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0. Introduction

Murray and von Neumann introduced their equivalence relation
among projections in a von Neumann algebra and proved that a factor is
finite (i.e. every projection is finite) if and only if it has a finite trace. In
[2], Cuntz and Pedersen defined another equivalence relation among all
positive elements in a C*-algebra, and proved that the algebra is finite if
and only if there is a separating family of finite traces.

In this paper, we introduce an equivalence relation among the positive
elements of a non-commutative L?-space associated with an arbitrary von
Neumann algebra, and we study the finiteness of non-commutative
L?-spaces with respect to it.

In §1, we recall the definition of non-commutative L?-spaces associat-
ed with an arbitrary von Neumann algebra defined by Haagerup [4] For
non-commutative Lf-spaces L?(N, r) arising from a semifinite von
Neumann algebra N and its trace rz, the intersection N NLP(N, ) is
L?-norm dense in L?(N, 7). Therefore one may naturally expect some
similarity of their order structures between N and L?(N, r) even if there
are significant differences, for example, the existence of an order unit.
On the other hand, for non-commutative L?-spaces L?(M) associated with
an arbitrary von Neumann algebra M, it is well-known that any non-zero
element in L?(M) is not bounded and that MNL?(M)={0}. Therefore
we need some care to deal with them throughout the paper. In §2, we
study the monotone order completeness of LP(M). Applying the result,
we show in §3 that L?(M) has the asymmetric Riesz decomposition prop-
erty, and we introduce an equivalence relation among the positive ele-
ments in L?(M). In §4, using the equivalence relation introduced in §3,
we define a notion of finiteness of L?(M). Considering bounded linear
functionals on L?(M) which satisfy the property as traces, we show that
the finiteness of L?(M) agrees with that of M for the case of 1<p<oo.
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Saito for his many suggestions. The author also wishes to extend his
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thanks to Professors F. Hiai and Y. Nakamura for their valuable com-
ments.

1. Preliminaries

In this section, we will collect definitions and basic facts on the theory
of non-commutative Lf-spaces associated with an arbitrary von Neumann
algebra. Full details are found in [4] and [12].

Let M be an arbitrary von Neumann algebra. Let N be the crossed
product of M by the modular automorphism group {o:}:cr of a fixed faith-
ful normal semifinite weight on M. Then N admits the dual action
{0s}ser and the faithful normal semifinite trace r satisfying refs=e°r, s&
R. We denote by N the set of all r-measurable operators (affiliated with
N). For 0<p<oo, the Haagerup L?-space L?(M) is defined by

L*(M)={aEN ; 6;(a)=e"**a, sER).

It is well-known that there exists a linear order isomorphism ¢——h, from
the predual M« onto L'(M). We thus get a positive linear functional ¢r
on L'(M) defined by tr(he) =¢(1), &M% The (quasi-)norm of L?(M)
for 0< p<co is defined by |al,=tr(al?)¥?, acL?(M). When 1<p<co,

L?(M) is a Banach space, and its dual space is L?(M), where %-l——;—:l.

The duality is given by the following bilinear form :
(a, b)—tr (ab) (=tr(ba)), a= L*(M), b L (M).

The space L?(M) is independent of the choice of a faithful normal
semifinite weight on M up to isomorphism. Furthermore, when M has a
faithful normal semifinite trace rn, L?(M) can be identified with the non-
commutative L?-space L?(M, ) introduced in [9].

2. Monotone order completeness of measure topology

In this section we study the monotone order completeness of measure
topology associated with a semifinite von Neumann algebra. The result
does not seem to have been pointed out in the literature, though it may be
well-known probably. As an immediate consequence, we also have the
monotone order completeness of non-commutative L?-spaces to introduce
an equivalence relation in L?-spaces. It may be useful to state these
results in the form of a theorem and its corollaries.

