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The configurations of the M-curves of degree (4, 4)
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Abstract. For M-curves of degree (4, 4) in RP^{1}\cross RP^{1} whose components
are all contractible, it is known that three configuration types are possible.
We prove that all these configuration types are realized by some M-curves
of degree (4, 4) by means of the existence of locally universal families of
real K3 surfaces and the local surjectivity of period mappings defined over
those families.

0. Introduction.

We consider the zero set RA of a real homogeneous polynomial F
(\neq 0) of degree (d, r) in RP^{1}\cross RP^{1} . where d and r are integers (\geq 1) .
We assume that the zero set A of F in CP^{1}\cross CP^{1} is nonsingular. (In what
follows, we write P^{1}\cross P^{1} for CP^{1}\cross CP^{1}. ) Then A is a connected complex
1-dimensional manifold. But RA is a possibly disconnected real 1-
dimensional manifold (a disjoint union of finitely many copies of S^{1} ) or
the empty set. It is known that the number of the connected components
of RA does not exceed (d-1)(r-1)+1 (see [5]). We remark that the
number (d-1)(r-1) is the genus of the nonsingular curve A . We say
RA is an M-curve of degree (d, r) if it has precisely (d-1)(r-1)+1 con-
nected components.

In this paper we make clear the “ configurations ” of the M-curves of
degree (4, 4) in RP^{1}XRP^{1} , where we consider only the curves whose com-
ponents (embedded S^{1} ) are all contractible in RP^{1}\cross RP^{1} . We define the
meaning of the “ configurations” as follows. In our cases, each comp0-

nent of RA , which is called an oval, divides RP^{1}\cross RP^{1} into two connected
components. One of those is homeomorphic to an open disk and called
the interior of the oval. The other is called the exterior of that. As a
consequence of [5], every M-curve of degree (4, 4) lies in one of the fol-
lowing three cases (cf. Figure 1).

(1) Each of certain 9 ovals lies in the exteriors of the others, and the

interior of one of those contains one oval. ( Notation:\frac{1}{1}8)
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(2) Each of certain 5 ovals lies in the exteriors of the others, and the
interior of one of those contains 5 ovals. Each of the latter 5 ovals lies in

the exteriors of the others. ( Notation:\frac{5}{1}4)

(3) An oval contains 9 ovals in its interior and each of the 9 ovals

lies in the exteriors of the others. ( Notation:\frac{9}{1})

OO
OO
OO
OO

\frac{1}{1}8 \frac{5}{1}4 \frac{9}{1}

Figure 1.

We call the above three cases the confifigurations of types \frac{1}{1}8 , \frac{5}{1}4 ,

and \frac{9}{1} respectively. We can easily construct curves of degree (4, 4) of

configuration type \frac{1}{1}8 by the “ Harnack’s method ”. which is well known

in the studies of Hilbert’s 16th problem (see [2]). Here we omit the
statement of this method. In this paper we prove that there exist curves

of degree (4, 4) of configuration types \frac{5}{1}4 and \frac{9}{1} (Corollary 8 in \S 4).

For this, it is sufficient to show the existence of 2-sheeted coverings (for

the definition, see [11] ) Y of P^{1}\cross P^{1} branched along nonsingular real
curves of degree (4, 4) whose real parts (see below) are homeomorphic to
\sum_{6}\coprod 5S^{2} and \sum_{2}\coprod 9S^{2} respectively (see [5, \S 3]), where \sum_{g} denotes a
sphere with g handles and kS^{2} denotes the disjoint union of k copies of S^{2}\wedge

Notice that the complex conjugation of P^{1}XP^{1} is lifted into two anti-
holomorphic involutions T^{+} and T^{-} on Y In the above statement, we
call fixed point sets of these involutions real parts of Y.

It is well known that every 2-sheeted covering Y of P^{1}\cross P^{1} branched
along a nonsingular curve of degree (4,4) is a K3 surface. The
topological types of real parts of real projective K3 surfaces are inves-
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tigated in Nikulin [8]. Let h be the homology class of the preimage in Y
of a hyperplane section of P^{1}\cross P^{1}(\subset P^{3}) . Then h is primitive (for the
definition, see [8] ) in H_{2}(Y, Z) and we have h^{2}=4 . Hence the triple
(H_{2}( Y), T_{*}^{\pm}, h) is a polarized integral involution (see [8]) with invar-
iants \delta_{L}=0 , l_{t+)}=3 , l_{(-)}=19 , n=4, t_{(+)}=1 and t_{(-)} (for the notations, see
[8] ) . Since we assume that RA is an M-curve whose components are all
contractible in RP^{1}\cross RP^{1} . we moreover have a=0 (see also [8]) for
either T^{+} or T^{-} because of a consequence of [5, \S 3]. Hence, by [8, The-
orem 3.10.6], the real part of Y with respect to T^{+} or T^{-} is homeomor-
phic to \Sigma_{g}\coprod kS^{2} . where g=(21-t_{(-)})/2 and k=(1+t_{(-)})/2 . Furthermore,
by [8, Theorem 3.4.3], a polarized integral involution with the above
invariants exists if and only if t_{(-)}=1,9 or 17. By [8, Theorem 3.10.1],
the isomorphism classes of polarized integral involutions with the above
invariants are in bijective correspondence with the coarse projective equiva-
lence classes (see [8, \S 3, 10^{o}] ) of real projective K3 surfaces for which
homology classes h of hyperplane sections (or those preimages) are primi-
tive and h^{2}=4 . Therefore, we see that there exist real projective K3 sur-
faces with h^{2}=4 ( h : primitive) whose real parts are homeomorphic to
\sum_{6}\coprod 5S^{2} or \sum_{2}\coprod 9S^{2} . But these K3 surfaces are not necessarily 2-sheeted
coverings of P^{1}\cross P^{1} branched along nonsingular real curves of degree (4,
4). We must make a closer investigation of [8, Theorem 3.10.1].

We first prepare a sufficient condition for K3 surfaces (not necessarily
algebraic) with antiholomorphic involutions, which are called real K3
surfaces, to be 2-sheeted coverings of P^{1}\cross P^{1} branched along nonsingular
real curves of degree (4, 4) (Lemma 2 in \S 2). In [3] it is proved that for
every real K3 surface, there exists an “ equivariant ” locally universal
K\"ahler family of its complex structures (Lemma (Kharlamov) in \S 1).
For the real projective K3 surfaces (X, t) with h^{2}=4 ( h : primitive)
whose real parts are homeomorphic to \sum_{6}\coprod 5S^{2} or \sum_{2}\coprod 9S^{2} stated above,
L_{\varphi}=Ker(1+t^{*}) are isomorphic to U\oplus U\oplus(-B) and U\oplus U respectively
(see [8]), where U and E_{8} are even unimodular lattices with rank U=2 ,
sign U=0, and rankB=signR=8. We show that if for a real K3 surface
(X, t) , L_{\varphi} has U\oplus U as its sublattice, then there exist real K3 surfaces
which satisfy the conditions of Lemma 2 arbitrarily closely to the surface
(X, t) in the equivariant family stated above (the proof of Theorem 6 in
\S 4). Before this, we prepare Lemma 3 and its Corollary 4, which are
finer versions of Tjurina’s lemma concerning integer vector sequences
([10, Chap. IX , \S 5]).

The author would like to thank Professors I. Nakamura, M.-H. Saito
and Y. Umezu for their kind and great help to prove Lemma 1, Professor
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G. Ishikawa for indicating a gap in the original proof of Theorem 6, and
Professors H. Suzuki and S. Izumiya for their constant encouragement.

