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\S 1. Introduction.

The classical F. and M. Riesz theorem was extended, by Helson-
Lowdenslager and deLeeuw-Glicksberg, to compact abelian groups with
ordered duals. As an extension of the result of deLeeuw and Glicksberg,
Forelli extended the F. and M. Riesz theorem to a (topological) transfor-
mation group in which the reals R acts on a locally compact Hausdorff
space.

On the other hand, the author ([14]) obtained several results, corre-
sponding to Forelli’s theorems, on a (topological) transformation group in
which a compact abelian group acts on a locally compact Hausdorff space
under certain conditions. In fact, the author obtained the following in
[14].

THEOREM 1. 1 (cf. [14, Theorem 1. 2]). Let (G, X) be a transforma-
tion group in which G is a compact abelian and X is a locally compact
Hausdorff space. Suppose (G, X) satisfies conditions (C. I) and (C. II)
{see [14] ) . Let P be a semigroup in \overline{G} such that P\cup(-P)=\hat{G}. Let \sigma be
a positive Radon measure on X that is quasi-invariant. Let \mu\in M(X) ,
and let \mu=\mu_{a}+\mu_{s} be the Lebesgue decomposition of \mu with respect to \sigma.
Suppose sp(\mu)\subset P. Then both sp(\mu_{a}) and sp(\mu_{s}) are contained in P. If
in addition, P\cap(-P)=\{0\} and \pi(|\mu|)\ll\pi(\sigma) , then sp(\mu_{s})\subset P\backslash \{0\} , where
\pi:Xarrow X/G is the canonical map.

THEOREM 1. 2 (cf. [14, Theorem 1. 2]). Let (G, X) be as in TheO-
rem 1. 1. Let E be a subset of \hat{G} satifying the following:

(^{*}) For any nonzero measure \mathcal{A}\in M_{E}(G) , |\mathcal{A}| and m_{G} are mutually
absolutely continuous.

Let \mu be a measure in M(X) with sp(\mu)\subset E. Then \mu is quasi-invariant.

THEOREM 1. 3 (cf. [14, Theorem 1. 3]). Let (G, X) be as in TheO-
rem 1. 1. Let E be a Riesz set in \hat{G} . Let \mu be a measure in M(X) with
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sp(\mu)\subset E. Then

\lim_{garrow 0}||\mu-\delta_{g}*\mu||=0 ,

where \delta_{g} denotes the point mass at g.

THEOREM 1. 4 (cf. [14, Theorem 1. 4]). Let (G, X) be as in TheO-
rem 1. 1. Let \sigma be a positive Radon measure on X that is quasi-invariant,
and let E be a Riesz set in \overline{G}. Let \mu be a measure in M(X) with sp(\mu)\subset

E. Then both sp(\mu_{a}) and sp(\mu_{s}) are contained in sp(\mu) , where \mu=\mu_{a}

+\mu_{s} is the Lebesgue decomposition of \mu with respect to \sigma.

If (G, X) is a transformation group in which a compact abelian group
G acts freely on a locally compact Hausdorff space X or a transformation
group in which G is a compact abelian group and X is a locally compact
metric space, then (G, X) satisfies conditions (C. I) and (C. II ) (cf. [14,
Theorem 6. 4 and Remark 6. 1]). In this paper, we shall prove that TheO-
rems 1. 1-1. 4 hold for a general (topological) transformation group (G, X)
in which G is a compact abelian group and X is a locally compact Haus-
dorff space. In section 2, we state our results (Theorems 2. 1-2. 4). In
section 3, we give proofs of Theorems 2. 1 and 2. 2, and we prove TheO-
rems 2. 3 and 2. 4 in section 4.

\S 2. Notations and results.

Let (G, X) be a (topological) transformation group in which G is a
compact abelian group and X is a locally compact Hausdorff space. Sup-
pose that the action of G on X is given by (g, x)arrow g\cdot x , where g\in G and
x\in X .

Let C_{0}(X) and C_{c}(X) be the Banach space of continuous functions on
X which vanish at infinity and the space of continuous functions on X
with compact supports respectively. We note that, if C_{0}(X) is separable,
then X is metrizable (cf. [3, Theorem V. 5. 1, p. 426]). Let M(X) be the
Banach space of complex-valued bounded regular Borel measures on X
with the total variation norm. Let M^{+}(X) be the set of nonnegative mea-
sures in M(X) . For \mu\in M(X) and f\in L^{1}(|\mu|) , we often write \mu(f)=

\int_{X}f(x)d\mu(x) . Let X’ be another locally compact Hausdorff space, and let

S:Xarrow X’ be a continuous map. For \mu\in M(X) , let S(\mu)\in M(X’) be the
continuous image of \mu under S. A (Borel) measure \sigma on X is called
quasi-invariant if |\sigma|(F)=0 implies |\sigma|(g\cdot F)=0 for all g\in G .

Let \hat{G} be the dual group of G. M(G) and L^{1}(G) denote the measure
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algebra and the group algebra respectively. For \mu\in M(G),\overline{\mu} denotes the
Fourier-Stieltjes transform of \mu . Let m_{G} be the Haar measure of G . Let
M_{a}(G) be the set of measures in M(G) which are absolutely continuous
with respect to m_{G} . Then by the Radon-Nikodym theorem we can iden-
tify M_{a}(G) with L^{1}(G) . For a subset E of \hat{G} , M_{E}(G) denotes the space
of measures in M(G) whose Fourier-Stieltjes transforms vanish off E. A
subset E of \overline{G} is called a Riesz set if M_{E}(G)\subset L^{1}(G) . For a closed sub-
group H of G , H^{\perp} denotes the annihilator of H.

