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\S 1. Introduction

Let M be a von Neumann algebra and s^{\propto} a \sigma-weakly closed subalgebra
of M containing the identity of M . A \sigma-weakly continuous, contractive
representation of s^{\propto} is a homomorphism \rho of s^{\propto} into the algebra of bounded
linear operators B(H) on a Hilbert space H such that \rho(1)=I and ||\rho(t)||\leq

||t|| for all t\in_{S}^{\alpha} . Thus as an operator from \mathfrak{J} to B(H) , ||\rho||=1 . In recent
years the following question has attracted considerable interest: Given such
a representation \rho of s^{\propto} , when is it possible to find a triple (\pi, V, K) where
\pi is a (normal) * -representation of M on the Hilbert space K and V is an
isometry mapping H into K such that

\rho(t)=V^{*}\pi(t)V

for all t\in_{S}^{\alpha} ? Such a triple, should it exist, is called a W^{*} dilation, or
simply a dilation, for \rho . It was Arveson [A] who found the fundamental
criterion for deciding if \rho has a dilation. To state it, let \mathfrak{J}\otimes M_{n} be viewed as
the n\cross n matrices over s^{\propto} endowed with the norm inherited from M\otimes M_{n} and
let \rho_{n} be the obvious extension of \rho to \mathfrak{J}\otimes M_{n} , mapping into B(H)\otimes M_{n}=B

(H\otimes C^{n}) . Then \rho is called completely contractive if and only if ||\rho_{n}||=1 for
all n . Arveson’s dilation theorem asserts that \rho has a dilation if and only if
\rho is completely contractive. In a recent paper [PPS], Paulsen, Power and
Smith showed that if s^{\propto} is a subalgebra of M_{n} that is linearly spanned by the
matrix units it contains and if the support of \mathfrak{J} , which is the set of (i, j) such
that matrix unit e_{ij} lies in s^{\propto} , satisfies a certain graph-theoretic property
which they call “ chordal ”- then every contractive representation of \mathfrak{J} is
completely contractive and so admits a dilation. Our objective in this note
is to generalize this notion of “ chordal ” to the context of von Neumann
algebras and to show that if s^{\propto} is a chordal, triangular subalgebra of M in a
sense to be defined in a minute, and if M is hyperfinite, then every \sigma-weakly
contractive representation of s^{\propto} is completely contractive.

1) Supported in part by a grant from the National Science Foundation.
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\S 2. Chordal operator systems

Recall that an operator system in a von Neumann algebra M is simply a
\sigma weakly closed, self-adjoint linear subspace of M that contains the identity.
Our objective in the section is to define and develop the notion of a “ chordal
operator system ”

Throughout this paper, we assume that our von Neumann algebra M
contains a Cartan subalgebra A in the sense that A is a masa in M that is the
range of a faithful normal expectation on M and {u\in M|u -unitary, uAu^{*}=

A\} generates M as a von Neumann algebra. On the basis of this assump-
tion, we may use the work of Feldman and Moore [FM1, 2] to realize M as
an algebra of matrices indexed by an equivalence relation. We shall freely
use the notation, terminology and results from [FM1, 2] and [MSS] in
what follows. We fix a standard Borel space X and an equivalence relation
R\subseteq X\cross X:=X^{2} whose equivalence classes are countable. We also fix a
probability measure \mu on X that is quasi-invariant for R and we fix a
2-cocycle \sigma on R with values in the circle T By our assumption that M has
a Cartan subalgebra, we may choose these things in such a way that M is
realized as matrices indexed by R and endowed with the product

(2. 1) a*b(x, y)= \sum_{z}a(x, z)b(z, y)\sigma(x, z, y) ,

where the sum runs over the (countable) set of all z equivalent to x (and y ).
With its elements parameterized this way, M is represented on L^{2}(R, \nu) ,
where \nu is a certain measure on R built from \mu and counting measure on the
equivalence classes, by the formula (2.1) where it is assumed that a\in M

and b\in L^{2}(R, \nu) . We write M=M(R, \sigma) to indicate the dependence of M
on R and \sigma . The algebra A may then be identified with L^{\infty}(X, \mu) viewed as
functions living on the diagonal of X\cross X , which we denote by \Delta . It should
be noted that if M is hyperfinite, then \sigma=1 [ FM1 , Theorem 6] and we
simply write M=M(R) .