1. Real K3 surfaces and equivariant families of their complex
structures.

We say a compact connected K\"ahler surface X is a K3 surface if the
first Betti number of X vanishes and there exists a nowhere vanishing
holomorphic 2-form \omega_{X} on X . The following are known (cf. [10, Chap.
IX]) .

(1) H^{2}(X, Z) is free of rank 22.
(2) The intersection form H^{2}(X, Z)\cross H^{2}(X, Z)arrow Z is isomorphic

to U\oplus U\oplus U\oplus(-E_{8})\oplus(-E_{8}) .
(3) \omega_{X}\wedge\omega_{X}=0 , \omega_{X}\wedge\overline{\omega}_{X}>0 , \dim_{C}H^{0}(X, \Omega^{2})=1 . We set

PicX =(\omega_{X})^{\perp}\cap H^{2}(X, Z)=H^{1,1}(X)\cap H^{2}(X, Z) .

Since h^{1}(X, \mathscr{O}_{X})=\frac{1}{2}b(X)=0 , we can regard PicX as the group of

isomorphism classes of complex line bundles on X. We denote by Q( . )

the intersection form of X. We set P(X, C)=P(H^{2}(X, C)) and K_{20}=

\{\lambda\in P(X, C)|Q(\lambda, \lambda)=0\} . Then we see that H^{2,0}(X)=[\omega_{X}] is contained
in K_{20} .

(4) There exists an effectively parametrized and locally universal
family ( V, M, \pi) of complex structures of X. where M is complex 20-
dimensional. Here, by a family ( V, M, \pi) of complex structures of X ,

we mean a C^{\infty} -fibre bundle \pi:Varrow M with the fibre X , where V and M

are connected complex manifolds, \pi is a holomorphic map onto M.
(5) For every family ( V, M, \pi) of complex structures of a K3 sur-

face X=\pi^{-1}(m) , there exists a contractible neighborhood U such that for
any \alpha\in U, V(\alpha)=\pi^{-1}(\alpha) are K3 surfaces and (\pi^{-1} ( U), U, \pi) is a C^{\infty}

-

trivial bundle. Let i_{a} : V(\alpha)arrow\pi^{-1}(U) be the inclusion map. Then i_{a}^{*} :
H2(\pi^{-1} ( U), Z) -arrow H2( V(\alpha), Z) is an isomorphism. We define \tau:U -arrow

P(X, C) by \tau(\alpha)=i_{m}^{*}\circ i_{a}^{*-1}(H^{2,0}(V(\alpha))) . This is called the period map-
ping. From [10, Chap. IX , Theorem 2], if(V, M, \pi) is effectively par-
ametrized, then \tau is a holomorphic embedding on a neighbourhood U’ of
m in U.

Furthermore, Kharlamov [3] shows the following.

LEMMA (KHARLAMOV [3]). Let (X, t) be a real K3 surface, namely,
X is a K3 surface and t is an antiholomo\uparrow phic involution on it. Then
there exist a locally universal family ( V, M, \pi) of complex structures of X
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and antiholomorphic involutions t_{V} on V and t_{M} on M which satisfy the
following conditions.

(i) Each fifibre V(\alpha) is a K3 surface and V(m)=X.
(ii) M is contractible, and ( V, M, \pi) is a C^{\infty} -trivial bundle.
(iii) \tau (see (5) above) is a holomorphic embedding on M and \tau(M)

is a neighborhood of \tau(m) in K_{20} .
(iv) t_{V}|_{X}=t, \pi\circ t_{V}=t_{M}\circ\pi, \tau\circ t_{M}=\overline{t^{*}\circ\tau}, whereis- the natural complex

conjugation on P(X, C) .

REMARK. We can restrict t_{V} on V(\alpha) for any \^a Fix t_{M} . We set
t_{a}=t_{V}|_{V(a)} . Then ( V(\alpha), t_{a}) are real K3 surfaces.

2. A sufficient condition for real K3 sufaces to be 2-sheeted coverings
of P^{1}\cross P^{1} branched along real curves of degree (4, 4) .
We prepare the following lemmas in order to catch 2-sheeted cover-

ings (in the sense of [11, \S 1]) of P^{1}\cross P^{1} branched along (real) curves in
the family of (real) K3 surfaces given in \S 1.

LEMMA 1. Let X be a K3 surface with rank PicX=2 . If there exist
primitive elements c_{1} and c_{2} in PicX such that c_{1}^{2}=c_{2}^{2}=0 and c_{1}\cdot c_{2}=2 ,
then X can be a 2-sheeted branched covering of P^{1}\cross P^{1} . and the branch
locus is a nonsingular curve of degree (4, 4) .

PROOF. We choose an element b such that b and c_{1} generate the free
Z-module P_{\dot{1}}cX. Then c_{2}=mc_{1}+nb for some integers m and n. Since
2=c_{1}\cdot c_{2}=n(c_{1}\cdot b) , we have n=\pm 1 or \pm 2 . We show that D^{2}\geq 0 for any
irreducible curve D on the surface X. In case n=\pm 1 , we have PicX=
Z(c_{1}, c_{2}) . Let D be an irreducible curve on X and [D] be the linearly
equivalence class of the divisor D. Then [D]=kc_{1}+lc_{2} for some integers
k and l , and we have D^{2}=4kl. Since D^{2}\geq-2 , we have D^{2}\geq 0 . In case
n=\pm 2 , since c_{2} is primitive, we see that m is odd. Since (2b)^{2}=(\pm c_{2}

\mp mc_{1})^{2}=-4m , we have b^{2}=-m . Let D be an irreduible curve on X.
Then we have [D]=kc_{1}+lb for some integers k and l. Since D^{2}=k^{2}c_{1}^{2}+

2klc_{1}\cdot b+l^{2}b^{2}=\pm 2kl-l^{2}m and D^{2} is even, we see that l is even. Hence
[D] is contained in Z(c_{1}, c_{2}) . Therefore we see that D^{2}\geq 0 as in the case
n=\pm 1 .

Now let F_{i}(i=1,2) be a complex line bundle whose first Chern class
is c_{i} . By the Riemann-Roch theorem, h^{0}(F_{i})+h^{0}(-F_{i})\geq 2 . Since F_{i} is
not trivial, we may assume that h^{0}(-F_{i})=0 and h^{0}(F_{i})\geq 2 replacing c_{i}

by -
c_{i} if necessary. We will verify that c_{1}\cdot c_{2}=2 later on. Let C_{i} be the

divisor of a global holomorphic section of F_{i} on X. We show that the
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complete linear system |C_{i}| has no fixed components. If \Gamma is the fixed part
of |C_{i}| , and D is an irreducible component of \Gamma . then we choose an
effective divisor E such that \Gamma+E is a member of |C_{i}| . We may assume
that all irreducible components of E are distinct from D. In our cases,
since D^{2}\geq 0 , we have dim |D|\geq 1 by the Riemann-Roch theorem. Hence D
is movable. This contradicts the assumption that \Gamma is the fixed part.
Hence |C_{i}| has no fixed components. Therefore, by [6, Proposition 1 ii) ],
each element of |C_{1}| can be written as E_{1}+\cdots+E_{k} with E_{i}\in|C_{1}’| , C_{1}’ being
nonsingular elliptic. (For |C_{2}| , we have the same results.) Hence we have
C_{1}-kC1’ (linearly equivalent). Since [C1]’\in Z(c_{1}, c_{2}) , we have [C1]’=
sc_{1}+tc_{2} for some integers s and t. Then, since c_{1}=k(sc_{1}+tc_{2}) , we see that
k=1 . Hence we have C_{1}-C_{1}’ . Thus we may consider C_{1} and C_{2} to be
nonsingular elliptic curves. Hence we have C_{1}\cdot C_{2}=2 . We set C=C_{1}+C_{2} .
The complete linear system |C| also has no fixed components. Hence, by
[6, Proposition 1 i) ], |C| has no base points and contains an irreducible
nonsingular curve C’ Since C^{\prime 2}=4(>0) , the surface X is algebraic by
[4, Theorem 3.3]. Thus we see that there exist elliptic curves C_{1} and C_{2}

on the algebraic K3 surface X such that C_{1}\cdot C_{2}=2 . Then the system |C_{i}|

