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On defect groups of interior G -algebras
and vertices of modules

Tadashi IKEDA
(Received July 15, 1989, Revised July 5, 1990)

Let G be a finite group and p is a prime number. Let \mathscr{O} be a com-
plete discrete valuation ring with unique maximal ideal (\pi) such that the
residue field k=\mathscr{O}/(\pi) is characteristic p. We assume that the field k is
algebraically closed. In (5), Green defines a defect group for a G-algebra
A(i. e. an \mathscr{O} algebra A endowed with a G-action on A as \mathscr{O} algebra
automorphism) such that A^{G} is local. After, in (8), Puig introduces the
concept of a source algebra of interior G algebra A(i. e. an \mathscr{O} algebra A
endowed with an unitary \mathscr{O} -algebra homomorphism \rho:\mathscr{O} [ G]arrow A) such
that A^{G} is local and proved that the algebra A and its source algebra are
Morita equivalent. The interior G algebra A is a G algebra by the conju-
gate G-action. A block B=\mathscr{O} [ G]e(e is a central primitive idempotent
of \mathscr{O} [ G]) of \mathscr{O} [ G] is an interior G-algebra by the projection \mathscr{O} [ G]arrow

B:x-xe such that B^{G} is local. Then a defect group of B in Green’s
sense equals a defect group for a block. See (5).

Let B be a block of \mathscr{O} [ G] with defect group D. In block theory, it
is well known that there exists an indecomposable \mathscr{O} [ G] -module V
belonging to the block B such that the vertex of the \mathscr{O} [ G] -module V
equals D , see (2) (57.10). Now we can also define “ belonging \mathscr{O} [ G]-
module ” for interior G-algebras just like for blocks. The purpose of this
paper is to extend this for interior G-algebras of some type using the the-
ory of source algebras. See theorem 3.5.

In this paper, we use the following notation. Whenever A, B and C

are sets and f : Aarrow B and g:Barrow C are maps, the composed map of

f and g is denoted by g\circ f. All \mathscr{O} algebras are \mathscr{O} -free \mathscr{O} -algebras of finite
rank with the unit element 1 and any \mathscr{O} -algebra homomorphism is an
unitary homomorphism. All modules over a \mathscr{O} algebra A are \mathscr{O} -free left
A -module of finite rank. Whenever M and N are A -modules, we denote
by N|M if the A -module N is isomorphic to a direct summand of the
A -module M. Whenever H and K are subgroups of G, the sets (G/H)
and (K\backslash G/H) are complete sets of representatives of left cosets gH and
double cosets KgH , respectively. Whenever V is an \mathscr{O}[G] -module and
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W is an \mathscr{O}[H] -module, we denote by {\rm Res}_{H}^{G}(V) and Ind_{H}^{G}(W) the
restricted module of V and the induced module of W respectively. We
denote by V^{H} the set of the fixed points of V under the action of H. We
employ the other usual terminology of the representation theory of finite
groups as in (2) and (4).

1. Interior G -algebras

In this section, we give some results for interior G-algebras, according
to Dade (3) and Watanabe’s lecture at Hokkaido University. Now A is
an interior G-algebra with an \mathscr{O} -algebra homomorphism \rho:\mathscr{O}[G] -arrow A .
Whenever A’ is other interior G-algebra with \mathscr{O} -algebra homomorphism
\rho’ : \mathscr{O}[G] -arrow A’ . an \mathscr{O} -algebra homomorphism \tau : A– A’ is a morphism
as interior G-algebra if \rho’=\tau\circ\rho , and the morphism \tau is isomorphism as
interior G-algebra if \tau is an \mathscr{O} -algebra isomorphism.

Whenever A is an interior G-algebra, we set

xa=\rho(x)a, ax=a\rho(x) and a^{x}=x^{-1}ax,

where x\in G and a\in A . Then by the action aarrow a^{x} . the \mathscr{O} -algebra A is
a G-algebra. Whenever H is a subgroup of G, we set

A^{H}= {a\in A:a^{x}=a for any x\in H },

and define the relative trace mapping Tr_{H}^{G} by

Tr_{H}^{G} : A^{H}arrow A^{G}a– \Sigma_{u\in[G/H]}a^{u^{-1}}

Then the image A_{H}^{G}=Tr_{H}^{G}(A^{H}) is a two sided ideal of A^{G} . See (5).