For \mathcal{A}\in M(G) and \mu\in M(X) , we define \mathcal{A}*\mu\in M(X) by

(2. 1) \mathcal{A}*\mu(f)=\int_{X}\int_{G}f(g\cdot x)d\lambda(g)d\mu(x)=\int_{G}\int_{X}f(g\cdot x)d\mu(x)d\mathcal{A}(g)

for f\in C_{0}(X) . We note that (2.1) holds for all bounded Baire functions
f on X.

REMARK 2. 1. Professor Saeki pointed out that (2.1) holds for all
bounded Borel functions f on X.

Let J(\mu) be the collection of all f\in L^{1}(G) with f*\mu=0 .

DEFINITION 2. 1. For \mu\in M(X) , we define the spectrum sp(\mu) of \mu

by \bigcap_{f\in J(\mu)}\hat{f}^{-1}(0) .

We note that \gamma\in sp(\mu) if and only if \gamma*\mu\neq 0 (cf. [14, Remark 1. 1 (II .
1)]).

DEFINITION 2. 2. We say that \mu\in M(X) translates G-continuously if
\lim_{g\sim 0}||\mu-\delta_{g}*\mu||=0 , where \delta_{g} is the point mass at g\in G .

Let M_{aG}(X) be an L-subspace of M(X) defined by

M_{aG}(X)=\{\mu\in M(X):and\nu\in M^{+}(X)\mu\ll\rho*_{f\nearrow}forsome\rho\in L^{1}(G)\cap M^{+}(G)\} .

Put M_{aG}(X)^{\perp}= { \nu\in M(X):\nu\perp\mu for all \mu\in M_{aG}(X) }. Then M_{aG}(X)^{\perp} is
also an L-subspace of M(X) , and M(X)=M_{aG}(X)\oplus M_{aG}(X)^{\perp} . By [14,
Proposition 5. 1], we note that \mu\in M_{aG}(X) if and only if \mu translates G-
continuously. Now we state our theorems.

THEOREM 2. 1. Let (G, X) be a transformation group in which G is
a compact abelian group and X is a locally compact Hausdorff space.
Then Theorem 1. 1 holds for (G, X) .

THEOREM 2. 2. Let (G, X) be as in Theorem 2. 1. Then Theorem 1. 2
holds for (G, X) .
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THEOREM 2. 3. Let (G, X) be as in Theorem 2. 1. Then Theorem 1. 3
holds for (G, X) .

THEOREM 2. 4. Let (G, X) be as in Theorem 2. 1. Then Theorem 1. 4
holds for (G, X) .

Before closing this section, we give several lemmas. Let (G, X) be a
transformation group in which G is a compact abelian group and X is a
locally compact Hausdorff space. Suppose there exists an equivalence
relation ”\sim ” on X such that X/\sim is a locally compact Hausdorff space
with respect to the quotient topology and x\sim y implies g\cdot x\sim g\cdot y for
every g\in G . Let \tau:Xarrow X/\sim be the canonical map. Define an action of
G on X/\sim byg\cdot\tau(x)=\tau(g\cdot x) for g\in G and x\in X . We assume that (G ,

X/\sim) becomes a transformation group by this action. Let \pi:Xarrow X/G

and \tilde{\pi} : X/\simarrow(X/\sim)/G be the canonical maps respectively. Then the fol-
lowing lemmas hold.

LEMMA 2. 1. For \lambda\in M(G) and \mu\in M(X) , we have

\tau(\lambda*\mu)=\mathcal{A}*\tau(\mu) .

In particular, if \sigma\in M^{+}(X) is quasi-invariant, then \tau(\sigma) is also quasi-
invariant.

Proof. For f\in C_{c}(X/\sim) , we have

\lambda*\tau(\mu)(f)=\int_{G}\int_{x/\sim}f(g\cdot\tilde{x})d\tau(\mu)(\tilde{x})d\mathcal{A}(g)

= \int_{G}\int_{X}f(g\cdot\tau(x))d\mu(x)d\lambda(g)

= \int_{G}\int_{X}f(\tau(g\cdot x))d\mu(x)d\mathcal{A}(g)

=\tau(\lambda*\mu)(f) .

Hence we have \tau(\lambda*\mu)=\lambda*\tau(\mu) . The latter half follows from the fact that
\delta_{g}*\tau(\sigma)=\tau(\delta_{g}*\sigma)\ll\tau(\sigma) for all g\in G . This completes the proof.

LEMMA 2. 2. Let \mu be a measure in M(X) . Then

sp(\tau(\mu))\subset sp(\mu) .

Proof. By Lemma 2. 1, we have J(\mu)\subset J(\tau(\mu)) . Hence sp(\tau(\mu))=

\bigcap_{f\in f(T(\mu))}\hat{f}^{-1}(0)\subset\bigcap_{f\in\int(\mu)}\hat{f}^{-1}(0)=sp(\mu) , and the proof is complete.