It is important to keep in mind that a large part of this coordinatization
theory of von Neuumann algebra is analogous to the theory of direct inte-
grals in the sense that one should seek global formulation of one’s results, i .
e . formulations that are coordinate free, and use the coordinates only where
it is necessary in the proofs. This is the philosophy that underlies the main
result of this section, Theorem 2. 4.

If v is a partial isometry in M , then we shall write e(v):=v^{*}v and
f(v) : =vv^{*} for the projections onto the initial and final spaces of v , respec-
tively. We shall also write N(A) for the collection of all partial isometries
v\in M such that e(v) , f(v)\in A and vAv^{*} . v^{*}Av\subseteq A . We call N(A) the
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normalizer of A in M . Note that N(A) is an inverse semigroup of partial
isometries that generates M as a von Neumann algebra and contains all the
partial isometries in A . When M is realized as M(R, \sigma) , each v\in N(A)

may be written in terms of a partial Borel isomorphism g=g(v) , whose
graph, \Gamma(g) , lies in R , according to the formula v\xi(x, y)=1_{\Gamma(g^{-1})}*\xi(x, y)=

\xi(g^{-1}x, y)\sigma(x, g^{-1}x, y) , \xi\in L^{2}(R, \nu) . Given a partial Borel isomorphism g

such that \Gamma(g)\subseteq R , we shall write L_{g} for the element of N(A) it determines
through this formula. We then have L_{g1}L_{g2}=\Theta(g_{1}, g_{2})L_{g_{1}g2} where \Theta(g_{1}, g_{2}) is
the element of A which, when viewed as a function on X , is given by the
formula \Theta(g_{1}, g_{2})(x)=\sigma(x, g_{1}^{-1}(x), g_{2}^{-1}\circ g_{1}^{-1}(x)) , when x lies in the domain of
g_{2}^{-1}\circ g_{1}^{-1} and is set equal to 1 otherwise. Also, (L_{g})^{*}=L_{g^{-1}} , so that L_{g}L_{g}^{*}=

L_{r(g)} and L_{g}^{*}L_{g}=L_{d(g)} , where d(g) and r(g) denote, respectively, either the
identity transformations on the domain and range of g or the sets themselves;
i . e. , (L_{d(g)}\xi)(x, y)=1_{d(g)}(x)\xi(x, y) and milarly for L_{r(g)} .

A key result from [MSS], the Spectral Theorem for Bimodules, TheO-
rem 2. 1, asserts that every \sigma-weakly closed subspace \mathfrak{S} of M(R, \sigma) that is
a bimodule over A , i . e. , A\mathfrak{S}A\subseteq \mathfrak{S} , is completely determined by the common
support of the elements it contains. That is, there is a Borel set P\subseteq R ,

which is unique up to a set of \nu -measure zero, such that \mathfrak{S}=\{a\in M(R, \sigma)|

a(x, y)=0 , (x, y)\not\in P\} . Following [MSS], we write \mathfrak{S}=\mathfrak{J}(P) . As a corol-
lary of the Spectral Theorem for Bimodules it is shown in [MSS] that \mathfrak{S} is
the \sigma-weakly closed, linear span of \mathfrak{S}\cap N(A) . Note that in this case, \mathfrak{S} is
self-adjoint if and only if P=\theta(P)a_{-}e . \nu where \theta(x, y)=(y, x) , (x, y)\in R .
Note, too, that \mathfrak{S}=s(\propto P) contains the identity operator if and only if A\subseteq \mathfrak{S} ,

if and only if \Delta\subseteq P .

DEFINITION 2. 1. Let \mathfrak{S} be an operator system in M that is a bimodule
over A .

i) A k-cycle in \mathfrak{S} is a family of k partial isometries, \{v_{1}, v_{2},\cdots, v_{k}\} , in
\mathfrak{S}\cap N(A) such that

a) v_{k}v_{k-1}\cdots v_{1}=e(v_{1}) ,
b) f(v_{i}v_{i-1}\cdots v_{1})\perp f(v_{j}v_{j-1}\cdots v_{1}) for all i\neq j,

c) f(v_{i})=f(v_{i}v_{i-1}-\cdot\cdot v_{1}) , and
d) f(v_{k})=e(v_{1}) while f(v_{i-1})=e(v_{i}) for i=2,3,\cdots k .

