from Theorem 11.

REMARK 7. Theorems 11 and 12 are true for the case p=2; this follows from the well-known fact that if a Banach space is of both type 2 and cotype 2, then it is isomorphic to a Hilbert space.

References

- [1] A. DE ACOSTA: Stable measures and seminorms, Ann. Probability 3 (1975), 865-875.
- [2] C. BORELL: Convex measures on locally convex spaces, Ark. Mat. 12 (1974), 239-252.
- [3] S. CHEVET: Kernel associated with a cylindrical measure, Lecture Notes in Math. 860 (1981), 51-84.
- [4] S. A. CHOBANJAN and V. I. TARIELADZE: Gaussian characterizations of certain Banach spaces, J. Multivar. Anal. 7 (1977), 183-203.
- [5] B. DIALLO: Correction and addition to the paper "On Hilbert subspaces of full measure in the spaces l^p", Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 72 (1977), 212-214. (In Russian).
- [6] E. DUBINSKI, A. PELCZYŃSKI and H. P. ROSENTHAL, On Banach spaces X for which Π_2 $(L_{\infty}, X) = B(L_{\infty}, X)$, Studia Math. 44 (1972), 617-648.
- [7] R. M. DUDLEY: Singularity of mesures on linear spaces, Z. Wahrsch. verw. Geb. 6 (1966), 129-132.
- [8] R. M. DUDLEY: Random linear functionals, Trans. Amer. Math. Soc. 136 (1969), 1-24.
- [9] R. M. DUDLEY and M. KANTER: Zero-one laws for stable measures, Proc. Amer. Math. Soc. 45 (1974), 245-252.
- [10] Y. GORDON and D. R. LEWIS: Absolutely summing operators and local unconditional structures, Acta Math. 133 (1974), 27-48.
- J. HOFFMANN-JØRGENSEN : Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159-186.
- [12] J. HOFFMANN-JΦRGENSEN : Integrability of seminorms, 0-1 law and the affine kernel for product measures, Studia Math. 61 (1977), 137-159.
- [13] M. I. KADEC and A. PELCZYŃSKI: Bases, lacunary sequences and complemented subspaces in the spaces L_p , Studia Math. 21 (1962), 161-176.
- W. LINDE: Infinitely divisible and stable measures on Banach spaces, Teubner-Texte zur Mathematik Bd. 58, Leipzig, 1983.
- [15] B. MAUREY: Espaces de cotype p, 0 , Séminaire Maurey-Schwartz 1972-73,Exposé VII.
- [16] B. MAUREY: Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L^p, Asterisque 11, Société Math. de France, Paris, 1974.
- [17] B. MAUREY and G. PISIER : Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45-90.
- [18] D. MUSHTARI: Spaces of cotype p ($0 \le p \le 2$), Theory Prob. Appl. 25 (1980), 105-117.
- [19] Y. OKAZAKI and Y. TAKAHASHI: Accessible cylindrical measure and Bochner's theorem, J. Functional Anal. 67 (1986), 115-125.

- [20] A. PIETSCH: Operator ideals, North-Holland, 1980.
- [21] G. PISIER: Some results on Banach spaces without local unconditional structure, Compos. Math. 37 (1978), 3-19.
- [22] G. PISIER: On the duality between type and cotype, Lecture Notes in Math. 939 (1982), 131-144.
- [23] G. PISIER: Holomorphic semi-groups and the geometry of Banach spaces, Ann. Math. 115 (1982), 375-392.
- [24] G. PISIER: Counterexamples to a conjecture of Grothendieck, Acta Math. 151 (1983), 181-208.
- [25] S. REISNER: On Banach spaces having the property G. L., Pacific J. Math. 83 (1979), 505-521.
- [26] H. P. ROSENTHAL: On subspaces of L^{p} , Ann. Math. 97 (1973), 344-373.
- [27] H. SATO: Hilbertian support of a probability measure on a Banach space, Lecture Notes in Math. 709 (1979), 195-205.
- [28] L. SCHWARTZ: Applications *p*-sommantes et *p*-radonifiantes, Séminaire Maurey-Schwartz 1972-73, Exposé III.
- [29] L. SCHWARTZ: Geometry and probability in Banach spaces, Lecture Notes in Math. 852, Springer, 1981.
- [30] Y. TAKAHASHI and Y. OKAZAKI: Hilbertian support of *p*-stable measures on Banach spaces, J. Fac. Liberal Arts, Yamaguchi Univ, 19 (1985), 1-4.
- [31] Y. TAKAHASHI and Y. OKAZAKI: Characterizations of subspaces, quotients and subspaces of quotients of L_p, Hokkaido Math. J. 15 (1986), 233-241.
- [32] Y. TAKAHASHI and Y. OKAZAKI: Uniform measures on linear spaces, Hokkaido Math. J. 16 (1987), 213-222.
- [33] Y. TAKAHASHI and Y. OKAZAKI: On the relationship between γ_p -Radonifying operators and other operator ideals in Banach spaces of stable type p, Math. Ann. 281 (1988), 145-156.
- [34] N. TOMCZAK-JAEGERMANN: The moduli of smoothness and convexity and the Rademacher averages of the trace classes S_p, 1≤p<∞, Studia Math. 50 (1974), 163-182.</p>
- [35] K. YOSIDA: Functional analysis, Second Ed., Springer, 1968.

Dept. of Artificial Intelligence Kyushu Inst. of Technology and School of Health Sciences Okayama University