LEMMA 2. 3. Let \mu and \omega be measures in M^{+}(X) such that \pi(\mu)\ll

\pi(\omega) . Then \tilde{\pi}(\tau(\mu))\ll\tilde{\pi}(\tau(\omega)) .
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PROOF. Let F be a closed set in (X/\sim)/G with \tilde{\pi}(\tau(\omega))(F)=0 .
Then \omega((\tilde{\pi}^{\circ}\tau)^{-1}(F))=0 . We note that

(1) \pi^{-1}(\pi((\tilde{\pi}^{o}\tau)^{-1}(F)))=(\overline{\pi}^{o}\tau)^{-1}(F) .

In fact, it is sufficient to show that \pi^{-1}(\pi((\tilde{\pi}^{\circ}\tau)^{-1}(F)))\subset(\tilde{\pi}^{\circ}\tau)^{-1}(F)

because the reverse inclusion relation is trivial. For any x\in

\pi^{-1}(\pi((\tilde{\pi}\circ\tau)^{-1}(F))) , \pi(x)\in\pi((\tilde{\pi}^{\circ}\tau)^{-1}(F)) . Then there exist y\in(\tilde{\pi}^{\circ}\tau)^{-1}(F)

and g\in G such that g\cdot x=y . Hence
(\tilde{\pi}^{o}\tau)(x)=\tilde{\pi}(\tau(x))=\tilde{\pi}(g\cdot\tau(x))

=\tilde{\pi}(\tau(g\cdot x))=\tilde{\pi}(\tau(y))

\in F .

Hence x\in(\tilde{\pi}^{\circ}\tau)^{-1}(F) , and (1) holds. By (1), \pi((\tilde{\pi}^{\circ}\tau)^{-1}(F)) is closed
set in X/G and

\pi(\omega)(\pi((\tilde{\pi}^{o}\tau)^{-1}(F)))=\omega(\pi^{-1}(\pi((\tilde{\pi}^{o}\tau)^{-1}(F))))

=\omega((\tilde{\pi}^{o}\tau)^{-1}(F))

=0.

Hence, by the hypothesis and (1), we have
0=\pi(\mu)(\pi((\tilde{\pi}^{o}\tau)^{-1}(F)))=\mu(\pi^{-1}(\pi((\tilde{\pi}\circ\tau)^{-1}(F)))

=\mu((\tilde{\pi}^{o}\tau)^{-1}(F))=\tilde{\pi}(\tau(\mu))(F) .

By regularity, we get \tilde{\pi}(\tau(\mu))\ll\tilde{\pi}(\tau(\omega)) , and the proof is complete.

\S 3. Proofs of Theorems 2. 1 and 2. 2.

In this section we prove Theorems 2. 1 and 2. 2. The following lemma
is useful in proving our theorems.

LEMMA 3. 1. Let (G, X) be a transformation group in which G is a
compact abelian group and X is a \sigma-compact, locally compact Hausdorff
space. Let \mu_{1} be a nonzero measure in M(X), and let \mu_{2} and \sigma_{2} be
mutually singular measures in M^{+}(X) . Then there exists an equivalence
relation ”\sim ” on X with the following properties :

(i) X/\sim is a ( \sigma-compact) metrizable locally compact Hausdorff
space with respect to the quotient topology;

(ii) (G, X/\sim) becomes a transformation group by the action
(3.1) g\cdot\tau(x)=\tau(g\cdot x) for g\in G and x\in X ;

(iii) \tau(\mu_{1})\neq 0 ;
(iv) \tau(\mu_{2})\perp\tau(\sigma_{2}) ,
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where \tau:X/\sim is the canonical map.

PROOF. Since X is \sigma-compact, there exists an increasing sequence of

compact sets X_{n} such that X_{n}\subset[mathring]_{n+1}_{X} (n=1,2,3, \cdots) and X= \bigcup_{n=1}^{\infty}X_{n} , where
[mathring]_{n}_{X} denotes the interior of X_{n} . Then, by Urysohn’s lemma, there exists a
function h_{n}\in C_{c}(X_{n}) such that h_{n}=1 on X_{n} , h_{n}=0 on X_{n+1}^{c} and 0\leq h_{n}\leq

1 on X. Since \mu_{1}\neq 0 , there exists f_{0}\in C_{c}(X) such that ||f_{0}||_{\infty}\leq 1 and

(1) \mu_{1}(f_{0})\neq 0 .

Since \mu_{2}\perp\sigma_{2} , there exists a sequence \{f_{n}\} of functions in C_{c}(X) such that
||fn||_{\infty}\leq 1 and

(2) \sup_{n\geq 1}|(\mu_{2}-\sigma_{2})(f_{n})|=||\mu_{2}||+||\sigma_{2}|| .

We define an equivalence relation ”\sim ” on X by declaring x\sim y if and
only if

(3) f_{n}(g\cdot x)=f_{n}(g\cdot y) , h_{k}(g\cdot x)=h_{k}(g\cdot y) for all n\geq 0 , k\geq 1 and g\in G .

Then we have

(4) x\sim y\Leftrightarrow g\cdot x\sim g\cdot y for all g\in G .

