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Sharp function estimates for oscillatory singular integrals

Ko6z6 YABUTA
(Received January 14, 1988, Revised May 9, 1988)

1. Introduction. Given a real bilinear form <(Bx, y>, and a
Calderdn-Zygmund kernel K (x), define the operator T by

(T (x)=p. V. / e K (x—y)f () dy.

Recently Phong and Stein [7] showed that T is bounded on L?(R™), 1<
p<oo. Inthe case B=0 (i.e., for Calderon-Zygmund singular integrals) it
is known that T is weighted L?-bounded for each weight in Muckenhoupt’s
Ap class (1<p<oo). It is now a standard way to deduce these weighted
norm inequalities from the sharp function estimates of the following form

(TH* @O =CMSf (x), xER", fECT(R.

Here f* and M,f are the Fefferman-Stein sharp maximal function and the
r-th Hardy-Littlewood maximal function respectively, i. e.,

7*@=supor [[If ) =fldy, and
1 , lr
MJ(x)=§g13<~|Q—|fQV<y)l dy) :

where fb:ﬁ /Q. S (¥)dy and @ moves over all cubes with sides parallel to the

coordinate axes.

The purpose of this note is to show that the modified sharp function
estimates still hold for our oscillatory singular integrals, i.e.,

THEOREM 1.1. For any 1<r <oo there exists a positive costant C, such
that

1.0 |TFPO=CMf(x), x€R", f€CF(R™.

As a consequence we get the same weighted norm inequalities as in the
case of the usual Calder6n-Zygmund singular integrals.

We should note the following two results. Firstly. in the one dimen-
sional case one can show the above sharp function estimates by modifying the
proof of Lemma 2. 2 in Chanillo-Kurtz-Sampson [2], but it seems to us that
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it is difficult to use their method in our case. Secondly, as for the weighted
norm inequalties in the case 1<p<oo, our result generalizes a related one
derived from their weighted weak (1,1) estimates in Chanillo-Kurtz-
Sampson [3].

By a Calderén-Zygmund kernel we mean a function K (x) which is C!
away from the origin, has mean value zero on each sphere centered at the
origin and satisfies

(1.2)  |K@|<Clx|™* and |VK (x)|< Clx| ",

It is known in Ricci-Stein and Chanillo-Christ that 7 with
{(Bx, y> replaced by a real polynomial P(x, y) is L?(R")-bounded and weak
(L'(R™), L'(R™)-bounded, but for the present we cannot say anything
about the sharp function estimates in this case.

Our proof of the Theorem is a refinement of the method in Phong-Stein
[71.

We shall prepare, in the next section, some facts for proving Theorem 1.
1 and prove it in Section 3. In Section 4 we shall give several remarks and
an extension of [Theorem 1. 1/ to the case of more general Calderén-Zygmund
kernels.

We note that the letter C will always denote a positive constant which
may vary in each occasion.

2. Preparation. We recall some facts and considerations in Phong-

Stein or Ricci-Stein [8].

LEMMA 2.1. Let T be as in the introduction. Then T is bounded on
LP(R™), 1<p<co.

Next following Phong-Stein [7], we define the modified sharp maximal
function f&* by

@2.D (fé)(x>=§tég%Q|fQIJ‘(y>—f‘Sldy,

WherefS(x>=eo(x)T€12—| fQ S (3)e(y)dy, e(x)=xo(x)exp(i<Bx, %>), and xo is
the center of the cube Q. Then it holds (see [7, p.128])

2.2 fIP)=2fix), x€R™

Hence to prove our theorem we have only to show

2.3 (TDr=CGMf (%), xER", fECF(R™.

On the other hand we have also with 7,,(f) (x)=f(x—h)
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Q.0 (T @) =BPEBERT (P (1 ,f () (%).

Therefore we see easily that to prove our theorem it suffices to show

2.5) ﬁfQI(Tny%(Tf)oIdyéCMrf<x>,

for any cube @ with center at the origin, for any x& @, and any f€CJ(R™).

It is easily seen that IQI‘%V@) —foldy §2(|Q’|/IQ|)IQ’|“f0,Lf(y>—forldy for
QCQ’, and hence to show (2.5) it suffices to get

1
@.6) g LI = (Tdldy=C Mf ),

for any cube @ with center at the origin, and any f€Cg(R").