(i=1,2) defines a morphism \Phi_{|C_{i}|} : Xarrow P^{1} . We can define a holomorphic
mapping \Phi:X -arrow P^{1}\cross P^{1} by the formula \Phi(x)=(\Phi_{|C_{1}|}(x), \Phi_{|C_{2}|}(x)) for any
x\in X. Since \Phi_{|C_{1}|} and \Phi_{|C_{2}|} are surjective and C_{1}\cdot C_{2}=2 , we see that \Phi is
surjective. Let S:P^{1}\cross P^{1}arrow P^{3} be the Segre embedding. This embedding
gives a biholomorphic mapping onto a nonsingular quadric Q in P^{3} Then
the composition S\circ\Phi : Xarrow P^{3} is nothing but a morphism \Phi_{|C|} defined by
the system |C| . From the well known formula C^{2}=\deg\Phi_{|C|}\cdot\deg Q , we see
that the morphism \Phi_{|C|} is of degree 2. Moreover, for any irreducible
curve D , the image \Phi_{|C|}(D) is an irreducible curve. In fact, if \Phi_{|C|}(D) is
a point P , then \Phi_{|C|}^{-1}(H)\cdot D=0 for a hyperplane section H of Q which
does not meet the point P. Since \Phi_{|C|}^{-1}(H)^{2}=C^{2}=4 , we have D^{2}<0 by the
Hodge index theorem. But D^{2}\geq 0 on our surface X. This is a contradic-
tion. We also see that for any point P in Q , the preimage \Phi_{|C|}^{-1}(P) con-
sists of finitely many points. Let B be the ramification divisor (see, for
example, [1, p. 668] ) of the finite surjective mapping \Phi_{|C|} : X -arrow Q. We
use the same notation B for the support of the divisor B. We set A=
\Phi_{|C|}(B) . Then A also defines a divisor. By the definition of the
ramification divisor, \Phi_{|C|} is locally biholomorphic on X\backslash B , and in our
case, all the points in B are branch points in the sense of [11, Definition 1.
3]. Let K_{X} (resp. K_{Q}) be the canonical divisor of X (resp. Q). Then we
have (see, for example, [7, Lemma (6.20)])
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K_{X}-\Phi_{|C|}^{*}(K_{Q})+B.

Since we know that K_{X}-0 and K_{Q}=(-2)(pt\cross P^{1}+P^{1}\cross pt) identifying Q
with P^{1}\cross P^{1} via the Segre embedding S, we have

B-2\Phi^{*}(pt\cross P^{1}+P^{1}\cross pt) .

Hence, in particular, B\neq\phi . Recall that the morphism \Phi_{|C|} is of degree 2.
Thus we obtain a 2-sheeted branched covering \Phi:Xarrow P^{1}\cross P^{1} with
branch locus A in the sense of [11, \S 1]. Hence the branch locus A is non-
singular. Moreover, from the proof of [11, Theorem 1.2], we have [B]=
\Phi^{*}F for a line bundle F over P^{1}\cross P^{1} with F^{\otimes 2}=[A] . Since Pic (P^{1}\cross

P^{1})=Z([pt\cross P^{1}], [P^{1}\cross pt]) , we have F=k[pt\cross P^{1}]+l[P^{1}\cross pt] for some
integers k and l. Since B-2\Phi^{*}(pt\cross P^{1}+P^{1}\cross pt) , we have k=l=2 by
considering intersection numbers. Hence we have

A-4(pt\cross P^{1}+P^{1}\cross pt) .

Thus A is a nonsingular curve of degree (4, 4) . Q. E. D.

REMARK. In the above lemma, for every irreducible curve D on the
algebraic K3 surface X , we see that D^{2} is divisible by 4. Hence, if D^{2}>

0 , then D^{2}\geq 4 , namely p_{a}(D)\geq 3 . Moreover, for the irreducible curve C’
(–C) , we know that p_{a}(C’)=3 . Hence the surface X belongs to the
class \pi=3 (see [10, Chap. VIII, p. 188] or [9, \S 1, p. 46]). Hence, by [10,
Chap. VIII, Theorem 2], \Phi_{|C|} is a birational morphism onto a quartic sur-
face in P^{3} , or a morphism of degree 2 onto a quadric in P^{3} We see that
our surface X lies in the latter case.

LEMMA 2. Let (X, t) be a real Resurface such that X satisfifies the
conditions of Lemma 1. If moreover, c_{1} and c_{2} are contained in Ker(1+
t^{*}) , then there exists a holomorphic mapping \Phi which makes X a 2-sheeted
branched covering of P^{1}\cross P^{1} and satisfifies conj\circ\Phi=\Phi\circ t. Hence the branch
locus is a nonsingular curve defifined by a real homogenous polynomial of
degree (4, 4) .

PROOF. In the proof of Lemma 1, we define \Phi=(\Phi_{|C_{1}|}, \Phi_{|C_{2}|}) . Let s_{1}

and s_{2} form a basis for the space H^{0}(X, \mathscr{O}(C_{1})) . Let \xi_{0} and \xi_{1} be
holomorphic functions on X such that \xi_{1}(x)s_{1}(x)=\xi_{0}(x)s_{2}(x) for any
x(\in X) . Then \Phi_{|C_{1}|} is defined to be [\xi_{0} : \xi_{1}] . We show that conj\circ\Phi_{|C_{1}|}=

\Phi_{|C_{1}|}\circ t if we choose an appropriate basis for H^{0}(X, \mathscr{O}(C_{1})) .
We define the line bundle F_{1} to be [C_{1}] . By the assumption, we see

the first Chern class c_{1}(F_{1}) is contained in Ker(1+t*) . Hence we have
c_{1}(F_{1})=c_{1}(t^{*}\overline{F_{1}}) , where \overline{F_{1}} is the conjugate bundle of F_{1} . Since H^{1}(X,



368 S. Matsuoka

\mathscr{O}_{X})=0 , the line bundle F_{1} and t^{*}\overline{F_{1}} are isomorphic. We denote by E_{1}

and pr_{1} the total space and the projection of F_{1} . Let \{ U_{\lambda}\}_{\lambda\in\Lambda} be an open
covering of X , \varphi_{\lambda} : pr_{1}^{-1} ( U_{\lambda}) -arrow U_{\lambda}\cross C be trivializations, and g_{\lambda\mu} : U_{\lambda}\cap U_{\mu}

arrow C^{*} be transition functions. We may assume that there exists an involu-
tion \sigma on \Lambda such that U_{\sigma(\lambda)}=t(U_{\lambda}) . Then the transition functions of the
line bundle t^{*}\overline{F_{1}} are g_{\sigma(\lambda)\sigma(\mu)^{\circ}}t : U_{\lambda}\cap U_{\mu}arrow C^{*} . Since F_{1} and t^{*}\overline{F_{1}}are
isomorphic, there exists a collection of functions f_{\lambda}(\in \mathscr{O}^{*}|(U_{\lambda})) such that

(1) g_{\lambda\mu}(x)= \frac{f_{\lambda}(x)}{f_{\mu}(x)}\overline{g_{\sigma(\lambda)\sigma(\mu)}(t(x))} for any x(\in U_{\lambda}\cap U_{\mu}) ,

where we may consider that

(2) f_{\sigma(\lambda)}=\overline{f_{\lambda}\circ t}^{-1}

Then we can define an antiholomorphic involution T_{1} on E_{1} such that
t\circ pr_{1}=pr_{1}\circ T_{1} and the restrictions ( T_{1})_{x} : prl-l (x) -arrow prl-l (t(x)) are
antilinear as follows. (It turns out that the line bundle F_{1} is a “ real
vector bundle ”.) We define T_{1} on pr_{1}^{-1} ( U_{\lambda}) by the following formula.

