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Introduction

A finite category is a category whose objects and morphisms form
finite sets. Yoshida proved the following theorem in his attempt to define
the Burnside ring of a finite category [4].

THEOREM.  Suppose that a finite category C satisfies the following con-
ditions.

(a) C has the unique epi-mono factorization property (see Section 4
for the precise definition).

(b) For any object x of C and any cyclic subgroup H of Aut(x), a
quotient object H\x exists.

Let I be a set of vepresentatives for isomorphism classes of objects of
C. Denote by Z[I) and 7' the free abelian group on I and the ring of
Z-valued functions onm I respectively. Define a group homomorphism ¢ :
ZII|—/™7Z" by ¢o(x)(y)=#Homc(y, x) for x, vEL Then

(1) @ is injective.
(i) #Coker(go):xl;II#Aut(x).
(iii) Image(p) is a subring of Z' (with the common identity).

Thus, for such a category C, Z[I] has a unique ring structure such
that ¢ is a ring homomorphism. Yoshida called Z[I] the abstract Burn-
side ring of C. When C is the category of transitive G-sets for a finite
group G, the ring Z[I] is just the Burnside ring of G, i.e., the Grothen-
dieck ring of the category of finite G-sets.

In this paper we prove a linear version of the above theorem. Let £
be a field of characteristic p>0 and C a finite category. A k[C]-module
means a functor C®——{k-modules}. Let Go(£[C]) (resp. Ko(k[C])) be the
Grothendieck group of the category of finite dimensional (resp. finite
dimensional projective) £[C]-modules with respect to exact sequences.
Tensor product makes Go(£[C]) a commutative ring. Let ¢ : Ko(k[C])
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— Go(k[C]) be the Cartan map, namely the map induced by viewing pro-
jective £[C]-modules simply as k£[CJ]-modules. For an object x of C, let
cx: Ko(k[Aut(x)]) — Go(k[Aut(x)]) be the Cartan map for E[Aut(x)]-
modules.

THEOREM A.  Suppose that C satisfies the following conditions.

(a) C has the unique epi-mono factorization property.

(b) For any object x of C and any p-subgroup Q of Aut(x), a
quotiont object Q\x exists.

Let I be as in the previous theovem. Then

(i) The map c is injective.

(ii) #Coker(c)=};[1#Coker(cx).

(iii) Image(c) is a subring of Go(k[C))).

The proof of this theorem is based on the next theorem. Denote by
kc the constant functor on C° with value k.

THEOREM B. Let C be as in Theorem A. Then the k[Cl-module kc
has a finite projective dimension.

These theorems are proved in Sections 3-5. As preparation we clas-
sify simple k[C]-modules for an arbitary finite category C and determine
the ring Go(k[C]) in Section 2.

1. Notation and conventions

We fix a field £ throughout and put p=char(k) if char(k)>0, p=1 if
char(k£)=0. Our modules are right and finitely generated, unless specified
otherwise. The category of such modules over a ring A is denoted by A-
#. . The Grothendieck group of the category of A-modules (resp. projec-
tive A-modules) with respect to exact sequences is denoted by Go(A)
(resp. Ko(A)). An (resp. a projective) A-module M has its class [M] in
Go(A) (resp. Ko(A)).

Let C be a finite category. We denote by ob(C) and mor(C) the set
of objects and the set of morphisms of C respectively. We often write
Homc(x, v)=C(x, y) for objects x,y of C. We denote by C® the dual
category of C and by C” the category of functors C°®®— {sets}. For x&
ob(C), we set hx=Homc(—, x)E0b(C"). Given FE ob(C"), the category
C/F is defined as follows. Objects are pairs (x, @) with x€ob(C), a<
F(x), and Homc/((x, @), (v, b))={fEHomc(x, v)|F(f)(b)=a}. When F=
hx, we write C/hx=C/x. Dually x\C denotes the category of morphisms
x—y.
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We mean by a %£[C]-module a functor C*®*—— k- 4. The category of
k[ C]-modules is denoted by E[Cl- 4. If F:(C®—— {finite sets} is a func-
tor, k[F] denotes the k[C]-module taking x€ob(C) to k[F(x)], the free
k-module on the set F(x). Then the %k[Cl-modules k[kx], xEob(C), are
projective.