ii) A chord for a k-cycle \{v_{1},-\cdot\cdot, v_{k}\}(k\geq 4) is a triple \{e_{1}’, i, j\} where e_{1}’

is a projection in A with e_{1}’\leq e(v_{i}) and where i and j are indices satisfying:
(i, j)\neq(1, k) , 2\leq j-i , and (v_{j-i}v_{j-2}\cdots v_{i})e_{1}’\in \mathfrak{S} .

iii) We say that \mathfrak{S}\overline{1}S chordal if for each k\geq 4 , every k -cycle in \mathfrak{S} has a
chord.

In the definition of k-cycle, conditions a) and b) are the essential ones.
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If a k -tuple of partial isometries in N(A) satisfies a) and b ), then by pre-
and post-multiplying them with suitable projetion in A, conditions c) and
d) can be obtained. The following definition, although not word for word
the same as that g_{\overline{1}}ven in [PPS, \S 2], is eas\overline{l}ly seen to be equivalent to it.

DEFINITION 2. 2. Assume that X is a countable set and that P is a
symmetric subset of X\cross X containing \Delta .

i) A finite set \{x_{1}, x_{2},\cdots, x_{k}\} in X is a k-cycle in X if (x_{i}, x_{i+1})\in P , 1\leq

i<k , and (x_{k}, x_{1})\in P .
ii) A chord for the k-cycle \{x_{1}, x_{2},\cdots, x_{k}\}(k\geq 4) is a pair (i, j) with 1

\leq i, j\leq k, j-i\geq 2 , (i, j)\neq(1, k) and (x_{i}, x_{j})\in P .
iii) The set P is chordal if each k-cycle, k\geq 4 , has a chord.
To connect Definitions 2. 1 and 2. 2, we require one more notion of

“ chordal ”\wedge an intermediate concept.

DEFINITION 2. 3. Assume that P is a symmetric Borel subset of R
containing \Delta .

i) A k-cycle for P is a family \{g_{1}, g_{2},\cdots, g_{k}\} of partial Borel isomor-
phisms whose graphs are contained in P and whose domains (and ranges)
have positive \mu -measure such that

a) If C_{1}=d(g_{1}) and if for 2\leq i\leq k, C_{i}=g_{i-1}\circ g_{i-2^{\circ}}\cdot-\cdot\circ g_{1}(C_{1}) , then
g_{k}(C_{k})=C_{1} and C_{i}\cap C_{j}=\emptyset for every i\neq j .

b) The composition g_{k}\circ g_{k-1^{\circ\cdots\circ}}g_{1} is the identity on C_{1} .
ii) Given a k -cycle \{g_{1}, g_{2},\cdots, g_{k}\}(k\geq 4) , we say that \{C_{1}’, i, j\} is a

chord for it if C_{1}’ is a Borel subset of d(g_{1}) with positive \mu -measure 2\leq j-

i, (i, j)\neq(1, k) , and the graph of g_{j-1^{\circ\cdots\circ}}g_{i} , restricted to g_{i-1}\circ\cdot-\cdot\circ g_{1}(C_{1}’) , is
contained in P. (It is sometimes preferable to th_{\overline{1}}nk of this restriction as the
chord instead of \{C_{1}’, i, j\}.)

iii) If, for each k\geq 4 , every k-cycle in P has a chord, then P is called
chordal.

The following theorem relates the three notions of “ chordal ” just
defined. In it, we employ the following notation. For x\in X, R(x) denotes
the equivalence class of x , i . e. , R(x)=\{y\in X|(x, y)\in R\}_{-} We write P(x)
for P\cap(R(x)\cross R(x)) , i.e. , P(x)=\{(y, z)\in P|(x, y)\in R\} .

THEOREM 2. 4_{-}^{l} Let \mathfrak{S} be an operator system in M(R, \sigma) that is a
bimodule over A and realize \mathfrak{S} as s^{\propto}(P) for an essentially unique symmetric
Borel subset P of R that contains \Delta . Then the following assertions are
equivalent.

