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Comparison of Martin boundaries for Schr\"odinger operators

Mitsuru NAKAI
(Received September 20, 1988)

We consider the Martin compactification R_{P}^{*} for an admissible
Schr\"odinger operator -\Delta+P on a Riemann surface R with singular but
nonnegative potentials P on R and study how R_{P}^{*} varies according to a
small perturbation of the potential P. One reason of the importance of the
study of this kind lies in the following instance. For a detailed study of R_{P}^{*}

it often occurs the need to construct a potential P such that R_{P}^{*} possesses a
property given in advance (cf. e . g . [10], [9], [11] among many others). In

this construction it is easier to seek an appropriate P among potentials which
are allowed to be discontinuous than to do among only those that are
restricted to be smooth. However our primary concern is about R_{P}^{*} with
smooth P. Thus one natural procedure may be as follows. First find a P

among discontinuous potentials such that R_{P}^{*} has a desired property. Then
approximate P by smooth potentials, e.g. by \rho_{\epsilon}*P(\epsilon\downarrow 0) with \rho_{\epsilon}*the Frie-
drichs mollifier in a suitable sense (cf. no. 15 below), and then we expect
R_{\rho\epsilon*P}^{*} to be identical with R_{P}^{*} from the view point of the Martin theory if the
approximation is made close enough. This is the motivation of our present

study. In this paper we will give a theorem asserting R_{P}^{*}=R_{Q}^{*} under a
certain closeness condition on potentials P and Q on R . Any theorem of this
kind (cf. e . g . [16], [9], etc.) would not be considered as natural if it did not
imply the following two facts:

a . R_{P}^{*}=R_{Q}^{*} if P=Q on R outside a compact subset:
b . R_{P}^{*}=R_{\rho\epsilon*P}^{*} if \epsilon is small enough in a suitable sense.

Our theorem certainly contains these two facts and especially the validity of
the latter of the above must be useful in actual constructions as mentioned
above.

After preliminary discussions in nos. 1-4, the main comparison theorem
is stated in no. 5 and proven in nos. 6-11. The fact a above is deduced in no.
12, and the fact b above is stated in no. 13 and proven in nos. 14-15.

Although we state and prove our results for Schr\"odinger operators

1980 Mathematics Subject Ctassification. Primary 31C35 ; Secondary 30F25.
To complete the present work the author was supported in part by Grant-in-Aid for Scientific

Research, No. 63540111, Japanese Ministry of Education, Science and Culture.



246 M. Nakai

-\Delta+P on Riemann surfaces R , an obvious modification gives the corre-
sponding results for Schr\"odinger operators on subregions R of Euclidean
space R^{d}(d\geqq 2) .

1. As our basic space we fix an arbitrary open ( i. e . noncompact)
Riemann surface R . By a disk V on R we mean that \overline{V} is compact in R and
there exists an associated local parameter z that maps \overline{V} conformally onto
the closed disk |z|\leqq 1 on the plane. We denote by V(r)(0<r\leqq 1) for
agiven disk V the concentric disk corresponding to |z|<r so that V(1)=V.

Of course z^{-1}(0) is referred to as the center of V(r) and r the radius of
V(r) . Any point of R can be a center of a disk on R . Consider a 2-f0rm
P on R so that P has an expression P(z)dxdy on any disk V with z=x+iy
its associated local parameter and with a function P(z) of z on V. We say
that P is nonnegative (positive, resp.), P\geqq 0 ( P>0 , resp.) in notation, if
P(z)\geqq 0 (P(z)>0 , resp.) on V for every disk V on R. Measurability of P
is similarly defined using local Lebesgue measure dm(z)=dxdy. As usual we
denote by L_{1OC}^{\rho}(R)(1\leqq p\leqq\infty) the class of all measurable real 2-forms P on R
such that the integral of |P(z)|^{p} over V with respect to the measure dm(z)
=dxdy is finite for 1\leqq p<\infty or the essential supremum of |P(z)| on V with
respect to dm is finite for p=\infty for every disk V on R . Note that L_{1OC}^{p}(R)

is a class of 2-forms, not of functions. We denote by K_{1oc}(R) the class of
measurable real 2-forms P on R such that

(1. 1)
,
\lim_{(1}.(\sup_{z\in V(\Gamma)}\int_{V(\Gamma)}\log\frac{1}{|z-\zeta|}|P(\zeta)|dm(\zeta))=0

for every disk V on R. By an application of the H\"older inequality and the
integrability of |\log|\acute{\zeta}||^{q}(1\leqq q<\infty) over any finite disk of the plane we easily
see that

(1.2) L_{1OC}^{\rho}(R)<K_{1OC}(R)<L_{1OC}^{1}(R)(1<p\leqq\infty)

where<means the strict inclusion. The letter K suggests Kato who first
explicitly considered the class ([6], also [15], [13], [1], [14]). For a class \mathscr{I}^{-}

of functions or 2-forms we denote by \mathscr{F}^{+} the subclass \{f\in \mathscr{I}^{-}:f\geqq 0\} .

2. We denote by \Delta the laplacian on R so that \Delta has the local expression
4\partial^{2}/\partial z\partial\overline{z}=\partial^{2}/\partial x^{2}+\partial^{2}/\partial y^{2} on any disk V on R with z=x+iy its local param-
eter. A Schr\"odinger operator on R is the expression -\Delta+P(z) where P=
P(z)dxdy is referred to as its potential which is here a 2-form on R. No
confusion is expected for the above term potential with the potential the0-
retic “potential” (cf. [4]). We mean in this paper by a solution u of a
stationary Schr\"odinger equation



Comparison of Martin boundaries for Schrb\"odinger operators 247

(2. 1) (-\Delta+P(z))u(z)=0

on R a continuous function u on R satisfying (2.1) above in the sense of
distribution, i . e . uP\in L_{1OC}^{1}(R) and

- \int_{R}u(z)\Delta\varphi(z)dm(z)+\int_{R}u(z)\varphi(z)P(z)dm(z)=0

for every test function \varphi in C_{0}^{\infty}(R) . Using the same letter P as the potential,
we denote by P(\Omega) the class of solutions of (2.1) on an open subset \Omega of R.
Then P also defines a sheaf of solutions of (2.1) on R. The significance of
the class K_{1oc}(R) reveals itself in the following

FACT. Let P be a nonnegative measurable 2-form on R. The pair
(R, P) with P being considered as a sheaf on R is a Brelot harmonic space if
and only if P\in K_{1OC}(R) .