2. Simple modules

Let C be a finite category. Let A be a ring object of C", i.e., a func-
tor C®>—{rings}. An A-module is an abelian group object F' of C"
together with a morphism FFXA—F in C" satisfying the same com-
mutative diagrams as in the definition of usual modules. The category of
A-modules is denoted by A-#4<. We aim to classify simple objects of this
category. Though our main concern lies in the case where A is the con-
stant ring functor kc, the general case does not require more effort.

Before doing it, we make a slight reduction. A category C is said to
be Karoubien if every idempotent endomorphism e in C has a factoriza-
tion e=ip such that pi is an identity morphism (Grothendieck and Ver-
dier, [2]). For any category C it is known that there is a Karoubien cate-
gory C’ with C* being equivalent to C". Here is a construction of C".
Objects of C’ are pairs (x, e) where x€ob(C) and e¢*=e€End(x), and
HomcA(x, e), (x, &))={fEHomc(x, x')|e’f=f=fe}. Composition of mor-
phisms of C’ is restriction of that of C. If C is finite, so is C’. Since C"
~ C’", there is a ring object A" of C’* so that A-#s ~A’-#~. Thus, for
our purpose we may replace C by C’. Until the end of this section we
assume that C is Karoubien.

When a monoid M acts on a ring R on the right, R[M] denotes the
twisted monoid ring. Elements of R[M] are of the form Xor, with o€
M, r€R, and product is defined by or-rs=orr’s. If xEob(C), the
monoid End(x) and the group Aut(x) act on the ring A(x), so we have
the rings A(x)[End(x)], A(x)[Aut(x)].

LEMMA 2.1. Let F be an A-module and x<ob(C) such that F(x)#
0. Then the following arve equivalent.

(1) F is a simple A-module.

(i) F(x) is a simple A(x)[End(x)]-module, and for any y<Eob(C)
we have

> Im(F(f)A(y)=F(y),

fiy-x

N Ker(F(g))=0.

g:x=y
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PrROOF. (i)=C(ii): Let M be an A(x)[End(x)]-submodule of F(x).
Define an A-submodule F’ of F' by
Fly)= 2 FIOMAWY)

for y€ob(C). Then F'(x)=M. Since F is simple, F'=F or F’'=0.

Hence M=F(x) or M=0. Thus F(x) is a simple A(x)[End(x)]-module.

Let M=F(x). Then F'=F. This proves the first equality in (ii). The

second one follows similarly, by considering a submodule F” of F defined
by

F ”(y)=y:Q yKer(F (9)

for yeob(C). (ii)=(1i): Obvious. Q.E.D.

Let x, yEob(C). We write x<y if x is a direct summand of v, i.e.,
if there are morphisms 7:x—y and p:y—x such that pi=idx. Note that
x<y<x implies x=y. The following lemma is well known.

LEMMA 2.2. Let S be a finite monoid. If fES, then f* is an
tdempotent for some integer n>0.

LEMMA 2.3. Let F be a simple A-module and x<ob(C). Suppose
that F(x)#0 and F(y)=0 for all y<x. Then every non-unit of End(x)
annihilates F(x).

PROOF. Put S=End(x) and let So be the set of non-units of S. If
fES,, then F(f) is nilpotent. Indeed, take #>0 such that f*=e is an
idempotent. Since C is Karoubien, we can write e=ip: x—>y—->x with pi
=idy. By e€S,, 7 is not an isomorphism, hence y<x. Then F(y)=0,
so F(f)"=F(e)=0 as asserted. Now let I be the two-sided ideal of
A(x)[S] generated by S.. Suppose that F(x)I+0. Then F(x)I=F(x)
because F(x) is a simple A(x)[S]-module. Put T ={t&So|F(x)t=+0}.
Then T+## and if t& T, then st& T for some s&€S,. Take t©<E T such
that the subset Sty of S is minimal among St for all t€ 7. Take ss<So
such that se/o& T. Then Sty=Ssoty, so fo=ssoto with s&€S. By the ear-
lier observation, F(x)(ss0)”=0 for some #>0. Then f=(ss0)"ty also anni-
hilates F(x). This is a contradiction. Thus F(x)I/=0, which proves the
lemma.