Suppose that N is a semifinite von Neumann algebra with a faithful
normal semifinite trace r. We denote by N the set of all r-measurable
operators, which becomes a complete Hausdorff topological *-algebra with
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the measure topology (cf.[7], [12]). For €, §>0, we set

N(e, 8)={aEN:; there exists a projection e in N
with |ael|l<e, r(1—e) <8},

Then the family {N(g, &) ; ¢, 6>0} is a fundamental system of neighbor-
hoods around 0 with respect to the measure topology. We also denote by
N, the set of all positive self-adjoint elements in N. Recall that an opera-
tor a in N is to be defined r-compact if a satisfies that r(E.w (Ja])) <oo
for all s> 0, where E(.« (la]) is the spectral projection of |a| correspond-
ing to the interval (s,o0). This definition of r-compactness is equivalent
to that the generalized s-number u:(a) of a converges to 0 as t—> oo(cf.
[3; Proposition 3. 2]).

LEMMA 2. 1. Let a be a t-compact operator. Let {yn}5-1 be a
sequence in N which converges to 0 stromgly. Then the sequence
{yna)n=1 converges to 0 in the measure topology.

Proor.  Considering the polar decomposition of @, we may assume
that a is positive self-adjoint. Let a= _/[‘ . )/ia’ez be the spectral decompo-
sition of a. Fix any positive numbers € and 8. Let y=sup|y.]|(<o0) and

a/=£7. Since a is r-measurable, we can take a A (>a) such that

r<j(.ﬂ )a’m)sa. We write yna=ynf[0 a]/ldeA+ynf

(a, B

| Ade,
+ Yn /(‘ A Adei. Then the first and the last terms are in N(¢g, 8). For the
second term, since ¢ is r-compact and [ v 8l Ade, < /(' . o de;, it follows
that /(‘ . sl Ade;€ L*(N, ). Hence, representing N on L*(N, r), we have
|y /( . o Ade;l|l—0 as y»—0 strongly. This completes the proof. 0

THEOREM 2. 2. Let {an}n-1 be an increasing sequence in N..
Assume that there is a t-compact operator a in N satisfving an<a for
all nEN. Then there exists a unique element aw in N such that an
converges to a- in the measure topology.

PrROOF. By [8; Lemma 2. 2], for each #EN, there is a unique x.E
N such that 0<x,<s(a) and a.=a"*x,a"*>. The same lemma shows that
the sequence {xx}%-1 is increasing. The x. converges strongly to an ele-

ment x in N. We put a=.=a'*xa'®. Since x—x, converges to 0 strongly,
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we conclude from the previous lemma that x.a'? converges to xa'? in the
measure topology. This yields the result and completes the proof. a

REMARK 2. 3. In the preceding theorem, we can not drop the condi-
tion that ¢ is r-compact.

Let /? be the usual sequence space. We denote an increasing sequence
{an}%-1 of bounded operators on /* by matrices with respect to its canoni-

cal basis e,=(0,:+, 0, il, 0,---) as follows;
an=[§:" g], where E, is the identity matrix of degree #. Then

{an}7-1 is dominated by the identity operator. However, it is impossible
that {a.}n-1 forms a Cauchy sequence in the measure topology.

We assume that 0<p<oo throughout the rest of this section. It is
well-known that non-commutative L?-spaces L?(N, r) associated with a
semifinite von Neumann algebra N and its trace r are included in the class
of r-compact operators (cf.[3; Remark 3.3). From Theorem 2.2 and [3:
Theorem 3. 6], we have the following result.

COROLLARY 2. 4.  Let {ax}n=1 be an increasing sequence in
L?(N, )+. Assume that therve is an element a in LP(N, 1) satisfving an
<a for all nEN. Then there exists a unique element a~ in L*(N, r)
such that |an— a«=ll,—0.

Moreover, we can also obtain a corresponding result for non-
commutative L?-spaces L?(M) associated with an arbitrary von Neumann
algebra M. For any a in L*(M), it is known that u:(a)=t""?||a|, for all
t >0, where 1:(a) is the generalized s-number relative to the canonical
trace on the crossed product (cf.[3; Lemma 4.8]). This implies that
LP(M) is included in the class of r-compact operators.