Let \tau:Xarrow X/\sim be the canonical map. For x\in X,\tilde{x} denotes the equiva-
lence class which contains x . We shall show that this equivalence rela-
tion satisfies ( i)-(iv) . For a subset S of C , we note that

(5) \tau^{-1}(\tau((f_{n}\circ g)^{-1}(S)))=(f_{n}\circ g)^{-1}(S) and
\tau^{-1}(\tau(h_{k}\circ g)^{-1}(S)))=(h_{k}\circ g)^{-1}(S)

for n\geq 0 , k\geq 1 and g\in G , where f_{n}\circ g(x)=f_{n}(g\cdot x) and h_{k}\circ g(x)=h_{k}(g\cdot x) .
In fact, it suffices to show that \tau^{-1}(\tau((f_{n}\circ g)^{-1}(S)))=(f_{n}\circ g)^{-1}(S) . And

we may show that \tau^{-1}(\tau((f_{n}\circ g)^{-1}(S)))\subset(f_{n}\circ g)^{-1}(S) because the reverse
inclusion relation is trivial. Let x\in\tau^{-1}(\tau((f_{n}\circ g)^{-1}(S))) . Then \tau(x)\in

\tau((f_{n}\circ g)^{-1}(S)) . Hence \tau(x)=\tau(x_{*}) for some x_{*}\in(f_{n}\circ g)^{-1}(S) . Since x\sim

\chi_{*} , we have f_{n}\circ g(x)=f_{n}\circ g(x_{*})\in S , and so x\in(f_{n}\circ g)^{-1}(S) . Thus (5)

holds.
We first show that ( i) holds. Let \tau(x_{1}) and \tau(x_{2}) be different ele-

se ts in X/\sim . Then there exist f_{n} (or h_{k} ) and g\in G such that f_{n}\circ g(x_{1})

\neq f_{n}\circ g(x_{2}) . Let W_{1} and W_{2} be disjoint open sets in C such that f_{n}\circ g(x_{1})\in

W_{1} and f_{n}\circ g(x_{2})\in W_{2} . Define a function f_{n}\circ-g on X/\sim by

(6) f_{n}\circ-g(\tau(x))=f_{n}\circ g(x)
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for x\in X . This definition is well defined. In fact, if \tau(x)=\tau(y) , then
f_{n}\circ g(x)=f_{n}\circ g(y) , and so f_{n}\circ-g(\tau(x))=f_{n}\circ g(\tau(y)) . It is obvious that f_{n}\circ g is
a continuous function on X/\sim (see Fig. I).

\tau\downarrow X

\underline{f_{n}\circ g}f_{n}\circ gC

X/\sim

Fig. I

Hence (f_{n}\circ g)^{-1}(W_{1}-) and (f_{n}\circ g)^{-1}(W_{2}-) are disjoint open sets in X/\sim such

that \tau(x_{1})\in(f_{n}\circ g)^{-1}(W_{1}-) and \tau(x_{2})\in(f_{n}\circ-g)^{-1}(W_{2}) , which shows that X/\sim is

a Hausdorff space. For \tau(x)\in X/\sim , there exists X_{n} such that x\in X_{n} .
Then, by (5), we can verify that \tau(h_{n}^{-1}([\frac{1}{2},2])) is a compact neighbor-

hood of \tau(x) . Hence X/\sim is a locally compact Hausdorff space. Next
we show that X/\sim is metrizable. For f\in C_{0}(X) , we note that garrow f\circ g is
a continuous mapping from G into C_{0}(X) . Hence A= \bigcup_{n=0}^{\infty}\{f_{n}\circ g:g\in G\}\cup

\bigcup_{k=1}^{\infty}\{h_{k}\circ g:g\in G\} is a \sigma compact set in C_{0}(X) , and so it is separable.

Hence there exists a countable dense subset \{F_{n}\} of A. Define a function
\tilde{F}_{n} on X/\sim by\tilde{F}_{n}(\tau(x))=F_{n}(x) for x\in X . Then \tilde{F}_{n} is a continuous
function on X/\sim . Since F_{n}\in C_{c}(X) , we have \tilde{F}_{n}\in C_{c}(X/\sim)\subset\underline{C}_{0}(X/\sim) .

Let \mathscr{A} be a subalgebra of C_{0}(X/\sim) generated by \tilde{F}_{n} and \tilde{F}_{n}(n=1,2 ,
3, \cdots ). Then \mathscr{A} separates points and is closed under complex conjugate.
Moreover, for any \tau(x)\in X/\sim , there exists L\in \mathscr{A} such that L(\tau(x))\neq 0 .
In fact, there exists k\in N such that x\in X_{k} . Then h_{k}(x)=1 . Hence there
exists F_{n} such that F_{n}(x)\neq 0 . Then \tilde{F}_{n}\in \mathscr{A} and \tilde{F}_{n}(\tau(x))=F_{n}(x)\neq 0 .
Hence, by the Stone-Weierstrass theorem, \mathscr{A} is dense in C_{0}(X/\sim) . By
construction of \mathscr{A}C_{0}(X/\sim) is separable. Hence X/\sim is metrizable, and
(i) holds.

Next we show that ( ii) holds. By (4), (3. 1) is well defined. We
note that

(7) \tau^{-1}(g\cdot\tilde{V})=g\cdot\tau^{-1}(\tilde{V})

for g\in G and a subset \tilde{V} of X/\sim . For g\in G and x\in X , let \tilde{U} be an
open set in X/\sim containing g\cdot\tau(x) . Then there exists a compact neigh-
borhood \tilde{V}_{X} of \tau(x) with g\cdot\tilde{V}_{x}\subset\tilde{U} such that \tau^{-1}(\tilde{V}_{x}) is a compact set in