First we remark the following. Let V be any disk on R. We embed V
into the plane C in the natural sense and difine a function F_{V}(z) to be P(z)
on V and 0 on C\backslash V . Then the logarithmic potential

\int_{C}\log\frac{1}{|z-\zeta|}F_{V}(\zeta)dm(\zeta)

is continuous on C for every V if and only if (1.1) holds for every V or
equivalently P\in K_{1oc}(R) . Now the sufficiency of the condition of the above
fact is found in [2] (see also [1]). The necessity of the condition is not
difficult to prove though nontrivial but we omit it here since we only use the
sufficiency part of the above fact in this paper. Therefore we henceforth
only consider Schr\"odinger operators of the following kind:
(2.2) -\Delta+P(z) , P=P(z)dxdy\in K_{10C}(R)^{+} .

3. In view of the above fact we can now freely use the local potential
theory of Brelot (cf. e.g. [4], [7], etc.) for our (R, P) with (2.2). A su-
region f) is said to be nice if it is relatively compact and every point of \partial\Omega

is regular with respect to the usual classical harmonic Dirichlet problem.
Then nice regions are regular with respect to any (R, P) (cf. [2]). We
denote by P_{f}^{\Omega} the solution of the P-Dirichlet problem on nice \Omega with found
ary values f\in C(\partial\Omega) , i . e . P_{f}^{\Omega}\in C(\overline{\Omega})\cap P(\Omega) with P_{f}^{\Omega}|\partial\Omega=f . On any nice
region f) of R there exists the P-Geen function (i. e. the Green function of \Omega

for the harmonic structure (R, P))G_{P}^{\Omega}(\cdot, w) with its pole w\in\Omega (cf. [2]).
Here G_{P}^{\Omega}(\cdot, w) is so normalized as to satisfy
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(-\Delta+P(\cdot))G_{P}^{\Omega}(\cdot, w)=\delta_{w} (the Dirac measure at w).

The property of G_{P}^{\Omega}(z, w) is reduced to that of G_{0}^{\Omega}(z, w) , the classical har-
monic Green function, by

(3. 1) G_{P}^{\Omega}(z, w)+ \int_{\Omega}G_{0}^{\Omega}(z, \zeta)P(\zeta)G_{P}^{\Omega}(\zeta, w)dm(\zeta)=G_{0}^{\Omega}(z, w)

so that e . g . we see that G_{P}^{\Omega}(z, w)=O(-\log|z-w|) as z, warrow w_{0}\in\Omega . Here
and hereafter we follow the usual loose convention to denote the generic
point of R and its local parameter by the same letter. Another important
consequence of (3.1) is the symmetry of G_{P}^{\Omega} : G_{P}^{\Omega}(z, w)=G_{P}^{\Omega}(w, z) for z and
w in \Omega with z\neq w (cf. [2]).

Since \{G_{P}^{\Omega}(\cdot, w)\}_{\Omega}\uparrow R is increasing, either it converges to the P-Green
function G_{P}(\cdot, w)=G_{P}^{R}(\cdot, w) on R almost uniformly of R\backslash \{w\} or it diverges
to +\infty almost uniformly on R. In the former case we say that P is hyper-
bolic (of. e.g. [12]). In view of

(3.2) \int_{\Omega}G_{P}^{\Omega}(\cdot, \zeta)P(\zeta)dm(\zeta)=1-P_{1}^{\Omega}

we see that P is hyperbolic if P\neq 0 , or more precisely if the measure of the
set \{z\in R:P(z)\neq 0\} is not zero. We may express this as

m(\{z:P(z)\neq 0\})>0 .

If 0 is hyperbolic (in this case R is said to be hyperbolic in the Riemann
surface theory), then by (3.1), any P\in K_{10C}(R)^{+} is hyperbolic. If 0 is not
hyperbolic (in this case R is said to be parabolic in the above field), then, by
the above remark, any P\in K_{1oc}(R)^{+} is hyperbolic when and only when P\neq

0(i. e. m(\{z:P(z)\neq 0\})>0) . In any case, therefore, any potential in
K_{1oc}(R)^{+} greater than or equal to a hyperbolic potential in K_{1oc}(R)^{+} is also
hyperbolic.

Suppose that Q is also a potential in K_{1OC}(R)^{+} . We have

G_{Q}^{\Omega}(z, w)=G_{P}^{\Omega}(z, w)+ \int_{\Omega}G_{Q}^{\Omega}(z, \zeta)(P(\zeta)-Q(\zeta))G_{P}^{\Omega}(\zeta, w)dm(\zeta) .

In view of (1.1) and (3.2) we have the following resolvent equation as the
limiting case of the above displayed formula if P and Q are hyperbolic:

(3.3) G_{Q}(z, w)=G_{P}(z, w)+ \int_{R}G_{Q}(z, \zeta)(P(\zeta)-Q(\zeta))G_{P}(\zeta, w)dm(\zeta)

=G_{P}(z, w)+ \int_{R}G_{P}(z, \zeta)(P(\zeta)-Q(\zeta))G_{Q}(\zeta, w)dm(\zeta) .
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Here the last identity of the above follows from the symmetry of G_{P} and G_{Q} .

4. Take a hyperbolic potential P in K_{1OC}(R)^{+} We fix throughout the
paper a reference point a in R. The P-Martin kernel K_{P}(z, w) on R is
defined as follows. First for (z, w)\in R\cross R we set

(4. 1) K_{P}(z, w)=\{

G_{P}(z, w)/G_{P}(a, w) (a\neq w)

0 (a=w, z\neq w)

1 (a=w=z) .

For each fixed z\in R the function K_{P}(z^{ }, \cdot ) is continuous on R and there
exists a unique (up to a homeomorphism, of course) compactification R_{P}^{*} of
R such that every K_{P}(Z^{ }, \cdot ) (z\in R) is continuously extended to R_{P}^{*} (cf. [3],
[5] ) . We call R_{P}^{*} the Martin compactification of R for the Schr\"odinger
operator -\Delta+P or simply P-Martin compactification. The set \partial_{P}R=R_{P}^{*}\backslash R

is the P-Martin boundary of R . Then finally K_{P}(z, w^{*}) is defined on R\cross R_{P}^{*}

by

K_{P}(z, w^{*})= \lim_{w\in R,warrow w^{*}}K_{P}(z, w) .