\varphi_{\sigma(\lambda)}\circ T_{1^{\circ\varphi_{\lambda}(x}}^{-1}, c)=(t(x),\overline{f_{\lambda}(x)^{-1}c})

By the equality (1), T_{1} is well defined over E_{1} , and by (2), we see that T_{1}

is an involution. We now define an antilinear involution \theta_{1} .
H^{0}(X, \mathscr{O}(F_{1})) -arrow H^{0}(X, \mathscr{O}(F_{1})) by \theta_{1}(s)=T_{1}\circ s\circ t , and choose s_{1} and s_{2}

stated above in Fix \theta_{1} . Then we see that \Phi_{|C_{1}|}=[\overline{\xi_{0^{\circ}}t} : \overline{\xi_{1}\circ t}] . Hence
conj\circ\Phi_{|C_{1}|}=\Phi_{|C_{1}|^{\circ}}t. We have the same results for |C_{2}| . Thus we have
conj\circ\Phi=\Phi\circ t. It follows that conj(A) =A , where A is the branch locus.
Q. E. D.

3. A lemma concerning integer vector sequences.

LEMMA 3. For any integer sequence \alpha_{1}’(n) with \alpha_{1}’(n) - \infty , any posi-
tive real number \alpha, any real numbers x3 and x_{4} , there exist a subsequence
\alpha_{1}(n) of \alpha_{1}’(n) and an integer vector sequence (\beta_{1}(n), \beta_{2}(n), \beta_{3}(n) ,

\beta_{4}(n)) which satisfy the following fifive conditions.

(1) \beta_{1}\beta_{2}+\beta_{3}\beta_{4}=1

(2) \lim=x_{3}\underline{\beta_{3}}

narrow\infty\beta_{1}

(3) \lim=x_{4}\underline{\beta_{4}}

narrow\infty\beta_{1}

(4) \beta_{1} and \beta_{4} are odd.

(5) \lim=\alpha\underline{\beta_{1}}

narrow\infty\alpha_{1}
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PROOF. We first prove in the case x_{t} is a rational number. The
rational number x_{4} can be expanded into a finite simple continued fraction
as follows.

1
x_{4}=a_{1}+

1
a_{2}+

1
a_{3}+...+a_{r-1}+ \frac{1}{a_{r}}

In the above, a_{1} is an integer,and a_{2} , ... . a_{r} are positive integers. We
define (md, v_{0}) , \ldots . (u_{r}, v_{r}) inductively as follows.

(u), v_{0})=(-1, -1)

(u_{j}, v_{j})=\{\begin{array}{l}(v_{j-1},u_{j-1})ifa_{jisevenor}(u_{j-1},v_{j-1})=(-1,1)(v_{j-1},-u_{j-1})otherwise\end{array}

In the case r\geq 2 , we define b_{i}(2\leq i\leq r) as follows.

1
b_{i}=a_{i}+

1
a_{i+1}+

1
a_{i+2}+ +... a_{r-1}+ \frac{1}{a_{r}}

Remark that every b_{i} is positive. We set \alpha’=\frac{\alpha}{b_{2}\cross\cdots\cross b_{r}} . In the case r=

1 , we set \alpha’=\alpha . Now we choose and fix a subsequence \alpha_{1}(n) of \alpha_{1}’(n)

such that \frac{\alpha_{1}(n)}{n}arrow\infty . Let \tilde{\beta}_{1}(n) be the closest integer to \alpha_{1}(n)\alpha’ Since

\alpha_{1}(n)arrow\infty , we have \lim\frac{\tilde{\beta}_{1}}{\alpha_{1}}=\alpha’ and \frac{\tilde{\beta}_{1}}{2n}=\frac{\tilde{\beta}_{1}}{\alpha_{1}}\frac{\alpha_{1}}{2n}
-arrow\infty . We set \beta_{1}(n)=

[ \frac{\tilde{\beta}_{1}(n)}{2n}] or [ \frac{\tilde{\beta}_{1}(n)}{2n}]+1 , where we take \beta_{1}(n) to be odd (resp. even) if

v_{r}=-1 (resp. 1). We have \beta_{1}(n)arrow\infty . We set x_{\acute{3}}=(-1)^{r}x_{3} . In the
case (u_{r}, v_{r})=(1, -1) , let \beta_{3} be the closest integer to \beta_{1}x_{\acute{3}} that is relatively
ly prime to \beta_{1} . Since \beta_{1} is odd, \beta_{1} and 2\beta_{3} are relatively prime, and
hence, there exist integers u and v such that u\beta_{1}+2v\beta_{3}=1 and |u|<|2\beta_{3}| ,
|v|<|\beta_{1}| . We set \beta_{2}=u and \beta_{4}=2v . In the case (u_{r}, v_{r})=(-1,1) , let \beta_{3}

be as above. Then there exist integers u and v such that u\beta_{1}+v\beta_{3}=1 and
|u|<|\beta_{3}| , |v|<|\beta_{1}| . We set \beta_{2}=u and \beta_{4}=v . In the case (u_{r}, v_{r})=(-1 ,
-1), let \beta_{3} be the closest integer to \beta_{1}x_{\acute{3}} that is relatively prime to 2\beta_{1} .
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Then there exist integers u and v such that 2u\beta_{1}+v\beta_{3}=1 and |u|<|\beta_{3}| ,

|v|<|2\beta_{1}| . We set \beta_{2}=2u and \beta_{4}=v . The case (u_{r}, v_{r})=(1,1) cannot
occur. It follows that \beta_{4} is odd (resp. even) if u_{r}=-1 (resp. 1). In all

the cases, we have \beta_{1}\beta_{2}+\beta_{3}\beta_{4}=1 , \lim_{narrow\infty}\frac{\beta_{3}}{\beta_{1}}=x_{\acute{3}} , and | \frac{\beta_{4}}{\beta_{1}}|<2 . We see that \frac{\beta_{2}}{\beta_{1}}

are also bounded. We define a new sequence P(n)=(p_{1}(n), p_{2}(n), p_{3}(n) ,

p_{4}(n)) to be

(-\beta_{4}(n)+2n\beta_{1}(n), -\beta_{3}(n) , 2n\beta_{3}(n)+\beta_{2}(n) , \beta_{1}(n)) .

Then we have p_{1}k+bp_{4}=1 , lim \frac{p_{3}}{p_{1}}=x_{3}’ and \lim\frac{p_{4}}{p_{1}}=0 . Since | \beta_{1}-\frac{\overline{\beta}_{1}}{2n}|\leq 1 ,

\lim\frac{\tilde{\beta}_{1}}{\alpha_{1}}=\alpha’ , and \frac{\alpha_{1}}{n}arrow\infty , we have \lim\frac{p_{1}}{\alpha_{1}}=\alpha’ . Remark that the parity of

(p_{1}, b, p_{3}, p_{4}) corresponds to (\beta_{4}, \beta_{3}, \beta_{2}, \beta_{1}) .
We now assume that a new sequence \beta(n)=(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}) satisfies

the conditions (1), (2), (3) and (5) in the statement of Lemma 3 for a
positive real number \alpha , real numbers x_{3} and x_{4} , and a sequence \alpha_{1}(n) with
\alpha_{1}(n)arrow\infty . Let k be an arbitrary integer with k-x_{4}>0 . We define a
new sequence I_{k}(\beta(n))=(q_{1}, q_{2}, q_{3}, q_{4}) to be

(-\beta_{4}(n)+k\beta_{1}(n), -\beta_{3}(n) , k\beta_{3}(n)+\beta_{2}(n) , \beta_{1}(n)) .

