The configurations of the M-curves of degree (4, 4) in $R P^{1} \times R P^{1}$ and periods of real $K 3$ surfaces

Dedicated to Professor Haruo Suzuki on his 60th birthday Sachiko Matsuoka
(Received August 4, 1989)

Abstract

For M-curves of degree (4, 4) in $\boldsymbol{R} P^{1} \times \boldsymbol{R} P^{1}$ whose components are all contractible, it is known that three configuration types are possible. We prove that all these configuration types are realized by some M-curves of degree (4,4) by means of the existence of locally universal families of real $K 3$ surfaces and the local surjectivity of period mappings defined over those families.

0 . Introduction.

We consider the zero set $\boldsymbol{R} A$ of a real homogeneous polynomial F $(\neq 0)$ of degree (d, r) in $\boldsymbol{R} P^{1} \times \boldsymbol{R} P^{1}$, where d and r are integers (≥ 1). We assume that the zero set A of F in $\boldsymbol{C} P^{1} \times \boldsymbol{C} P^{1}$ is nonsingular. (In what follows, we write $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ for $\boldsymbol{C} P^{1} \times \boldsymbol{C} P^{1}$.) Then A is a connected complex 1 -dimensional manifold. But $\boldsymbol{R} A$ is a possibly disconnected real 1 dimensional manifold (a disjoint union of finitely many copies of S^{1}) or the empty set. It is known that the number of the connected components of $\boldsymbol{R A}$ does not exceed $(d-1)(r-1)+1$ (see [5]). We remark that the number $(d-1)(r-1)$ is the genus of the nonsingular curve A. We say $\boldsymbol{R} A$ is an M-curve of degree (d, r) if it has precisely $(d-1)(r-1)+1$ connected components.

In this paper we make clear the "configurations" of the M-curves of degree (4, 4) in $\boldsymbol{R} P^{1} \times \boldsymbol{R} P^{1}$, where we consider only the curves whose components (embedded S^{1}) are all contractible in $\boldsymbol{R} P^{1} \times \boldsymbol{R} P^{1}$. We define the meaning of the "configurations" as follows. In our cases, each component of $\boldsymbol{R} A$, which is called an oval, divides $\boldsymbol{R} P^{1} \times \boldsymbol{R} P^{1}$ into two connected components. One of those is homeomorphic to an open disk and called the interior of the oval. The other is called the exterior of that. As a consequence of [5], every M-curve of degree (4,4) lies in one of the following three cases (cf. Figure 1).
(1) Each of certain 9 ovals lies in the exteriors of the others, and the interior of one of those contains one oval. (Notation: $\frac{1}{1} 8$)
(2) Each of certain 5 ovals lies in the exteriors of the others, and the interior of one of those contains 5 ovals. Each of the latter 5 ovals lies in the exteriors of the others. (Notation: $\frac{5}{1} 4$)
(3) An oval contains 9 ovals in its interior and each of the 9 ovals lies in the exteriors of the others. (Notation: $\frac{9}{1}$)

Figure 1.
We call the above three cases the configurations of types $\frac{1}{1} 8, \frac{5}{1} 4$, and $\frac{9}{1}$ respectively. We can easily construct curves of degree $(4,4)$ of configuration type $\frac{1}{1} 8$ by the "Harnack's method", which is well known in the studies of Hilbert's 16th problem (see [2]). Here we omit the statement of this method. In this paper we prove that there exist curves of degree $(4,4)$ of configuration types $\frac{5}{1} 4$ and $\frac{9}{1}$ Corollary 8 in $\S 4$). For this, it is sufficient to show the existence of 2 -sheeted coverings (for the definition, see [11]) Y of $\boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{\mathbf{1}}$ branched along nonsingular real curves of degree (4,4) whose real parts (see below) are homeomorphic to $\Sigma_{6} \amalg 5 S^{2}$ and $\Sigma_{2} \amalg 9 S^{2}$ respectively (see [5, §3]), where Σ_{g} denotes a sphere with g handles and $k S^{2}$ denotes the disjoint union of k copies of S^{2}. Notice that the complex conjugation of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ is lifted into two antiholomorphic involutions T^{+}and T^{-}on Y. In the above statement, we call fixed point sets of these involutions real parts of Y.

It is well known that every 2 -sheeted covering Y of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ branched along a nonsingular curve of degree $(4,4)$ is a $K 3$ surface. The topological types of real parts of real projective $K 3$ surfaces are inves-
tigated in Nikulin [8]. Let h be the homology class of the preimage in Y of a hyperplane section of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}\left(\subset \boldsymbol{P}^{3}\right)$. Then h is primitive (for the definition, see [8]) in $H_{2}(Y, \boldsymbol{Z})$ and we have $h^{2}=4$. Hence the triple ($H_{2}(Y), T^{ \pm}, h$) is a polarized integral involution (see [8]) with invariants $\delta_{L}=0, l_{(+)}=3, l_{(-)}=19, n=4, t_{(+)}=1$ and $t_{(-)}$(for the notations, see [8]). Since we assume that $\boldsymbol{R} A$ is an M-curve whose components are all contractible in $\boldsymbol{R} P^{1} \times \boldsymbol{R} P^{1}$, we moreover have $a=0$ (see also [8]) for either T^{+}or T^{-}because of a consequence of [5, § 3]. Hence, by [8, Theorem 3.10.6], the real part of Y with respect to T^{+}or T^{-}is homeomorphic to $\Sigma_{g} \amalg k S^{2}$, where $g=\left(21-t_{(-)}\right) / 2$ and $k=\left(1+t_{(-)}\right) / 2$. Furthermore, by [8, Theorem 3.4.3], a polarized integral involution with the above invariants exists if and only if $t_{-)}=1,9$ or 17. By [8, Theorem 3.10.1], the isomorphism classes of polarized integral involutions with the above invariants are in bijective correspondence with the coarse projective equivalence classes (see $\left[8, \S 3,10^{\circ}\right]$) of real projective $K 3$ surfaces for which homology classes h of hyperplane sections (or those preimages) are primitive and $h^{2}=4$. Therefore, we see that there exist real projective $K 3$ surfaces with $h^{2}=4$ (h : primitive) whose real parts are homeomorphic to $\Sigma_{6} \amalg 5 S^{2}$ or $\Sigma_{2} \amalg 9 S^{2}$. But these $K 3$ surfaces are not necessarily 2 -sheeted coverings of $\boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{\mathbf{1}}$ branched along nonsingular real curves of degree (4, 4). We must make a closer investigation of [8, Theorem 3.10.1].

We first prepare a sufficient condition for $K 3$ surfaces (not necessarily algebraic) with antiholomorphic involutions, which are called real $K 3$ surfaces, to be 2 -sheeted coverings of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ branched along nonsingular real curves of degree (4,4) Lemma 2 in §2). In [3] it is proved that for every real $K 3$ surface, there exists an "equivariant" locally universal Kähler family of its complex structures (Lemma (Kharlamov) in §1). For the real projective $K 3$ surfaces (X, t) with $h^{2}=4$ (h : primitive) whose real parts are homeomorphic to $\Sigma_{6} \amalg 5 S^{2}$ or $\Sigma_{2} \amalg 9 S^{2}$ stated above, $L_{\varphi}=\operatorname{Ker}\left(1+t^{*}\right)$ are isomorphic to $U \oplus U \oplus\left(-E_{8}\right)$ and $U \oplus U$ respectively (see [8]), where U and E_{8} are even unimodular lattices with $\operatorname{rank} U=2$, $\operatorname{sign} U=0$, and $\operatorname{rank} E_{8}=\operatorname{sign} E_{8}=8$. We show that if for a real $K 3$ surface (X, t), L_{φ} has $U \oplus U$ as its sublattice, then there exist real $K 3$ surfaces which satisfy the conditions of Lemma 2 arbitrarily closely to the surface (X, t) in the equivariant family stated above (the proof of Theorem 6 in §4). Before this, we prepare Lemma 3 and its Corollary 4, which are finer versions of Tjurina's lemma concerning integer vector sequences ([10, Chap. IX, §5]).

The author would like to thank Professors I. Nakamura, M.-H. Saito and Y. Umezu for their kind and great help to prove Lemma 1, Professor
G. Ishikawa for indicating a gap in the original proof of Theorem 6, and Professors H. Suzuki and S. Izumiya for their constant encouragement.