1) \mathfrak{S} is chordal as an operator system in the sense of Definition 2. 1.
2) P is a chordal subset of R in the sense of Definition 2. 3.
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3) For \mu -almost all x\in X, the subset P(x) of R(x)\cross R(x) is chordal
in R(x) in the sense of Definition 2. 2.

PROOF. Because of the representation of elements in N(A) in terms of
partial Borel isomorphisms whose graphs are contained in R , it is an easy
matter to see that assertions 1) and 2) are equivalent. We shall prove that
assertions 2) and 3) are equivalent. Suppose, then, that for \mu -almost all x,

P(x) is chordal in R(x) and let \{g_{1}, g_{2},\cdots, g_{k}\} be a k-cycle in P . For each x
\in C_{1}-. =d(g_{1}) , let x_{1}=x, x_{2}=g_{1}(x_{1}) , x_{3}=g_{2}(x_{2}),\cdots , and x_{k}=g_{k-1}(x_{k-1}) . Then
\{x=x_{1}, x_{2},\cdots, x_{k}\} is a k -cycle in the equivalence class of x because g_{k}(x_{k})=x

and (x_{i}, x_{i+1})=(x_{i}, g_{i}(x_{i}))\in P(x) . By hypothesis for \mu -almost all x, \{x=x_{1} ,

x_{2},-\cdot\cdot , x_{k}\} has a chord, say, (i(x), j(x)) . Note that it is an easy matter to
choose i(\cdot) and j(\cdot) to be Borel functions. For each pair (z, j) , 1\leq i, j\leq

k , write C_{ij}=\{x\in C_{1}|(i(x), j(x))=(i, j)\} . Then the C_{ij} are Borel subsets of
C_{1} and their union is C_{1} , except, possibly, for a set of measure zero. It
follows that at least one of the C_{ij} has positive measure and satisfies (i, \dot{J})\neq

(1, k) and j-i\geq 2 . Hence \{C_{ij}, i, j\} is a chord for \{g_{1}, g_{2},\cdots, g_{k}\} .
For the converse, suppose that there is a Borel subset C\subseteq X of positive

measure such that for every x\in C, P(x) is not chordal. Recall that there is
a countable family \{\varphi_{i}\}_{i=1}^{\infty} of partial Borel isomorphisms of X with the
property that their graphs are pairwise disjoint and cover R:i . e. , for every
(x, y)\in R , there is a unique m such that y=_{\varphi_{m}}(x) . Since P(x) is not
chordal for all x\in C , there are positive integers p(x) , and k_{i}(x) , 1\leq i\leq p(x) ,

such that \{\varphi k_{1}(X)(x),\cdots, \varphi kptx)(\chi)(x)\} is a p(x) -cycle in P(x) with no chord.
The set \{k_{1}(x),\cdots, k_{p(X)}(x)\} is a finite ordered subset of natural numbers.
Since there are only countably many such subsets, there is at least one,
\{k_{1}, h,\cdots, k_{p}\} such that C_{1} := {x\in C|p(x)=p and kiix)=k_{i}} has positive
\mu^{- measure}- Then clearly, \{C_{1}, \varphi_{k_{1}},\cdots, \varphi_{kp}\} is a P-cycle with no chord.
Hence P is not chordal. \blacksquare

EXAMPLE 2. 5. Recall that a real-valued, Borel function d on R is
called a 1-cocycle, if for almost all triples (x, y, z) with (x, y) , (y, z)\in R ,

we have

d(x, z)=d(x, y)+d(y, z) .

Then for every a\geq 0 , the set

P=\{(x, y)\in R||d(x, y)|\leq a\}

is chordal. Indeed, using Theorem 2. 4, we may restrict our attention to
each equivalence class and there the chordality condition is easily checked.
This set P\overline{1}S the analogue of a band, because if R=\{1,2,\cdot-\cdot, n\}^{2}=X\cross X, a=
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k<n and if d(\iota^{-}, j)=j-i , then set P=\{(i, j)||d(i, j)|\leq k\} is a band which is
symmetric with respect to the main diagonal.

DEFINITION 2. 6. Let s^{\propto} be a \sigma-weakly closed subalgebra of M(R, \sigma)

containing A . Then \mathfrak{J} is called a chordal subalgebra of M(R, \sigma) if the
operator system generated by s^{\propto} , namely, the \sigma-weakly closure of s^{\propto}+s=\propto*

\{t+s^{*}|t, s\in \mathfrak{J}\} , is chordal.