Clearly K_{P}(\cdot, w^{*})\in P(R\backslash \{w^{*}\}) and K_{P}(\cdot, \cdot)\in C(R\cross R_{P}^{*}\backslash \Delta) where here \Delta is
the diagonal set of R\cross R . Fix a disk V_{a} with a its center. Then the
topology of R_{P}^{*} defined above is metrizable by the following metric

d(w_{1}^{*}, w_{2}^{*})= \int_{Va}\frac{|K_{P}(z,w_{1}^{*})-K_{P}(z,w_{2}^{*})|}{1+|K_{P}(z,w_{1}^{*})-K_{P}(z,w_{2}^{*})|}dm(z)(w_{1}^{*}, w_{2}^{*}\in R_{P}^{*}) .

We call u\in P(R)^{+} minimal if for any v\in P(R)^{+} with v\leqq u on R there
exists a constant c such that v=cu on R . We denote by \delta_{P}R the set of
points w^{*}\in\partial_{P}R such that K_{P}(\cdot, w^{*}) is minimal. We call \delta_{P}R the P-
Martin minimal boundary of R . Since every necessary tool is available (cf.

[2] ) to derive the Martin theory [8], we can establish the following result
along the line given by Martin (cf, e. g. [5], [4]) :

MARTIN THEORY. The minimal boundary \delta_{P}R is a G_{8} subset of the
whole boundary \partial_{P}R and there exists a bijective correspondence uarrow\mu

between P(R)^{+} and the family \{\mu\} of nonnegative Borel measures \mu on \delta_{P}R

such that

(4. 2) u= \int_{8_{P}R}K_{P}(\cdot , w^{*})d\mu(w^{*}) (canonical representation).

Consider two hyperbolic potentials P and Q in K_{1OC}(R)^{+} . If the identity
map \iota of R onto itself can be extended to a homeomorphism \iota_{PQ}^{*} of R_{P}^{*} onto
R_{Q}^{*} , then we say that R_{P}^{*} and R_{Q}^{*} are naturally homeomorphic, and if more-
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over \iota_{PQ}^{*}(\delta_{P}R)=\delta_{Q}R , then we say that R_{P}^{*} and R_{Q}^{*} are canonically
homeomorphic, and in this case we may say that R_{P}^{*}=R_{Q}^{*} not only from the
topological but also potential theoretic view point.

5. Let \{ V_{j}\}_{j\in N} be a locally finite covering of R by disks V_{j} on R. For
definiteness we always assume that a\in V_{a}\subset\overline{V}_{a}\subset V_{1} , which is entirely ines-
sential. For a potential P\in K_{1oc}(R)^{+} we consider a family \{P_{j}\}_{j\in N} of poten-
tials P_{j}\in K_{1OC}(R)^{+} such that

\{

supp P_{j}\subset V_{j}(j\in N) ,
P= \sum_{j\in N}P_{j} .

In this case we say that \{P_{j}\} is a decomposition of P associated with \{ V_{j}\} .
Now consider two hyperbolic potentials P and Q in K_{1oc}(R)^{+} . We say that
P rules Q, or equivalently, Q is ruled by P, if there exists a locally finite
covering \{ V_{j}\} of R by disks and decompositions \{P_{j}\} and \{Q_{j}\} of P and Q
respectively associated with \{ V_{j}\} such that

(5. 1)
\sum_{j\in N}\frac{1}{\inf_{z\in V_{J}}G_{P}(a,z)}\sup_{z\in V_{j}}\int_{V_{j}}G_{P}(z, \zeta)|P_{j}(\zeta)-Q_{j}(\zeta)|dm(\zeta)<\infty .

The purpose of this paper is to prove the following comparison criterion for
Martin compactifications for two Schr\"odinger operators:

THE MAIN THEOREM. Suppose P and Q are hyperbolic potentials in
the class K_{1OC}(R)^{+} If P rules Q, then R_{P}^{*} and R_{Q}^{*} are canonically
homeomorphic.

The proof will be given below in nos. 6-11.

6. Throughout the proof we fix an exhaustion \{R_{\nu}\}_{\nu\in N} of R by nice
subregions R_{\nu} such that \overline{V}_{1}\subset R_{1},\overline{R}_{\nu}\subset R_{\nu+1}(\nu\in N) , and R= \bigcup_{\nu\in N}R_{\nu} . For
each \nu\in N we set

\alpha(1/)=\max\{\alpha\in N:\bigcup_{1\leq j\leq a}\overline{V}_{j}\subset R_{\nu}\} .

Then \{\alpha(\iota/)\}_{\nu\in N} is a nondecreasing divergent sequence. We also set
\beta(\mu)=\min\{\nu\in N : ( U_{j>a(\mu)}\overline{V_{j}})\cap\overline{R}_{\mu+1}=\emptyset\}

for each \mu\in N . Clearly \beta(\mu)>\mu+1 and \overline{R}_{\mu+1}\subset R_{\nu} for each \nu\geqq\beta(\mu) .
For simplicity we set D_{j}=P_{j}-Q_{j} and D=\Sigma_{j\in N}D_{j} which are all in

K_{1oc}(R) but not necessarily nonnegative. Needless to say D=P-Q. We
also set
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\{

\gamma_{j}=\gamma_{j}(P)=\inf_{z\in V_{j}}G_{P}(a, z)

d_{j}=d_{j}(P, Q)= \sup_{z\in V_{j}}\int_{V_{j}}G_{p}(z, \zeta)|D_{j}(\zeta)|dm(\zeta)

for each j\in N . Since \Sigma_{j\in N}d_{j}/\gamma_{j}<\infty by (5.1), we have

(6. 1) \lim_{\nuarrow\infty}\Sigma_{j>a(\nu)}d_{j}/\gamma_{j}=0

by virtue of the definition of \alpha(\nu) .
We consider one more quantity k(\mu) for each \mu\in N as follows:

k( \mu)=k(\mu:X)=\sup\{G_{X}(z, \zeta):z\in R_{\mu}, \zeta\in R\backslash R_{\mu+1}\} ,

where X=P or Q. By the definition of \beta(\mu) we have \overline{R}_{\mu+1}\subset R_{\nu} for \nu\geqq

\beta(\mu) and in particular \overline{R}_{\mu}\subset R_{\beta(\mu)} . Thus k(\mu)<\infty and G_{X}(z, \zeta)\leqq k(\mu) for
any z\in R_{\mu} and \zeta\in R\backslash R_{\nu}(\nu\geqq\beta(\mu)) . Therefore \overline{V}_{j}\subset R\backslash R_{\mu+1} for each j>
\alpha(\nu)\geqq\alpha(\beta(\mu)) (\nu\geqq\beta(\mu)) and we have

\int_{R}G_{X}(z, \zeta)|D_{j}(\zeta)|G_{P}(\zeta, w)dm(\zeta)\leqq k(\mu)d_{j}((z, w)\in R_{\mu}\cross\overline{V}_{j}) .

