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A Bochner type theorem for compact groups*
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Introduction

Let G be a compact abelian group and T’y be a fixed subsemigroup of the
dual group I'=G of G. It is well known that in the case when G is the unit
circle S! and T'yv=Z, any complex Borel measure du on G with zero

2T
nonpositive Fourier-Stieltjes coefficients ¢_,= _A‘ emtdu(t), nEZ,, is abso-

lutely continuous with respect to the Haar (i.e. Lebesgue) measure do on
G=S'. This is exactly the famous F. and M. Riesz theorem for analytic
measures on the unit circle (e.g. [1]). In the sequel we shall use the follow-
ing

DEFINITION 1. A pair (G, K) of a compact abelian group G and a
subset K of its dual group I'= G is said to be a Riesz pair if every finite Borel

measure du orthogonal to K (i.e. fc x (®)du(x)=0 for any y€K) is abso-

lutely continuous with respect to the Haar measure do on G.

The F. and M. Riesz theorem says that (S!, Z,) is a Riesz pair. As
shown by S. Koshi and H. Yamaguchi in the case when I'UT''=T" and
ToNT5'={1} an analogue of F. and M. Riesz theorem for analytic measures
on a compact connected group G does not hold unless G=S" and I'h)=Z, (or
Z.). A theorem by 1. Glicksberg says that (S, T) is a Riesz pair for
any subsemigroup T’y of Z, such that I',—Ty=Z. Consequently any finite
complex Borel measure on S! that is orthogonal to such I'yC Z and is singular
with respect to the Haar measure on S' coincides with the zero measure on
S'.  On the other hand according to Bochner’s theorem (e.g. [1]) (T? K)
is a Riesz pair, where T2 is the two dimensional torus and K is the comple-
ment in Z2= T? of a plane angle less then 2z edged at the origin. Here we
extend Glicksberg’s theorem and give a general construction of Riesz pairs
that generalizes the Bochner’s one.

1. Low-complete subsets of partially ordered sets

Let G be a compact abelian group. If T is a subsemigroup of its dual
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group I'=G, such that [oUT§!'=T then I can be provided in a natural way
with a partial ordering (the so called I'y-ordering), namely, by defining that
a follows b (a>b) iff ab~'€Tl, a, b&T'. This ordering possesses the fol-
lowing properties : ac>bc whenever a>>b for any a, b, ¢ from I'; for every
a€T either a>1 or 1>a, where both conditions can be fulfilled simultaneous-
ly. If in addition I',NT5'={1} then the I'y-ordering is complete, i.e. a>b>
a implies always that a=54. As mentioned before if a 'y-ordering of =G is
complete, then (S', Z,) and (S, Z_) are the only Riesz pairs of type (G,
o).

DEFINITION 2[6]. Let Z be a partially ordered set and let Q be a subset
of Z. Q is said to be low-complete with respect to the given ordering in Z iff
for any subset Y CZ that is bounded from below by some element of Q there
exists in Q\ Y a greatest among all lower boundaries of Y.

EXAMPLE 1. Let Z=Z? is the standard Z-lattice in R? provided with
the partial ordering generated by the semigroup I'y=Z?={(n, m)EZ?: n=
0}. Here T'yNT3'={(0, n): n=Z}+ph. The set Q={(n, m): n=0, m=0)}
is low-complete with respect to the I'p-ordering in Z2. Indeed, let Y be a
subset of Z? that is bounded from below by some element (#,0) of Q. This
simply means that Y C{(n, m)&Z*: n=ny<0} and it is clear that in Q\Y
there exists a greatest low boundary for Y, namely the point (%, 0), where
m=max {n: (n,0)&Y}.