REMARK 2. 7_{-} In the definition of chordal operator system it appears
that the self-adjointness condition (or, equivalently, the symmetric condi-
tion on the underlying support set) does not play an essent\overline{l}al role. How-
ever, without this assumption there is little chance for there to be any
k-cycles with k\geq 4 . In particular, if s^{\propto} is a \sigma-weakly closed algebra that is
triangular with respect to A in the sense that s^{\propto}\cap s^{\propto*}=A , then there are no
k-cycles in \mathfrak{J} for k\geq 4 . We are interested primarily in \sigma-weakly continuous,
contractive representations of \sigma-weakly closed algebras s^{\propto} containing A and
by Proposition 1. 2. 8 of [A] such representations have unique extensions to
\sigma-weakly continuous positive linear maps on the operator system generated
by \mathfrak{J} . It is in the analysis of these positive linear maps that the chordal\overline{l}ty

assumption plays a role.
Recall that a \sigma-weakly closed subalgebra s^{\propto} of M(R, \sigma) is called a

\sigma-Dirichlet algebra if the operator system generated by s^{\propto} is M(R, \sigma) . We
record the following propos\overline{l}tion for later reference. Its proof is trivial,
since M(R, \sigma) is obviously a chordal operator system.

PROPOSITION 2. 8. If \mathfrak{J} is \sigma-Dirichlet algebra in M(R, \sigma) containing
A, then \mathfrak{J} is chordal.

\S 3. Chordal subalgebras of hyperfinite von Neumann algebras

We continue with the notation developed above, but we now restrict our
attention to hyperfinite von Neumann algebras. As noted earlier, under this
assumption, the 2-cocycle \sigma is trivial, so we cease to mention it and write
M(R) instead of M(R, 1) . We fix a sequence \{R_{n}\}_{n=1}^{\infty} of equivalence rela-
tions on X satisfying:

i) For each n, the cardinality of every equivalence class |R_{n}(x)| is
finite (however, for n fixed, |R_{n}(x)| need not be bounded on X):

ii) R_{n}\subseteq R_{n+1} , n=1,2,\cdots ; and
iii) R= \bigcup_{n=1}^{\infty}R_{n} .

Then for each n, M(R_{n}) is a finite type I von Neumann algebra and
\bigcup_{n=1}^{\infty}M(R_{n}) is \sigma-weakly dense in M(R) . Our objective is to prove
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THEOREM 3. 1. If s^{\propto}is a \sigma-weakly closed chordal subalgebra of M(R) ,

then every \sigma-wcakly continuous contractive representation of s^{\propto}is completely
contractive and, so, admits a W^{*} -dilation.

Recall that by definition, s^{\propto} contains A and so, by the Spectral Theorem
for Bimodules, s=s(\propto\propto P) for a certain Borel set P\subseteq R . The assumption that
s^{\propto} is chordal means that P’ : =P\cup\theta(P) is chordal in the sense of Definition
2. 3. Let P_{n}=P\cap R_{n} and P_{\acute{n}}=P’\cap R_{n} ; i.e. , P_{\acute{n}}=P_{n}\cup\theta(P_{n}) .

LEMMA 3. 2. The relation P_{\acute{n}} is chordal in R_{n} .

PROOF. Let \{g_{1}, g_{2},\cdots, g_{k}\} be a k -cycle in P_{\acute{n}} . Since P’ is chordal in R ,

there is a chord \{C_{1}’, i, j\}\{g_{1}, g_{2},\cdots, g_{k}\} in R . Recall that this means that C_{1}’

is a subset of d(g_{1}) with positive measure, 2\leq j-i, (i, j)\neq(1, k) , and the
graph of g_{j-1^{\circ\cdots\circ}}g_{i} , restricted to g_{i-1^{\circ\cdots\circ}}g_{1}(C_{1}’) , is contained in P’ Since
the graph of each gj is contained in R_{n} , by hypothesis, the graph of g_{j-1^{\circ\cdots\circ}}g_{i}

is contained in R_{n} , too. Since the same is true of any restriction, we con-
clude that \{C_{1}’, i, j\}\overline{1}S a chord for \{g_{1}, g_{2},\cdots, g_{k}\} in R_{n} ; \overline{1} . e. , P_{\acute{n}} is chordal.
\blacksquare