Whenever A^{o} is the opposite ring of A , the \mathscr{O} -algebra A^{o} is an interior
G-algebra by the homomorphism

\rho^{O} : \mathscr{O}[G]arrow A^{o}x-\rho(x^{-1}) .

Note that A^{H}=(A^{o})^{H} and A_{H}^{G}=(A^{o})_{H}^{G} .

1. 1. Whenever A is an interior G-algebra, let A [G] be a free A-
module generated by the elements of G. Then A[G] becomes a strongly
G-graded ring by the product

m . by=ab^{\chi-1}xy,

where m and by\in A [ G] .

EXAMPLE 1. 2. The group algebra \mathscr{O} [ G] is an interior G-algebra
through the identity mapping. Then we have an \mathscr{O} -algebra isomorphism
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\mathscr{O}[G][G] \simeq \mathscr{O}[G\cross G]

x\cdot y – (xy, y) ,

where x and y\in G. Therefore the \mathscr{O} -algebra homomorphism \rho introduces
an \mathscr{O} -algebra homomorphism

\mathscr{O}[G\cross G]arrow A [ G]
(x, y) -\rho(xy^{-1})y .

If \rho is an epimorphism, then the induced \mathscr{O} -algebra homomorphism is an
epimorphism.

1. 3. Whenever H is a subgroup of G, the interior G-algebra A is an
interior H-algebra through the restricted mapping \rho|_{H} , and we can define
a ring A[H] . Whenever M is an A[H] -module and End_{A}(M) is the
A -endomorphism ring of M , then End_{A}(M) is an interior H-algebra by
the group homomorphism

\rho_{M} : Harrow End_{A}(M)

x-\rho_{M}(x) ,

where

\rho_{M}(x) : Marrow M
m-\rho(x^{-1})x\cdot m .

Then we have

f^{*}(m)=x^{-1}f(xm) ,

where f\in End_{A}(M) , x\in H and m\in M. Note End_{A}(M)^{H}=End_{A[H]}(M) ,

and M is an indecomposable A[H] -module if and only if End_{A}(M)^{H} is
local. Therefore A[G] -modules have unique decomposition property.
See (4) Ch. 1 corollary 11.2.

1. 4. Let A be an interior G algebra, H a subgroup of G, M an
A[G] -module and N an A[H] -module. we denote by {\rm Res}_{H}^{G}(M) the
restricted A[H] -module of M and by Ind_{H}^{G}(N) the induced A[G] -module
A(G)\otimes_{A[H]}N.

1. 5. The symbol \otimes means the tensor product over A[H] in 1.5, 1.6
and 1.7. Whenever N is an A[H] -module, then

Ind_{H}^{G}(N)\simeq\oplus_{u\in(G/H)}\rho(u^{-1})u\otimes N,

as \mathscr{O} -module. Moreover we have
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a\rho(u^{-1})u\otimes n=\rho(u^{-1})u\otimes an

x\rho(u^{-1})u\otimes n=\rho((xu)^{-1})xu\otimes\rho(x)n,

where a\in A , x\in G and \rho(u^{-1})u\otimes n\in Ind_{H}^{G}(N) . In particular, the induced
module Ind_{H}^{G}(N) is isomorphic to |G:H|N as A-module.

Indeed, since \rho(u^{-1}) is an unit of A the first isomorphism is evident.
The second equality is followed from

a\rho(u^{-1})u\otimes n=\rho(u^{-1})\rho(u)a\rho(u^{-1})u\otimes n

=\rho(u^{-1})a^{u^{-1}}u\otimes n

=\rho(u^{-1})ua\otimes n

=\rho(u^{-1})u\otimes an .

The third equality is followed from

x\rho(u^{-1})u\otimes n=\rho(x)\rho((xu)^{-1})xu\otimes n

=\rho((xu)^{-1})xu\otimes\rho(x)n .

1. 6. Whenever H is a subgroup of G and N is an A[H] -module, N
is A[H^{\chi-1}] -module by

ah^{\chi-1}\cdot n=a^{x}h\cdot n,

where ah^{\chi-1}\in A[H^{\chi-1}] and n\in N . and we denote this A[H^{x- 1}] -module by
x\otimes N. Then by the similar argument for \mathscr{O} [ G] -module, we have Mackey
decomposition theorem for A [ G] -modules. See (4) Ch. 2 theorem 2.9.