Consider the measure d\mu_{z}(\zeta)=G_{X}(z, \zeta)|D_{j}(\zeta)|dm(\zeta) and use the standard

notation G_{P} \mu_{z}=\int G_{P}(\cdot, \zeta)d\mu_{z}(\zeta) for G_{P} -potentials. Then the above inequal-

ity can be rewritten as
G_{P}\mu_{z}(w)\leqq k(\mu)d_{j}((z, w)\in R_{\mu}\cross\overline{V}_{j}) .

Since G_{P}(a, w)\geqq\gamma j for any w\in V_{j} , we deduce from the above
G_{P}\mu_{z}(w)\leqq k(\mu)(d_{j}/\gamma_{j})G_{P}(a, w)

for any w\in V_{j} and in particular for any w\in supp\mu_{z} . Since G_{P}(a^{ }, \cdot ) is
positive and P-superharmonic (i. e . superharmonic with respect to the Brelot
harmonic space (R, P)) , the domination principle which is known to hold for
(R, P) (cf. [2]) yields the last displayed inequality for every w\in R . We
thus have

(6.2) \int_{R}G_{X}(z, \zeta)|D_{j}(\zeta)|G_{P}(\zeta, w)dm(\zeta)\leqq k(\mu)(d_{j}/\gamma_{j})G_{P}(a, w)

for each (z, w)\in R_{\mu}\cross R and each j>\alpha(\nu) (\nu\geqq\beta(\mu)) . By the definition of
\alpha(\nu) we see that \zeta\in R\backslash R_{\nu} implies \zeta\in R\backslash V_{j}(1\leqq j\leqq\alpha(\nu)) and then D_{j}(\zeta)=0

(1\leqq j\leqq\alpha(\nu)) and therefore

D( \zeta)=\sum_{j>a(\nu)}D_{j}(\zeta) , |D( \zeta)|\leqq\sum_{j>at\nu)}|D_{j}(\zeta)|(\zeta\in R\backslash R_{\nu}) .
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Hence by (6.2) we have

\int_{R\backslash R\mu}G_{X}(z, \zeta)|D(\zeta)|G_{P}(\zeta, w)dm(\zeta)

\leqq\sum_{j>at\nu\rangle}\int_{R}G_{X}(z, \zeta)|D_{j}(\zeta)|G_{P}(\zeta, w)dm(\zeta)

\leqq k(\mu)[\sum_{j>a(y)}d_{j}/\gamma_{j}]G_{P}(a, w)

for each \nu\geqq\beta(\mu) . In other words we have for each fixed \mu\in N

(6.3) \int_{R\backslash R_{y}}G_{X}(z, \zeta)|D(\zeta)|K_{P}(\zeta, w)dm(\zeta)\leqq k(\mu)\sum_{j>a(\mu)}d_{j}/\gamma_{j}

for each (z, w)\in R_{\mu}\cross R and each \nu\geqq\beta(\mu) . Take any w^{*}\in\partial_{P}R and any
sequence \{w_{n}\} in R converging to w^{*} . Consider (6.3) for w=w_{n} and
take the lower limit of both sides as n\uparrow\infty . By the Fatou lemma and
K_{P}(\cdot, w_{n})-arrow K_{P}(\cdot, w^{*}) on R(n\uparrow\infty) , we have

(6.4) \int_{R\backslash R_{\nu}}G_{x}(z, \zeta)|D(\zeta)|K_{P}(\zeta, w^{*})dm(\zeta)\leqq k(\mu)\sum_{j>at\nu)}d_{j}/\gamma j

for any z\in R_{\mu} and any \nu\geqq\beta(\mu) . From (6.3) and (6.4) it follows that
(6.4) is also valid for any (z, w^{*})\in R_{\mu}\cross R^{*} and any \nu\geqq\beta(\mu) .

Now observe that for any \nu\geqq\beta(\mu)

a_{\nu}(n _{:} _{\mathcal{Z}}):=| \int_{R\nu}G_{X}(z, \zeta)D(\zeta)(K_{P}(\zeta, w_{n})-K_{P}(\zeta, w^{*}))dm(\zeta)|

\leqq[\sup_{\zeta\in R\nu}|K_{P}(\zeta, w_{n})-K_{P}(\zeta, w^{*})|]\cdot\int_{R\nu}G_{X}(z, \zeta)|D(\zeta)|dm(\zeta) .

By (1.1) we see that the term on the most right hand side of the above
converges to zero uniformly for z on R_{\mu} and the same is true for a_{\nu}(n:z) .
We denote by b_{\nu}(n:z) and c_{\nu}(z) the terms on the left hand side of (6.3)

for w=w_{n} and (6.4), respectively. Then by (6.3) and (6.4) we have

| \int_{R}G_{X}(z, \zeta)D(\zeta)K_{P}(\zeta, w_{n})dm(\zeta)-\int_{R}G_{X}(z, \zeta)D(\zeta)K_{P}(\zeta, w^{*})dm(\zeta)|

\leqq a_{\nu}(n:z)+b_{\nu}(n:z)+c_{\nu}(z)

\leqq a_{\nu}(n:z)+2k(\mu)\sum_{j>a(\nu)}d_{j}/\gamma_{j} .