Then we see that q_{1}q_{2}+q_{3}q_{4}=1 and \lim\frac{q_{3}}{q_{1}}=x_{3} . Hence the properties (1)

and (2) are preserved by the transformation I_{k} . On the other hand, we
see that

\lim\frac{q_{4}}{q_{1}}=\frac{1}{k-x_{4}}

and

\lim\frac{q_{1}}{\alpha_{1}}=\alpha(k-x_{4})(>0) .

We next define a new sequence J(\beta(n)) to be (\beta_{1}, \beta_{2}, -\beta_{3}, -\beta_{4}) . Then
the properties (1) and (5) are preserved by the transformation J. But for
the properties (2) and (3), the limit values are multiplied by (-1).

The sequence P(n) has the properties (1), (2) (for x_{3}=x_{3}’), (3) (for

x_{4}=0) and (5). In the case r\geq 2 , we can transform P(n) by I_{a_{r}} . Then

I_{a_{r}}(P(n)) has the properties (3) (for x_{4}= \frac{1}{a_{r}}) and (5) (for \alpha=\alpha’ar=

\frac{\alpha}{\ \cross\cdots\cross b_{r-1}}(>0)) . Next we can transform J\circ I_{a_{r}}(P(n)) by I_{a_{r- 1}} . Then



’1 he confifigurations of the M-cumes of degree (4, 4)

in RP^{1}\cross RP^{1} and periods of real K3 surfaces 371

1
I_{ar-1}\circ J\circ I_{a_{r}}(P(n)) has the properties (3) (for x_{4}= ) and (5) (for

a_{r-1}+ \frac{1}{a_{r}}

\alpha=\alpha’a_{r}(a_{r-1}+\frac{1}{a_{r}})=\frac{\alpha}{\ \cross\cdots\cross b_{r-2}}(>0)) . Thus we obtain the sequence (\gamma_{1} ,

\gamma_{2} , \gamma_{3} , \gamma_{4})=\int\circ I_{a_{2}}\circ\int\circ\cdots\circ\int\circ I_{a_{7-2}}\circ J\circ I_{a_{\gamma- 1}}\circ\int\circ I_{a_{\gamma}}(P(n)) . In the case r=1 , we

set (\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4})=P(n) . Then we have (1) \gamma_{1}\gamma_{2}+\gamma_{3}\gamma_{4}=1(2) lim \frac{\gamma_{3}}{\gamma_{1}}=

-x_{3}(3) \lim\frac{\gamma_{4}}{\gamma_{1}}=a_{1}-x_{4}(5)\lim\frac{\gamma_{1}}{\alpha_{1}}=\alpha . Finally we set (\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4})=(\gamma_{1} ,

a_{1}\gamma_{3}+\gamma_{2}, -\gamma_{3}, -\gamma_{4}+a_{1}\gamma_{1}) . Then this sequence satisfies the condition (1),
(2), (3) and (5) of Lemma 3. From the definition of (u_{r}, v_{r}) , we observe
that the condition (4) is also satisfied. Thus Lemma 3 is proved in the
case x_{t} is a rational number. To complete the proof of the lemma, let x_{4}

be an arbitrary real number. Let \{x_{4}(n)\}(n=1,2,3\ldots) be a rational num-
ber sequence which converges to x_{t} satisfying |x_{t}(n)-x_{4}|< \frac{1}{n} . From the

results above, there exist sequences (\beta_{1,n}, \beta_{2,n} , \beta_{3,n} , \beta_{4.n}) such that (1)

\beta_{1,n}\beta_{2,n}+\beta_{3,n}\beta_{4,n}=1(2)\lim_{marrow\infty}\frac{\beta_{3,n}(m)}{\beta_{1,n}(m)}=x_{3}(3)\lim_{marrow\infty}\frac{\beta_{4,n}(m)}{\beta_{1,n}(m)}=n(n)(4)\beta_{1.n} and

\beta_{4,n} are odd (5) \lim_{marrow\infty}\frac{\beta_{1,n}(m)}{\alpha_{1}(m)}=\alpha . Remark that the subsequence \alpha_{1}(m) of
\alpha_{1}’(m) does not depend on n. We choose a natural number sequence

m(1)<m(2)<m(3)<\cdots such that | \frac{\beta_{3,n}(m(n))}{\beta_{1,n}(m(n))}-x_{3}|<\frac{1}{n}, | \frac{\beta_{4,n}(m(n))}{\beta_{1.n}(m(n))}-x_{f}(n)

|< \frac{1}{n} and | \frac{\beta_{1,n}(m(n))}{\alpha_{1}(m(n))}-\alpha|<\frac{1}{n} . We set (\beta_{1}(n), \beta_{2}(n) , \beta_{3}(n) , \beta_{4}(n))=

(\beta_{1}(m(n)), \beta_{2}(m(n)) , \beta_{3}(m(n)) , \beta_{4}(m(n))) . It is sufficient that we define
\alpha_{1}(n) to be \alpha_{1}(m(n)) newly. This completes the proof of Lemma 3.

COROLLARY 4. For awy integer sequence \alpha_{1}’(n) with \alpha_{\acute{1}}(n) -arrow\infty , any
positive real number \alpha, any real numbers x_{3} and x_{t} , there exist a subse-
quence \alpha_{1}(n) of \alpha_{1}’(n) and an integer vector sequence (\beta_{1}(n), \beta_{2}(n) ,
\beta_{3}(n) , \beta_{4}(n)) which satisfy the following fifive conditions.

(1) \beta_{1}\beta_{2}+\beta_{3}\beta_{4}=2

(2) \lim=x_{3}\underline{\beta_{3}}

narrow\infty\beta_{1}

(3) \lim=x_{4}\underline{\beta_{4}}

narrow\infty\beta_{1}

(4) \beta_{1} and \beta_{3} are relatively prime, and so are \beta_{2} and \beta_{4} .
(5) \lim_{narrow\infty}\frac{\beta_{1}}{\alpha_{1}}=\alpha
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PROOF. There exists a sequence (\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}) which satisfies the

conditions (1), (3), (4), (5) in Lemma 3 and the condition that \lim_{narrow\infty}\frac{\beta_{3}}{\beta_{1}}=\frac{x_{3}}{2} .

Then, from (1) and (4), \beta_{1} and 2\beta_{3} are relatively prime, and so are 2\beta_{2}

and \beta_{4} . Thus the new sequence (\beta_{1},2\beta_{2},2\beta_{3}, \beta_{4}) is a required one. Q. E.
D.

REMARK. Lemma 3 is a finer version of [10, Chap. IX , \S 5, Lemma] for
\pi=2 , and Corollary 4 is for \pi=3 .

4. The main theorem.

Let (X, t) be a real K3 surface. We set L_{\varphi}=Ker(1+t^{*}) , and L^{\varphi}=

Ker(1-t^{*}) in H^{2}(X, Z) . Remark that Fix \overline{t^{*}}=((L^{\varphi}\otimes R)\oplus i(L_{\varphi}\otimes R))/R^{*}

in P(X, C) .