1. 7. Whenever H and K are subgroups of G and N is a A[H]-
module then

{\rm Res}_{K}^{G}(Ind_{H}^{G}(N))\simeq\oplus_{u\in[K\backslash G/H]}Ind_{uHu^{-l}\cap K^{K}}({\rm Res}_{uHu^{-1}\cap k}^{yHu^{-1}}(u\otimes N)) ,

as A[K] -module.

1. 8. Whenever M is an A [ G] -module and H is a subgroup of G, we
call M is H-projective if there exists an A[H] -module N such that

M|Ind_{H}^{G}(N) .
Then Higmann’s criteria for relative projectivity is extended for A[G]-
modules similarly for \mathscr{O} [ G] -modules. See (4) Ch. 2 theorem 3.8.

1. 9. An A[G] -module M is H-projective if and only if

End_{A}(M)^{G}=End_{A}(M)_{H}^{G}

for the interior G-algebra End_{A}(M) . In particular, any A [ G] -module is
S-projective, where S is a p-Sylow subgroup of G.
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1. 10. By 1.7, we can }define a vertex for an indecomposable A[G]-
module. That is, whenever M is an indecomposable A[G] -module, the
minimal subgroups H satisfying M is H-projective are G-conjugate, and
we call this subgroups the vertex of M and denote by vtx_{G}(M) . then
ever P is a vertex of M , then there exists an indecomposable A[P] .

module such that
N|{\rm Res}_{P}^{G}(M) and vtxc (A)= P.

These A[P] -modules satisfying the above condition are N_{G}(P) -conjugate,
and we call this module source of M. Note that

M|Ind_{P}^{G}(N) .

By 1.9, the vertex is p-subgroup of G.

EXAMPLE 1. 11. Whenever A is an interior G-algebra such that A^{G}

is local, then the \mathscr{O} -algebra A is an indecomposable A[G] module by the
action

m . b=ab^{\chi-1}

where ax\in A [ G] and b\in A . We call the vertex vtx_{G}(A) a defect group of
A . But we have the following isomorphism as interior G-algebra

End_{A}(A) \simeq A^{o}

f –f(1) ,

and by 1.9, the definition of defect group in this paper is equivalent to the
definition of defect group in Green’s sense (5). Let D be a defect group
of A and a indecomposable A[D] module L a source of A . We call
source algebra of A the endomorphism ring End_{A}(L) . Since

L|{\rm Res}_{D}^{G}(A) ,

for the projection p_{L} of A to L , the element i=p_{L}(1) is a primitive
idempotent of A^{D} and

(iAi)^{o}\simeq End_{A}(L) ,

as \mathscr{O} -algebra. Thus the definition of source algebra is equivalent to the
definition of source algebra in Puig’s sense (8). Note that

L\simeq Ai ,

as A[D] module.
In (8), Puig prove that the module categories of A and B is Morita
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equivalent. We shall prove this using the above definitions and the follow-
ing lemma of (8).

1. 12. Whenever A and B are \mathscr{O} -algebras and i is an idempotent of
A . Assume that the \mathscr{O} -algebra iAi is isomorphic to B as \mathscr{O} -algebra and
A is directly embedded to the full matrix ring M_{n}(B) . Then we have
isomorphisms

Ai\otimes_{B}iA\simeq A as (A, A) -bimodule,
iA\otimes_{A} Ai\simeq B as (B, B) -bimodule.

THEOREM 1. 13. (Puig) Let A be an interior G-algebra such that A^{G}

is local and B=iAi a source algebra of A. Then the module categories of
A and B are Morita equivalent by

M-iA\otimes_{A}M and N-Ai\otimes_{B}N,

where M is an A -module and N is a B-module.

PROOF. Let D be a defect group of A . By 1.11, the \mathscr{O}-algebra A is
an indecomposable A [ G] -module and we set L a source of A . Then L is
an indecomposable A [ G] -module and

A|Ind_{D}^{G}(L)

and

B^{o}\simeq End_{A}(L) .