EXAMPLE 2. Let now Z=2Z? is provided with the partial ordering
generated by the semigroup I'y={(n, m)€Z?: m<,/2n}. Here N -T'v={0}
The set Q={(n, m)&Z?: n=<(, |m|<—n} is low-complete with respect to
the I'y-ordering in Z2. Indeed let Y be a subset of Z2 that is bounded from
below by some element (#y, mo) Q. This means that Y C{(n, m)eZ?:
mgﬁ(n—no)ero}, i.e. Y lies on the right hand side of the line A: y=
J/2(x—mn)+mo. If 2, is the rightest possible line parallel to A, so that ¥
lies on the right hand side of A,, then A,N{(x, y)ER?: x<0, |y|=—2x) is a
finite segment from A, and it is easy to see that there are points from Q\Y
that are closest to A,. That it will be only one closest to A; point in Q\Y

follows from the fact that the line y=,/2x contains only one point (namely
0) from Z2

EXAMPLE 3. In the previous example one can take @ to be any subset

of R? which intersections with every line parallel to y=42 x are bounded
segments and to define Q to be QN Z? or, equivalently, all the sets Q-
(n, m), where (n, m)eQ, to be finite.
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2. Main results

The next theorem is an extension of the mentioned at the beginning
Glicksberg’s theorem.

THEOREM 1. Let G be a compact abelian group, let Ty be a fixed
subsemigroup of the dual group T'= G of G, for which ToUT;'=T, ToNIG'=
{1} and let 3 be a nonempty subset of T\I'y that is low-complete with respect
to the Ty-ordering in T'. Then every finite complex Borel measure du on G
that is orthogonal to the set K =T\Z and is singular with respect to the Haar
measure do on G coincides with the zero measure on G.

PROOF. Assume that du+0. Then du is not orthogonal to I" by the
uniqueness theorem for Fourier-Stieltjes transforms. Let Y ={y&I':

'/(; x1(g)du(g) =0 for every x.>x}. Note that Y contains every x <[l that

follows some element of Y. Also Y contains the whole semigroup I',. On
the other hand Y is bounded from below by some element of = because in the
opposite case every element of ¥ will follow some element of ¥ and conse-
quently will belong to Y in contradiction with du £T". Since = is a low-
complete subset of T" there will exist in 3\ Y an element that is biggest among
all low boundaries of Y, say 6. Then we have d(To\{1}))C Y. To see this
assume d+x & Y for some y<To\{1}. Therefore there exists a x; T’y such

that /G 1(Dx(90(g@)du(g)+0. Thus yxd=3Z\Y because du is orthogonal

to I'\2 and because of the definition of Y. Since x,xd > xd, x1xd is not a low
boundary of Y. Consequently x,xd follows some element of ¥ and hence-
forth x;xd< Y by the definition of Y. But this is a contradiction. Hence

xo€ Y for every y€T\{1}, 1. e. STo\{1}C Y, wherefrom /;x ()0 (g)du(g)=

0 for every x=T0\{1}. Denote by dv the complex measure dv=ddu on G.
We have:

) /;x (@dv{g):[;x (g)d(g)du(g)=0

for every x&To\{1). Put di=ddu—do. Then [; 8(9)du(g)=0 by the

Helson-Lowdenslager theorem [6] because /; x(9)dv(g)=0 for each y €

o\{1} and dis=ddu. Thisimplies &Y. But thisisa contradiction. The
theorem is proved.
The next theorem generalizes Bochner’s theorem.
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THEOREM 2. Let G be a fixed compact abelian group, let E be a family
of subsemigroups {T'z}aey of its dual group T=G such that T,UT;'=T for
every a €N and let 6,ET';' for every acW. If the complement S=T\K of
the set K= 8.y is low-complete with respect to the Ty-ordering, generated

acy
by some semigroup Ty from E with ToNT'={1}, then every finite Bovel
measure on G that is orthogonal to K is absolutely continuous with respect to
the Haar measure do on G.
means simply that under above conditions (G, K) is a Riesz
pair.