1. Real $K 3$ surfaces and equivariant families of their complex structures.

We say a compact connected Kähler surface X is a $K 3$ surface if the first Betti number of X vanishes and there exists a nowhere vanishing holomorphic 2 -form ω_{X} on X. The following are known (cf. [10, Chap. [X]).
(1) $H^{2}(X, \boldsymbol{Z})$ is free of rank 22.
(2) The intersection form $H^{2}(X, \boldsymbol{Z}) \times H^{2}(X, \boldsymbol{Z}) \rightarrow \boldsymbol{Z}$ is isomorphic to $U \oplus U \oplus U \oplus\left(-E_{8}\right) \oplus\left(-E_{8}\right)$.
(3) $\omega_{X} \wedge \omega_{X}=0, \omega_{X} \wedge \bar{\omega}_{X}>0, \operatorname{dim}_{C} H^{0}\left(X, \Omega^{2}\right)=1$. We set

$$
\operatorname{Pic} X=\left(\omega_{X}\right)^{\perp} \cap H^{2}(X, \boldsymbol{Z})=H^{1,1}(X) \cap H^{2}(X, \boldsymbol{Z})
$$

Since $h^{1}\left(X, \mathcal{O}_{X}\right)=\frac{1}{2} b_{1}(X)=0$, we can regard $\operatorname{Pic} X$ as the group of isomorphism classes of complex line bundles on X. We denote by $Q($, the intersection form of X. We set $P(X, \boldsymbol{C})=\boldsymbol{P}\left(H^{2}(X, \boldsymbol{C})\right)$ and $K_{20}=$ $\{\lambda \in P(X, \boldsymbol{C}) \mid Q(\lambda, \lambda)=0\}$. Then we see that $H^{2,0}(X)=\left[\omega_{X}\right]$ is contained in K_{20}.
(4) There exists an effectively parametrized and locally universal family (V, M, π) of complex structures of X, where M is complex 20dimensional. Here, by a family (V, M, π) of complex structures of X, we mean a C^{∞}-fibre bundle $\pi: V \rightarrow M$ with the fibre X, where V and M are connected complex manifolds, π is a holomorphic map onto M.
(5) For every family (V, M, π) of complex structures of a $K 3$ surface $X=\pi^{-1}(m)$, there exists a contractible neighborhood U such that for any $\alpha \in U, V(\alpha)=\pi^{-1}(\alpha)$ are $K 3$ surfaces and $\left(\pi^{-1}(U), U, \pi\right)$ is a C^{∞}. trivial bundle. Let $i_{\alpha}: V(\alpha) \rightarrow \pi^{-1}(U)$ be the inclusion map. Then i_{α}^{*} : $H^{2}\left(\pi^{-1}(U), \boldsymbol{Z}\right) \rightarrow H^{2}(V(\alpha), \boldsymbol{Z})$ is an isomorphism. We define $\tau: U \rightarrow$ $P(X, \boldsymbol{C})$ by $\tau(\alpha)=i_{m}^{*} \circ i_{\alpha}^{*-1}\left(H^{2,0}(V(\alpha))\right)$. This is called the period mapping. From [10, Chap. IX, Theorem 2], if (V, M, π) is effectively parametrized, then τ is a holomorphic embedding on a neighbourhood U^{\prime} of m in U.

Furthermore, Kharlamov [3] shows the following.
Lemma (Kharlamov [3]). Let (X, t) be a real $K 3$ surface, namely, X is a K3 surface and t is an antiholomorphic involution on it. Then there exist a locally universal family (V, M, π) of complex structures of X
and antiholomorphic involutions t_{V} on V and t_{M} on M which satisfy the following conditions.
(i) Each fibre $V(\alpha)$ is a K3 surface and $V(m)=X$.
(ii) M is contractible, and (V, M, π) is a C^{∞}-trivial bundle.
(iii) τ (see (5) above) is a holomorphic embedding on M and $\tau(M)$ is a neighborhood of $\tau(m)$ in K_{20}.
(iv) $\left.t_{V}\right|_{X}=t, \pi \circ t_{V}=t_{M} \circ \pi, \tau \circ t_{M}=\overline{t^{*} \circ \tau}$, where is the natural complex conjugation on $P(X, \boldsymbol{C})$.

REMARK. We can restrict t_{V} on $V(\alpha)$ for any $\alpha \in \mathrm{Fix} t_{M}$. We set $t_{\alpha}=\left.t_{V}\right|_{V(\alpha)}$. Then $\left(V(\alpha), t_{\alpha}\right)$ are real $K 3$ surfaces.

2. A sufficient condition for real $K 3$ sufaces to be 2 -sheeted coverings of $P^{1} \times P^{1}$ branched along real curves of degree $(4,4)$.

We prepare the following lemmas in order to catch 2 -sheeted coverings (in the sense of $[11, \S 1]$) of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ branched along (real) curves in the family of (real) $K 3$ surfaces given in $\S 1$.

Lemma 1. Let X be a $K 3$ surface with rank $\operatorname{Pic} X=2$. If there exist primitive elements c_{1} and c_{2} in $\operatorname{Pic} X$ such that $c_{1}^{2}=c_{2}^{2}=0$ and $c_{1} \cdot c_{2}=2$, then X can be a 2 -sheeted branched covering of $\boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{1}$, and the branch locus is a nonsingular curve of degree (4,4).

Proof. We choose an element b such that b and c_{1} generate the free Z-module $\operatorname{Pic} X$. Then $c_{2}=m c_{1}+n b$ for some integers m and n. Since $2=c_{1} \cdot c_{2}=n\left(c_{1} \cdot b\right)$, we have $n= \pm 1$ or ± 2. We show that $D^{2} \geq 0$ for any irreducible curve D on the surface X. In case $n= \pm 1$, we have $\operatorname{Pic} X=$ $\boldsymbol{Z}\left(c_{1}, c_{2}\right)$. Let D be an irreducible curve on X and $[D]$ be the linearly equivalence class of the divisor D. Then $[D]=k c_{1}+l c_{2}$ for some integers k and l, and we have $D^{2}=4 k l$. Since $D^{2} \geq-2$, we have $D^{2} \geq 0$. In case $n= \pm 2$, since c_{2} is primitive, we see that m is odd. Since $(2 b)^{2}=\left(\pm c_{2}\right.$ $\left.\mp m c_{1}\right)^{2}=-4 m$, we have $b^{2}=-m$. Let D be an irreduible curve on X. Then we have $[D]=k c_{1}+l b$ for some integers k and l. Since $D^{2}=k^{2} c_{1}^{2}+$ $2 k l c_{1} \cdot b+l^{2} b^{2}= \pm 2 k l-l^{2} m$ and D^{2} is even, we see that l is even. Hence [D] is contained in $\boldsymbol{Z}\left(c_{1}, c_{2}\right)$. Therefore we see that $D^{2} \geq 0$ as in the case $n= \pm 1$.

Now let $F_{i}(i=1,2)$ be a complex line bundle whose first Chern class is c_{i}. By the Riemann-Roch theorem, $h^{0}\left(F_{i}\right)+h^{0}\left(-F_{i}\right) \geq 2$. Since F_{i} is not trivial, we may assume that $h^{0}\left(-F_{i}\right)=0$ and $h^{0}\left(F_{i}\right) \geq 2$ replacing c_{i} by $-c_{i}$ if necessary. We will verify that $c_{1} \cdot c_{2}=2$ later on. Let C_{i} be the divisor of a global holomorphic section of F_{i} on X. We show that the
complete linear system $\left|C_{i}\right|$ has no fixed components. If Γ is the fixed part of $\left|C_{i}\right|$, and D is an irreducible component of Γ, then we choose an effective divisor E such that $\Gamma+E$ is a member of $\left|C_{i}\right|$. We may assume that all irreducible components of E are distinct from D. In our cases, since $D^{2} \geq 0$, we have $\operatorname{dim}|D| \geq 1$ by the Riemann-Roch theorem. Hence D is movable. This contradicts the assumption that Γ is the fixed part. Hence $\left|C_{i}\right|$ has no fixed components. Therefore, by [6, Proposition 1 ii)], each element of $\left|C_{1}\right|$ can be written as $E_{1}+\cdots+E_{k}$ with $E_{i} \in\left|C_{1}^{\prime}\right|, C_{1}^{\prime}$ being nonsingular elliptic. (For $\left|C_{2}\right|$, we have the same results.) Hence we have $C_{1} \sim k C_{1}^{\prime}$ (linearly equivalent). Since $\left[C_{1}^{1}\right] \in \boldsymbol{Z}\left(c_{1}, c_{2}\right)$, we have [C_{1}^{1}] $=$ $s c_{1}+t c_{2}$ for some integers s and t. Then, since $c_{1}=k\left(s c_{1}+t c_{2}\right)$, we see that $k=1$. Hence we have $C_{1} \sim C_{1}^{\prime}$. Thus we may consider C_{1} and C_{2} to be nonsingular elliptic curves. Hence we have $C_{1} \cdot C_{2}=2$. We set $C=C_{1}+C_{2}$. The complete linear system $|C|$ also has no fixed components. Hence, by [6, Proposition 1 i)], $|C|$ has no base points and contains an irreducible nonsingular curve C^{\prime}. Since $C^{\prime 2}=4(>0)$, the surface X is algebraic by [4, Theorem 3.3]. Thus we see that there exist elliptic curves C_{1} and C_{2} on the algebraic $K 3$ surface X such that $C_{1} \cdot C_{2}=2$. Then the system $\left|C_{i}\right|$ $(i=1,2)$ defines a morphism $\Phi_{\left|c_{i}\right|}: X \rightarrow \boldsymbol{P}^{1}$. We can define a holomorphic mapping $\Phi: X \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ by the formula $\Phi(x)=\left(\Phi_{\left|c_{1}\right|}(x), \Phi_{\left|c_{2}\right|}(x)\right)$ for any $x \in X$. Since $\Phi_{\left|C_{1}\right|}$ and $\Phi_{\left|C_{2}\right|}$ are surjective and $C_{1} \cdot C_{2}=2$, we see that Φ is surjective. Let $S: \boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \rightarrow \boldsymbol{P}^{3}$ be the Segre embedding. This embedding gives a biholomorphic mapping onto a nonsingular quadric Q in \boldsymbol{P}^{3}. Then the composition $S \circ \Phi: X \rightarrow \boldsymbol{P}^{3}$ is nothing but a morphism $\Phi_{|c|}$ defined by the system $|C|$. From the well known formula $C^{2}=\operatorname{deg} \Phi_{|C|} \cdot \operatorname{deg} Q$, we see that the morphism $\Phi_{|C|}$ is of degree 2. Moreover, for any irreducible curve D, the image $\Phi_{|c|}(D)$ is an irreducible curve. In fact, if $\Phi_{|c|}(D)$ is a point P, then $\Phi_{|c|}^{-1}(H) \cdot D=0$ for a hyperplane section H of Q which does not meet the point P. Since $\Phi_{|\overline{c \mid}|}^{-1}(H)^{2}=C^{2}=4$, we have $D^{2}<0$ by the Hodge index theorem. But $D^{2} \geq 0$ on our surface X. This is a contradiction. We also see that for any point P in Q, the preimage $\Phi_{|c|}^{-1}(P)$ consists of finitely many points. Let B be the ramification divisor (see, for example, [1, p.668]) of the finite surjective mapping $\Phi_{|c|}: X \rightarrow Q$. We use the same notation B for the support of the divisor B. We set $A=$ $\Phi_{|c|}(B)$. Then A also defines a divisor. By the definition of the ramification divisor, $\Phi_{|C|}$ is locally biholomorphic on $X \backslash B$, and in our case, all the points in B are branch points in the sense of [11, Definition 1. 3]. Let K_{X} (resp. K_{Q}) be the canonical divisor of X (resp. Q). Then we have (see, for example, [7, Lemma (6.20)])