X. In fact, let n be a natural number such that x\in X_{n} . Then, by (5),
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\tau(h_{n}^{-1}( [ \frac{1}{2},2])) is a compact neighborhood of \tau(x) . It follows from (7)

that (-g)\cdot\tilde{U} is an open neighborhood of \tau(x) . Let \tilde{U}(\tau(x)) be a com-
pact neighborhood of \tau(x) such that \tilde{U}(\tau(x))\subset(-g)\cdot\tilde{U} . Set \tilde{V}_{x}=\tilde{U}(\tau(x))

\cap\tau(h_{n}^{-1}( [ \frac{1}{2},2])) . Then \tilde{V}_{x} is the desired one.
Let y\in\tau^{-1}(\tilde{V}_{x}) . Since g\cdot y\in g\cdot\tau^{-1}(\tilde{V}_{x})=\tau^{-1}(g\cdot\tilde{V}_{x})\subset\tau^{-1}(\tilde{U}) , there exist

an open neighborhood W_{y} of y and an open neighborhood U_{y}(g) of g such
that U_{\mathcal{Y}}(g)\cdot W_{\mathcal{Y}}\subset\tau^{-1}(\tilde{U}) . Since \tau^{-1}(\tilde{V}_{x}) is compact, there exist y_{1} , y_{2} , \cdots ,

y_{m}\in\tau^{-1}(\tilde{V}_{x}) such that \tau^{-1}(\tilde{V}_{x})\subset\bigcup_{i=1}^{m}W_{\mathcal{Y}i} . Put U(g)= \bigcap_{i=1}^{m}U_{\mathcal{Y}i}(g) . Then U(g)

is an open neighborhood of g, and U(g)\cdot\tau^{-1}(\tilde{V}_{x}) is contained in \tau^{-1}(\tilde{U}) .
Hence we have, by (7),

\tau^{-1}(U(g)\cdot\tilde{V}_{x})=U(g)\cdot\tau^{-1}(\tilde{V}_{x})\subset\tau^{-1}(\tilde{U}) ,

which yields U(g)\cdot\tilde{V}_{x}\subset\tilde{U} . This shows that (g,\tilde{x})arrow g\cdot\tilde{x} is a continuous
mapping from G\cross X/\sim ontoX/\sim . It is easy to verify that

(8) \tilde{x}arrow g\cdot\tilde{x} is a homeomorphism on X/\sim for each g\in G

and 0 \cdot \tilde{x}=\tilde{x} ;
(9) g_{1}\cdot(g_{2}\cdot\tilde{x})=(g_{1}+g_{2})\cdot \tilde{x} for g_{1} , g_{2}\in G and \tilde{x}\in X/\sim .

Hence (G, X/\sim) becomes a transformation group, and ( ii) holds.
Next we prove that (iii) holds. Define a function \tilde{f}_{0} on X/\sim by

\tilde{f}_{0}(\tau(x))=f_{0}(x) . Then, as seen in the proof of ( i ) , \tilde{f}_{0} belongs to C_{0}(X/

\sim) and

\tau(\mu_{1})(\tilde{f}_{0})=\int_{x/\sim}\tilde{f}_{0}(\tilde{x})d\tau(\mu_{1})(\tilde{x})

= \int_{X}\tilde{f}_{0}(\tau(x))d\mu_{1}(x)

= \int_{X}f_{0}(x)d\mu_{1}(x)

\neq 0 , (by (1))

which shows that \tau(\mu_{1})\neq 0 . Thus (iii) holds.
Finally we prove that (iv) holds. Define functions \overline{f}_{n} on X/\sim by

\tilde{f}_{n}(\tau(x))=f_{n}(x)(n=1,2,3, \cdots) . Then \tilde{f}_{n}\in C_{0}(X/\sim) , and we get

||\tau(\mu_{2})||+||\tau(\sigma_{2})||\geq||\tau(\mu_{2})-\tau(\sigma_{2})||

\geq\sup_{n\geq 1}|(\tau(\mu_{2})-\tau(\sigma_{2}))(\overline{f}_{n})|

= \sup_{n\geq 1}|(\mu_{2}-\sigma_{2})(fn)|
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=||\mu_{2}||+||\sigma_{2}|| (by (2))
=||\tau(\mu_{2})||+||\tau(\sigma_{2})|| .

Hence we have ||\tau(\mu_{2})-\tau(\sigma_{2})||=||\tau(\mu_{2})||+||\tau(\sigma_{2})|| , which shows that \tau(\mu_{2})\perp

\tau(\sigma_{2}) because \tau(\mu_{2}) and \tau(\sigma_{2}) are positive measures. This completes the
proof.

Now we prove Theorem 2. 1. Let \mu be a measure in M(X) , and let \sigma

be a positive Radon measure on X that is quasi-invariant. Since \mu is
bounded and regular, there exist a \sigma-compact open set X_{0} in X with G\cdot X_{0}

=X_{0} and a quasi-invariant measure \sigma’\in M^{+}(X) satisfying the following:

(3.2) \mu is concentrated on X_{0} ,
(3.3) \sigma’|_{Xo} and \sigma|_{Xo} are mutually absolutely continuous.

Let \mu=\mu_{a}+\mu_{s} be the Lebesgue decomposition of \mu with respect to \sigma .
Then \mu=\mu_{a}+\mu_{s} is also the Lebesgue decomposition of \mu with respect to
\sigma’r Thus, considering X_{0} and \sigma’ instead of X and \sigma if necessary, we may
assume that X is a \sigma-compact locally compact Hausdorff space and \sigma is a
quasi-invariant measure in M^{+}(X) .