PROOF.  Let du be a finite Borel measure on G that is orthogonal to the
set K. Then du L é6.I", for each =Y and thatswhy the measure dv,= 6,du
is orthogonal to the semigroup I', for each a=%. As shown by Yamaguchi
both absolutely continuous ((dv,),) and singular ((dv,)s) components
of the measure dv, with respect to do are orthogonal to Ty, i.e. (dv,), LT,
(Ave)sLTo If du=du,+du, is the Lebesgue decomposition of dy, then
dodus LT, since 6,dus= (0,du)s=(dv,)s LT,. Hence dus 1 6,T', for any a=Y
and consequently du, 1 K for K= d,I'». Now G, dus, S=T\K and T

acYU

satisfy the conditions of and thatswhy du,=0. Hence du = du,.
Q.E.D.

In the case when I',NT;!={1} is proved in[6]. Bochner’s
theorem and its #n-dimensional version for Borel measures on the #-
dimensional torus 7" is a simple corollary from Theorem 2. Actually we
can obtain the following :

COROLLARY 1. Let L be a closed convex set in R" that is contained
entirely in some half-space FE, of R™ with ANZ"={0}, where A is the
(n-1)-dimensional boundary of Fy and such that the intersections of L with
all (n-1)-dimensional spaces parallel to A are bounded. Then every finite
complex Borel measure on the n-dimensional torus T" with vanishing outside
L Fourier-Stieltjes coefficients is absolutely continuous with respect to the Haar
measure do on T".

PROOF.  As a closed convex set, L is an intersection of certain family
of closed half-spaces E,, ac¥, i.e. L= E,. Without loss of generality

acsU
we can assume that the boundary of E, contains some point (say Z,) from
Z" for every a and that E, belongs to this family. For semigroups I',=
(Ze—E.)NZ" we have: 0Ty, T'yN —T,={0} for each acY. For K=2"\
(—L) we get: K=—(Z"\L)=— (Z”\‘Qm E)= —aLEJm(Z”\E @)= —akEJWCZ”\
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(Ze—T))=U(Z"\I's—2,)). The set S=Z"\K=Z"NL is low complete
acsN

with respect to the I'y-ordering on I". Indeed, let Y be a bounded from below
subset of Z”. This means that Y C — Ey+ Z for some point Zi&Z". Let 2,
eZ"besuchthat YC—F+ 24, but YE—FE+Z, Z€Z", Z>2,. From the
hypotheses it follows that —(Ey+24) N Z" is a finite set and consequently,
since A NZ"={0}, there exists a unique elment Z=(Z"NL)\Y that is
closest to (1 +24)NL amongst all elements of Z”N L, A being the boundary
of E. It is clear that Z is the biggest amongst all low boundaries of Y
belonging to (Z"NL)\Y. The proof now terminates by applying
2.

COROLLARY 2. Let F be a real linear functional of 71({91 R and let L be
a closed convex set in néé R such that: (1) F(Z)=0 on L; (11) Ker FN
§£31 Z={0}; (i) the set Lﬂ{Zené;é1 Z . a=F(Z)} is finite for every positive
number a. Then (T, ( n@ Z)\L) is a Riesz pair.

EXAMPLE. Let {y.}%-: be a fixed sequence of linearly independent over

Z positive numbers and let ' be the linear functional on é R, defined as:

n=1

Fl, ...,%,..0)= i X, (note that at most finite many of x, are different
k=1

from 0). Clearly Ker F N élZ =(0,...,0,...) and thatswhy each of the sets

oo

{(Ze 6_91Z: F(Z)=a} contains at most one point from @ Z, « being a

n=1

positive number. Hence for any closed convex set L in {Z& G—_)l R: F(Z)=
0} theset LN{Z& Q_BlZ . F(Z)=a} is finite for each a« >0. Therefore (T,

(6“—;)1 Z)L) is a Riesz pair, according to [Corollary 2.

Note, that in the considered in general case when SCTI'\I', and the
sets (Z—x) NIy are finite for all y €3, the set = is low-complete with
respect to the given complete I'y-ordering of T'.
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