This implies that the endomorphism ring End_{A}(A) is directly embedded to
End_{A}(Ind_{D}^{G}(L)) . By 1.5,

Ind_{D}^{G}(L)\simeq|G:D|L,

as A -module, and this implies A is directly embedded to the full matrix
ring M_{|G}D|(B) . Thus the \mathscr{O} -algebras A and B satisfy the condition of 1.
12. Therefore By (2) (3.54), the module categories of A and B are Mor-
ita equivalent through the above correspondence.

1. 14. By 1.2 and 1.11, for the A[G] -module A the \mathscr{O} -algebra A is
\mathscr{O} [ G\cross G] -module through the \mathscr{O} -algebra homomorphism

\mathscr{O}[G\cross G]arrow A[G]

in 1.2. Then the action of G\cross G on A is
(x, y)\cdot a=\rho(x)a\rho(y^{-1}) ,
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where (x, y)\in G\cross G and a\in A . Note that \mathscr{O} [ G\cross G] -module A is in-
decomposable if \rho is an epimorphism.

1. 15. Whenever M , is an A[G] -module, thin by 1.3, the A-
endomorphism ring End_{A}(M) is an interior G algebra, and End_{A}(M) is
\mathscr{O}[G\cross G] -module. Whenever M’ is an A(G) -module such that M’ is a
direct summand of M , then \mathscr{O}[G\cross G] -module End_{A}(M’) is a direct sum-
mand of End/i(M) .

Indeed, whenever f : Marrow M’ is the projection, we have

End_{A}(M’)\simeq fEnd_{A}(M)f ,

as interior G-algebra. But it is obvious that

fEnd_{A}(M)f|End_{A}(M) ,

as \mathscr{O} [ G\cross G] -module, and proved.
Whenever H is a subgroup and N an A[H] -module, similarly the

endomorphism rings End_{A}(N) and End_{A}(Ind_{H}^{G}(N)) become \mathscr{O}[H\cross H] -

module and \mathscr{O}[G\cross G] -module. Then we have the following lemma.

1. 16. Whenever N is an A[H] -module, we have
Ind_{H\cross H}^{G\cross G}(End_{A}(N))\simeq End_{A}(Ind_{H}^{G}(S)) ,

as \mathscr{O} [G\cross G] -module.
Indeed, by 1.5, we have

Ind_{H}^{G}(N)\simeq\oplus_{u\in[G/H]}\rho(u^{-1})u\otimes_{H}N.

Whenever s, t\in G and h\in End_{A}(N) , we define the mapping
f_{ts}\otimes h : Ind_{H}^{G}(N) -arrow Ind_{H}^{G}(N) by

f_{ts}\otimes h:\rho(u^{-1})u\otimes_{H}n

-\{ \rho(t^{-1})t\otimes_{H}h(\rho((su)^{-1})su\cdot n) if su\in H,

0 otherwies.

The mapping f_{ts}\otimes h is in End_{A}(Ind_{H}^{G}(N)) . Then the following map-
ring

Ind_{H\cross H}^{G\cross G}(End_{A}(N)) – End_{A}(Ind_{H}^{G}(N)) ,
(t, s)\otimes h – f_{ts^{-1}}\otimes_{H\cross H}h

introduces an \mathscr{O} [ G\cross G] -module isomorphism.

2. Source algebras and source of modules

In this section, we define \mathscr{O} [ G] -modules belonging to interior G-
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algebras and show that the source of a module belonging to an interior
G algebra can be introduced from a module belonging to its source alge-
bra.

Let A be an interior G algebra with \mathscr{O} -homomorphism \rho satisfying
the subalgebra A^{G} is local. Let D be a defect group of A and B=iAi is
source algebra, where i is a primitive idempotent of A^{D} . We define an

\mathscr{O} -algebra homomorphism \rho_{i} by

\rho_{i} : \mathscr{O}[D]arrow B, X-\rho(x)i.

Then B is an interior D-algebra through \rho_{i} .
Whenever M is an A -module, then M is an \mathscr{O} [ G] -module through \rho .

Similarly, any B-module N is an \mathscr{O}[D] -module through \rho_{i} .

