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Boundedness of minimizers
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Abstract. We find conditions guaranteeing that solutions to typical prob-
lems of the calculus of variations are bounded.
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\S 0 Introduction

Consider a variational problem of the following type:

(0. 0) \{_{underthecondiion\cdot u=g}^{\int_{G}f(u,Du)dx=\min_{t}imum}.
’

on \partial G.

Here G, f, g are given; G is an open subset of euclidean space R^{n} ; n, the
dimension, is greater than 1; competing functions u are assumed to have
scalar values. D stands for gradient and dx=dx_{1} dx_{n} , the Lebesgue
n dimensional measure.

We address ourselves to the following question. Suppose a minimizer
exists and g , the boundary datum is bounded. Is such a minimizer bound-
ed ?

An approach to this question is using the Euler equation of problem
(0. 0) and developing maximum principles for weak solutions to nonlinear
partial differential equations of elliptic type –one aim of an earlier paper
[Tal]. This approach requires some smoothness of integrand f and essen-
tially involves the first order derivatives of f.

In the present paper we merely assume a condition on the growth of
integrand f(u, \xi) with respect to the last variable \xi . In its simplest form,
such a condition reads:

f(u, \xi)\geq A(|\xi|)

for every scalar u and any vector \xi in R^{n} . More generally, we assume
(0. 1) f(u, \xi)\geq A(|\xi|)-A(\lambda|u|) .

Here A is some Young function (see section 1(0) and \lambda is some non-
negative constant; |\xi|= (\xi_{1}^{2}+. . +\xi_{n}^{2})^{1/2} . the length of \xi .

Let B be any increasing function such that
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f(u, 0)\leq B(|u|)

for every u- let

(0. 2) B(r)= \sup\{f(u, 0) :-r\leq u\leq r\}

for instance. Here we pay attention to the behavior of f(u, \xi) in a situa-
tion where u grows without the growth of u being balanced by a simulta-
neous growth of \xi : the opposite of a situation where an unbounded minim-
izer and its gradient may possibly be involved.

An answer to the question in hand can be derived from a balance
between the growth of A(r) as rarrow+\infty and the growth of B(r) .
Roughly speaking, we show that solutions to problem (0. 0) are bounded
if A prevails over B. Of course, we must assume the boundary datum is
bounded and the set of competing functions is suitably modeled. Precise
statements are in section 1 below.

Similar results were previously obtained under the additional hypothe-
sis that functions A and B are powers. See [S], [HS], [LU]. We stress
that neither A nor B need be a power for our results to hold –yet our
aim is not a great display of generality, but simply avoiding unnecessary
hypotheses. Related results are in [Sch].

\S 1 Statement of results

List of basic hypotheses:
(i) A Young function A and a nonnegative constant \lambda exist such that
inequality (0. 1) holds for every scalar u and every vector in R^{n} . Recall
that a function is called Young if is defined in [0, \infty [, takes nonnegative
real values and possibly the value +\infty , vanishes at 0 –maybe in a neigh-
borhood of 0 too, but does not vanish identically –is increasing and con-
vex. See [ON], for example.
(ii) g, the boundary datum, is bounded. Moreover, g can be continued
in the whole of R^{n} by a bounded weakly differentiate function –still

denoted g- whose gradient Dg satisfies: \int_{R^{n}}A(|Dg|)dx<\infty .
(iii) Competing functions u have the following properties : u is weakly

differentiate and \int_{G}A(|Du|)dx<\infty ; u fits the boundary data in a general-

ized sense – i . e . the continuation of u-g in the whole of R^{n}- that is zero
outside G, is weakly differentiate. Furthermore, the set of competing
functions is invariant under truncations of function values which do not
affect anything belonging to the range of the boundary datum.
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(iv) m(G) , the n-dimensional measure of region G, is finite.

THEOREM 0. If A(r) grows as rarrow+\infty so fast that

(1. 0) \int^{\infty}[\frac{r}{A(r)}]^{1/(n-1)}dr<\infty

then any competing function is bounded –irrespective of whether it mini-
mizes or not.