We denote by A(n:z) the term on the most left hand side of the above.
Then for each fixed \mu\in N

\lim_{narrow}\sup_{\infty}(\sup_{z\in R\mu}A(n:z))\leqq 2k(\mu)\sum_{j>a(\nu)}d_{j}/\gamma_{j}

since \lim_{narrow\infty}(\sup_{z\in R\mu}a_{\nu}(n:z))=0 . By (6. 1) we conclude that
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\lim_{narrow\infty}(\sup_{z\in R\mu}A(n:z))=0 .

By the arbitrariness of \mu\in N we finally conclude that

(6.5) \lim_{narrow\infty}\int_{R}G_{X}(z, \zeta)D(\zeta)K_{P}(\zeta, w_{n})dm(\zeta)

= \int_{R}G_{X}(z, \zeta)D(\zeta)K_{P}(\zeta, w^{*})dm(\zeta)

almost uniformly for z in R, where we again recall that X=P or Q.

7. We introduce a function C(w^{*})=C(w^{*} : P, Q) defined on R_{P}^{*} by

(7. 1) C(w^{*})=1+ \int_{R}G_{Q}(a, \zeta)D(\zeta)K_{P}(\zeta, w^{*})dm(\zeta) .

First for w\in R\backslash \{a\} we see by (3.3) that

C(w)=G_{Q}(a, w)/G_{P}(a, w)

and therefore C(w) is positive and continuous on R\backslash \{a\} . In view of (6.4)
and (6.5) for X=Q we can easily see that C(w^{*}) is continuous at any
point of w^{*}\in\partial_{P}R . Therefore C(w^{*}) is continuous on R_{P}^{*}\backslash \{a\} and C(w^{*})

\geqq 0 there. In this connection we need to consider the following exceptional
set

E=E_{PQ}=\{w^{*}\in\partial_{P}R:C(w^{*})=C(w^{*} : P, Q)=0\} .

Let w^{*} be any point in \partial_{P}R and \{w_{n}\} and sequence in R converging to
w^{*} . Then C(w_{n})arrow C(w^{*})(n\uparrow\infty) . By (3.3) we have

C(w_{n})K_{Q}(z, w_{n})=K_{P}(z, w_{n})+ \int_{R}G_{Q}(z, \zeta)D(\zeta)K_{P}(\zeta, w_{n})dm(\zeta) .

This with (6.5) shows that if w^{*}\in\partial_{P}R\backslash E , then \{w_{n}\} is also a Cauchy
sequence (i . e . a fundamental sequence) in R embedded in R_{Q}^{*} converging to
a point in R_{Q}^{*} , say \sigma(w^{*}) , determined only by w^{*} independent of the choice
of \{w_{n}\} . By defining \sigma(w)=w for every w\in R we obtain

(7.2) C(w^{*})K_{Q}(z, \sigma(w^{*}))=K_{P}(z, w^{*})+\int_{R}G_{Q}(z, \zeta)D(\zeta)K_{P}(\zeta, w^{*})dm(\zeta)

for any z\in R and any w^{*}\in R_{P}^{*} except for the case z=w^{*}=a , where we
understand that the left hand side of the above is zero if w^{*}\in E for which
\sigma(w^{*}) is of course undefined; we have

0=K_{P}(z, w^{*})+ \int_{R}G_{Q}(z, \zeta)D(\zeta)K_{P}(\zeta, w^{*})dm(\zeta)



254 M. Nakai

for any z\in R and any w^{*}\in E . It is easy to see that the mapping

w^{*}arrow\sigma(w^{*})=\sigma(w^{*} : P, Q)

from R_{P}^{*}\backslash E to R_{Q}^{*} is the identity on R and continuous on R_{P}^{*}\backslash E , and more-
over if E=\emptyset , then the mapping is surjective.

8. Before proceeding further based on (7.2) we need to consider an
auxiliary potential W on R defined by the following:

W= \sum_{j\in N}(P_{j}+|P_{j}-Q_{j}|) .

Clearly W\in K_{1OC}(R)^{+} . Since W\geqq P (and of course W\geqq Q), we see that W

is also hyperbolic (see the remark after (3.2)). Let W_{j}=P_{j}+|P_{j}-Q_{j}|(j\in

N) . Then \{ W_{j}\} is a decomposition of W associated with \{ V_{j}\} fixed at the
beginning. Here observe that |P_{j}-W_{j}|=|P_{j}-Q_{j}| and therefore (5. 1)

implies that W is also ruled by P. Hence \sigma(\cdot)=\sigma(\cdot : P, W) , C(\cdot)=

C(. : P, W) , and E=E_{PW} can also be defined. By (7.2) we have

(8. 1) C(w^{*})K_{W}(z, \sigma(w^{*}))

=K_{P}(z, w^{*})+ \int_{R}G_{W}(z, \zeta)(P(\zeta)W(\zeta))K_{P}(\zeta, w^{*})dm(\zeta)

for any z\in R and any w^{*}\in R_{P}^{*} except for z=w^{*}=a , where as in (7.2),
we understand that the left hand side of the above is zero if w^{*}\in E_{PW} which
will be seen right below to be empty.

We now maintain that C(w^{*})>0(w^{*}\in\partial_{P}R) so that E_{PW}=\emptyset . Recall
that C(w^{*})\geqq 0(w^{*}\in\partial_{P}R) . Contrary to the assertion assume that C(w^{*})=

0 for some w^{*} in \partial_{P}R . For simplicity set u=K_{P}(\cdot, w^{*}) and

d\mu(\zeta)=(W(\zeta)-P(\zeta))K_{P}(\zeta, w^{*})dm(\zeta) .

By (3.3) we see that G_{W}(z, \zeta)\leqq G_{P}(z, \zeta) since W\geqq P . Thus we have by
(8. 1)

u(z)\leqq G_{P}\mu(z)<\infty(z\in R) .

The last inequality follows from (6.4) established for P and W with X=P.
Since G_{P}\mu is a P-potential on R and u is nonnegative and P-harmonic on R,
we must have u\equiv 0 on R contradicting u(a)=1 .

The function C(\cdot) is thus positive and continuous on \partial_{P}R and therefore
the infimum of C(\cdot) on \partial_{P}R is strictly positive. A fortiori there exists a
constant q\in[1, \infty) such that

q^{-1}\leqq G_{W}(a, w)/G_{P}(a, w)\leqq 1(w\in R\backslash V_{1}) .