Let \mu be a measure in M(X) with sp(\mu)\subset P , and let \mu=\mu_{a}+\mu_{s} be the
Lebesgue decomposition of \mu with respect to \sigma . In order to prove the first
assertion, it suffices to prove that sp(\mu_{s})\subset P because of [14, Remark 1. 1
(II) ] . We may assume that \mu_{s}\neq 0 . Suppose there exists \gamma_{0}\in sp(\mu_{s}) such
that \gamma_{0}\not\in P . Then \gamma_{0}*\mu_{S}\neq 0 . Hence, by Lemma 3. 1, there exists an equiv-
alence relation ”\sim ” on X with the following properties:

(3.4) X/\sim is a ( \sigma-compact) metrizable, locally compact Hausdorff
space with respect to the quotient topology;

(3.5) (G, X/\sim) becomes a transformation group by the action g\cdot\tau(x)

=\tau(g\cdot x) for g\in G and x\in X , where \tau:Xarrow X/\sim is the canoni-
cal map;

(3. 6) \tau(\gamma_{0}*\mu_{s})\neq 0 ;
(3. 7) \tau(|\mu_{S}|)\perp\tau(\sigma) .

By Lemma 2. 1, \tau(\sigma) is a quasi-invariant measure in M^{+}(X/\sim) . Since
\tau(|\mu_{a}|)\ll\tau(\sigma) , (3.7) yields that \tau(\mu_{s}) is the singular part of \tau(\mu) with
respect to \tau(\sigma) . It follows from Lemma 2. 2 that sp(\tau(\mu))\subset sp(\mu)\subset P .
Hence, by (3.4) and Theorem 1. 1, we have sp(\tau(\mu_{s}))\subset P . On the other
hand, by (3. 6) and Lemma 2. 1, we have \gamma_{0}\in sp(\tau(\mu_{s})) , and so \gamma_{0}\in P .
This contradicts the choice of \gamma_{0} . Hence sp(\mu_{s})\subset P .

Next we prove the second half of the theorem. It is sufficient to
prove that 0\not\in sp(\mu_{s}) . Suppose 0\in sp(\mu_{S}) . Then 1*\mu_{s}\neq 0 , where 1 is the
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constant function on G with value one. Hence, by Lemma 3. 1, there
exists an equivalence relation ”\approx ” on X such that

(3.8) X/\approx is a \sigma-compact metrizable, locally compact Hausdorff
space with respect to the quotient topology,

(3.9) (G, X/\approx) becomes a transformation group by the action g\cdot\tau’(x)

=\tau’(g\cdot x) for g\in G and x\in X , where \tau’ : Xarrow X/\approx is the canoni-
cal map,

(3.10) \tau’(1*\mu_{S})\neq 0 , and
(3.11) \tau’(|\mu_{S}|)\perp\tau’(\sigma) .

Since \tau’(|\mu_{a}|)\ll\tau’(\sigma) , it follows from (3.11) that \tau’(\mu)=\tau’(\mu_{a})+\tau’(\mu_{s}) is
the Lebesgue decomposition of \tau’(\mu) with respect to \tau’(\sigma) . By Lemma 2.
1, \tau’(\sigma) is quasi-invariant. And, by Lemma 2. 2, we have sp(\tau’(\mu))\subset P .
Let \tilde{\pi} : X/\approxarrow(X/\approx)/G be the canonical map. Then, by the hypothesis
and Lemma 2. 3, we have

\tilde{\pi}(|\tau’(\mu)|)\ll\tilde{\pi}(\tau’(|\mu|))\ll\tilde{\pi}(\tau’(\sigma)) .

Since X/\approx is metrizable, it follows from Theorem 1. 1 that

sp(\tau’(\mu_{s}))\subset P\backslash \{0\} ,

which yields

1*\tau’(\mu_{s})=0

because 0\not\in sp(\tau’(\mu_{s})) . Since \tau’(1*\mu_{s})=1*\tau’(\mu_{s}) , this contradicts (3. 10).

Hence 0\not\in sp(\mu_{s}) , and the proof is complete.
Next we prove Theorem 2. 2. As seen in the proof of Theorem 2. 1,

we may assume that X is a \sigma-compact, locally compact Hausdorff space.
Suppose \mu is not quasi-invariant. Then there exists g_{0}\in G such that |\mu| is
not absolutely continuous with respect to \delta_{g0}*|\mu| . Let \mu=\nu_{1}+\nu_{2} be the
Lebesgue decomposition of \mu with respect to \delta_{g0}*|\mu| , where \nu_{1}\ll\delta_{g0}*|\mu| and
\nu_{2}\perp\delta_{g0}"*|\mu|\sim

. Then \nu_{2}\neq 0 . By Lemma 3. 1, there exists an equivalence rela-
tion on X satisfying ( i)-(iv) in Lemma 3. 1 with \mu_{1}=\nu_{2} , \mu_{2}=|\nu_{2}|

and \sigma_{2}=\delta_{g0}*|\mu| .
By (iv) in Lemma 3. 1, we have

(3. 12) \tau(|\nu_{2}|)\perp\tau(\delta_{g0}*|\mu|) ,

where \tau:Xarrow X/\sim is the canonical
from (3. 12) that

map. Since |\nu_{1}|\ll\delta_{g0}*|\mu| , it follows

(3. 13) \tau(|\nu_{1}|)\perp\tau(|\nu_{2}|) .
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By (3. 12) and Lemma 2. 1, we have

(3. 14) |\tau(\nu_{2})|\perp\delta_{g0}*|\tau(\mu)| .

