Zeros of integrals along trajectories of ergodic nonsingular flows

Ryotaro SATO (Received January 16, 1988)

§1. Introduction

Let (X, \mathscr{B}, μ) be a probability space. In 1976, Atkinson [1] proved that if T is an ergodic measure preserving automorphism of (X, \mathscr{B}, μ) then the following conditions are equivalent for f in $L_1(\mu)$:

(a)
$$\int f d\mu = 0.$$

(b) $\liminf_{n \to \infty} \left| \sum_{j=0}^{n} f(T^{j}x) \right| = 0$ for almost all $x \in X.$

In 1987, Ullman [6] generalized Atkinson's theorem to noninvariant measures. That is, he considered an ergodic, conservative, nonsingular automorphism T of (X, \mathcal{B}, μ) and proved that the above condition (a) and the following (b') are equivalent for f in $L_1(\mu)$.

(b')
$$\liminf_{n \to \infty} \left| \sum_{j=0}^{n} f(T^{j}x) \cdot \frac{d\mu \circ T^{j}}{d\mu}(x) \right| = 0 \text{ for almost all } x \in X.$$

In this note we will treat an ergodic, conservative, nonsingular flow of (X, \mathcal{B}, μ) and prove a corresponding continuous time result. The method of proof is different from that of Ullman. See also Schneiberg [5].

§ 2. Preliminaries and the theorem

From now on, let $\{T_t\} = \{T_t: -\infty < t < \infty\}$ be a measurable flow of nonsingular automorphisms of (X, \mathcal{B}, μ) . All sets and functions introduced below are assumed to be measurable; and all relations are assumed to hold modulo sets of measure zero. Since each T_t is nonsingular, the Radon-Nikodym theorem can be applied to define a function $w_t = \frac{d\mu \circ T_t}{d\mu}$ in $L_1(\mu)$ such that

(1)
$$\int_A w_t d\mu = \mu(T_t A) \text{ for all } A \in \mathscr{B},$$

and let us put

(2)
$$U_t f(x) = f(T_t x) w_t(x) \text{ for } f \in L_1(\mu).$$

As is easily seen, $\{U_t\} = \{U_t: -\infty < t < \infty\}$ becomes a group of positile linear isometries of $L_1(\mu)$. Further by Krengel [2] (see also Sato [4]), strong-lim $U_t = I$ (*I* being the identity operator). The flow $\{T_t\}$ is called *conservative* if each T_t is conservative. (Recall that a nonsingular automorphism *T* is conservative if and only if $A \subset TA$ implies A = TA. It is known (cf. e. g. Krengel [3], § 3. 1) that *T* is conservative if and only if $\sum_{n=0}^{\infty} \frac{d\mu \circ T^n}{d\mu}(x) = \infty$ on *X*.) It is easy to see that $\{T_t\}$ is conservative if and only if

$$\int_0^\infty U_t 1(x) dt = \int_0^\infty w_t(x) dt = \infty \text{ for almost all } x \in X.$$

The flow $\{T_t\}$ is called *ergodic* if $A = T_t A$ for all t implies $\mu A = 0$ or $\mu(X \setminus A) = 0$. We are now in a position to state our result.

THEOREM. Let $\{T_t\}$ be an ergodic, conservative, measurable flow of nonsingular automorphisms of (X, \mathcal{B}, μ) with $\mu X = 1$. Then the following conditions are equivalent for f in $L_1(\mu)$:

 $(\mathbf{I}) \int f d\mu = 0.$

(II) To almost every $x \in X$ there corresponds a real sequence s_n (dependent on x), with $s_n \uparrow \infty$, such that $\int_0^{s_n} f(T_t x) w_t(x) dt = 0$ for all $n \ge 1$.