$$
K_{X} \sim \Phi_{|c|}^{*}\left(K_{Q}\right)+B .
$$

Since we know that $K_{X} \sim 0$ and $K_{Q}=(-2)\left(p t \times \boldsymbol{P}^{1}+\boldsymbol{P}^{1} \times p t\right)$ identifying Q with $\boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{\mathbf{1}}$ via the Segre embedding S, we have

$$
B \sim 2 \Phi^{*}\left(p t \times \boldsymbol{P}^{1}+\boldsymbol{P}^{1} \times p t\right) .
$$

Hence, in particular, $B \neq \phi$. Recall that the morphism $\Phi_{|C|}$ is of degree 2 . Thus we obtain a 2 -sheeted branched covering $\Phi: X \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ with branch locus A in the sense of [11, $\S 1]$. Hence the branch locus A is nonsingular. Moreover, from the proof of [11, Theorem 1.2], we have $[B]=$ $\Phi^{*} F$ for a line bundle F over $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ with $F^{\otimes 2}=[A]$. Since Pic ($\boldsymbol{P}^{1} \times$ $\left.\boldsymbol{P}^{\mathbf{1}}\right)=\boldsymbol{Z}\left(\left[p t \times \boldsymbol{P}^{1}\right],\left[\boldsymbol{P}^{1} \times p t\right]\right)$, we have $F=k\left[p t \times \boldsymbol{P}^{1}\right]+l\left[\boldsymbol{P}^{1} \times p t\right]$ for some integers k and l. Since $B \sim 2 \Phi^{*}\left(p t \times \boldsymbol{P}^{\mathbf{1}}+\boldsymbol{P}^{\mathbf{1}} \times p t\right)$, we have $k=l=2$ by considering intersection numbers. Hence we have

$$
A \sim 4\left(p t \times \boldsymbol{P}^{1}+\boldsymbol{P}^{1} \times p t\right) .
$$

Thus A is a nonsingular curve of degree (4, 4). Q.E.D.
Remark. In the above lemma, for every irreducible curve D on the algebraic $K 3$ surface X, we see that D^{2} is divisible by 4. Hence, if $D^{2}>$ 0 , then $D^{2} \geq 4$, namely $p_{a}(D) \geq 3$. Moreover, for the irreducible curve C^{\prime} $(\sim C)$, we know that $p_{a}\left(C^{\prime}\right)=3$. Hence the surface X belongs to the class $\pi=3$ (see [10, Chap. VIII, p. 188] or [9, § 1, p. 46]). Hence, by [10, Chap. VIII, Theorem 2], $\Phi_{|C|}$ is a birational morphism onto a quartic surface in \boldsymbol{P}^{3}, or a morphism of degree 2 onto a quadric in \boldsymbol{P}^{3}. We see that our surface X lies in the latter case.
 conditions of Lemma 1. If moreover, c_{1} and c_{2} are contained in $\operatorname{Ker(1+}$ $\left.t^{*}\right)$, then there exists a holomorphic mapping Φ which makes X a 2 -sheeted branched covering of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and satisfies conj $\circ \Phi=\Phi \circ$ t. Hence the branch locus is a nonsingular curve defined by a real homogenous polynomial of degree (4, 4).

Proof. In the proof of Lemma 1, we define $\Phi=\left(\Phi_{\left|c_{1}\right|}, \Phi_{\left|c_{2}\right|}\right)$. Let s_{1} and s_{2} form a basis for the space $H^{0}\left(X, O\left(C_{1}\right)\right)$. Let ξ_{0} and ξ_{1} be holomorphic functions on X such that $\xi_{1}(x) s_{1}(x)=\xi_{0}(x) s_{2}(x)$ for any $x(\in X)$. Then $\Phi_{\left|c_{1}\right|}$ is defined to be $\left[\xi_{0}: \xi_{1}\right]$. We show that conj$\circ \Phi_{\left|c_{1}\right|}=$ $\Phi_{\mid C_{1}{ }^{\circ}} t$ if we choose an appropriate basis for $H^{0}\left(X, O\left(C_{1}\right)\right)$.

We define the line bundle F_{1} to be [C_{1}]. By the assumption, we see the first Chern class $c_{1}\left(F_{1}\right)$ is contained in $\operatorname{Ker}\left(1+t^{*}\right)$. Hence we have $c_{1}\left(F_{1}\right)=c_{1}\left(t^{*} \overline{F_{1}}\right)$, where $\overline{F_{1}}$ is the conjugate bundle of F_{1}. Since $H^{1}(X$,
$\left.\mathcal{O}_{x}\right)=0$, the line bundle F_{1} and $t^{*} \overline{F_{1}}$ are isomorphic. We denote by E_{1} and $p r_{1}$ the total space and the projection of F_{1}. Let $\left\{U_{\lambda}\right\}_{\lambda \in A}$ be an open covering of $X, \varphi_{\lambda}: p r_{1}^{-1}\left(U_{\lambda}\right) \rightarrow U_{\lambda} \times C$ be trivializations, and $g_{\lambda \mu}: U_{\lambda} \cap U_{\mu}$ $\rightarrow \boldsymbol{C}^{*}$ be transition functions. We may assume that there exists an involution σ on Λ such that $U_{\sigma(\lambda)}=t\left(U_{\lambda}\right)$. Then the transition functions of the line bundle $t^{*} \overline{F_{1}}$ are $\overline{g_{\sigma(\lambda) \sigma(\mu)} t}: U_{\lambda} \cap U_{\mu} \rightarrow C^{*}$. Since F_{1} and $t^{*} \overline{F_{1}}$ are isomorphic, there exists a collection of functions $f_{\lambda}\left(\in \mathcal{O}^{*}\left(U_{\lambda}\right)\right)$ such that
(1) $g_{\lambda \mu}(x)=\frac{f_{\lambda}(x)}{f_{\mu}(x)} \overline{g_{\sigma(\lambda) \sigma(\mu)}(t(x))}$ for any $x\left(\in U_{\lambda} \cap U_{\mu}\right)$,
where we may consider that
(2) $f_{\sigma(\lambda)}={\overline{f_{\lambda} \circ t}}^{-1}$.

Then we can define an antiholomorphic involution T_{1} on E_{1} such that $t \circ p r_{1}=p r_{1} \circ T_{1}$ and the restrictions $\left(T_{1}\right)_{x}: p r_{1}^{-1}(x) \rightarrow p r r_{1}^{-1}(t(x))$ are antilinear as follows. (It turns out that the line bundle F_{1} is a "real vector bundle ".) We define T_{1} on $p r_{1}^{-1}\left(U_{\lambda}\right)$ by the following formula.

$$
\varphi_{\sigma(\lambda)}{ }^{\circ} T_{1} \circ \varphi_{\lambda}^{-1}(x, c)=\left(t(x), \overline{f_{\lambda}(x)^{-1} c}\right)
$$

By the equality (1), T_{1} is well defined over E_{1}, and by (2), we see that T_{1} is an involution. We now define an antilinear involution θ_{1} : $H^{0}\left(X, O\left(F_{1}\right)\right) \rightarrow H^{0}\left(X, \mathcal{O}\left(F_{1}\right)\right)$ by $\theta_{1}(s)=T_{1} \circ s^{\circ} t$, and choose s_{1} and s_{2} stated above in Fix θ_{1}. Then we see that $\Phi_{\left|C_{1}\right|}=\left[\overline{\xi_{0} \circ}: \overline{\xi_{1} \circ t}\right]$. Hence conj$\circ \Phi_{\left|\mathrm{C}_{1}\right|}=\Phi_{\mid \mathrm{C}_{1} \circ} \circ$. We have the same results for $\left|C_{2}\right|$. Thus we have $\operatorname{conj} \circ \Phi=\Phi \circ t$. It follows that $\operatorname{conj}(A)=A$, where A is the branch locus. Q.E.D.