Since X/\sim is metrizable and sp(\tau(\mu))\subset sp(\mu)\subset E , it follows from TheO-
rem 1. 2 that

(3. 15) |\tau(\mu)|\ll\delta_{g0}*|\tau(\mu)| .

On the other hand, since \tau(\mu)=\tau(\nu_{1})+\tau(\nu_{2}) , it follows from (3.13) that
|\tau(\nu_{2})|\ll|\tau(\mu)| . Hence, by (iii) in Lemma 3. 1 and (3.15), we have 0\neq

|\tau(\nu_{2})|\ll\delta_{g0}*|\tau(\mu)| , which contradicts (3. 14). Thus \mu is quasi-invariant,
and the proof is complete.

\S 4. Proofs of Theorems 2. 3 and 2. 4.

In this section we prove Theorems 2. 3 and 2. 4. We prepare a lemma.

LEMMA 4. 1. Let (G, X) be a transformation group in which G is a
compact abelian group and X is a locally compact Hausdorff space. Let \mu

be a measure in M_{aG}(X) . Then |\mu|\ll m_{G}*|\mu| .

PROOF. For a neighborhood V of 0 in G, let h_{V} be a nonnegative
function in L^{1}(G) with ||h_{V}||_{1}=1 and supp(h_{V})\subset Vt Then

(1) \lim_{V}||h_{V}*|\mu|-|\mu|||=0 .

In fact, for any \epsilon>0 , there exists a neighborhood V_{0} of 0 in G such that
||\delta_{g}*|\mu|-|\mu|||<\epsilon for all g\in V_{0} . Let V be a neighborhood of 0 with V\subset V_{0} .
Then, for f\in C_{0}(X) with ||f||_{\infty}\leq 1 , we have

|(h_{V}*|\mu|-|\mu|)(f)|

=| \int_{G}\int_{X}f(g\cdot x)d|\mu|(x)h_{V}(g)dm_{G}(g)

- \int_{G}\int_{X}f(x)d|\mu|(x)h_{V}(g)dm_{G}(g)|

=| \int_{V}\int_{X}f(x)d(\delta_{g}*|\mu|-|\mu|)(x)h_{V}(g)dm_{G}(g)|

\leq||f||_{\infty}\sup_{g\in V}||\delta_{g}*|\mu|-|\mu|||

\leq\epsilon ,

which shows ||h_{V}*|\mu|-|\mu|||\leq\epsilon . Thus (1) holds. Since h_{V}\in L^{1}(G) , we get

(2) h_{V}*|\mu|\ll m_{G}*|\mu| .

Hence the lemma follows from (1) and(2).

Now we prove Theorem 2. 3. We may assume that X is \sigma compact
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Let E be a Riesz set in \overline{G} , and let \mu be a measure in M(X) with sp(\mu)\subset

E. Suppose that \mu does not translate G-continuously. Let \mu=\mu_{1}+\mu_{2} ,

where \mu_{1}\in M_{aG}(X) and \mu_{2}\in M_{aG}(X)^{\perp} . Then \mu_{2}\neq 0 and |\mu_{2}|\perp m_{G}*|\mu_{2}| .
Hence, by Lemma 3. 1, there exists an equivalence relation ”\sim" on X
such that

(4. 1) X/\sim is a \sigma-compact metrizable, locally compact Hausdorff
space with respect to the quotient topology,

(4.2) (G, X/\sim) becomes a transformation group by the action g\cdot\tau(x)

=\tau(g\cdot x) , where \tau:Xarrow X/\sim is the canonical map,
(4.3) \tau(\mu_{2})\neq 0 , and
(4.4) \tau(|\mu_{2}|)\perp\tau(m_{G}*|\mu_{2}|) .

By Lemma 2. 1, we have

(4.5) \tau(M_{aG}(X))\subset M_{aG}(X/\sim) .
Claim. \tau(\mu)\not\in M_{aG}(X/\sim) .

By (4.5), it suffices to prove that \tau(\mu_{2})\not\in M_{aG}(X/\sim) . Suppose \tau(\mu_{2})\in

M_{aG}(X/\sim) . It follows from Lemma 4. 1 that

(4.6) |\tau(\mu_{2})|\ll m_{G}*|\tau(\mu_{2})| .

Since \tau(m_{G}*|\mu_{2}|)=m_{G}*\tau(|\mu_{2}|) , (4.6) contradicts (4.3) and (4.4). Thus
the claim holds.

Since X/\sim is metrizable and sp(\tau(\mu))\subset sp(\mu)\subset E , it follows from
Theorem 1. 3 that \tau(\mu) translates G-continuously. Hence \tau(\mu) belongs to
M_{aG}(X/\sim) , which contradicts Claim. Hence \mu translates G-continuously.
This completes the proof of Theorem 2. 3.