3. Proof of the theorem. In the case rank B=0, i.e. B=0. it is
well-known that the theorem holds (see Journé [6]), and hence we may
assume rank B=1. Now let 1<7<oco and feCg(R"). We shall show the
estimate (2.6). We note that we may assume 1<7=<2. 7’ will denote the
conjugate exponent of 7, i.e. 1/r+1/7'=1, and @, will denote the cube with
center at the origin and side length 2y. Now fix a cube @ =@, and decom-
pose f as f =fi+/+/f;, where fi=f in @, but £i=0 otherwise ; £=f in (Q;)°¢
NQus f2=0 otherwise; i=f in (@Qs)*N(Qs)° £=0 otherwise. Write
F=T(), and F;=T(f), j=1, 2, 3. Then by Lemma 2.1

fQ|Fl|rdngm|Fl|rdxg cfmwdx:cfm If|7dx,
therefore
(3.1) ﬁ /Q |F1|dx§<ﬁ fQ |F1|’dx)m§C<l—$n—| Q"Lfl’dx)m§CMrf 0.

Now
F@=TH 0= [ ™K x—-phO)dy ;

define the constant ¢, by co= f K(—y)A()dy. Then

o) —co= [ (52K (x—3) — K (—y)AG)dy.
However
¢ K (x—y)—K(=y)=(*"-DK (x—y)
+HKx—y)—K(—»},
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which is bounded by C (d]y|=**'+d|y|=""D), if x€Q;, and y=(Q,5)°. Hence
if er: Q87

|Fz(x)—c0|sCa{fV2(y>|dy +flé|;;v|31§iy}

§C3{ mlld_y+ V@Ndy}

ylsC/8 Iyl”‘l lylzs Iyl”“

<¢{CO'Mf(0)+Co'Mf(0)}<C Mf(0).

because f; is supported in (@:5)¢N Qys, Wwhere c?=#. The above estimates
in terms of the Hardy-Littlewood maximal function are obtained by routine
work, and we omit the proof. Thus

3.2 1o [IB® —clds=C Mf 0)SC MF(O).
Qe

Next,

Fa(o)= [¢® 2K (s—3) — K (~)}hG)dy
+ [ eB K (=9)f3)dy = Fio) + Fio).

However |K (x—)— K (—=)|< Clx|/|y|"* if x€Q and y=(Q.,)°, and there-
fore

|F} (x)|SC8{ VOldy - cpr oy,

wizzs [T

which gives
39 1g f|F (O|dx<C Mf ()< C Mf ().

Now note that there exist orthogonal matrices O, and O, such that 0O,BO, is
a diagonal matrix. Since rank B =1, we may assume the first entry a;+0.
Now write x=(x;, ), with x;ER' and ¥ER". Set G(x)= 20, %),
K(»)=K(07%), and £(3)=£(07). Fix ¢>0so that |y’|>c/& if |y|>1/6
and |y|<c/d8. We decompose £ as f,=h+h, where h=F if lm|=c/d, but
=0 otherwise. We have then

G = [ B R (—y)f(y)dy

= f é*g (3, x) dy+ f glamnt BLIDR (—y) () dy
=G+ G,
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where
9O = [ EPPR(—)h@a.

Now fix 0<a<1 so that »ra>1 and »'n(l—a)>n—1, i.e, —17—<a<%+

<1—ir>%. Then for |y|=c/d we have

Iﬂ%xmgc/ M%%ﬁg

(| pptor)” (/. )

and since n(1—a)7»’>n—1, and |n|=c/d,
/;” |y|"(1 o7 Scly1|—n(1-a)r’+n—1§ Cé\n(l-—a)r’—nﬂ'
By the Hausdorff-Young theorem

16, I d = ([lgGn, 20w

<Cé\n(1 a)—(n-1)/r’ (/ |h1|(}’|>|rdy >llr
y nar

= C(S‘”(l—a)—(n—l)/r’(f |fi (y)lrdy )1/r
- wisus |y
< Cé‘”(l‘a)"(”“W"é‘”““”“’Mrf (O) — Cé\l/r'Mrf <0>’

because 7, (y)=0 for |y|<1/d. Hence an extra integration in x’ gives

B0 [ |GEI de=ComMf )"

Next
VMI ()|
|Gz(x>|§Cf dyécﬁl.m.y.x,a £l
dy’dy )”" lf DI, \Vr
<
C(-/yll<c/é‘,/:v'l>c/a|y|m "1-a) (ﬁwzl/s |y|nm dy)

=CLXk.