LEMMA 2.4. Let F, x be as in Lemma 2.3. For yEob(C), we have
that F(y)#0 if and only if x<y.

PrRoOOF. If x<y, then F(x) is a direct summand of F(y), so F(y)+
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0. Define an A-submodule F’ of F by
F(2)=2Im(F(f))A(2)

for z€0b(C), where f ranges over all morphisms z—x which do not have
sections. By Lemma 2.3, F'(x)=0. Since F is simple, F'=0. On the
other hand, we have by that

0+ F(y) Zf:§xlm(F(f))A(y).

Therefore some f:y—x must have a section. This proves the lemma.

Let x€ob(C). We denote by A[%x] the right A-module taking yEob
(C) to the free right A(y)-module on the set C(y, x). The ring A(x)End
(x)] acts naturally on A[hx] on the left. Therefore, if V is a right
A(x)[End(x)]-module, we have a right A-module F'= V& EnacoAl2x].
Define a right A-module S.v by

Sev(¥)=F'(y)/ N Ker(F'(g))

for yEob(C).

LEMMA 2.5. If V is a simple A(x)[End(x)]-module, then Sxv is a
simple A-module.

ProOF. This follows immediately from Lemma 2. 1.

Let I be a representative system of isomorphism classes of objects of
C. For each x&1, take a representative system R. of isomorphism clas-
ses of simple A(x)[Aut(x)]-modules. Let R be the set of pairs (x, V)
with x€I, VERy. Any A(x)[Aut(x)]-module can be viewed as an
A(x)[End(x)]-module on which the non-units of End(x) act as zero. Thus,
for each (x, V)ER, we have the simple A-module Sx.v.

PROPOSITION 2.6. {S«v|(x, V)ER} is a representative system of
isomorphism classes of simple A-modules.

PROOF. Let F be a simple A-module. Minimal elements of the set
{x€0ob(C)|F(x)#0} with respect to the preorder < are isomorphic to each
other by Lemma 2.4, We call these elements vertices of F. If x is a
vertex of F, then by lemma 2.3, the non-units of End(x) annihilate F(x).
Hence F(x) is a simple A(x)[Aut(x)]-module. By the definition of Sx.rx)
and applied to F, there is a nonzero A-homomorphism Sx.rwx)
- F'. Both sides being simple, we have Sxrxn=F.
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We next claim that if (x, V)ER, then x is a vertex of Sxv. Let y<
x. Then idy =pi where 7:y—~x and p:x—y are not isomorphisms. Let
F’ be as in the definition of Sxv. If a€A(y), f:v—>x and vEV, then
we have that v®fa=vQfpia=vfp®ia in F'(y). Since fpEEnd(x) is not a
unit, v/p=0. Thus F'(y)=0 and so Sxv(y)=0. This proves the claim.

Now suppose that Sxv=Sx,v for (x, V), (x, V')€R. Considering
vertices of both sides, we have x=x". By evaluation at x, we get V=1".
This completes the proof.

We consider the case where A=kc, the constant ring functor. Then
A-modules are simply functors C®—— k- £, i.e., k[C]-modules. The ten-
sor product F®G of £[C]-modules F, G is the k[C]-module defined by
(FRG)(x)=F(x)®.G(x) for x€ob(C). The Grothendieck group Go(k[C])
of k[C]-modules becomes a commutative ring with multiplication induced
by tensor product and identity element [kc].

PROPOSITION 2.7.  The homomorphism
Go(k[C])—ﬂJ;IIGo(k[Aut(x)])

taking the classes [F] of E[Cl-modules F to {[F(x)l}xer is a 7ing isomor-
phism.