PROOF. (I) \Rightarrow (II): Let us fix an integer $N \ge 1$, and write

$$A = A_N = \{x \in X : \int_0^s U_t f(x) dt > 0 \text{ for all } s \ge N\},\$$

$$B = B_N = \{x \in X : \int_0^s U_t f(x) dt < 0 \text{ for all } s \ge N\},\$$

$$C = C_N = (X \setminus A) \cap (X \setminus B).$$

Let

(3) $g(x) = g_N(x) = \int_0^N U_t f(x) dt$, and

(4)
$$D = \{x \in X : \sum_{j=0}^{n-1} U_N^j g(x) > 0 \text{ for all } n \ge 1\}.$$

It follows that $A \subseteq D$. In order to prove $\mu A = 0$, we assume $\mu D > 0$. Then, since T_N is conservative by hypothesis, for almost every $x \in D$ we can take an integer $n(x) \ge 1$ such that

196

$$T_N^{n(x)}x \in D$$
 and $T_N^jx \in D$ for all $1 \le j \le n(x)$.

Put

$$X(n) = \{x \in D : n(x) = n\}$$
 and $Y(n) = \bigcup_{j=0}^{n-1} T_N^j X(n)$

Then we see that

(5)
$$D = \bigcup_{n=1}^{\infty} X(n),$$

and the set $Y = \bigcup_{n=1}^{\infty} Y(n)$ satisfies $T_N Y = Y$. On the other hand, by the continuous time version of the Chacon-Ornstein ratio ergodic theorem (see e. g. [3], Chapter 3), (I) implies

$$0 = \int f \ d\mu = \lim_{s \to \infty} \int_0^s U_t f(x) dt \Big/ \int_0^s U_t 1(x) dt$$
$$= \lim_{n \to \infty} \sum_{j=0}^{n-1} U_N^j g(x) \Big/ \sum_{j=0}^{n-1} U_N^j h(x) \text{ for almost all } x \in X,$$

where we let $h(x) = \int_0^N U_t 1(x) dt$. Therefore $T_N Y = Y$ implies $\int_Y g d\mu = 0$. But this is a contradiction, because

$$\int_{Y} g \ d\mu = \sum_{n=1}^{\infty} \int g \cdot 1_{Y(n)} d\mu = \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \int g \cdot 1_{T_{N}^{j}X(n)} d\mu$$
$$= \sum_{n=1}^{\infty} \int \left(\sum_{j=0}^{n-1} g(T_{N}^{j}x) \cdot \frac{d\mu \circ T_{N}^{j}}{d\mu}(x) \right) \cdot 1_{X(n)}(x) d\mu(x)$$
$$= \sum_{n=1}^{\infty} \int \left(\sum_{j=0}^{n-1} U_{N}^{j}g \right) \cdot 1_{X(n)} d\mu > 0$$

where the last inequality is due to (4) and (5).

We have proved $\mu A=0$. Similarly, $\mu B=0$ follows. Hence for almost all $x \in X$ there exists a real number $s(x) \ge N$ such that $\int_0^{s(x)} U_t f(x) dt = 0$. By this (II) follows immediately.

 $(II) \Rightarrow (I)$: This implication is a direct consequence of the continuous time version of the Chacon-Ornstein theorem, and we omit the details.

References

- [1] G. ATKINSON: Recurrence of co-cycles and random walks, J. London Math. Soc. (2), 13 (1976), 486-488.
- [2] U. KRENGEL: A necessary and sufficient condition for the validity of the local ergodic theorem, Lecture Notes in Math. 89, Springer-Verlag, Berlin, 1969, pp. 170-177.
- [3] U. KRENGEL: Ergodic theorems, Walter de Gruyter, Berlin, 1985.
- [4] R. SATO: On local properties of k-parameter semiflows of nonsingular point transforma-

tions, Acta Math. Hungar. 44 (1984), 243-247.

- [5] I. Ya. SCHNEIBERG: Zeros of integrals along trajectories of ergodic systems, Functional Anal. Appl. 19 (1985), 160-161.
- [6] D. ULLMAN: A generalization of a theorem of Atkinson to non-invariant measures, Pacific J. Math. 130 (1987), 187-193.

Department of Mathematics Okayama University