3. A lemma concerning integer vector sequences.

Lemma 3. For any integer sequence $\alpha_{1}^{\prime}(n)$ with $\alpha_{1}^{\prime}(n) \rightarrow \infty$, any positive real number α, any real numbers x_{3} and x_{4}, there exist a subsequence $\alpha_{1}(n)$ of $\alpha_{1}^{\prime}(n)$ and an integer vector sequence ($\beta_{1}(n), \beta_{2}(n), \beta_{3}(n)$, $\left.\beta_{4}(n)\right)$ which satisfy the following five conditions.
(1) $\beta_{1} \beta_{2}+\beta_{3} \beta_{4}=1$
(2) $\lim _{n \rightarrow \infty} \frac{\beta_{3}}{\beta_{1}}=x_{3}$
(3) $\lim _{n \rightarrow \infty} \frac{\beta_{4}}{\beta_{1}}=x_{4}$
(4) β_{1} and β_{4} are odd.
(5) $\lim _{n \rightarrow \infty} \frac{\beta_{1}}{\alpha_{1}}=\alpha$

Proof. We first prove in the case x_{4} is a rational number. The rational number x_{4} can be expanded into a finite simple continued fraction as follows.

$$
x_{4}=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\quad+\frac{1}{a_{r-1}+\frac{1}{a_{r}}}}}
$$

In the above, a_{1} is an integer,and a_{2}, \ldots, a_{r} are positive integers. We define $\left(u_{0}, v_{0}\right), \ldots,\left(u_{r}, v_{r}\right)$ inductively as follows.

$$
\begin{aligned}
& \left(u_{0}, v_{0}\right)=(-1,-1) \\
& \left(u_{j}, v_{j}\right)=\left\{\begin{array}{l}
\left(v_{j-1}, u_{j-1}\right) \text { if } a_{j} \text { is even or }\left(u_{j-1}, v_{j-1}\right)=(-1,1) \\
\left(v_{j-1},-u_{j-1}\right) \text { otherwise }
\end{array}\right.
\end{aligned}
$$

In the case $r \geq 2$, we define $b_{i}(2 \leq i \leq r)$ as follows.

$$
b_{i}=a_{i}+\frac{1}{a_{i+1}+\frac{1}{a_{i+2}+\ldots+\frac{1}{a_{r-1}+\frac{1}{a_{r}}}}}
$$

Remark that every b_{i} is positive. We set $\alpha^{\prime}=\frac{\alpha}{b_{2} \times \cdots \times b_{r}}$. In the case $r=$ 1 , we set $\alpha^{\prime}=\alpha$. Now we choose and fix a subsequence $\alpha_{1}(n)$ of $\alpha_{1}^{\prime}(n)$ such that $\frac{\alpha_{1}(n)}{n} \rightarrow \infty$. Let $\widetilde{\beta}_{1}(n)$ be the closest integer to $\alpha_{1}(n) \alpha^{\prime}$. Since $\alpha_{1}(n) \rightarrow \infty$, we have $\lim \frac{\widetilde{\beta}_{1}}{\alpha_{1}}=\alpha^{\prime}$ and $\frac{\widetilde{\beta}_{1}}{2 n}=\frac{\widetilde{\beta}_{1}}{\alpha_{1}} \frac{\alpha_{1}}{2 n} \rightarrow \infty$. We set $\beta_{1}(n)=$ $\left[\frac{\widetilde{\beta}_{1}(n)}{2 n}\right]$ or $\left[\frac{\widetilde{\beta}_{1}(n)}{2 n}\right]+1$, where we take $\beta_{1}(n)$ to be odd (resp. even) if $v_{r}=-1$ (resp. 1). We have $\beta_{1}(n) \rightarrow \infty$. We set $x_{3}^{\prime}=(-1)^{r} x_{3}$. In the case $\left(u_{r}, v_{r}\right)=(1,-1)$, let β_{3} be the closest integer to $\beta_{1} x_{3}^{\prime}$ that is relatively prime to β_{1}. Since β_{1} is odd, β_{1} and $2 \beta_{3}$ are relatively prime, and hence, there exist integers u and v such that $u \beta_{1}+2 v \beta_{3}=1$ and $|u|<\left|2 \beta_{3}\right|$, $|v|<\left|\beta_{1}\right|$. We set $\beta_{2}=u$ and $\beta_{4}=2 v$. In the case $\left(u_{r}, v_{r}\right)=(-1,1)$, let β_{3} be as above. Then there exist integers u and v such that $u \beta_{1}+v \beta_{3}=1$ and $|u|<\left|\beta_{3}\right|,|v|<\left|\beta_{1}\right|$. We set $\beta_{2}=u$ and $\beta_{4}=v$. In the case $\left(u_{r}, v_{r}\right)=(-1$, $-1)$, let β_{3} be the closest integer to $\beta_{1} x_{3}^{\prime}$ that is relatively prime to $2 \beta_{1}$.

Then there exist integers u and v such that $2 u \beta_{1}+v \beta_{3}=1$ and $|u|<\left|\beta_{3}\right|$, $|v|<\left|2 \beta_{1}\right|$. We set $\beta_{2}=2 u$ and $\beta_{4}=v$. The case $\left(u_{r}, v_{r}\right)=(1,1)$ cannot occur. It follows that β_{4} is odd (resp. even) if $u_{r}=-1$ (resp. 1). In all the cases, we have $\beta_{1} \beta_{2}+\beta_{3} \beta_{4}=1, \lim _{n \rightarrow \infty} \frac{\beta_{3}}{\beta_{1}}=x_{3}^{\prime}$, and $\left|\frac{\beta_{4}}{\beta_{1}}\right|<2$. We see that $\frac{\beta_{2}}{\beta_{1}}$ are also bounded. We define a new sequence $P(n)=\left(p_{1}(n), p_{2}(n), p_{3}(n)\right.$, $p_{4}(n)$) to be

$$
\left(-\beta_{4}(n)+2 n \beta_{1}(n),-\beta_{3}(n), 2 n \beta_{3}(n)+\beta_{2}(n), \beta_{1}(n)\right) .
$$

Then we have $p_{1} p_{2}+p_{3} p_{4}=1, \lim \frac{p_{3}}{p_{1}}=x_{3}^{\prime}$ and $\lim \frac{p_{4}}{p_{1}}=0$. Since $\left|\beta_{1}-\frac{\widetilde{\beta}_{1}}{2 n}\right| \leq 1$, $\lim \frac{\widetilde{\beta}_{1}}{\alpha_{1}}=\alpha^{\prime}$, and $\frac{\alpha_{1}}{n} \rightarrow \infty$, we have $\lim \frac{p_{1}}{\alpha_{1}}=\alpha^{\prime}$. Remark that the parity of ($p_{1}, p_{2}, p_{3}, p_{4}$) corresponds to ($\beta_{4}, \beta_{3}, \beta_{2}, \beta_{1}$).

We now assume that a new sequence $\beta(n)=\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)$ satisfies the conditions (1), (2), (3) and (5) in the statement of Lemma 3 for a positive real number α, real numbers x_{3} and x_{4}, and a sequence $\alpha_{1}(n)$ with $\alpha_{1}(n) \rightarrow \infty$. Let k be an arbitrary integer with $k-x_{4}>0$. We define a new sequence $I_{k}(\beta(n))=\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$ to be

$$
\left(-\beta_{4}(n)+k \beta_{1}(n),-\beta_{3}(n), k \beta_{3}(n)+\beta_{2}(n), \beta_{1}(n)\right) .
$$

Then we see that $q_{1} q_{2}+q_{3} q_{4}=1$ and $\lim \frac{q_{3}}{q_{1}}=x_{3}$. Hence the properties (1) and (2) are preserved by the transformation I_{k}. On the other hand, we see that

$$
\lim \frac{q_{4}}{q_{1}}=\frac{1}{k-x_{4}}
$$

and

$$
\lim \frac{q_{1}}{\alpha_{1}}=\alpha\left(k-x_{4}\right)(>0)
$$

We next define a new sequence $J(\beta(n))$ to be ($\beta_{1}, \beta_{2},-\beta_{3},-\beta_{4}$). Then the properties (1) and (5) are preserved by the transformation J. But for the properties (2) and (3), the limit values are multiplied by (-1).