ProOF. Let (x, V)ER. If Sxv(v)#0, then x<y, and Sxv(x)=V
as k[Aut(x)]-modules. Hence the above homomorphism takes the basis
{[Sx.v]}x.ver of Go(k[C]) to a basis of xl;[IGo(k[Aut(x)]) and so it is an

isomorphism.
3. A category without non-isomorphic endomorphisms

Throughout this section C is a finite category such that End(x)=Aut
(x) for all x€ob(C). We denote by pd F' the projective dimension of a
k[ C]-module F. The finitistic dimension of £[C] is by definition the su-
premum of finite projective dimensions of £[CJ]-modules, and denoted by
f.dim £[C]. See Bass [1].

REMARK 3.1. Define dim C to be the supremum of lengths #n of
chains xo—~x1—...~x» of non-isomorphisms of C. Then it is not difficult
to prove that f.dim £[C]<dim C.

LEMMA 3.2. Suppose that C satisfies the following conditions.

(1) Aut(x) is a p-group for any x<ob(C).

(ii) If f:x—y is not an isomorphism, them f=fg for some g<
Aut(x) with g=+1.
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Then f. dim k[ C]=0.

PROOF. For xEo0b(C), define a k[C]-module Ix by I.(y)=Map(C(x,
v), k) for y€ob(C). Then I is an injective hull of a simple k[ C]-module
Sx. By a result of Bass [1, Theorem 6. 3], it suffices to show that Hom
(Ix, Sx)#0 for any x€ob(C). This amounts to saying that ;Im(lx(f))qb

I(x), where f:x—y runs over all non-isomorphisms. For such a mor-
phism f, the map C(x,x)— C(x, y): g—— fg is not injective by (ii), so
the map I«(f) is not surjective. Since I«(x) has a unique maximal left
k[Aut(x)]-submodule by (i), we have that ;Im(lx(f ))*I.(x) as required.

Let G be a finite group. Let S(G) be the category whose objects are
the right G-sets H\G :={Hg|g< G} for subgroups H of G and whose mor-
phisms are G-maps.

PROPOSITION 3.3. If G is a p-group, f.dim k[S(G)]=0.

PROOF. It is enough to verify that S(G) satisfies conditions (i),
(ii) of the previous lemma. (i) is obvious. Let f: Q\G— @Q'\G be a
non-isomorphism with @, @  subgroups of G. We may assume that @<
Q' and f is the projection. Then Q< Ny(Q) and any element w&E Ng(Q)
— @ induces an automorphism w : Q\G—— Q\G such that fw=f. Thus
S(G) satisfies (ii) and the proposition is proved.

Suppose given x€0ob(C) and a subgroup @ of Aut(x). For y€ob(C),
C(x, y)? denotes the set of fixed elements of C(x,y) under the natural
action of Q. If there is an object of C which represents the functor
y+— C(x, ¥)?, such an object is called a quotient of x by @ and denoted
by @\x. Now suppose that C satisfies the following condition.

(3.4) For any x€ob(C) and any p-subgroup € of Aut(x), a quotient
object Q\x exists.

Then, for x€ob(C) and a p-Sylow subgroup P of Aut(x), we can
define a functor

gx.p: k[ Cl- e — k[S(P)]- s
by
0xp(F)(Q\P)=F(Q\x)
for £[C]-modules F and subgroups  of P.
LEMMA 3.5. Suppose that C satisfies (3.4). Let F be a Fk[C]-
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module. Then the following are equivalent.

(i) pd F<oo,

(i) gqxp(F) is a projective k[S(P)]-module for any xEob(C) and
any p-Sylow subgroup P of Aut(x).

PrROOF. Fix a pair (x, P) as in (ii). The functor gxr is clearly
exact. It preserves projective modules. To see this, it is enough to show
that for any y€ob(C), the functor Q\P+— k[C(x, ¥)?] on S(P)* is pro-
jective. But this follows from the isomorphisms C(x, y)°=Homs(Q\P,
Clx, v))= lilHomp(Q\P, HA\P), where C(x, y)ElilHi\P as P-sets. Now

suppose pd F<oo. Then pd gxr(F)<co. By Proposition 3.3, gxr(F) is
projective. This proves (i )= (ii).