COROLLARY 2. 5. Let {an}n-1 be an increasing sequence in
L?(M),. Assume that therve is an element a in LP(M) satisfying a.<a
for all nEN. Then there exists a unique element a. in LP(M) such
that |a»— a«|,—0.

PrOOF.  From the assumption, we conclude by Theorem 2.2 that a»
converges to an element a. in the measure topology. Since L?(M) is
closed in the measure topology (cf.[4; Definition 1.7]), @~ is included in
L?(M). Moreover, the norm topology of L?(M) is exactly the induced
measure topology (cf.[4; Proposition 1.17] or [12; Chapterll, Proposition
26)), we conclude that [@a»— @] ,—0. O
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3. Asymmetric decomposition and equivalence relation in LP-spaces

Let M be an arbitrary von Neumann algebra. We introduce an equiv-
alence relation in L?(M). as in the theory of C*-algebra to study a func-
tional on Lf-spaces which satisfies the property as a trace. For «, b in
LP(M)., we define a~ b if there exists a sequence {x.}5-1 in L*(M) such
that a=217-1x5%n, b=227-1x.x5x in the sense of L’-(quasi-)norm conver-
gence. Also, we define a<b if there exists an element ¢ in L?(M). such

that a~c<b. Then we have the countably asymmetric decomposition for
LP(MD.

PROPOSITION 3. 1.  Let 0<p<oo. [If {x:)51, {y;}521 are sequences in
L*(M) such that 227 x¥fxi=27 v;v¥. Then there exists a double
sequence {zi;}:5 in L*(M) such that xo¥=37z:i2.% and y*y,=

o *
i=1%i, jRi,j-

PROOF. Put a=2x¥fx;=2y;y¥. As in the proof of [8; Lemma 2.
21], we can find a unique operator s; in N satisfying the following condi-
tions; 0<s¥s;<s(x:)<s(a), x;=s:a"? in N. If follows from the unique-
ness that s; is fixed under the dual action and that s;€M. Similarly,
there exists an element # in M such that y¥=¢*ae"? Since X/ x¥x:=
a'? (% 1s¥s) a'? increases to a in the measure topology, we can conclude
by the uniqueness part of [8; Lemma 2.2] that the sequence {3/-is¥s:}5-1
increases strongly to the range projection of a. Then the sequence
{tFa'?* (D s¥s)a'*t}n=1 increases to tfat;=yFfy; in LP-norm topology.
Putting z.,;=s:a'?*t;, we complete the proof. O

By deleting some of the x; and corresponding z:; we immediately
conclude the following corollay.

COROLLARY 3. 2.  Let 0<p<oo. If {x:i%1, {vi}7=1 are sequences in
L* (M) such that 27 x¥x: <% y;v¥. Then there exists a double
sequence {z:;}iie in L*(M) such that xxF=2312:,2:% and 2512¥ j2:,<

*
Yiy;.

THEOREM 3. 3. Let 0<p<oo, The relation “ ~ 7 becomes an
equivalence rvelation in LP(M).. It is countably additive in the sense
that 227 ai~ 271 b: when the sum exists and a:~b: in LP(M),. The
relation “ < 7 satisfies the transitivity and the Riesz decomposition
property: if Dira:<25-1b; then there exists a double sequence {ci;}: -1
in LPCM) 4 such that a;=37-1¢:,; and 27=1¢:,;< b;.

[43

PrROOF. To see that the relation “ ~ ” is an equivalence relation,
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it is enough to show the transitivity. For elements @,  and ¢ in L*(M)+,
suppose that a~b and b~c. From the above proposition there is a dou-
ble sequence {z:;}: 51 in L* (M) such that

a=23°=1<23?=12i,j2i,*j> and C:2f=1<2?=12i,*12i,j>-

Suppose that K is any bijective map K: N 3>n— ((n), j(n)) € NXN.
By the monotone order completeness, it is straightforward to see that the
sequence {2%-1zkmzx*m}N=1 converges to a in the L’-norm topology.
Moreover, the series 25-:1(2712:,;2:%,) also converges to a. Thus we
have a=2%-1zkm2k(n and c=27-12k {2k, hence the relation “ ~ 7
becomes an equivalence relation in L7 (M);.