The sequence $P(n)$ has the properties (1), (2) (for $x_{3}=x_{3}^{\prime}$), (3) (for $x_{4}=0$) and (5). In the case $r \geq 2$, we can transform $P(n)$ by $I_{a r}$. Then $I_{a r}(P(n))$ has the properties (3) (for $x_{4}=\frac{1}{a_{r}}$) and (5) (for $\alpha=\alpha^{\prime} a_{r}=$ $\left.\frac{\alpha}{b_{2} \times \cdots \times b_{r-1}}(>0)\right)$. Next we can transform $J \circ I_{a r}(P(n))$ by $I_{a r-1}$. Then
$I_{a_{r-1}} \circ J \circ I_{a_{r}}(P(n))$ has the properties (3) (for $x_{4}=\frac{1}{a_{r-1}+\frac{1}{a_{r}}}$) and (5) (for $\left.\alpha=\alpha^{\prime} a_{r}\left(a_{r-1}+\frac{1}{a_{r}}\right)=\frac{\alpha}{b_{2} \times \cdots \times b_{r-2}}(>0)\right)$. Thus we obtain the sequence (γ_{1}, $\left.\gamma_{2}, \gamma_{3}, \gamma_{4}\right)=J \circ I_{a_{2}} \circ J \circ \cdots \circ J \circ I_{a_{r-2}} \circ J \circ I_{a r-1} \circ J \circ I_{a r}(P(n))$. In the case $r=1$, we set $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right)=P(n)$. Then we have (1) $\gamma_{1} \gamma_{2}+\gamma_{3} \gamma_{4}=1$ (2) $\lim \frac{\gamma_{3}}{\gamma_{1}}=$ $-x_{3}$ (3) $\lim \frac{\gamma_{4}}{\gamma_{1}}=a_{1}-x_{4}$ (5) $\lim \frac{\gamma_{1}}{\alpha_{1}}=\alpha$. Finally we set $\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)=\left(\gamma_{1}\right.$, $a_{1} \gamma_{3}+\gamma_{2},-\gamma_{3},-\gamma_{4}+a_{1} \gamma_{1}$). Then this sequence satisfies the condition (1), (2), (3) and (5) of Lemma 3. From the definition of (u_{r}, v_{r}), we observe that the condition (4) is also satisfied. Thus Lemma 3 is proved in the case x_{4} is a rational number. To complete the proof of the lemma, let x_{4} be an arbitrary real number. Let $\left\{x_{4}(n)\right\}$ ($n=1,2,3 \ldots$) be a rational number sequence which converges to x_{4} satisfying $\left|x_{4}(n)-x_{4}\right|<\frac{1}{n}$. From the results above, there exist sequences ($\beta_{1, n}, \beta_{2, n}, \beta_{3, n}, \beta_{4, n}$) such that (1) $\beta_{1, n} \beta_{2, n}+\beta_{3, n} \beta_{4, n}=1$ (2) $\lim _{m \rightarrow \infty} \frac{\beta_{3, n}(m)}{\beta_{1, n}(m)}=x_{3}$ (3) $\lim _{m \rightarrow \infty} \frac{\beta_{4, n}(m)}{\beta_{1, n}(m)}=x_{4}(n)$ (4) $\beta_{1, n}$ and $\beta_{4, n}$ are odd (5) $\lim _{m \rightarrow \infty} \frac{\beta_{1, n}(m)}{\alpha_{1}(m)}=\alpha$. Remark that the subsequence $\alpha_{1}(m)$ of $\alpha_{1}^{\prime}(m)$ does not depend on n. We choose a natural number sequence $m(1)<m(2)<m(3)<\cdots$ such that $\left|\frac{\beta_{3, n}(m(n))}{\beta_{1, n}(m(n))}-x_{3}\right|<\frac{1}{n}, \left\lvert\, \frac{\beta_{4, n}(m(n))}{\beta_{1, n}(m(n))}-x_{4}(n)\right.$ $\left\lvert\,<\frac{1}{n}\right.$ and $\left|\frac{\beta_{1, n}(m(n))}{\alpha_{1}(m(n))}-\alpha\right|<\frac{1}{n}$. We set $\left(\beta_{1}(n), \beta_{2}(n), \beta_{3}(n), \beta_{4}(n)\right)=$ ($\left.\beta_{1}(m(n)), \beta_{2}(m(n)), \beta_{3}(m(n)), \beta_{4}(m(n))\right)$. It is sufficient that we define $\alpha_{1}(n)$ to be $\alpha_{1}(m(n))$ newly. This completes the proof of Lemma 3.

Corollary 4. For any integer sequence $\alpha_{1}^{\prime}(n)$ with $\alpha_{1}^{\prime}(n) \rightarrow \infty$, any positive real number α, any real numbers x_{3} and x_{4}, there exist a subsequence $\alpha_{1}(n)$ of $\alpha_{1}^{\prime}(n)$ and an integer vector sequence ($\beta_{1}(n), \beta_{2}(n)$, $\left.\beta_{3}(n), \beta_{4}(n)\right)$ which satisfy the following five conditions.
(1) $\beta_{1} \beta_{2}+\beta_{3} \beta_{4}=2$
(2) $\lim _{n \rightarrow \infty} \frac{\beta_{3}}{\beta_{1}}=x_{3}$
(3) $\lim _{n \rightarrow \infty} \frac{\beta_{4}}{\beta_{1}}=x_{4}$
(4) β_{1} and β_{3} are relatively prime, and so are β_{2} and β_{4}.
(5) $\lim _{n \rightarrow \infty} \frac{\beta_{1}}{\alpha_{1}}=\alpha$

Proof. There exists a sequence ($\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$) which satisfies the conditions (1), (3), (4), (5) in Lemma 3 and the condition that $\lim _{n \rightarrow \infty} \frac{\beta_{3}}{\beta_{1}}=\frac{x_{3}}{2}$. Then, from (1) and (4), β_{1} and $2 \beta_{3}$ are relatively prime, and so are $2 \beta_{2}$ and β_{4}. Thus the new sequence ($\beta_{1}, 2 \beta_{2}, 2 \beta_{3}, \beta_{4}$) is a required one. Q . E . D.

Remark. Lemma 3 is a finer version of [10, Chap. IX, §5, Lemma] for $\pi=2$, and Corollary 4 is for $\pi=3$.

4. The main theorem.

Let (X, t) be a real $K 3$ surface. We set $L_{\varphi}=\operatorname{Ker}\left(1+t^{*}\right)$, and $L^{\varphi}=$ $\operatorname{Ker}\left(1-t^{*}\right)$ in $H^{2}(X, \boldsymbol{Z})$. Remark that Fix $\overline{t^{*}}=\left(\left(L^{\varphi} \otimes \boldsymbol{R}\right) \oplus i\left(L_{\varphi} \otimes \boldsymbol{R}\right)\right) / \boldsymbol{R}^{*}$ in $P(X, \boldsymbol{C})$.

Proposition 5. If L_{φ} has $U \oplus U$ as its sublattice, then there exists a pair $\left\{c_{1}(n)\right\},\left\{c_{2}(n)\right\}$ of sequences which consist of primitive elements of U $\oplus U$ and satisfy the conditions that $Q\left(c_{1}(n), c_{1}(n)\right)=Q\left(c_{2}(n), c_{2}(n)\right)=0$, $Q\left(c_{1}(n), c_{2}(n)\right)=2$, the sequence of the subspaces $L_{n}=\{\lambda \in P(X, C) \mid Q(\lambda$, $\left.\left.c_{1}(n)\right)=Q\left(\lambda, c_{2}(n)\right)=0\right\}$ of codimension 2 converges to a subspace $L=$ $\left\{\lambda \in P(X, \boldsymbol{C}) \mid Q\left(\lambda, \xi_{1}\right)=Q\left(\lambda, \xi_{2}\right)=0\right\}$ of codimension 2 , where ξ_{1} and ξ_{2} are elements of $(U \oplus U) \otimes \boldsymbol{R}$, and L intersects K_{20} transversely at $H^{2,0}(X)$ in $P(X, C)$.

Hence the sequence of the subspaces $L_{n} \cap\left(\mathrm{Fix} \overline{t^{*}}\right)$ of real codimension 2 converges to the subspace $L \cap\left(\mathrm{Fix} \overline{t^{*}}\right)$ of real codimension 2 , and $L \cap$ (Fix $\left.\overline{t^{*}}\right)$ intersects $K_{20} \cap\left(\mathrm{Fix} \overline{t^{*}}\right)$ transversely at $H^{2,0}(X)$ in $\mathrm{Fix} \overline{t^{*}}$.