For the converse, we first observe the following fact. If P is a p-
group and M is a projective k[S(P)]-module such that M(Q\P)=0 for all
nontrivial subgroups @ of P, then M(1\P) is a free left £[P]-module.
Indeed, M must be isomorphic to a direct sum of copies of 2[Homp(—, 1\
P)]. Suppose that F satisfies (ii) and F#0. Take x€ ob(C) such that
F(x)#0 and that F(y)=0 if there is a non-isomorphism x—y. Take a
p-Sylow subgroup P of Aut(x). If 1<Q<P, the projection x—~ Q\x is not
an isomorphism. Applying the above observation to M=g¢xr(F), we see
that M(1\P)=F(x) is a free left k[ P]-module, and hence a projective left
E[Aut(x)]-module. So there is an exact sequence of %[ C]-modules

0~ F>@®(Uy ® kh)O(Fx) @ ki)~ F-0

where y runs over objects of C such that F(v)#0 and y#x, and U, is a
projective £[Aut(y)]-module. The middle term is projective and F'(x)=0.
Applying g¢x.r- to this sequence for any pair (x’, P’), we see that F” also
satisfies (ii). By induction we may assume pd F'<oo. Then pd F <o,
This proves the lemma.

Let kc: C®®— k-#< be the constant functor with value 4.

PROPOSITION 3.6. Suppose that C satisfies (3.4). Then the k[C]-
module kc has a finite projective dimension.

PrROOF. For any x and P as in (ii) of the previous lemma, ax.p(kc)
= ks = k[Homp(—, P\P)] is projective. Hence the conclusion follows
from the lemma.

When G is a finite group, the full subcategory of S(G) consisting of
the objects Q\G for p-subgroups @ of G satisfies (3. 4).
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4. A category having the unique epi-mono factorization property

A category C is said to have the unique epi-mono factorization prop-
erty if there are two classes E(C) and M(C) of morphisms of C satisfy-
ing the following conditions.

(1) If f€E(C), f is an epimorphism.

(2) If feM(C), f is a monomorphism.

(3) E(C) and M(C) contain all isomorphisms and are closed under
composition.

(4) Any morphism f of C is factorized as f=gh with g€M(C), he
E(C). This factorization is unique in the sense that if f=g¢g'#" with g€
M(C), W=E(C), then ¢'=gu, '=u""'h for some isomorphism .

The unique epi-mono factorization property is called FAC in [4]. We
call elements of E(C) and M(C) admissible epimorphisms and admissible
monomorphisms respectively. Troughout this section C is a finite cate-
gory having the unique epi-mono factorization property. The following
are easy consequences of (1)—(4).

GB) If feE(C)NM(C), f is an isomorphism.

(6) If gheE(C), then g E(C).

(D If gheM(C), then heM(C).

(8) C is Karoubien.

(9) If F€ob(C"), then the category C/F defined in Section 1 has
also the unique epi-mono factorization property. More precisely, let p:
C/F— C be the canonical functor (x, @)— x. Then the classes
p'E(C), p7'M(C) satisfy conditions (1)—(4) for C/F.

Define subcategories C., Cn of C by ob(C.)=0b(Cn)=0b(C) and mor
(Co)=E(C), mor(Cn)=M(C). Both C. and C» have no nonisomorphic
endomorphisms. Let je: Ce——C, jm: Cn— C be the inclusion functors.
Define functors jo*: k[Cl- 4w — k[ C.l-#r, jn* : k| Cl-#er — k[ Cnl-#+ by
JHX(F)=Fcje, jn*(F)=F°jn.

LEMMA 4.1. (i) A right adjoint jo* : B[Ce)-#er — E[Cl-#r 10 Jex
is given by

jes(F)()= 11 F(2)
for Ek[Cel-modules F and x<ob(C), where z—x runs over representatives

for isomorphism classes of objects of the category Chnlx.
(i) A left adjoint jm : k| Cn)- e — k[C)-#r to ju* is given by

im(F)(x)= @ F(2)
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where x—2 runs over rvepresentatives for isomovphism classes of objects of
the category x\Ce.