PROPOSITION 5. If L_{\varphi} has U\oplus U as its sublattice, then there exists a
pair \{c_{1}(n)\} , \{c_{2}(n)\} of sequences which consist of primitive elements of U
\oplus U and satisfy the conditions that Q(c_{1}(n), c_{1}(n))=Q(c_{2}(n), c_{2}(n))=0 ,
Q(c_{1}(n), c_{2}(n))=2 , the sequence of the subspaces L_{n}=\{\lambda\in P(X, C)|Q(\lambda ,
c_{1}(n))=Q(\lambda, c_{2}(n))=0\} of codimension 2 converges to a subspace L=
\{\lambda\in P(X, C)|Q(\lambda, \xi_{1})=Q(\lambda, \xi_{2})=0\} of codimension 2, where \xi_{1} and \xi_{2} are
elements of ( U\oplus U)\otimes R, and L intersects K_{20} transversely at H^{2,0}(X) in
P(X, C) .

Hence the sequence of the subspaces L_{n}\cap(Fix\overline{t^{*}}) of real codimension
2 converges to the subspace L\cap(Fixt^{*})- of real codimension 2, and L\cap

(Fixt^{*})- intersects K_{20}\cap(Fixt^{*})- transversely at H^{2,0}(X) in Fix \overline{t^{*}}

PROOF. For our sublattice of L_{\varphi} which is isomorphic to U\oplus U , we use
the same notation U\oplus U. Since U\oplus U is unimodular, we have H^{2}(X,
Z)=(U\oplus U)\oplus(U\oplus U)^{\perp}\wedge Let e_{1} , e2, e_{3} , e_{4} form a basis for U\oplus U and rep-
resent the intersection form Q by the matrix

(\begin{array}{llll}0 1 1 0 0 1 1 0\end{array}) .

We set s=rankL_{\varphi} and let e_{5} , \ldots , e_{s} form a basis for L_{\varphi}\cap(U\oplus U)^{\perp} . Then
e_{1} , \ldots r. e_{s} form a basis for L_{\varphi} . Remark that (L_{\varphi}\otimes Q)\oplus(L^{\varphi}\otimes Q)=H^{2}(X,

Q), L_{\varphi}=(L^{\varphi})^{\perp} and L^{\varphi}=(L_{\varphi})^{\perp} in H^{2}(X, Z) . Let e_{s+1} , \ldots , e_{22} form a basis
for L^{\varphi} . Then e_{1} , \ldots , e_{22} form a basis for H^{2}(X, Q) . Since H^{2,0}(X)=

\overline{t^{*}}(H^{2,0}(X)) , we can take \omega_{X} so that \omega_{X}=\overline{t^{*}\omega_{X}} Then we have \omega_{X}=

(\Sigma_{j=s+1}^{22}\lambda_{j}e_{j})+i(\Sigma_{j=1}^{s}\lambda_{j}e_{j}) for some real numbers \lambda_{j}(1\leq j\leq 22) . We set
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\omega_{+}=\Sigma_{j=s+1}^{22}\lambda_{j}e_{j} and \omega_{-}=\Sigma_{j=1}^{s}\lambda_{j}e_{j} . Since \omega_{X}\Lambda\omega_{X}=0 and \omega_{X}\Lambda\overline{\omega}_{X}>0

(recall \S 1), we have \omega_{+}^{2}=\omega_{-}^{2}>0 . Moreover, we set \omega_{-}’=\sum_{j=5}^{s}\lambda_{j}e_{j} . Then
\omega_{-}^{2}=2(\lambda_{1}\lambda_{2}+\lambda_{3}\lambda_{4})+\omega_{-}^{\prime 2} . Remark that \omega_{+}\in L^{\varphi}\otimes R, U\oplus U\subset L_{\varphi} , where sign
(U\oplus U)=(2,2) , and \omega_{-}’\in(L_{\varphi}\cap(U\oplus U)^{\perp})\otimes R. Since sign (H^{2}(X, Z) ,
Q)=(3,19) , we have \omega_{-}^{\prime 2}\leq 0 . Therefore we obtain \lambda_{1}\lambda_{2}+\lambda_{3}\lambda_{4}>0 .

We may assume that \lambda_{4}\neq 0 replacing ( e_{1} , e2,e_{3} ,e_{4}) by ( e_{3} , e_{4} , e_{1} , e2) if
necessary. We set

x_{3}= \frac{\lambda_{1}}{\lambda_{4}} , x_{4}=\lambda_{1}x_{3}+\lambda_{4} , y_{4}=(1+x_{3}^{2})(\lambda_{2}x_{3}+\lambda_{3}) ,

\xi_{1}=e_{2}-x_{3}e_{3} , \xi_{2}=x_{3}x_{t}(1+x_{3}^{2})e_{1}-x_{3}y_{4}e_{2}-y_{4}e_{3}+x_{t}(1+x_{3}^{2})e_{4} .

We define L=\{\lambda\in P(X, C)|Q(\lambda, \xi_{1})=Q(\lambda, \xi_{2})=0\} . The subspace L meets
H2,0 ( X) because Q( \omega_{X}. \xi_{1})=i(\lambda_{1}-\frac{\lambda_{1}}{\lambda_{4}}\lambda_{4})=0 a nd Q ( \omega_{X}, \xi_{2})=

i(x_{3}x_{4}(1+x_{3}^{2})\lambda_{2}-x_{3}y_{4}\lambda_{1}-y_{4}\lambda_{4}+x_{4}(1+x_{3}^{2})\lambda_{3})=i((1+x_{3^{2}})(\lambda_{2}x_{3}+\lambda_{3})x_{4}+(-\lambda_{1}x_{3}

-\lambda_{4})y_{4})=i(y_{4}x_{4}-x_{4}y_{4})=0 . We show that L intersects K_{20} at H^{2,0}(X) tran-
sversely. We identify P(X, C) with P^{21}=\{[X_{1} : \ldots : X_{22}]\} taking a basis
ie_{1} , \ldots , ie_{s} , e_{s+1} , \ldots , e_{22} . Then K_{20} is identified with the subset defined by
an integral homogeneous polynomial of degree 2 of the form f(X_{1} , \ldots .
X_{22})=-2(X_{1}X_{2}+X_{3}X_{4})+fi(X_{5}, \ldots.X_{22}) . Hence the tangent space of K_{20}

at H^{2,0}(X) is identified with the subspace defined by a real linear form of
the form h(X_{1}, \ldots.X_{22})=\lambda_{2}X_{1}+\lambda_{1}X_{2}+\lambda_{4}X_{3}+\lambda_{3}X_{4}+h_{1}(X_{5}, \ldots , X_{22}) . Let H
denote this space. L intersects H transversely at H^{2,0}(X) in P^{21} . If not,
then H contains L. In particular, (H\cap RP^{3}\cross\{0\})\supset(L\cap RP^{3}\cross\{0\}) , where

H\cap RP^{3}\cross\{0\}=\{\lambda_{2}X_{1}+\lambda_{1}X_{2}+\lambda_{4}X_{3}+\lambda_{3}X_{4}=0\}\cross\{0\}

and L\cap RP^{3}\cross\{0\}

=\{X_{1}-x_{3}X_{4}=-x_{3}y_{4}X_{1}+x_{3}x_{4}(1+x_{3}^{2})X_{2}+x_{4}(1+x_{3}^{2})X_{3}-y_{4}X_{4}=0\}\cross\{0\} .

But the following matrix is of rank 3.

(\begin{array}{lll}\mathcal{A}_{2} 1 -x_{3}y_{4}\lambda_{1} 0 x_{3}x_{4}(1+x_{s^{2}})\mathcal{A}_{4} 0 x_{1}(1+x_{3}^{2})\mathcal{A}_{3} -x_{3} -y_{4}\end{array})

In fact, the determinant of the following matrix is equal to
\frac{2(\lambda_{1}^{2}+\lambda_{4}^{2})^{2}(\lambda_{1}\lambda_{2}+\lambda_{3}\lambda_{4})\lambda_{1}}{\lambda_{4}^{5}} .