Proof. For our sublattice of L_{φ} which is isomorphic to $U \oplus U$, we use the same notation $U \oplus U$. Since $U \oplus U$ is unimodular, we have $H^{2}(X$, $\boldsymbol{Z})=(U \oplus U) \oplus(U \oplus U)^{\perp}$. Let $e_{1}, e_{2}, e_{3}, e_{4}$ form a basis for $U \oplus U$ and represent the intersection form Q by the matrix

$$
\left(\begin{array}{cccc}
0 & 1 & & \\
1 & 0 & & \\
& & 0 & 1 \\
& & 1 & 0
\end{array}\right) .
$$

We set $s=\operatorname{rank} L_{\varphi}$ and let e_{5}, \ldots, e_{s} form a basis for $L_{\varphi} \cap(U \oplus U)^{\perp}$. Then e_{1}, \ldots, e_{s} form a basis for L_{φ}. Remark that $\left(L_{\varphi} \otimes \boldsymbol{Q}\right) \oplus\left(L^{\varphi} \otimes \boldsymbol{Q}\right)=H^{2}(X$, $\boldsymbol{Q}), L_{\varphi}=\left(L^{\varphi}\right)^{\perp}$ and $L^{\varphi}=\left(L_{\varphi}\right)^{\perp}$ in $H^{2}(X, \boldsymbol{Z})$. Let e_{s+1}, \ldots, e_{22} form a basis for L^{φ}. Then e_{1}, \ldots, e_{22} form a basis for $H^{2}(X, \boldsymbol{Q})$. Since $H^{2,0}(X)=$ $\overline{t^{*}}\left(H^{2,0}(X)\right)$, we can take ω_{X} so that $\omega_{X}=\overline{t^{*} \omega_{X}}$. Then we have $\omega_{X}=$ ($\left.\sum_{j=s+1}^{22} \lambda_{j} e_{j}\right)+i\left(\sum_{j=1}^{s} \lambda_{j} e_{j}\right)$ for some real numbers $\lambda_{j}(1 \leq j \leq 22)$. We set
$\omega_{+}=\sum_{j=s+1}^{22} \lambda_{j} e_{j}$ and $\omega_{-}=\sum_{j=1}^{s} \lambda_{j} e_{j}$. Since $\omega_{X} \wedge \omega_{X}=0$ and $\omega_{X} \wedge \bar{\omega}_{X}>0$ (recall §1), we have $\omega_{+}{ }^{2}=\omega_{-}^{2}>0$. Moreover, we set $\omega_{-}^{\prime}=\sum_{j=5}^{s} \lambda_{j} e_{j}$. Then $\omega_{-}^{2}=2\left(\lambda_{1} \lambda_{2}+\lambda_{3} \lambda_{4}\right)+\omega_{-}^{\prime}{ }^{2}$. Remark that $\omega_{+} \in L^{\varphi} \otimes \boldsymbol{R}, U \oplus U \subset L_{\varphi}$, where sign $(U \oplus U)=(2,2)$, and $\omega^{\prime} \in\left(L_{\varphi} \cap(U \oplus U)^{\perp}\right) \otimes \boldsymbol{R}$. Since sign $\left(H^{2}(X, \boldsymbol{Z})\right.$, $Q)=(3,19)$, we have $\omega_{-}^{\prime 2} \leq 0$. Therefore we obtain $\lambda_{1} \lambda_{2}+\lambda_{3} \lambda_{4}>0$.

We may assume that $\lambda_{4} \neq 0$ replacing ($e_{1}, e_{2}, e_{3}, e_{4}$) by ($e_{3}, e_{4}, e_{1}, e_{2}$) if necessary. We set

$$
\begin{aligned}
& x_{3}=\frac{\lambda_{1}}{\lambda_{4}}, x_{4}=\lambda_{1} x_{3}+\lambda_{4}, y_{4}=\left(1+x_{3}^{2}\right)\left(\lambda_{2} x_{3}+\lambda_{3}\right), \\
& \xi_{1}=e_{2}-x_{3} e_{3}, \xi_{2}=x_{3} x_{4}\left(1+x_{3}^{2}\right) e_{1}-x_{3} y_{4} e_{2}-y_{4} e_{3}+x_{4}\left(1+x_{3}^{2}\right) e_{4} .
\end{aligned}
$$

We define $L=\left\{\lambda \in P(X, C) \mid Q\left(\lambda, \xi_{1}\right)=Q\left(\lambda, \xi_{2}\right)=0\right\}$. The subspace L meets $H^{2,0}(X)$ because $Q\left(\omega_{X}, \xi_{1}\right)=i\left(\lambda_{1}-\frac{\lambda_{1}}{\lambda_{4}} \lambda_{4}\right)=0$ and $Q\left(\omega_{X}, \xi_{2}\right)=$ $i\left(x_{3} x_{4}\left(1+x_{3}^{2}\right) \lambda_{2}-x_{3} y_{4} \lambda_{1}-y_{4} \lambda_{4}+x_{4}\left(1+x_{3}{ }^{2}\right) \lambda_{3}\right)=i\left(\left(1+x_{3}{ }^{2}\right)\left(\lambda_{2} x_{3}+\lambda_{3}\right) x_{4}+\left(-\lambda_{1} x_{3}\right.\right.$ $\left.\left.-\lambda_{4}\right) y_{4}\right)=i\left(y_{4} x_{4}-x_{4} y_{4}\right)=0$. We show that L intersects K_{20} at $H^{2,0}(X)$ transversely. We identify $P(X, \boldsymbol{C})$ with $\boldsymbol{P}^{21}=\left\{\left[X_{1}: \ldots: X_{22}\right]\right\}$ taking a basis $i e_{1}, \ldots, e_{s}, e_{s+1}, \ldots, e_{22}$. Then K_{20} is identified with the subset defined by an integral homogeneous polynomial of degree 2 of the form $f\left(X_{1}, \ldots\right.$, $\left.X_{22}\right)=-2\left(X_{1} X_{2}+X_{3} X_{4}\right)+f_{1}\left(X_{5}, \ldots, X_{22}\right)$. Hence the tangent space of K_{20} at $H^{2,0}(X)$ is identified with the subspace defined by a real linear form of the form $h\left(X_{1}, \ldots, X_{22}\right)=\lambda_{2} X_{1}+\lambda_{1} X_{2}+\lambda_{4} X_{3}+\lambda_{3} X_{4}+h_{1}\left(X_{5}, \ldots, \mathrm{X}_{22}\right)$. Let H denote this space. L intersects H transversely at $H^{2,0}(X)$ in \boldsymbol{P}^{21}. If not, then H contains L. In particular, $\left(H \cap \boldsymbol{R} P^{3} \times\{0\}\right) \supset\left(L \cap \boldsymbol{R} P^{3} \times\{0\}\right)$, where

$$
H \cap \boldsymbol{R} P^{3} \times\{0\}=\left\{\lambda_{2} X_{1}+\lambda_{1} X_{2}+\lambda_{4} X_{3}+\lambda_{3} X_{4}=0\right\} \times\{0\}
$$

and

$$
\begin{aligned}
& L \cap \boldsymbol{R} P^{3} \times\{0\} \\
& =\left\{X_{1}-x_{3} X_{4}=-x_{3} y_{4} X_{1}+x_{3} x_{4}\left(1+x_{3}^{2}\right) X_{2}+x_{4}\left(1+x_{3}^{2}\right) X_{3}-y_{4} X_{4}=0\right\} \times\{0\} .
\end{aligned}
$$

But the following matrix is of rank 3.

$$
\left(\begin{array}{ccc}
\lambda_{2} & 1 & -x_{3} y_{4} \\
\lambda_{1} & 0 & x_{3} x_{4}\left(1+x_{3}^{2}\right) \\
\lambda_{4} & 0 & x_{4}\left(1+x_{3}^{2}\right) \\
\lambda_{3} & -x_{3} & -y_{4}
\end{array}\right)
$$

In fact, the determinant of the following matrix is equal to $\frac{2\left(\lambda_{1}{ }^{2}+\lambda_{4}{ }^{2}\right)^{2}\left(\lambda_{1} \lambda_{2}+\lambda_{3} \lambda_{4}\right) \lambda_{1}}{\lambda_{4}{ }^{2}}$.

$$
\left(\begin{array}{ccc}
\lambda_{2} & 1 & -x_{3} y_{4} \\
\lambda_{1} & 0 & x_{3} x_{4}\left(1+x_{3}^{2}\right) \\
\lambda_{3} & -x_{3} & -y_{4}
\end{array}\right)
$$

Hence, the above matrix is of rank 3 if $\lambda_{1} \neq 0$. And if $\lambda_{1}=0$, then the above matrix is as follows.

$$
\left(\begin{array}{ccc}
\lambda_{2} & 1 & 0 \\
0 & 0 & 0 \\
\lambda_{4} & 0 & \lambda_{4} \\
\lambda_{3} & 0 & -\lambda_{3}
\end{array}\right)
$$

This matrix is of rank 3 if $\lambda_{1}=0$. Thus we have a contradiction. Therefore L intersects K_{20} at $H^{2,0}(X)$ transversely.

We now show that there exists a pair $\left\{c_{1}(n)\right\},\left\{c_{2}(n)\right\}$ of sequences for which the sequence $\left\{\lambda \in P(X, \boldsymbol{C}) \mid Q\left(\lambda, c_{1}(n)\right)=Q\left(\lambda, c_{2}(n)\right)=0\right\}$ converges to the above L and the properties in the statement of Proposition 5 hold. By Corollary 4 in $\S 3$, there exists an integer vector sequence (α_{13}, β_{24}, $-\alpha_{24}, \beta_{13}$) such that
(1) $\alpha_{13} \beta_{24}-\alpha_{24} \beta_{13}=2$,
(2) $\lim \frac{-\alpha_{24}}{\alpha_{13}}=x_{3}$,
(3) $\lim \frac{\beta_{13}}{\alpha_{13}}=x_{4}$,
(4) α_{13} and $-\alpha_{24}$ are relatively prime, and so are β_{24} and β_{13}, and
(5) $\alpha_{13} \rightarrow \infty$.