Evidently, P= \bigcup_{n=1}^{\infty}P_{n} , so s=s(\propto\propto P) is the \sigma-weak closure of \bigcup_{n=1}^{\infty}\mathfrak{J}(P_{n}) and,

of course, s^{\propto}(P_{n})\subseteq s^{\propto}(P_{n+1}) , for all n . We fix once and for all a \sigma-weakly
continuous, contractive representation \rho of \mathfrak{J}(P) mapping s^{\propto}(P) into B(H) .
Just as in Lemma 3 of [MS], it suffices to show that for each n , the restr\overline{l}C-

tion \rho|s(\propto P_{n}) is completely contractive. Indeed, if \Phi_{n} : M(R)– M(R_{n}) is
defined by the formula \Phi_{n}(a)=a|R_{n}, a\in M(R) then by Theorem 3. 4 in
[MSS], \Phi n is the un\overline{l}que faithful normal expectation from M(R) onto
M(R_{n}) and so is completely contractive by Theorem 1 of [T]. We have
that \{\rho\circ(\Phi_{n}|s(\propto P))\}_{n=1}^{\infty} converges to \rho in the topology of simple \sigma-weak
convergence and so \rho is completely contractive if each \rho\circ(\Phi_{n}|\mathfrak{J}(P)) is
completely contractive. However, \rho\circ(\Phi_{n}|s(\propto P)) is completely contractive
if and only if \rho|s(\propto P_{n}) is completely contractive. Hence to prove Theorem 3.
1 we may, and will, assume that |R(x)|<\infty for each x\in X .

Recall that if R_{i} is a Borel equivalence relation on a standard Borel space
X_{i}, i=1,2 , then we say R_{1}\overline{1}S isomorphic to R_{2} if and only if there is a 1-1
Borel map \varphi fro\grave{m}X_{1} onto X_{2} such that (_{\varphi}(x), \varphi(y)) lies in R_{2} if and only
if (x, y) lies in R_{1} . The following lemma is essentially Lemma 4 of [MS],

so we omit the proof.

LEMMA 3_{-}3 . Let R be a Borel equivalence relation in the standard
Borel space X with |R(x)|<\infty for every x\in X.

1) The sets X_{n} : \{x\in X||R(x)|=n\} form a disjoint Borel cover of X
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and R\cap(X_{n}\cross X_{n}) is an equivalence relation on X_{n} with equivalence classes of
cardinality n.

2) If |R(x)|=n for every x\in X, then there is a Borel set E\subseteq X such
that R is isomorphic to \Delta_{E}\cross\{1,2,\cdots, n\}^{2} viewed as the equivalence relation in
(E\cross\{1, 2,\cdots, n\})^{2} consisting of all pairs ((x, i), (y, i)) such that x=y.

3) If R is as in 2) and if P\subseteq R is a Borel set, then E can be
2^{n^{2}}

decomposed as the disjoint union, E= \bigcup_{k=1}E_{k}, where some of the E_{k}’s may be

empty, and there are subsets P_{k}\subseteq\{1,2,\cdots, n\}^{2} such that when R is viewed as
\Delta_{E}\cross\{1,2,\cdots, n\}^{2} . then P= \bigcup_{k=1}^{2^{n^{l}}}\Delta_{E_{k}}\cross P_{k} .

On the basis of this lemma, we may relabel the sets produced and assert
that we may find a countable disjoint cover of X by Borel sets, X=\cup X_{k} ,

such that R\cap(X_{k}\cross X_{k}) is isomorphic to \Delta_{E_{k}}\cross\{1,2,\cdots, n(k)\}^{2} for a suitable
subset E_{k} of X_{k} and such that under this isomorphism P\cap(X_{k}\cross X_{k}) is
carried to a set of the form \Delta_{Ek}\cross P_{k} where P_{k} is a subset of \{1, 2,\cdots, n(k)\}^{2}

The sets X_{k} are invariant, or saturated, for R and so 1_{X_{k}} lies in the center of
M(R) which, in turn, is contained in A . It follows that each \rho(1_{x_{k}}) is a
projection in the commutant of \rho(s(\propto P)) , their (orthogonal) sum is I_{H} and it
is easy to see that \rho is completely contractive if and only if \rho|s(\propto P\cap