To show the Riesz decomposition property, suppose that 2ia;~c<
2351 b; for some ¢ in L?(M). Then there exists a sequence {u»}3-1 in
L*(M) such that Xfia:=25-1ufun and Dgeiunttf=c<3%1b;. By the
first equation, we can take a double sequence {vin}i5-1 in L*(M) such
that a:=227-10:20: % and 271020, n=unux. Then we have 2 510: ¥vi.<
21721 b;, hence there is a triple sequence {w;: n}i; 5=1 in L* (M) such that
Ui,n?)i,*n:23'0=1wi,*j,nw1',j.n and 2i,;1°=1ﬂ)i,*j,nw{,j,nNZi,;:lWi,j,nWi,*j,nébj. Put-
ting c:,;=27=1W0:%;,nWi;,n, We have a;=251ci; and 25ci;< by It is easy
to establish the rest of the theorem, and the proof is omitted. O

4. Finiteness of LP-spaces

As an application of the preceding results, we study a certain finite-
ness of non-commutative L?-spaces associated with an arbitrary von
Neumann algebra, and we shall see that the notion of finiteness of L?-
spaces for 1<p<oo is coincides with that of von Neumann algebras. Let
M be an arbitrary (not necessarily semifinite) von Neumann algebra.
Once Theorem 3.3 has been established, we can consider a quotient space
of L?-space with respect to the relation “ ~ ”. We denote by L%, the set
of all self-adjoint elements in L?(M) and denote by L# the real linear
subspace of L %, consisting of elements of the form a¢—b, where a, bE
LP(M)+ and a~b. Moreover, we denote by @ the quotient map @ : L%
—— L5, /L8 As in the proof of [2; Theorem 2. 6], it is straightforward to
verify that the subspace L} is closed in L%. Therefore, there is a canoni-
cal linear isometry between the dual of the quotient space @(L%,) and the
space (L5~ consisting of elements f in (L2,)* such that f(a)=0 for all a
in L8 Note that f€(LH* if and only if f(x*x)=f(xx*) for all xE
L*(M).
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LEMMA 4. 1. Let 1<p<oco and —1~+%=1. Suppose that fe

p

(LD Let b be a unique element in L%, corresponding to f such that f
=tr(b+). If b=b.—b_ is the Jordan decomposition of b, then tr(b++)
and tr(b-+) ave elements of (Lb)*.

PROOF. Note that & satisfies #r(bx*x)=tr(bxx*), x€L* (M.
Putting x=ua'?, we have tr(ba)=tr (u*bua) for any unitary <M and
any a=L%. This implies that b is affiliated with the commutant M’. By
the uniqueness of the Jordan decomposition, it follows that b+, b- are also
affiliated with M’. Denote by ei(resp. e.) the support projection of b
(resp. b-). Then we have b,=be;, b-=—be;, and e, e; are orthogonal
projections in the center of M. Hence we have tr(byx*x) =tr (beix™x) =
tr (be*ewx) =tr (bewxx*e) =tr (bixx*) and  tr(b_x*x)=tr(b_xx*). This
completes the proof. O

THEOREM 4. 2. Let 1<p<co and L%—%zl. If ac€L?(M)+,

p

then the following four comstants ave equal ;
a=inf {|la—cl»; cE L},
B=inf {|bl,; b>a, bELE},
y=sup {f(@); feLiD* =1, fx*x)=Fxx* =0, xE
L* (M)}, and
S=sup {tr(h¥a) ; ¢ is a normal tracial state on M}.