By Lemma 3, replacing the above sequence by an appropriate subsequence if necessary, we can find an another integer vector sequence (α_{14}, β_{23}, $\left.-\alpha_{23}, \beta_{14}\right)$ such that
(1') $\alpha_{14} \beta_{23}-\alpha_{23} \beta_{14}=1$,
(2') $\lim \frac{-\alpha_{23}}{\alpha_{14}}=0$,
(3') $\lim \frac{\beta_{14}}{\alpha_{14}}=y_{4}$, and
(4) $\lim \frac{\alpha_{14}}{\alpha_{13}}=\frac{1}{\sqrt{2}}$.

We set

$$
\begin{aligned}
& \alpha_{1}=\alpha_{13} \alpha_{14}, \alpha_{2}=\alpha_{23} \alpha_{24}, \alpha_{3}=-\alpha_{13} \alpha_{23}, \alpha_{4}=\alpha_{14} \alpha_{24}, \\
& \beta_{1}=\beta_{13} \beta_{14}, \beta_{2}=\beta_{23} \beta_{24}, \beta_{3}=-\beta_{13} \beta_{23}, \beta_{4}=\beta_{14} \beta_{24} .
\end{aligned}
$$

Then we have

$$
\alpha_{1} \alpha_{2}+\alpha_{3} \alpha_{4}=\beta_{1} \beta_{2}+\beta_{3} \beta_{4}=0
$$

and

$$
\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}+\alpha_{3} \beta_{4}+\alpha_{4} \beta_{3}=\left(\alpha_{13} \beta_{24}-\alpha_{24} \beta_{13}\right)\left(\alpha_{14} \beta_{23}-\alpha_{23} \beta_{14}\right)=2 .
$$

From (4) and (1') above, we see that $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and α_{4} are relatively prime. So are $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4}. Hence, if we set $c_{1}=\alpha_{1} e_{2}+\alpha_{2} e_{1}+\alpha_{3} e_{4}+\alpha_{4} e_{3}$ and $\quad c_{2}=\beta_{1} e_{2}+\beta_{2} e_{1}+\beta_{3} e_{4}+\beta_{4} e_{3}$, then $Q\left(c_{1}(n), c_{1}(n)\right)=Q\left(c_{2}(n), c_{2}(n)\right)=0$, $Q\left(c_{1}(n), c_{2}(n)\right)=2$, and moreover, $c_{1}(n)$ and $c_{2}(n)$ are primitive elements in $U \oplus U$ (hence in $H^{2}(X, \boldsymbol{Z})$).

Finally we show that the sequence $L_{n}=\left\{Q\left(\lambda, c_{1}(n)\right)=Q\left(\lambda, c_{2}(n)\right)=0\right\}$ converges to L. We first observe that

$$
\begin{aligned}
& \lim \frac{\alpha_{2}}{\alpha_{1}}=\lim \frac{\alpha_{24}}{\alpha_{13}} \lim \frac{\alpha_{23}}{\alpha_{14}}=\left(-x_{3}\right) \cdot 0=0, \\
& \lim \frac{\alpha_{3}}{\alpha_{1}}=\lim \frac{-\alpha_{23}}{\alpha_{14}}=0, \\
& \lim \frac{\alpha_{4}}{\alpha_{1}}=\lim \frac{\alpha_{24}}{\alpha_{13}}=-x_{3}, \\
& \lim \frac{\beta_{2}}{\beta_{1}}=\lim \frac{\beta_{24}}{\beta_{13}} \lim \frac{\beta_{23}}{\beta_{14}}=\left(-x_{3}\right) \cdot 0=0, \\
& \lim \frac{\beta_{3}}{\beta_{1}}=\lim \frac{-\beta_{23}}{\beta_{14}}=0,
\end{aligned}
$$

and

$$
\lim \frac{\beta_{4}}{\beta_{1}}=\lim \frac{\beta_{24}}{\beta_{13}}=-x_{3}
$$

Hence both $\left[\alpha_{1}: \alpha_{2}: \alpha_{3}: \alpha_{4}\right]$ and $\left[\beta_{1}: \beta_{2}: \beta_{3}: \beta_{4}\right]$ converge to [1:0: $\left.0:-x_{3}\right]$. Thus both $\left\{Q\left(\lambda, c_{1}(n)\right)=0\right\}$ and $\left\{Q\left(\lambda, c_{2}(n)\right)=0\right\}$ converge to $\left\{Q\left(\lambda, \xi_{1}\right)=0\right\}$. In order to know the limit subspace of $\left\{L_{n}\right\}$, we set

$$
B_{j}=\left(\sum_{i=1}^{4} \alpha_{i}^{2}\right) \beta_{j}-\left(\sum_{i=1}^{4} \alpha_{i} \beta_{i}\right) \alpha_{j}(j=1,2,3,4) .
$$

Remark that ($B_{1}, B_{2}, B_{3}, B_{4}$) are orthogonal to ($\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$) in \boldsymbol{R}^{4} with respect to the Euclidean inner product. We set

$$
\tilde{c}_{2}=B_{1} e_{2}+B_{2} e_{1}+B_{3} e_{4}+B_{4} e_{3}
$$

Then we see $L_{n}=\left\{Q\left(\lambda, c_{1}(n)\right)=Q\left(\lambda, \tilde{c}_{2}(n)\right)=0\right\}$. We now consider the limit hyperplane of the sequence $\left\{Q\left(\lambda, \tilde{c}_{2}(n)\right)=0\right\}$. Since

$$
\begin{aligned}
& B_{1}=\alpha_{2}\left(-2 \alpha_{23} \beta_{14}-\alpha_{13} \beta_{24}\right)+\alpha_{3} \alpha_{13} \beta_{13}-2 \alpha_{4} \alpha_{14} \beta_{14}, \\
& B_{2}=\alpha_{1}\left(2 \alpha_{23} \beta_{14}+\alpha_{13} \beta_{24}\right)-2 \alpha_{3} \alpha_{23} \beta_{23}+\alpha_{4} \alpha_{24} \beta_{24} \\
& B_{3}=\alpha_{4}\left(2 \alpha_{14} \beta_{23}-\alpha_{13} \beta_{24}\right)-\alpha_{1} \alpha_{13} \beta_{13}-2 \alpha_{2} \alpha_{23} \beta_{23}
\end{aligned}
$$

and

$$
B_{4}=\alpha_{3}\left(-2 \alpha_{14} \beta_{23}+\alpha_{13} \beta_{24}\right)+2 \alpha_{1} \alpha_{14} \beta_{14}-\alpha_{2} \alpha_{24} \beta_{24}
$$

we have

$$
\begin{aligned}
& \lim \frac{B_{1}}{\alpha_{1}^{2}}=\sqrt{2} x_{3} y_{4}, \\
& \lim \frac{B_{2}}{\alpha_{1}^{2}}=-\sqrt{2} x_{3} x_{4}\left(1+x_{3}^{2}\right), \\
& \lim \frac{B_{3}}{\alpha_{1}^{2}}=-\sqrt{2} x_{4}\left(1+x_{3}^{2}\right)
\end{aligned}
$$

and

$$
\lim \frac{B_{4}}{\alpha_{1}^{2}}=\sqrt{2} y_{4}
$$

Hence
$\left[B_{1}: B_{2}: B_{3}: B_{4}\right]$ converges to $\left[-x_{3} y_{4}: x_{3} x_{4}\left(1+x_{3}^{2}\right): x_{4}\left(1+x_{3}^{2}\right):-y_{4}\right]$. Namely, $\left\{Q\left(\lambda, \tilde{c}_{2}(n)\right)=0\right\}$ converges to $\left\{Q\left(\lambda, \xi_{2}\right)=0\right\}$. Therefore L_{n} converges to L. With respect to the identification $P(X, \boldsymbol{C}) \simeq \boldsymbol{P}^{21}$ stated above, $\boldsymbol{R} P^{21}$ corresponds to Fix $\overline{t^{*}}=\left(i\left(L_{\varphi} \otimes \boldsymbol{R}\right) \oplus\left(L^{\varphi} \otimes \boldsymbol{R}\right)\right) / \boldsymbol{R}^{*}$. Hence the latter assertion of the proposition follows. Q. E. D.

We next consider a family (V, M, π) of complex structures of X with antiholomorphic involutions t_{V} and t_{M}, and the period mapping $\tau: M \rightarrow$ $P(X, C)$ as stated in Kharlamov's lemma (recall §1).

THEOREM 6. Let (X, t) be a real $K 3$ surface. If L_{φ} has $U \oplus U$ as its sublattice, there exist points α in Fix t_{M} for which real $K 3$ surfaces $(V(\alpha)$, t_{α}) can be 2 -sheeted coverings of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ (Let Φ_{α} denote the covering maps.) branched along nonsingular curves defined by real homogeneous polynomials of degree $(4,4)$ and satisfy conj。 $\Phi_{\alpha}=\Phi_{\alpha} \circ t_{\alpha}$ arbitrarily closely to m.