(\begin{array}{lll}\lambda_{2} 1 -x_{3}y_{4}\lambda_{1} 0 x_{3}x_{4}(1+x_{3}^{2})\lambda_{3} -x_{3} -y_{4}\end{array})
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Hence, the above matrix is of rank 3 if \lambda_{1}\neq 0 . And if \lambda_{1}=0 , then the
above matrix is as follows.

(\begin{array}{lll}\lambda_{2} 1 00 0 0\mathcal{A}_{4} 0 \mathcal{A}_{4}\lambda_{3} 0 -\mathcal{A}_{3}\end{array})

This matrix is of rank 3 if \lambda_{1}=0 . Thus we have a contradiction. There-
fore L intersects K_{20} at H^{2,0}(X) transversely.

We now show that there exists a pair \{c_{1}(n)\} , \{c_{2}(n)\} of sequences for
which the sequence \{\lambda\in P(X, C)|Q(\lambda, c_{1}(n))=Q(\lambda, c_{2}(n))=0\} converges
to the above L and the properties in the statement of Proposition 5 hold.
By Corollary 4 in \S 3, there exists an integer vector sequence (\alpha_{13}, \beta_{24} ,
-\alpha_{24} , \beta_{13}) such that

(1) \alpha_{13}\beta_{24}-\alpha_{24}\beta_{13}=2 ,

(2) \lim\frac{-\alpha_{24}}{\alpha_{13}}=x_{3} ,

(3) \lim\frac{\beta_{13}}{\alpha_{13}}=x_{4} ,

(4) \alpha_{13} and -\alpha_{24} are relatively prime, and so are \beta_{24} and \beta_{13} , and
(5) \alpha_{13}arrow\infty .

By Lemma 3, replacing the above sequence by an appropriate subsequence
if necessary, we can find an another integer vector sequence (\alpha_{14}, \beta_{23} ,
-\alpha_{23} , \beta_{14}) such that

(1’) \alpha_{14}\beta_{23}-\alpha_{23}\beta_{14}=1 ,

(2’) \lim\frac{-\alpha_{23}}{\alpha_{14}}=0 ,

(3’) \lim\frac{\beta_{14}}{\alpha_{14}}=y_{4} , and

(4’) \lim\frac{\alpha_{14}}{\alpha_{13}}=\frac{1}{\sqrt{2}} .

We set

\alpha_{1}=\alpha_{13}\alpha_{14} , \alpha_{2}=\alpha_{23}\alpha_{24} , \alpha_{3}=-\alpha_{13}\alpha_{23} , \alpha_{4}=\alpha_{14}\alpha_{24} ,
\beta_{1}=\beta_{13}\beta_{14} , \beta_{2}=\beta_{23}\beta_{24} , \beta_{3}=-\beta_{13}\beta_{23} , \beta_{4}=\beta_{14}\beta_{24} .

Then we have
\alpha_{1}\alpha_{2}+\alpha_{3}\alpha_{4}=\beta_{1}\beta_{2}+\beta_{3}\beta_{4}=0
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and
\alpha_{1}\beta_{2}+\alpha_{2}\beta_{1}+\alpha_{3}\beta_{4}+\alpha_{4}\beta_{3}=(\alpha_{13}\beta_{24}-\alpha_{24}\beta_{13})(\alpha_{14}\beta_{23}-\alpha_{23}\beta_{14})=2 .

From (4) and (1’) above, we see that \alpha_{1} , \alpha_{2} , \alpha_{3} and \alpha_{4} are relatively
prime. So are \beta_{1} , \beta_{2} , \beta_{3} and \beta_{4} . Hence, if we set c_{1}=\alpha_{1}e_{2}+\alpha_{2}e_{1}+\alpha_{3}e_{4}+\alpha_{4}e_{3}

and c_{2}=\beta_{1}e_{2}+\beta_{2}e_{1}+\beta_{3}e_{4}+\beta_{4}e_{3} , then Q(c_{1}(n), c_{1}(n))=Q(c_{2}(n), c_{2}(n))=0 ,
Q(c_{1}(n), c_{2}(n))=2 , and moreover, c_{1}(n) and c_{2}(n) are primitive elements
in U\oplus U (hence in H^{2} (X, Z)).

Finally we show that the sequence L_{n}=\{Q(\lambda, c_{1}(n))=Q(\lambda, c_{2}(n))=0\}

converges to L. We first observe that

\lim\frac{\alpha_{2}}{\alpha_{1}}=\lim\frac{\alpha_{24}}{\alpha_{13}}\lim\frac{\alpha_{23}}{\alpha_{14}}=(-x_{3})\cdot 0=0 ,

\lim\frac{\alpha_{3}}{\alpha_{1}}=\lim\frac{-\alpha_{23}}{\alpha_{14}}=0 ,

\lim\frac{\alpha_{4}}{\alpha_{1}}=\lim\frac{\alpha_{24}}{\alpha_{13}}=-x_{3} ,

\lim\frac{\beta_{2}}{\beta_{1}}=\lim\frac{\beta_{24}}{\beta_{13}}\lim\frac{\beta_{23}}{\beta_{14}}=(-x_{3})\cdot 0=0 ,

\lim\frac{\beta_{3}}{\beta_{1}}=\lim\frac{-\beta_{23}}{\beta_{14}}=0 ,

and

\lim\frac{\beta_{4}}{\beta_{1}}=\lim\frac{\beta_{24}}{\beta_{13}}=-x_{3} .

Hence both [\alpha_{1} : \alpha_{2} : \alpha_{3} : \alpha_{4}] and [\beta_{1} : \beta_{2} : \beta_{3} : \beta_{4}] converge to [1 : 0 :
0:-x_{3}] . Thus both \{Q(\lambda, c_{1}(n))=0\} and \{Q(\lambda, c_{2}(n))=0\} converge to
\{Q(\lambda, \xi_{1})=0\} . In order to know the limit subspace of \{L_{n}\},we set

B_{j}=( \sum_{i=1}^{4}\alpha_{i}^{2})\beta_{j}-(\sum_{i=1}^{4}\alpha_{i}\beta_{i})\alpha_{j}(j=1,2,3,4) .

Remark that (B_{1}, B, B_{3}, B_{4}) are orthogonal to (\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}) in R^{4} with
respect to the Euclidean inner product. We set

\tilde{c}_{2}=B_{1}e_{2}+be_{1}+Re_{4}+B_{4}e_{3} .

Then we see L_{n}=\{Q(\lambda, c_{1}(n))=Q(\lambda,\tilde{c}_{2}(n))=0\} . We now consider the
limit hyperplane of the sequence \{Q(\lambda,\tilde{c}_{2}(n))=0\} . Since

B_{1}=\alpha_{2}(-2\alpha_{23}\beta_{14}-\alpha_{13}\beta_{24})+\alpha_{3}\alpha_{13}\beta_{13}-2\alpha_{4}\alpha_{14}\beta_{14} ,
B_{2}=\alpha_{1}(2\alpha_{23}\beta_{14}+\alpha_{13}\beta_{24})-2\alpha_{3}\alpha_{23}\beta_{23}+\alpha_{4}\alpha_{24}\beta_{24} ,
B_{3}=\alpha_{4}(2\alpha_{14}\beta_{23}-\alpha_{13}\beta_{24})-\alpha_{1}\alpha_{13}\beta_{13}-2\alpha_{2}\alpha_{23}\beta_{23}

and
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B_{4}=\alpha_{3}(-2\alpha_{14}\beta_{23}+\alpha_{13}\beta_{24})+2\alpha_{1}\alpha_{14}\beta_{14}-\alpha_{2}\alpha_{24}\beta_{24} ;
we have

\lim\frac{B_{1}}{\alpha_{1}^{2}}=\sqrt{2}x_{3}y_{4} ,

\lim\frac{R}{\alpha_{1}^{2}}=-\sqrt{2}x_{3}x_{t}(1+x_{3}^{2}) ,

\lim\frac{R}{\alpha_{1}^{2}}=-\sqrt{2}x_{t}(1+x_{3}^{2})

and
\lim\frac{B_{4}}{\alpha_{1}^{2}}=\sqrt{2}y_{4} .