PROOF. A similar argument as in the proof of [2; Theorem 2.9]
shows that @>p8>y. Suppose @>0 to show that a<7y. Since « is the
quotient norm of @ in Q(L%), there is by Hahn-Banach’s theorem an ele-
ment 7 in Q(L%)* with | 7|=1 such that f(Q(a))=a. Let b be a
unique element in L% corresponding to £ (Q(+)) such that FRUN=
tr(b+). If b=b.—b_ is the Jordan decomposition of b, then we have
tr (be) (L) by Lemma 4.1. Since |6)§=[6.3+]5-[l%, we have [b:],<1
and tr(b.a)=a. It follows that |b+]q=1. Hence we have b-=0 and 6=0.
Put f= 7 (Q(+)). Then we have f€(L %)% |If|=1, and f satisties that
Fx*x)=f(xx*) =0 for any xL*(M). Thus a<y. To see that y=4,
suppose that f is an element in (L5)* satisfying f(x*x)=f(xx*) =0 for
any x€L?(M). Let b be a unique element in L% corresponding to f such
that f=tr(b-). Then b is affiliated with M’. Taking a unique positive
element ¢& My such that b=h¥?, h, is affiliated with M’. It follows from
[5: Théoreme 2] or [12; ChapterlV, Proposition 4] that the Connes’ spa-

tial derivative —C‘% s affiliated with M’, where ¢o is a faithful normal
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semifinite weight on M’. Due to [1; Theorem 9] or [12; Chapterlll, Cor-
ollary 27], we conclude that ¢ is a trace on M. Conversely, for each nor-
mal finite trace ¢ on M, the element %, is affiliated with M’. Hence the
element tr(hY?:) in (L %,)* satisfies that tr (h¥7x*x) =tr (hyxx*) =20, xE
L*(M). Thus we get the desired isometric bijective correspondence
which implies that y=¢8. This completes the proof. O

DEFINITION 4. 3. A positive element a in LY(M) is said to be
finite if for each a €EL?(M). such that a’<a and a’'~a implies that a’'=
a. We say that L*(M) is finite if every element in L*(M). is finite.

REMARK 4. 4. For the case of p=1, the above definition is vacu-
ous. Let a, b be elements in L'(M).. Suppose that a~b<a. Then we
have t»(a)=tr(b). It follows that |a—bli=tr(a—b)=0, i.e. a=b.
Therefore, the space L'(M) is always finite in the sense defined above for
an arbitrary von Neumann algebra.

It is easy to verify the following lemmas.

LEMMA 4. 5 (cf.[2; Lemma 3. 3]). LP(M) is finite if and only
if LP(M).NLE={0}.

LEMMA 4. 6. Suppose that {@i}ica is a family of positive normal
functionals on M. Then the following conditions are equivalent.
(D The supremum of the support projections of @i equals to 1.
2) {tr Che,r) ; AE A} is separvating for Ms.
3 {tr (ho'9) ; AE A} is separating for LP(M).

The following theorem shows that our notion of finiteness of non-
commutative L?-spaces for 1<p<oo precisely agrees with that of von
Neumann algebras.

THEOREM 4. 7. Let 1<p<co, The L*(M) is finite if and only
if M is a finite von Neumann algebra.

PROOF. Suppose that L?(M) is finite. Let a be an element in
LP(M) .. If tr(WY%a) =0 for any normal finite trace ¢ on M, then Q(a)=
0 by Theorem 4.2, where @ denotes the quotient map. Since @ is faithful
on L?(M), by Lemma 4.5, we have a=0. Thus the set {t#7(hi?"); ¢ is a
normal finite trace on M} is separating for L*(M),. It follows from the
previous lemma that M has a sufficient family of normal finite traces.
Conversely, if M has a sufficient family {@i}ica of normal tracial states,

then {tr(he'?+) ; AEA} is separating for L?(M). by Lemma 4.6. For a&
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L?(M).N L8 we have by Theorem 4. 2,
0=[Q(a)|=sup{tr (he'?a) ; AEAJ0.

Thus a=0, hence the result follows from Lemma 4. 5. O
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