Comparison of Martin boundaries for Schr\"odinger operators 255

The condition (5.1), the above inequality, and the identities |W_{j}-P_{j}|=

|P_{j}-Q_{j}|(j\in N) together imply that

\sum_{j\in N}\frac{1}{\inf_{z\in V_{j}}G_{W}(a,z)}\sup_{z\in V_{j}}\int_{V_{j}}G_{W}(z, \zeta)|W_{j}(\zeta)-P_{j}(\zeta)|dm(\zeta)<\infty ,

i . e . P is also ruled by W. Observe that |W_{j}-Q_{j}|\leqq 2|P_{j}-Q_{j}|=2|W_{j}-P_{j}| .
Hence the above last displayed inequality is also valid if we replace
|W_{j}(\zeta)-P_{j}(\zeta)| by |W_{j}(\zeta)-Q_{j}(\zeta)| . Thus Q is also ruled by W. If we can
show that R_{P}^{*} and R_{Q}^{*} are canonically homeomorphic to R_{W}^{*}, then R_{Q}^{*} is
canonically homeomorphic to R_{P}^{*} .

9. By the reduction made in no. 8 we can henceforth assume that P\geqq

Q on R to prove that R_{Q}^{*} is canonically homeomorphic to R_{P}^{*} under the
assumption (5.1). We now develope our discussion based upon (7.2)

where C(w^{*})=C(w^{*} : P, Q) again. Recall that C(\cdot) is continuous on
R_{P}^{*}\backslash \{a\} and further C(\cdot)\geqq 1 which follows from (7.1) in view of our addi-
tional assumption D(\zeta)=P(\zeta)-Q(\zeta)\geqq 0 .

Since E_{PQ}=\emptyset as we have just seen above, we can now conclude based
upon what we have seen in no. 7 that

w^{*}arrow\sigma(w^{*})=\sigma(w^{*} : P, Q)

is a surjective and continuous mapping of R_{P}^{*} to R_{Q}^{*} . Here we maintain
that it is injective. For the purpose we take w_{i}^{*}\in\partial_{P}R(i=1,2) such that
\sigma(w_{1}^{*})=\sigma(w_{2}^{*}) and consider

u :=C(w_{2}^{*})K_{P}(\cdot, w_{1}^{*})-C(w_{1}^{*})K_{P}(\cdot, w_{2}^{*})

which belongs to P(R) . By (7.2) we obtain

u(z)+ \int_{R}G_{Q}(z, \zeta)D(\zeta)u(\zeta)dm(\zeta)=0(z\in R) .

Set d\mu(\zeta)=D(\zeta)|u(\zeta)|dm(\zeta) . Again by (7.2) we see that G_{Q}\mu is finite on
R. Therefore we have

(9. 1) |u(z)|\leqq G_{Q}\mu(z)(z\in R) .

Since u in P-harmonic on R, |u| is P-subharmonic on P. For any nice
region \Omega , P_{|u|}^{\Omega}\leqq Q_{|u|}^{\Omega} on \Omega because of P\geqq Q and the identity

Q_{|u|}^{\Omega}=P_{|u|}^{\Omega}+ \int_{\Omega}G_{Q}^{\Omega}(\cdot, \zeta)(P(\zeta)-Q(\zeta))P_{|u|}^{\Omega}(\zeta)dm(\zeta) .

Hence we see that |u| is also Q-subharmonic on R because |u|\leqq P_{|u|}^{\Omega}\leqq Q_{|u|}^{\Omega}
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for every nice region \Omega of R (of. e . g . [4]). The relation (9. 1) says that the
nonnegative Q-subharmonic function |u| is dominated by the Q-potential
G_{Q}\mu on R. Therefore we must have |u|=0 , i . e .

C(w_{2}^{*})K_{P}(z, w_{1}^{*})=C(w_{1}^{*})K_{P}(z, w_{2}^{*})

for any z\in R . Setting z=a we see that C(w_{2}^{*})=C(w_{1}^{*}) and a fortiori
K_{P}(z, w_{1}^{*})=K_{P}(z, w_{2}^{*}) for any z\in R , i . e . w_{1}^{*}=w_{2}^{*} . Thus we have seen that
the mapping w^{*}arrow\sigma(w^{*} : P, Q) gives a natural homeomorphism between R_{P}^{*}

and R_{Q}^{*} . The task left is to show that it is canonical.

10. We now maistain that a mapping S:P(R)^{+}arrow Q(R)^{+} can be defined
by

(10. 1) Su=u+ \int_{R}G_{Q}(\cdot, \zeta)D(\zeta)u(\zeta)dm(\zeta) ;

S is additive and homogeneous (i. e . S(\lambda u)=\lambda Su for positive numbers \mathcal{A} )
and bijective so that P(R)^{+} and Q(R)^{+} are isomorphic as convex cones.

First we show that Su given by (10.1) is well defined and Su\in Q(R)^{+}

for any u\in P(R)^{+} In general the integral on the right hand side of (10.1)
may diverge and hence we have to show its integrability first. For the
purpose we take an arbitrary u\in P(R)^{+} Take any measure \mu on \partial_{P}R such
that u=K_{P}\mu on R. Such a \mu is unique if we restrict them to canonical
measures \mu , i . e . \mu with \mu(\partial_{P}R\backslash \delta_{P}R)=0 , as is seen by (4.2). Nevertheless
we take any \mu on \partial_{P}R with u=K_{P}\mu on R . Let \mu_{1} be the measure on \partial_{Q}R

constructed from \mu by

(10.2) d\mu_{1}(w_{1}^{*})=C(\sigma^{-1}(w_{1}^{*}))d\mu(\sigma^{-1}(w_{1}^{*}))(w_{1}^{*}\in\partial_{Q}R) .

Note that even if we take \mu to be canonical, it cannot be concluded at the
present stage that \mu_{1} is canonical. This is the reason why we take any \mu not
necessarily canonical. Now integrate both sides of (7.2) with respect to
d\mu on \partial_{P}R . Apply the change of variables using (10.2) to the left hand
side and the Fubini theorem to the right hand side of the resulting identity of
the above integration we obtain

(10. 3) K_{Q} \mu_{1}=K_{P}\mu+\int_{R}G_{Q}(\cdot, \zeta)D(\zeta)K_{P}\mu(\zeta)dm(\zeta) .