2. 1. Let V be an indecomposable \mathscr{O} [ G] -module. We call the
\mathscr{O} [ G] -module V is belonging to A if there exists an A -module M such
that

V|M ,

as \mathscr{O} [ G] -module The \mathscr{O} -endomorphism ring End(M) is an interior G-
algebra by the representation afforded by the \mathscr{O}[G] -module M , and the
representation Aarrow End(M) afforded by the A -module M is a morphism
as interior G-algebra. Therefore since D is a defect group of A the
\mathscr{O} [ G] -module M is D-projective, and an indecomposable \mathscr{O}[G] -module
V belonging to A is D-projective. Of course, for block algebra this
definition of “ belonging ” is equivalent to one of block theory.

In this case, we obtain the following propositions.

PROPOSITION 2. 2. Whenever N is a B-module and U is an in-
decomposable \mathscr{O}[D] -module such that U is an indecomposable direct sum-
mand of N as \mathscr{O}[D] -module satisfying

vtx_{D} ( U)=D.

Then the A -module Ai\otimes_{B}N has indecomposable direct summand V as
\mathscr{O} [ G] -module satisfying

vtx_{G}( V)=D

and U is a source of V.

PROOF. Let M=Ai\otimes_{B}N. Then because i is primitive idempotent
of A^{D}\wedge we have

iM|{\rm Res}_{D}^{G}(M) ,
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as \mathscr{O}[D] -module. But by theorem 1.13,

iM\simeq N ,

as B-module and so we have

U|iM ,

as \mathscr{O}[D] -module. Therefore there exists an indecomposable direct sum-
mand V of M as \mathscr{O} [ G] -module such that

U|{\rm Res}_{D}^{G}(V) .

Since vtx_{D}(U)=D the vertex of the indecomposable \mathscr{O} [ G] -module equals
D and U is a source of V.

PROPOSITION 2. 3. Whenever M is an A -module and V is an in-
decomposable \mathscr{O} [ G] -module such that V is an indecomposable direct sum-
mand of M as \mathscr{O} [ G] -module satisfying

vtx_{G}( U)=D.

Then the B-module iM has indecomposable direct summand U as \mathscr{O}[D] -

module satisfying

vtx_{D}( U)=D

and U is a source of V.

PROOF. Let

{\rm Res}_{D}^{G}(A)=Ai_{1}\oplus Ai_{2}\oplus\cdots\oplus Ai_{r}\oplus Aj_{1}\oplus Aj_{2}\oplus\cdots Aj_{s}

be an indecomposable decomposition as A[D] -module where i_{1} , i_{2} , \cdots i_{r}

and j_{1} , j_{2} , \cdots j_{s} are primitive idempotent of A^{D} Assume that the vertices
of the indecomposable A[D] -modules Ai_{1} , Ai2, \cdots-Ai_{r} are D(i. e .
sources of indecomposable A[G] -module A), and the vertices of the in-
decomposable A[D] -modules Aj_{1} , Aj_{2} , \cdots jAj_{s} are proper subgroups of D.

Then we have the following decomposition

{\rm Res}_{D}^{G}(M)=i_{1}M\oplus i_{2}M\oplus\cdots\oplus i_{r}M\oplus j_{1}M\oplus j_{2}M\oplus\cdots j_{s}M ,

as \mathscr{O}[D] -module. But whenever U_{1} is a source of indecomposable
\mathscr{O}[G] -module Vr there exists an idempotent h in ( i_{1}, i_{2} , \cdots . i_{r} , j_{1} , j_{2} , \cdots

j_{s}) such that

U_{1}|hM ,

because
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V|M ,

as \mathscr{O}[G] -module.
We claim h=i_{h} for some k. Indeed, if h=j_{m} for some m , then

U_{1}|j_{m}M.

But j_{m}M is a j_{m}Aj_{m} -module and interior D-algebra j_{m}Aj_{m} has defect group
smaller than D by assumption. Thus 2.1 implies that the vertex of the
indecomposable \mathscr{O}[D] -module U_{1} is smaller than D , and this is contradic-
tion.

Since Ai_{k} is source of A there exists x\in N_{G}(D) such that i_{k}=i^{x} . So
we have

(U_{1})^{\chi-1}|iM.

We set U=(U_{1})^{\chi-1} then the indecomposable \mathscr{O}[D] -module U is a source
of V. and proved the proposition.

By proposition 2.2 and 2.3, the following corollary is immediate.