Proof. We set $(U \oplus U)_{\alpha}=i_{\alpha}^{*} \circ i_{m}^{*-1}(U \oplus U)$ for any α in M. The isomorphisms $i_{a}^{*} \circ i_{m}^{*-1}: H^{2}(X, \boldsymbol{Z}) \rightarrow H^{2}(V(\alpha), \boldsymbol{Z})$ preserve the intersection forms. Let Q_{α} denote the intersection form on $V(\alpha)$. Recall that we set $t_{\alpha}=\left.t_{V}\right|_{V(\alpha)}$ for every α in Fix t_{M}. We set $L_{\alpha}=\operatorname{Ker}\left(1+t_{\alpha}^{*}\right)$ in $H^{2}(V(\alpha), \boldsymbol{Z})$. Since $L_{\alpha}=i_{\alpha}^{*} \circ i_{m}^{*-1}\left(L_{\varphi}\right)$, we have $(U \oplus U)_{\alpha} \subset L_{\alpha}$. Let $\left\{L_{n}\right\}$ be a sequence obtained by Proposition 5. Then for a sufficiently large natural number $N, L_{n} \cap \boldsymbol{R} P^{21}$ intersects $\tau\left(\right.$ Fix $\left.t_{M}\right)=K_{20} \cap \boldsymbol{R} P^{21}$ transversely at $H^{2,0}(X)$ in $\boldsymbol{R} P^{21}=\left(i\left(L_{\varphi} \otimes \boldsymbol{R}\right) \oplus\left(L^{\varphi} \otimes \boldsymbol{R}\right)\right) / \boldsymbol{R}^{*}$ (recall the proof of Proposition 5) for any $n \geq N$. Hence $L_{n} \cap \tau\left(\right.$ Fix $\left.t_{M}\right)$ is nonempty and real 18 dimensional. We set

$$
\hat{E}=\{\tau(\alpha) \in \tau(M) \mid \text { rank Pic } V(\alpha) \geq 3\}
$$

From the results in [10, Chap. IX, §4, p. 215], rank $\operatorname{Pic} V(\alpha) \geq 3$ if and only
if $Q\left(\tau(\alpha), c_{j}^{\alpha}\right)=0$ for elements $c_{j}^{\alpha}(j=1,2,3)$ in $H^{2}(X, \boldsymbol{Z})$ which are linearly independent over \boldsymbol{C} (hence, over $\boldsymbol{R})$. Hence $L_{n} \cap \tau\left(\right.$ Fix $\left.t_{M}\right) \cap \hat{E}$ can be covered by countably many real 17 dimensional submanifolds. Hence (L_{n} $\cap \tau\left(\right.$ Fix $\left.\left.t_{M}\right)\right) \backslash \hat{E}$ is dense in $L_{n} \cap \tau\left(\right.$ Fix $\left.t_{M}\right)$, and for every $\tau(\alpha) \in\left(L_{n} \cap\right.$ $\tau\left(\right.$ Fix $\left.\left.t_{M}\right)\right) \backslash \hat{E}$, we have $\alpha \in$ Fix t_{M} and rank Pic $V(\alpha)=2$. We set $c_{j \alpha}(n)=$ $i_{\alpha}^{*} i_{m}^{*-1}\left(c_{j}(n)\right)$ for $j(=1,2)$. Then $Q_{\alpha}\left(c_{1 \alpha}, c_{1 \alpha}\right)=Q_{\alpha}\left(c_{2 \alpha}, c_{2 \alpha}\right)=0$ and $Q_{\alpha}\left(c_{1 \alpha}\right.$, $\left.c_{2 \alpha}\right)=2$. Since $Q\left(i_{m}^{*} \circ i_{a}^{*-1}\left(H^{2,0}(V(\alpha))\right), c_{j}\right)=0$, we have $Q_{\alpha}\left(H^{2,0}(V(\alpha))\right), c$ $\left.{ }_{j \alpha}\right)=0$, that is, $c_{j \alpha} \in \operatorname{Pic} V(\alpha)=\left(H^{2,0}(V(\alpha))^{\perp}\right) \cap H^{2}(V(\alpha), \boldsymbol{Z})$. We see that $c_{1 \alpha}$ and $c_{2 \alpha}$ are primitive elements in $(U \oplus U)_{\alpha}$, hence in $H^{2}(V(\alpha)$, $\boldsymbol{Z})$. Recall that $(U \oplus U)_{\alpha} \subset L_{\alpha}=\operatorname{Ker}\left(1+t_{\alpha}^{*}\right)$. Hence ($\left.V(\alpha), t_{\alpha}\right)$ satisfies the conditions of Lemma 2. Since $\left(L_{n} \cap \tau\left(\operatorname{Fix} t_{M}\right)\right) \backslash \hat{E}$ is dense in $L_{n} \cap$ $\tau\left(\right.$ Fix $\left.t_{M}\right)$ and $n(\geq N)$ is an arbitrary number, we can choose such $\alpha \in$ Fix t_{M} arbitrarily closely to m. This completes the proof of Theorem 6 .

Corollary 7. Let (X, t) be a real $K 3$ surface. If L_{φ} has $U \oplus U$ as its sublattice, then there exists a 2 -sheeted covering $\Phi: Y \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ branched along a nonsingular real curve of degree $(4,4)$ and an antiholomorphic involution T on Y such that $\operatorname{conj} \circ \Phi=\Phi \circ T$ and $\operatorname{Fix} T$ is diffeomorphic to Fixt.

Proof. We can consider the restriction $\boldsymbol{R} \pi$: Fix $t_{v} \rightarrow$ Fix t_{M} of the family (V, M, π). Although Fix t_{M} is possibly disconnected, we may consider that α of Theorem 6 and m are contained in the same connected component of Fix t_{M}. Since $R \pi$ is a proper submersion onto Fix t_{M}, $\boldsymbol{R} \boldsymbol{\pi}^{-1}(\alpha)$ is diffeomorphic to $\boldsymbol{R} \boldsymbol{\pi}^{-1}(m)$, where $\boldsymbol{R} \boldsymbol{\pi}^{-1}(\alpha)=$ Fix t_{α} and $\boldsymbol{R} \boldsymbol{\pi}^{-1}(m)=$ Fix t. It is sufficient to set $Y=V(\alpha)$ and $T=t_{\alpha}$. Q. E. D.

Corollary 8. Three possible configuration types $\frac{1}{1} 8, \frac{5}{1} 4$ and $\frac{9}{1}$ are all realized by some real curves of degree $(4,4)$.

Proof. As stated in $\S 0$, there exist real projective $K 3$ surfaces (X, t) with $h^{2}=4$ (h : primitive) whose real parts are homeomorphic to $\Sigma_{10} \amalg S^{2}$, $\Sigma_{6} \amalg 5 S^{2}$ and $\Sigma_{2} \amalg 9 S^{2}$ respectively. Moreover, for such real $K 3$ surfaces, L_{φ} are isomorphic to $U \oplus U \oplus\left(-E_{8}\right) \oplus\left(-E_{8}\right), U \oplus U \oplus\left(-E_{8}\right)$ and $U \oplus U$ respectively (see [8]). Hence L_{φ} have $U \oplus U$ as sublattices. By Corollary 7 and $[5, \S 3]$ (recall $\S 0$), we obtain our required results. Q. E. D.

References

[1] P. Griffiths and J. Harris, "Principles of Algebraic Geometry," John Wiley \& Sons, New York, 1978.
[2] D. A. Gudkov, The topology of real projective algebraic manifolds, Uspekhi Mat. Nauk = Russian Math. Surveys 29 (1974), 1-79.
[3] V.M. Kharlamov, The topological types of nonsingular surfaces of degree 4 in $\boldsymbol{R} \boldsymbol{P}^{3}$, Funktsional'ni Analiz i ego Prilozheniya=Functional Anal. Appl. 10 (1976), 295 -305.
[4] K. Kodaira, On compact complex analytic surfaces. I, Ann. of Math. (2) 71 (1960), 111-152.
[5] S. MATSUOKA, Nonsingular algebraic curves in $\boldsymbol{R} \boldsymbol{P}^{1} \times \boldsymbol{R} \boldsymbol{P}^{1}$, Trans. Amer. Math. Soc. (to appear).
[6] A. L. Mayer, Families of $K-3$ surfaces, Nagoya Math. J. 48 (1972), 1-17.
[7] D. Mumford, "Algebraic Geometry I, Complex Projective Varieties," Springer-Verlag, 1976.
[8] V.V. NiKulin, Integral symmetric bilinear forms and some of their applications, Izv. Akad. Nauk SSSR=Math. USSR Izv. 14 (1980), 103-167.
[9] I. I. Pjatecki-Shapiro and I. R. Shafarevich, The arithmetic of $K 3$ surfaces, Trudy Mat. Inst. Steklov = Proc. Steklov Inst. Math. 132 (1973), 45-57.
[10] I. R. Shafarevich et al., Algebraic surfaces, Trudy Mat. Inst. Steklov=Proc. Steklov Inst. Math. 75 (1965).
[11] J. J. WavRik, Deformations of Banach coverings of complex manifolds, Amer. J. Math. 90 (1968), 926-960.

Department of Mathematics
Facutly of Science
Hokkaido University
Sapporo 060, Japan