By recalling K_{P}\mu=u , the above identity shows that Su is well defined and
Su=K_{Q}\mu_{1}\in Q(R)^{+}-

It is obvious that S is additive and homogeneous. To see that S is
surjective we take an arbitrary u_{1}\in Q(R)^{+} . There exists a measure \mu_{1} on
\partial_{Q}R such that u_{1}=K_{Q}\mu_{1} . Construct a measure \mu on \partial_{P}R from \mu_{1} by
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(10.4) d\mu(w^{*})=C(w^{*})^{-1}d\mu_{1}(\sigma(w^{*}))(w^{*}\in\partial_{P}R) .

Since \mu_{1} is, conversely, obtained from \mu by (10.2) we can use (10.3) to
conclude that u_{1}=Su with u=K_{P}\mu\in P(R)^{+} . By a similar fashion as in the
proof of the injectivity of \sigma in no. 9 we can also show that S is injective.

11. Finally we show that \sigma(\delta_{P}R)=\delta_{Q}R so that \sigma=\sigma(\cdot : P, Q) is canon-
ical. First take any w_{0}^{*}\in\delta_{P}R . Let \mu_{1} be the canonical measure on \delta_{Q}R

associated with K_{Q}(\cdot, \sigma(w_{0}^{*})) in (4.2) : K_{Q}(\cdot , \sigma(w_{0}^{*}))=K_{Q}\mu_{1} . Let \mu be the
measure on \partial_{P}R constructed from \mu_{1} by (10.2). Then, as in no. 10, we
have (10.3) : K_{Q}\mu_{1}=S(K_{P}\mu) or K_{Q}(\cdot, \sigma(W_{0}^{*}))=S(K_{P}\mu) . On the other hand,
(7.2) with w^{*}=w_{0}^{*} takes the form C(w_{0}^{*})K_{Q}(\cdot, \sigma(w_{0}^{*}))=S(K_{P}(\cdot, w_{0}^{*})) or
K_{Q}(\cdot, \sigma(w_{0}^{*}))=S(C(w_{0}^{*})^{-1}K_{P}(\cdot, w_{0}^{*})) . Therefore

S(K_{P}\mu)=S(C(w_{0}^{*})^{-1}K_{P}(\cdot, w_{0}^{*})) .

By the injectiveness of S we see that
K_{P}\mu=C(w_{0}^{*})^{-1}K_{P}(\cdot, w_{0}^{*})

on R . Therefore K_{P}\mu is minimal in P(R)^{+} . Then supp\mu must consist of a
single point in \delta_{P}R (see p. 254 of [5]). Then, by (10.4) or equivalently by
(10.2), supp \mu_{1} also consists of a single point which belongs to \delta_{Q}R since \mu_{1}

is canonical. From K_{Q}(\cdot, \sigma(w_{0}^{*}))=K_{Q}\mu_{1} it now follows that \sigma(w_{0}^{*})\in\delta_{Q}R .
We have thus seen that \sigma(\delta_{P}R)\subset\delta_{Q}R .

The proof for \sigma(\delta_{P}R)\supset\delta_{Q}R or \sigma^{-1}(\delta_{Q}R)\subset\delta_{P}R goes in a similar fashion
as above. Namely, take any w_{1}^{*}\in\delta_{Q}R . Let K_{P}(\cdot, \sigma^{-1}(w_{1}^{*}))K_{P}\mu be the
canonical representation with \mu a measure on \delta_{P}R . Let \mu_{1} be the measure
on \partial_{Q}R constructed from \mu by (10.2). Using (10.3) and (7.2) with w^{*}=

\sigma^{-1}(w_{1}^{*}) we see as above
K_{Q}\mu_{1}=S(K_{P}\mu)=S(K_{P}(\cdot, \sigma^{-1}(w_{1}^{*}))=C(\sigma^{-1}(w_{1}^{*}))K_{Q}(\cdot, w_{1}^{*}) .

Hence K_{Q}\mu_{1} is minimal in Q(R)^{+} and thus supp \mu_{1} consists of a single point
in \delta_{Q}R as above and therefore supp\mu consists of a single point which
belongs to \delta_{P}R since \mu is canonical. Thus \sigma^{-1}(w_{1}^{*})\in\delta_{P}R so that \sigma^{-1}(\delta_{Q}R)

\subset\delta_{P}R .
We have shown that R_{P}^{*} and R_{Q}^{*} are naturally homeomorphic in no. 9

and that \sigma(\delta_{P}R)=\delta_{Q}R right now. A fortiori R_{P}^{*} and R_{Q}^{*} are canonically
homeomorphic.

The proof of the main theorem is herewith complete.

12. Suppose P and Q are hyperbolic potentials in K_{1OC}(R)^{+} and P=Q
outside a compact subset of R. Then the terms in the summation of (5.1)
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are zero except for a finite number of terms and therefore (5.1) is clearly
satisfied. Thus P rules Q and we have the following

TRIVIAL COROLLARY. If hyperbolic potentials P and Q in K_{1OC}(R)^{+} are
identical on R except for a compact subset of R, then R_{P}^{*} and R_{Q}^{*} are
canonically homeomorphic.

One must be careful in applying the above result in the following point.
Namely, there can exist potentials P and Q in K_{1oc}(R)^{+} such that P is
hyperbolic and P rules Q and yet Q is not hyperbolic. There can even exist
two potentials P and Q in K_{1OC}(R)^{+} identical on R except for a compast
subset of R such that P is hyperbolic and Q is not hyperbolic. The latter
occurs only when R is parabolic (see the remark after (3.2)) for Q\equiv 0 and
P such that \{z\in R:P(z)\neq 0\} is of positive m-measure and compact in R.

13. As mentioned in the introduction the following corollary of our
main theorem will be useful in the construction of a C^{\infty} hyperbolic potential
P such that R_{P}^{*} possesses a property assigned in advance; we only have to
construct a P in K_{1OC}(R)^{+} that may be fairly wildly discontinuous. We now
state the following

N ONTRIVIAL COROLLARY. There exists a nonnegative C^{\infty} hyperbolic
potential Q for any given hyperbolic potential P in K_{1oc}(R)^{+}such that R_{P}^{*} and
R_{Q}^{*} are canonically homeomorphic. Moreover Q can be chosen close enough
to P in a sense that will become clear in the proof below.