Hence
[B_{1}-. B_{2} : B_{3} : B_{4}] converges to [-x_{3}y_{4} : x_{3}x_{4}(1+x_{3^{2}}) : x_{4}(1+x_{3^{2}}) : -y_{4}] .

Namely, \{Q(\lambda,\tilde{c}_{2}(n))=0\} converges to \{Q(\lambda, \xi_{2})=0\} . Therefore L_{n} con-
verges to L. With respect to the identification P(X, C)\simeq P^{21} stated
above, RP^{21} corresponds to Fixt^{*}=-(i(L_{\varphi}\otimes R)\oplus(L^{\varphi}\otimes R))/R^{*} . Hence the
latter assertion of the proposition follows. Q. E. D.

We next consider a family ( V, M, \pi) of complex structures of X with
antiholomorphic involutions t_{V} and t_{M} , and the period mapping \tau:Marrow

P(X, C) as stated in Kharlamov’s lemma (recall \S 1).

THEOREM 6. Let (X, t) be a real K3 surface. If L_{\varphi} has U\oplus U as its
sublattice, there exist points \alpha in Fix t_{M} for which real K3 surfaces ( V(\alpha) ,
t_{a}) can be 2-sheeted coverings of P^{1}\cross P^{1} (Let \Phi_{a} denote the covering
maps.) branched along nonsingular curves defifined by real homogeneous
polynomials of degree (4, 4) and satisfy conj\circ\Phi_{a}=\Phi_{a}\circ t_{a} arbitrarily closely
to m.

PROOF. We set ( U\oplus U)_{a}=i_{a}^{*}\circ i_{m}^{*-1}( U\oplus U) for any \alpha in M. The
isomorphisms i_{a}^{*}\circ i_{m}^{*-1} : H^{2}(X, Z)arrow H^{2}(V(\alpha), Z) preserve the intersection
forms. Let Q_{a} denote the intersection form on V(\alpha) . Recall that we set
t_{a}=t_{V}|_{V(a)} for every \alpha in Fix t_{M} . We set L_{a}=Ker(1+t_{a}^{*}) in H^{2}(V(\alpha),Z) .
Since L_{a}=i_{a}^{*}\circ i_{m}^{*-1}(L_{\varphi}) , we have ( U\oplus W)\^a La. Let \{L_{n}\} be a sequence
obtained by Proposition 5. Then for a sufficiently large natural number
N, L_{n}\cap RP^{21} intersects \tau(Fixt_{M})=K_{20}\cap RP^{21} transversely at H^{2,0}(X) in
RP^{21}=(i(L_{\varphi}\otimes R)\oplus(L^{\varphi}\otimes R))/R^{*} (recall the proof of Proposition 5) for
any n\geq N. Hence L_{n}\cap\tau(Fixt_{M}) is nonempty and real 18 dimensional.
We set

\hat{E}= { \tau(\alpha)\in\tau(M)|rank Pic V(\alpha)\geq 3 }.

From the results in [10, Chap. IX , \S 4, p. 215], rank Pic V(\alpha)\geq 3 if and only
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if Q(\tau(\alpha), c_{j}^{a})=0 for elements c_{j}^{a}(j=1,2, 3) in H^{2}(X, Z) which are linearly
ly independent over C (hence, over R). Hence L_{n}\cap\tau(Fixt_{M})\cap\hat{E} can be
covered by countably many real 17 dimensional submanifolds. Hence (L_{n}

\cap\tau(Fixt_{M}))\backslash \hat{E} is dense in L_{n}\cap (Fix t_{M}), and for every \tau(\alpha)\in(L_{n}\cap

\tau(Fixt_{M}))\backslash \hat{E} , we have \alpha\in Fixt_{M} and rank Pic V(\alpha)=2 . We set c_{ja}(n)=

i_{a}^{*}\circ i_{m}^{*-1}(c_{j}(n)) for j(=1,2) . Then Q_{a}(c_{1a}, c_{1a})=Q_{a}(c_{2a}, c_{2a})=0 and Q_{a}(c_{1a} ,
c_{2a})=2 . Since Q(i_{m}^{*}\circ i_{a}^{*-1}(H^{2,0}(V(\alpha))), c_{j})=0 , we have Q_{a}(H^{2,0}(V(\alpha))) , c

ja)=0 , that is, c_{ja}\in PicV(\alpha)=(H^{2,0}( V(\alpha))^{\perp})\cap H^{2}( V(\alpha), Z) . We see
that c_{1a} and c_{2a} are primitive elements in ( U\oplus U)_{a} , hence in H^{2}(V(\alpha) ,

Z) . Recall that ( U\oplus U)_{a}\subset L_{a}=Ker(1+t_{a}^{*}) . Hence ( V(\alpha), t_{a}) satisfies
the conditions of Lemma 2. Since (Ln\cap\tau(Fixt_{M}))\backslash \hat{E} is dense in Ln\cap

\tau(Fixt_{M}) and n(\geq N) is an arbitrary number, we can choose such \alpha\in

Fix t_{M} arbitrarily closely to m. This completes the proof of Theorem 6.

COROLLARY 7. Let (X, t) be a real K3 surface. If L_{\varphi} has U\oplus U as
its sublattice, then there exists a 2-sheeted covering \Phi:Yarrow P^{1}\cross P^{1} bran-
ched along a nonsingular real curve of degree (4, 4) and an antiholomor-
phic involution T on Y such that conj\circ\Phi=\Phi\circ T and FixT is
diffeomorphic to Fixt.

PROOF. We can consider the restriction R\pi : Fix t_{V}arrow Fix t_{M} of the
family ( V, M, \pi) . Although Fix t_{M} is possibly disconnected, we may con-
sider that \alpha of Theorem 6 and m are contained in the same connected
component of Fix t_{M} . Since R\pi is a proper submersion onto Fix t_{M} ,
R\pi^{-1}(\alpha) is diffeomorphic to R\pi^{-1}(m) , where R\pi^{-1}(\alpha)=Fixt_{a} and
R\pi^{-1}(m)=Fixt. It is sufficient to set Y=V(\alpha) and T=t_{a} . Q. E. D.

COROLLARY 8. Three possible confifiguration types \frac{1}{1}8 , \frac{5}{1}4 and \frac{9}{1} are

all realized by some real curves of degree (4, 4) .

PROOF. As stated in \S 0, there exist real projective K3 surfaces (X, t)
with h^{2}=4 ( h : primitive) whose real parts are homeomorphic to \sum_{10}\coprod S^{2} .
\sum_{6}\coprod 5S^{2} and \sum_{2}\coprod 9S^{2} respectively. Moreover, for such real K3 surfaces,
L_{\varphi} are isomorphic to U\oplus U\oplus(-E_{8})\oplus(-E_{8}) , U\oplus U\oplus(-R) and U\oplus U

respectively (see [8]). Hence L_{\varphi} have U\oplus U as sublattices. By Corol-
lary 7 and [5, \S 3] (recall \S 0), we obtain our required results. Q. E. D.
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