Then

" ~___trtdt
<11> < f < /s (yl_‘_t)nr’(l ~a) )d 241
cl/é dt
/ < crs ()T A-a)—n+2 >dy1
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<C [ e S Com-,
L= Com""M,f(0).
Hence
|G| C Mf(0),
and so

35 ([, JGwra) s mso.

By (3.4) and (3.5) we get

3.6 o [IFimldes(r fIFscora)”

~(rgr [ Gl @) sc M.
Combining (3.1), (3.2), (3.3), and (3.6) we get

1
= — <
Q] L|F(x> coldx = C M1 (0),
which implies
1
3.7 IT)|[Q|F<x>—ﬂ,|dxgzcMrf<o>.
This proves the desired estimate (2.6) and completes the proof of the theo-

reml.

4. Additional results. With a minor change of the proof of
1.1 we have the following

THEOREM 4.1. Let K be a Calderon-Zygmund kernel and {Bx, y> be a
real bilinear form. Define the operator S by

(SH @) =p.v. [ €PeD DK (=) f (3.

Then for any 1<r <oo there exists a positive constant C, such that
4.1 SH*O=CMf(x), xR", f€C7(R").

SKETCH OF THE PROOF. We may assume B is symmetric and rank
B=1. Since S is translation-invariant, we have only to get the estimate (2.
6) for Sf, in this case, too. Since
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Sf <x> — ei(Bx, x>p. V./eA2i<Bx, »K (x___y> ei(By.y>fQ,> dy}

S is also bounded on L*(R"™), 1<p<oo. We decompose f as in the proof of
[heorem 1.1 and replace exp(i{Bx, y)) by exp(i<B(x—y), x—y>). Then

the proof there works also for f, and f, with ¢ replaced by co= f exp

(i<By, yY)K(—y)A(»)dy. The contribution of F} is the same as before.
As for F2, we have only to work with —2B and exp(i{By, ¥>)f(y) in place
of B and £ (), respectively. This completes the proof.

REMARK 4.2. If B is symmetric, then [Theorem 4.1 implies
1.1.

REMARK 4.3. In the conclusion of [Theorem 1.1, one cannot replace
| Tf|* (x) by (Tf)*(x). Infact, consider the following one-dimensional case.

Let Tf (x)=p. v.fe“xy(x—y>‘lf(y)dy and set G,(x)=T (x (0,0)(¥)eXP

(—wy®)(x), A>0. Then, for A-l——}T<x<A+1—£, we have by easy calcula-

tion
o (A d 1 .2 (™ s s
— pix? —i(x-y)2 Y — zxzf —is_ Yo
Calx)=e Ae xX—y 2¢ (x—A)ze S
_Lez‘xZ ! dS

5 1/AZ—S—+ 9a(x),

where g,(x) is a uniformly bounded function as A—+oo. Now, if <A+

5 2 5\? . . c

71—+ b) _<A+7) + ¢, then b is asymptotically equal to 54 as A—+co.
2

Hence, if <A +%> =2knr (k: a large integer), then we get easily

(Re GA)“<A +%>>C log A,

which implies that for every » >1 there exists no C,>0 such that
(TH* O =CMf(x), xER, fECT(R).

Finally we mention that [Theorem 1.1 can be extended to the case of
more general singular integrals, that is, we have

THEOREM 4.4. Let V be an L*(R™)-bounded linear operator whose
distvibutional kernel K (x, y) satisfies |K (x, v)|SClx—y|™" and |VK (x, y)|<
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Clx—y|""'. Let {(Bx, y> be a real bilinear form and consider the oscillatory
singular integral operator T defined by

TF)=V(e™ f (@), fECTRY.
Then the conclusion of Theorvem 1.1 holds.

SKETCH OF THE PROOF. It is known that 7 is bounded on L™(R™,
1<7<oo, see [8,p.192]. It is also true that

(1 Tm) () () = PP P (7., V) (55 O (o) €50 ) ().

Since the distributional kernel of 7_,Vz, is K (x+h, y+h), we see from the

proof of [Theorem 1. 1 that
(THEO=CML(0),

where T,f =(7_,V7,) (& f(+)) and the constant C, is independent of
heR". Hence we obtain easily

(T = CM, (z4f ()€ ) (0) =C.M,f (h), hER™".

This completes the proof.
Note also that a similar result holds in [Theorem 4.1 for the above
kernels.
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