Finally we prove Theorem 2. 4. As seen in the proof of Theorem 2. 1,
we may assume that X is \sigma compact and \sigma\in M^{+}(X) . Let E be a Riesz
set in \hat{G} . Let \mu be a measure in M(X) with sp(\mu)\subset E . Put E_{0}=sp(\mu) .
Let \mu=\mu_{a}+\mu_{s} be the Lebesgue decomposition of \mu with respect to \sigma . We
may assume that \mu_{s}\neq 0 . Suppose there exists \gamma_{0}\in sp(\mu_{s})\backslash E_{0} . Then \gamma_{0}*\mu_{s}

\neq 0 . By Lemma 3. 1, there exists an equivalence relation ”\sim ” on X sat-
isfying ( i)-(iv) in Lemma 3. 1 with \mu_{1}=\gamma_{0}*\mu_{s} , \mu_{2}=|\mu_{s}| and \sigma_{2}=\sigma .
Hence we have

(4.7) \tau(\gamma_{0}*\mu_{s})\neq 0 , and
(4.8) \tau(|\mu_{s}|)\perp\tau(\sigma) ,

where \tau:Xarrow X/\sim is the canonical map. Since \tau(\mu_{a})\ll\tau(\sigma) , it follows
from (4.8) that \tau(\mu)=\tau(\mu_{a})+\tau(\mu_{s}) is the Lebesgue decomposition of \tau(\mu)
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with respect to \tau(\sigma) . By Lemma 2. 1, \tau(\sigma)\overline{1}S quasi-invariant. Since X/
is metrizable and sp(\tau(\mu))\subset sp(\mu)=E_{0} , it follows from Theorem 1. 4

that

(4.9) sp(\tau(\mu_{s}))\subset E_{0} .

On the other hand, by (4.7), we have \gamma_{0}*\tau(\mu_{s})\neq 0 , which yields \gamma_{0}\in

sp(\tau(\mu_{s})) . Hence \gamma_{0}\in E_{0} , by (4.9). But this contradicts the choice of \gamma_{0} .
Hence sp(\mu_{s})\subset E_{0}=sp(\mu) , and so sp(\mu_{a})=sp(\mu-\mu_{s})\subset sp(\mu) . This com-
pletes the proof.

\S 5. Appendix.

Let T and Z be the circle group and the integer group respectively.
Let \Phi:L^{1}(R)-arrow L^{1}(T) be a linear operator defined by

\Phi(f)(e^{iX})=\sum_{k\in Z}2\pi f(x+2\pi k) (x\in[0,2\pi))

for f\in L^{1}(R) . Then || \Phi(f)||_{1}=\frac{1}{2\pi}\int_{0}^{2\pi}|\Phi(f)(e^{ix})|dx\leq\int_{-\infty}^{\infty}|f(x)|dx=||f||_{1} for

every f\in L^{1}(R) . Moreover \Phi(f)^{\wedge}(n)=\hat{f}(n) for all n\in Z .
Let ( T, X) be a transformation group, in which T acts on a locally

compact Hausdorff space X. Since the mapping tarrow e^{it} is a continuous
homomorphism from R onto T, we have a transformation group (R, X)
by the action t\cdot x=e^{it}\cdot x for t\in R and x\in X . Let \mu be a measure in
M(X) . For f\in L^{1}(T) and g\in L^{1}(R) , convolutions f*\mu\in M(X) and g*\mu\in

M(X) are defined as follows:

f* \mu(h)=\int_{X}\int_{T}h(e^{it}\cdot x)f(e^{it})dm_{T}(e^{it})d\mu(x) for h\in C_{0}(X) ;

g* \mu(k)=\int_{X}\int_{R}k(t\cdot x)g(t)dtd\mu(x)

= \int_{X}\int_{R}k(e^{it}\cdot x)g(t)dtd\mu(x) for k\in C_{0}(X) .

Put J(\mu : T)=\{f\in L^{1}(T) : f*\mu=0\} and J(\mu : R)=\{g\in L^{1}(R) : g*\mu=0\} .
Then J(\mu:T) and J(\mu:R) become closed ideals in L^{1}(T) and L^{1}(R)

respectively. We define sp_{T}(\mu) and sp_{R}(\mu) as follows:

sp_{T}(\mu)=\bigcap_{f\in J(\mu}T)\hat{f}^{-1}(0) ;

sp_{R}(\mu)=\bigcap_{g\in J(\mu R)}\overline{g}^{-1}(0) .

For g\in L^{1}(R) and k\in C_{0}(X) , we have
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g* \mu(k)=\int_{X}\int_{R}k(e^{it}\cdot x)g(t)dtd\mu(x)

= \int_{X}\int_{T}k(e^{it}\cdot x)\Phi(g)(e^{it})dm_{T}(e^{it})d\mu(x)

=\Phi(g)*\mu(k) .

Thus we have

(5. 1) g*\mu=\Phi(g)*\mu for g\in L^{1}(R) and \mu\in M(X) .

If sp T(\mu)\subset Z^{+} . then (5. 1) yields sp R(\mu)\subset R^{+} , where Z^{+}=\{n\in Z : n\geq 0\}

and R^{+}=\{x\in R: x\geq 0\} . Hence, by [5, Theorem 4] and the fact that
\delta_{e^{iS}}*\mu=\delta_{s}*\mu for s\in R , we have

(5.2) \lim_{tarrow 0}||\mu-\delta_{e^{it}}*\mu||=0 .

(Of course, by [5, Theorem 3], \mu is quasi-invariant.)
Let \{n_{k}\} be a sequence of positive integers with n_{k+1}/n_{k}>3(k=1,2,3 ,

\ldots) . Put E=Z^{+}\cup\{-n_{k} : k\in N\} . Let \mu be a measure in M(X) with
sp_{T}(\mu)\subset E . Then we cannot get (5. 2) from [5, Theorem 4]. On the

other hand, it is known that E is a Riesz set (cf. [11, Corollary 4]).

Hence we can get (5.2) from Theorem 2. 3.
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