This is a consequence of condition (4). We omit the proof.
Let x< ob(C). Let »+< ob(C") be the subobject of k. defined by
r(y)={f€C(y, x)|fEE(C)} for y=ob(C). Define a k[C]-module Tx by

Tx=Coker(k[rx] —— k[hx]).

Then Tx(y)=k[Ce(y, x)] for y=ob(C). The group Aut(x) acts naturally
on 7Tx on the left.

LEMMA 4.2. pd Tx<oo,

PrROOF. Note that the category Cn/x is essentially a partially order-
ed set. Let 7: Cn/x— Cn be the canonical functor (z—x)—— z and let
kx be a simple k[Cn/x]-module supported on final objects of Cn/x. The
restriction functor *: k[ Cnl-#s— k[ Cn/x]- # has a left adjoint 7 given
by

l'x(F)(y)=y@9JcF(y—*x)

for k[Cn/x]-modules F and yEob(Cn), where y—x runs over all objects
of Cn/x. We see that

i(kx)(v)=k[Aut(x)]  if y=x,
=0 if y¥x,

for y€ob(Cn). By it follows easily that jm#(kx)= T Since
both j» and i are exact and preserve projectives, pd 7Tx< pd kx< 0,
This proves the lemma.

Let Ko(E[C]) be the Grothendieck group of projective k[C]-modules.
The Cartan map c: Ko(k[C])— Go(E[C]) is defined by c[F]=[F] for pro-
jective k[C]-modules F. For each x€ob(C) we have also the Cartan
map cx: Ko(k[Aut(x)])— Go(k[Aut(x)]) of the algebra kE[Aut(x)]. See
Serre [3] Now we prove assertions (i), (ii) of A in Intro-
duction.

PROPOSITION 4.3.  The Cartan map c is injective and
#Coker(c)=£1#Coker(cx)

where I is a representative system of isomorphism classes of ob(C).

PrROOF. For x, vEob(C) we write x<ny if Culx, y)*80, and x>,y if
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Ce(x, v)#8. In the paragraph preceding [Proposition 2.6 we defined the
sets Rx, R and the simple k[C]-modules Sxv for (x, V)ER. Let Siv be
a projective cover of Sx,v. Then {[Szv]}x.er, {[Sx.v]}xvier are bases of
Ko(k[C]), Go(k[C]) respectively.

Fix (x, V)ER for a moment. Let V™ be a projective cover of the
simple £[Aut(x)]-module V. In the proof of Lemma 4.2 we defined the
adjoint functors

kL Co | e =22 B[ C- s
1" Im

and showed that Tx=jmu(kx). If (y, W)ER, then

Ext¥ V" Qautx Tx, Sy,w) =Homauxn( V™, Ext¥ Tx, Sy, w))
=Homautx( V™, Ext&ux(kx, i*jn*Sy,w))

for any ¢&N. Since S;,,w is supported on objects containing y as a direct
summand, and since split monomorphisms belong to M(C), we have that
*jm*Sy,w=0 unless v<nmx. If y=x, then */,*S,, w=W®Fkx is injective.
Hence Ext V™ Qautx) Tx, Sx,w)*+0 if and only if ¢=0 and W=V. We
know also that 1V~ ®@aux) Tx has a finite projective resolution by Lemma 4.
2. From these facts it follows that [ V" ®autx Txl—[Sxv] is a linear com-
bination of [Syw] with vy <axx in Go(E[C]). Therefore the classes
[ V™" ®autn Tx], for all (x, V)ER, span Im(c).
If (V"®autcxy Te)(¥)#0, then y=.x. So we can write
[V~®Aut(x) Tx]= 2 mx,V;_v,W[Sy, W]

(v, W)ER
V=ex

in Go(k[C]) with m.,v.,, wEN. Evaluating both sides at x, we have
[V~]:W§exn’lx,V;x,W[W]

in Go(k[Aut(x)]). Namely, (v, w)v,wer. is the Cartan matrix of k[Aut

(x)], whose determinant is known to be nonzero [3]. Hence

det( W, vy, W)(x, V), (v, W)ER
le—eIIdet( W, Vo x. W)V, WER

ZXI;II#Coker(cx).
Thus c is injective and #Coker(c)=£1#Coker(cx) as required.