(X_{k}XX_{k})) is completely contractive for each k , because \rho(s(\propto P\cap

(X_{k}\cross X_{k})))=\rho(1_{X_{k}})_{\beta}(\mathfrak{J}(P)) .
Thus we may, and will, assume from now on that R=\Delta_{E}\cross\{1,2,\cdots, n\}^{2}

for a suitable Borel set E\subseteq X and that P=\Delta_{E}\cross P_{0} for a suitable subset P_{0} of
\{ 1, 2, \cdots ,

\cdot

n\}^{2} . We may assume, also, that the measure \mu on X is \mu_{0}X\frac{1}{n}\sum_{k=1}^{n}\delta_{k},

where \mu 0 is a measure on E and where \delta_{k} is the point mass at k . We then
may identify M(R) with L^{\infty}(E, \mu_{0})\otimes M_{n} . Since under this identification,
L^{\infty}(E_{ \mu 0},)\otimes I corresponds to the center of M(R) , we shall simply write
M(R)=\mathscr{F}\otimes M_{n} . The algebra \mathfrak{J}(P) , then, is simply \mathscr{F}\otimes s^{\propto}(P_{0}) . Noting
that chordality is preserved under restriction and isomorphism, we conclude
that \Delta_{E}\cross P’ : =\Delta_{E}\cross P_{0}\cup\theta(\Delta_{E}\cross P_{0})=\Delta_{E}\cross(P_{0}\cup\theta(P_{0})) is a chordal subset of
\Delta_{E}\cross\{1,2,\cdots, n\}^{2} . so that P’ is a chordal subset of \{ 1, 2, \cdots , n\}^{2} . Thus s^{\propto}(P_{0}) is
a chordal subalgebra of M_{n} .

The proof of Theorem 3. 1 is completed now just as \overline{1}S the proof of
Theorem 1 in [MS]. Let p) be the contractive representation of s^{\propto}(P_{0}) on H
defined by the form’ ulap_{)}(t)=\rho(1\otimes t) and define the representation \theta_{0} of \mathscr{F}

on H by the formula \theta_{0}(a)=\rho(a\otimes 1) , a\in \mathscr{F} Note that since \rho is contractive
and \mathscr{F} is self-adjoint, \theta) is a* representation of \mathscr{F} Also, \theta_{0} is normal since
\rho is \sigma-weakly continuous. Thus \theta_{0}(\mathscr{F}) is an abelian von Neumann algebra
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of operators on H commuting with \mu(s(\propto P_{0})) . Since \mathfrak{J}(P_{0}) is a chordal
algebra and p} is a contractive representation of \mathfrak{J}(P_{0}) , we may apply
Theorem 5, 2 of [PPS] to conclude that \mu is completely contractive. Let
(\pi 0, V, K) be a W^{*} -dilation of \mu that is minimal in the sense that [\pi o(M_{n})

V(H)]=K . Observe that since \theta_{0}(\mathscr{F}) is an abelian von Neumann algebra
of operators on H commuting with \mu(s(\propto P_{0})) , Theorem 1. 3. 1 in [A]
implies that there is a normal * representation \theta of \mathscr{F} on K such that \theta(\mathscr{F})

is reduced by V(H) , V^{*}\theta(a)V=\theta_{0}(a) , a\in \mathscr{F} . and \theta(\mathscr{F}) commutes with
\pi_{0}(M_{n}) . If \pi is defined on elementary tensors a\otimes t in \mathscr{F}\otimes M_{n} by the formula
\pi(a\otimes t^{\backslash }, =\theta(a)\pi_{0}(t) and extended by linearity, then \pi is a normal *_{-}

representation of M(R)=\mathscr{F}\otimes M_{n} that dilates \rho . Thus \rho is completely
contractive and the proof of Theorem 3. 1 is complete. \blacksquare

Combining Proposition 2. 8 with Theorem 3_{-}1 yields Theorem 1 of
[MS] :

COROLLARY 3. 4. If s^{\propto} is a \sigma-Dirichlet algebra in a hyperfinite von
Neumann algebra M and if s^{\propto} contains a Cartan subalgebra, then every
\sigma-weakly continuous contractive representation is completely contractive and,
so, admits a W^{*} -dilation.
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