COROLLARY 2. 4. There exists an indecomposable \mathscr{O}[ G] -module V

belonging to A such that vtx_{G}(V)=D if and only if there exists an in-
decomposable \mathscr{O}[D] -modulc U belonging to B such that vtxo(U)= D.

3. Defect groups and vertices

In this section, A is an interior G algebra with an epimorphism
\rho:\mathscr{O}[G] -arrow A such that A^{G} is local. We call this interior G-algebra A

and epimorphic interior G algebra. Let D is a defect group of A and B=
iAi is a source algebra of A , where i\in A^{D} is a primitive idempotent. By
1.14, the \mathscr{O} [ G\cross G] -module A is indecomposable.

3. 1. We have
B|{\rm Res}_{D\cross D}^{G\cross G}(A) and A|Ind_{D\cross D}^{G\cross G}(B) .

In particular, whenever L is a source of the indecomposable \mathscr{O}[-G\cross G] -

module, there exists an indecomposable direct summand B’ of the
\mathscr{O}[D\cross D] -module B such that

XtXGxc CA)=VtXDxo CBO

and L is a source of B’
Indeed, the definition implies that

Ai|{\rm Res}_{D}^{G}(A) as A[D] -module,
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and

A|Ind_{D}^{G}(Ai) as A [ G] -module.

So by 1.15, we have

End_{A}(Ai)|End_{A}(A) as \mathscr{O} [ G\cross G] -module

and

End_{A}(A)|End_{A}(Ind_{D}^{G}(Ai) as \mathscr{O} [ G\cross G] -module.

But End A(A)\simeq A\circ as \mathscr{O} [ G\cross G] -module End a(Ai)\simeq(iAi)^{o}\simeq B\circ as
\mathscr{O}[D\cross D] -module and by 1.15

lnd_{D\cross D}^{G\cross G}(End_{a}(Ai))\simeq End_{a}(Ind_{D}^{G}(Ai)) ,

as \mathscr{O} [ G\cross G] -module. Thus we have
B|{\rm Res}_{D\cross D}^{G\cross G}(A) and A|Ind_{D\cross D}^{G\cross G}(B) .

The second statement is introduced from the first part.

The following is prove in (6) and (7).

3. 2. We set

\Delta D=\{(d, d)\in D\cross D : d\in D\} .
Then we have

\Delta D\leqq vtx_{G\cross G}(A)\leqq D\cross D.
\acute{M}oreover,

vtx_{G\cross G}(A)=(\langle 1\rangle\cross Q)\cdot\Delta D ,

where Q=\{d\in D:(1, d)\in vtx_{G\cross G}(A)\} is a normal subgroup of D.

3. 3. Whenever V is an \mathscr{O} [G\cross G] -module and
V^{<1>\cross G}= { v\in V : (1, x) v=v for any x\in G},

then V^{<1>\cross G} is an \mathscr{O} [ G\cross G] -submodule of V. Note that

(x, 1) v=(x, x)v ,

where v\in V^{<1>\cross G} and x\in G.
The following lemma is (4) ch . 2 lemma 3.4.

3. 4. Whenever H is a subgroup of G and W is an \mathscr{O}[H] -module.
Then we have
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(Ind_{H}^{G}(W))^{G}=\{\Sigma_{u\in[G/H]}u\otimes w : w\in W^{H}\} .

In particular,

(Ind_{H}^{G}(W))^{G}\simeq W^{H} ,

as \mathscr{O} -module.
The following is the main result of this paper.

THEOREM 3. 5. Whenever A is an epimorphic interior G-algebra such
that A^{G} is local and D is a defect group of A. Let R=(\langle 1\rangle\cross Q)\cdot\Delta D be
a vertex of indecomposable \mathscr{O} [ G\cross G] -module A and L its source. Assume
that the \mathscr{O}[\Delta D] -module L^{<1>\cross Q} has an indecomposable direct summand
whose vertex equals AD. Then there exists an indecomposable \mathscr{O} [ G] .

module V belonging to A such that the vertex of V equals D.

PROOF. Let B=iAi ( i\in A^{D} : primitive idempotent) be a source alge-
bra of A . Then B is an interior D-algebra with vertex D. By corollary
2.4, we may prove that there exists an indecomposable \mathscr{O}[D] -module W

belonging to B such that vtx_{D}( W)=D.
The \mathscr{O} -module B^{<1>\cross D} becomes a left B-module, so becomes \mathscr{O}[D] .

module. We shall prove that there exists an indecomposable direct sum-
mand W of the \mathscr{O}[D] -module B such that the vertex of W is D.