The proof will be given in two steps below in nos. 14-15.
14. Let \{\varphi_{j}\}_{j\in N} be an arbitrary partition of unity on R and \{ V_{j}\}_{j\in N} be

an arbitrary locally finite covering of R by disks such that supp \varphi_{j}\subset V_{j}

(j\in N) . We then fix these throughout the proof. Set P_{j}=\varphi_{j}P(j\in N) .
Then \{P_{j}\}_{j\in N} is a decomposition of P associated with \{ V_{j}\} . Let Q_{jn} be the
potential ( i . e . 2-form on R) defined by

\{

supp Q_{jn}\subset V_{j}

Q_{jn}(z)dxdy=[ \min(P_{j}(z), n)] dxdy (z=x+iy\in V_{j})

for each j\in N and n\in N . Clearly Q_{jn}\in L1\infty(oCR)^{+} Consider a sequence
\{u_{n}\}_{n\in N} of functions u_{n} on R given by

u_{n}(z)= \int_{R}G_{P}(z, \zeta)(P_{j}(\zeta)-Q_{jn}(\zeta))dm(\zeta)

for each fixed j\in N . In view of (1.1), u_{n}\in C(R) . By the Fatou lemma,
we see that u_{n}\downarrow 0(n\uparrow\infty) at each z\in R . By the Dini theorem \{u_{n}\} con-
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verges to zero uniformly on V_{j} . Hence we can find an n(j)\in N for each j
such that

\sup_{z\in V_{j}}\int_{V_{j}}G_{P}(z, \zeta)(P_{j}(\zeta)-Q_{jn(j)}(\zeta))dm(\zeta)\leqq 2^{-j}\inf_{z\in V_{j}}G_{P}(a, z) .

Clearly

(14. 1) Q= \sum_{j\in N}Q_{jn(j)}

is in L_{1oc}^{\infty}(R)^{+} and hyperbolic along with P (see the remark after (3.2)) and
ruled by P. Hence R_{P}^{*} and R_{Q}^{*} are canonically homeomorphic by our main
theorem. Therefore to prove the above corollary we may assume that P\in

L_{1oc}^{\infty}(R) . Here we view that Q in (14.1) can be made as close to P as we
wish by taking (n(1), n(2) , \cdots , n(j) , \cdots ) “large” enough.

15. We retain the decomposition \{P_{j}\} of P associated with \{ V_{j}\} as
above in no. 14 but this time P_{j}(z) is m-essentially bounded on V_{j} for each
j . As usual we take \rho(z) to be A\cdot\exp(-1/(1-|z|^{2})) on V_{j} : |z|<1 and 0 on
R\backslash V_{j} where A is so chosen as to satisfy \int_{Vj}\rho(z)dm(z)=1 . For any positive
\epsilon less than dis( \partial V_{j} , supp \varphi j ) we set \rho_{\epsilon}(z)=\epsilon^{-2}\rho(z/\epsilon) on V_{j} and 0 on R\backslash V_{j}

and apply the so called Friedrichs mollifier \rho_{\epsilon}*to P_{j} in the sense that
supp \rho_{\epsilon}*P_{j}\subset V_{j} and \rho_{\epsilon}*P_{j}=(\rho_{\epsilon}*P_{j}(z))dxdy on V_{j} where

\rho_{\epsilon}*P_{j}(z)=\int_{V_{j}}\rho_{\epsilon}(z-\zeta)P_{j}(\zeta)dm(\zeta) .

Then \rho_{\epsilon}*P_{j} is a nonnegative C^{\infty}2-form on R and, for any p\in[1, \infty) ,

\lim_{\epsilon\downarrow 0}\int_{V_{j}}|\rho_{\epsilon}*P_{j}(\zeta)-P_{j}(\zeta)|^{p}dm(\zeta)=0 .

Take an arbitrary p>1 and its conjugate q(i. e. 1/p+1/q=1) . By the
H\"older inequality

\int_{V_{j}}G_{P}(z, \zeta)|P_{j}(\zeta)-\rho_{\epsilon}*P_{j}(\zeta)|dm(\zeta)

\leqq(\int_{V_{j}}G_{P}(z, \zeta)^{q}dm(\zeta))^{1/q}\cdot ( \int_{V_{j}}|P_{j}(\zeta)-\rho_{\epsilon}*P_{j}(\zeta)|^{p}dm(\zeta))^{1/p}

Thus we can find an admissible \epsilon_{j}>0 such that

( \int_{V_{j}}|P_{j}(\zeta)-\rho_{\epsilon_{J}}*P_{j}(\zeta)|^{p}dm(\zeta))^{1/p}

\leqq\frac{1}{2^{j}}(\sup_{z\in V_{J}}\int_{V_{j}}G_{P}(z, \zeta)^{q}dm(\zeta))^{-1/q}\inf_{z\in V_{J}}G_{P}(a, z) .
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We then consider the C^{\infty} potential

(15. 1)
Q= \sum_{j\in N}\rho_{\epsilon_{j}}*P_{j}

which is seen to be hyperbolic along with P (see the remark after (3.2)).
Thus the above Q is the desired potential. Here we view that Q can be made
as close to P as we wish by taking (\epsilon_{1}, \epsilon_{2^{ }},\cdots, \epsilon_{j^{ }},\cdots) “small” enough. \square

Combining notations in (14.1) and (15.1) it may be impressive to use
the notation \rho_{\epsilon}*P for any potential P\in K_{1oc}(R)^{+} to mean
(15.1)

\rho_{\epsilon}*P=\sum_{j\in N}\rho_{\epsilon_{j}}*Q_{jn(j)}

where \epsilon is understood to be the infinite vector
\epsilon=(\epsilon_{1},1/n(1) , \epsilon_{2},1/n(2) , \cdots , \epsilon_{j} , 1/n(j) , \cdots) .

By giving the componentwise ordering and understanding \epsilon\downarrow 0 (zero vector)
as the convergence in this order we may summarize conclusions in nos . 14
and 15 as

RESTATEMENT. For an arbitrarily given potential P in K_{1OC}(R)^{+} . \rho_{\epsilon}*P

is a nonnegative C^{\infty} potential on R and if \epsilon is sufficiently close to 0, then
R_{\rho_{\epsilon}*P}^{*}=R_{P}^{*} (canonically homeomorphic).
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