LEMMA 4.4. If F is a k[Cl-module, then
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pd j*(F)<pd F<pd j*(F)+dim Cn
where dim Cr is as defined in Remark 3. 1.

PrROOF. By Lemma 4.1, j.* is exact and preserves projectives. So
pdj*(F)<pd F. To prove the second innequality, it is enough to show
that if jo*(F) is projective, then pd F<dim C». For (x, V)ER, let Stv be
a simple k[C.]-module whose value at x is V. Then ExtU(F, joex(Sty))=
Ext?(je*(F), St,v)=0 for ¢>0. There is an injection ¢g: Sxy—— jex(S%v)
and the composition factors of Coker(g) consist of Sy,w with (v, W)ER
and x<ny. Using induction on dim x\Cn, we see that Ext?(F, Sxv)=0
for ¢ >dim x\Cn. Hence, if ¢>dim Cn, then Ext(F, S)=0 for any sim-
ple module S. Thus pd FF'<dim C» as required.

REMARK 4.5. It follows from this lemma and Remark 3.1 that f.dim
E[C]<dim C.+dim Cn.

5. The main theorems

In the rest we assume that a finite category C has the unique epi-mono
factorization property and satisfies (3. 4).

THEOREM 5.1.  The constant k[Cl-module kc has a finite projective
dimension.

PROOF. Let x, @ be as in (3.4). One easily sees that the quotient
morphism x—— Q\x is an admissible epimorphism and that the bijections
C(Q\x, v)=C(x,y)?, for y€ob(C), restrict to bijections Ce(Q\x,y)=
Ce(x, v)°. Therefore the category C. also satisfies (3.4). The theorem
follows from [Proposition 3.6 and Lemma 4. 4.

LEMMA 5.2. If F, G are projective k[Cl-modules, then FRG has a
finite projective dimension.

PROOF. The following fact is easily proved. If K:C°— {finite
sets} is a functor such that for all x, @ as in (3.4) the maps K(Q\x)—
K(x)? induced by the quotient morphisms x—— Q\x are bijections, then
the category C/K also satisfies (3.4). This can be applied when K is a
product of representable functors.

To prove the lemma, it is enough to show that pd(k[%:]®%[%y])<co
for any x, yEob(C). Put K=hxXhy,Eob(C"). By the above observa-
tion, we can apply [Theorem 5.1 to C/K. Thus the £[C/K]-module kc/x
has a finite projective dimension. Let p: C/K—— C be the canonical func-
tor. The restriction functor p*: k[C)- #«— k[ C/K]- #+ has a left adjoint
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D given by
p(F )(x)=a§)(x) F(x, a)

for £[C/K]-modules F and x<ob(C). Since p: is exact and preserves
projectives, pd pi(kcx)<oo. Since pilkcix)=k[ K= k[h]Q®F[hy], the con-
clusion follows.

THEOREM 5.3.  The image of the Cartan map c : Ko(k[C])—
Go(k[C)) is a subring.

PrOOF. By [Theorem 5.1 and Lemma 5.2, Im(c) contains 1=[kc]
and is closed under product.

Let us consider the case where C=S(G) for a finite group G. We
can describe the ring structure of Ko(k[C]) induced by that of Go(k[C])
through the map c¢. For any finite group H, let P(H) be the free abelian
group on the set of isomorphism classes of indecomposable direct sum-
mands of permutation £[H]-modules. Tensor product makes P(H) a
ring. A finite group H is said to be p-perfect if H has no nontrivial fac-
tor p-group. Then there is a ring isomorphism

Ko(k[CD =TI P(Ne(H)/H)

where H runs over representatives for conjugacy classes of p-perfect sub-
groups of G.
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