By 3.1, there exists an indecomposable direct summand B’ of
\mathscr{O}[D\cross D] -module B such that

vtx_{D\cross D}(B’)=R

and L is a source of B’ Because the residue field k is an algebraically
close field and D is a p-subgroup of G , the Green’s indecomposablity the0-
rem ((4) ch. 3 Theorem 3.8) implies

B’\simeq Ind_{R}^{D\cross D}(L) .

So by Mackey decomposition theorem, we have
{\rm Res}_{<1>\cross D}^{D\cross D}(Ind_{R}^{D\cross D}(L))\simeq Ind_{<1>\cross Q}^{<1>\cross D}({\rm Res}_{<1>\cross Q}^{R}(L)) .

But 3.4 implies that

(Ind< 1>\cross D1>\cross Q({\rm Res}_{<1>\cross Q}^{R}(L)))^{<1>\cross D}\simeq L^{<1>\cross Q},

as \mathscr{O} -module by

\sum_{u\in[D/Q]}(1, u)\otimes 1rightarrow 1 ,

where 1\in L^{<1>\cross Q} . It is easily checked that this \mathscr{O} -module isomorphism is
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an \mathscr{O}[\Delta D] -module isomorphism. Thus we obtain
{\rm Res}_{\Delta D}^{D\cross D}(B^{\prime<1>\cross D})\simeq{\rm Res}_{\Delta D}^{R}(L^{<1>\cross Q}) ,

as \mathscr{O}[\Delta D] -module. By assumption, the \mathscr{O}[\Delta D] -module {\rm Res}_{\Delta D}^{R}(L^{<1>\cross Q})

has an indecomposable direct summand whose vertex is AD , and so the
\mathscr{O}[\Delta D] -module {\rm Res}_{\Delta D}^{D\cross D}(B^{\prime<1>\cross D}) has indecomposable direct summand
whose vertex is \Delta D. Note that

(d, 1) b=(d, d)b ,

where b\in B’ and d\in D. Thus the \mathscr{O}[D\cross\langle 1\rangle] -module B^{\prime<1>\cross D} has in-
decomposable direct summand W whose vertex is D\cross\langle 1\rangle . W can be an
indecomposable \mathscr{O}[D] -module whose vertex is D by

dw=(d, 1)w ,

where w\in W and d\in D. Then the indecomposable \mathscr{O}[D] -module W is
an indecomposable direct summand of the \mathscr{O}[D] -module B^{<1>\cross D} . because

B’|B ,

as \mathscr{O}[D\cross D] -module
Therefore there exists B-module B^{<1>\cross D} such that

W|B^{<1>\cross D} .

as \mathscr{O}[D] -module and vtx_{D} ( W)=D , and proved theorem.

COROLLARY 3.6. Under the notation of theorem 3.5, if \mathscr{O} -rank of
the source L is not larger than p and the \mathscr{O} -submodule L^{<1>\cross Q} is not {0},
there exists an indecomposable \mathscr{O} [ G] -module V belonging to A such that
the vertex of V equals D.

PROOF. There occur two cases. If the \mathscr{O} -rank of \mathscr{O}[\Delta D] -module
L^{<1>\cross Q} is smaller than p , any indecomposable direct summand of \mathscr{O}[\Delta D] .

module L^{<1>\cross Q} has vertex AD. So the assumption of theorem 3.5 is hold.
If the \mathscr{O} -rank of \mathscr{O}[\Delta D] -module L^{<1>\cross Q} equals p , then we have

L^{<1>\cross Q}=L .

But L is an indecomposable \mathscr{O}[R] -module and R/(\langle 1\rangle\cross Q)\simeq\Delta D. So L
becomes \mathscr{O}[\Delta D] -module and this module is isomorphic to the restriction
of L to AD. Therefore the \mathscr{O}[\Delta D] -module L^{<1>\cross Q}(=L) is indecomposa-
ble. Since the vertex of the indecomposable \mathscr{O}[R] -module L is R , the
vertex of the indecomposable \mathscr{O}[\Delta D] -module L^{<1>\cross Q} is \Delta D.
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