THEOREM 1. If A grows faster than B so that

(1. 1) \int^{\infty}\frac{dr}{[A^{-1}(B(r))]^{1-1/n}}=\infty

then any minimizer is bounded.

T HEOREM 2. Assume

(1. 2)
\sup_{t>1}\lim_{rarrow}\inf_{+\infty}\frac{tn\frac{A(rt)}{A(r)}}{tnt}>1

and call the left hand side p. If

(1. 3) \int^{\infty}\frac{dr}{[A^{-1}(B(r))]^{1-k/n}}=\infty

for some k less than p, then any minimizer is bounded.

REMARKS:
(i) A^{-1} denotes the inverse function of A throughout. In the case A is
not strictly increasing, A^{-1} is conveniently defined by:

A^{-1}(r)= \sup\{t\geq 0:A(t)\leq r\}

for every nonnegative r –so that A-1 is continuous to the right and
A^{-1}(A(r))\geq r\geq A(A^{-1}(r)) for every nonnegative r .

B is defined by formula (0. 2). More generally, B could be defined as
the smallest increasing function such that

f(w, 0)-f(u, \xi)+A(|\xi|)-A(\lambda|u|)\leq B(|w|)

whenever |u|\geq|w| and \xi is in R^{n}-

(ii) Theorem 0 follows immediately from [Ta2]. A noticeable Young
function, that satisfies (1. 0) is given by

A(r)=r^{n}(tn_{+}r)^{n-1+a} .



262 G. Talenti

where a is any positive parameter –subscript plus signs stand for positive
part, as usual.
(iii) Consider the special example where A and B are powers, i . e .

A(r)=r^{p} B(r)=r^{q}

If
p=1 0\leq q\leq n/(n-1) ,

then theorem 1 is appropriate. If

p>1 , q\geq 0 , p>nq/(n+q) ,

then theorem 2 can be applied. Thus, in both cases any minimizer, that
belongs to standard Sobolev space W^{1,p}(G) and is bounded on the bound-
ary, is bounded. This result overlaps with [LU, chap. 5, thm 3.2] and [S ,
thm 6.2].
(iv) Condition (1. 2), theorem 2, is fulfilled if A has regular variation
and the index of A is greater than 1. Recall that a real-valued function
A , defined in a neighborhood of +\infty , is said to vary regularly if
\lim_{rarrow\infty}A(rt)/A(r) exists, is finite and \neq 0 for every t from a set of positive
measure; the index of a regularly varying function A is the number p
such that

\lim_{rarrow+\infty}\frac{A(rt)}{A(r)}=t^{p}

for every positive t . A function A has regular variation and index p if,
and only if, A(r) can be represented in the following form:

A(r)= \exp[\int^{r}a(t)\frac{dt}{t}+b(r)]

for every sufficiently large r , where

\lim_{rarrow+\infty}a(r)=p

and b(r) has a finite limit as rarrow+\infty . For more information on this
matter see [BGT].

The most elementary functions of regular variation are powers, of
course. The following are examples of Young functions, that have regu-
lar variation:

A(r)=r^{p}(tn_{+}r)^{q}(p\geq 1, q\geq 1)

... =r^{p}\exp(\sqrt{1+qtn_{+}r})(p\geq 1, q>0)
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=r^{3}[1+(tnr)^{2}]^{-1/2}\exp [ tnr arctan(lnr)]

=[ \frac{2}{3}\sqrt{1+tn_{+}r}+\frac{1}{3}\sqrt{1+4tn_{+}r}]^{-3/2}\cross

\exp[\sqrt{4(tn_{+}r)^{2}+5tn_{+}r+1}-1]-1 .

(v) A tractable condition, that implies (1. 2), is the following:

(1. 4) \lim_{rarrow+}\inf_{\infty}\frac{rA’(r)}{A(r)}>1 .

Indeed

(1. 5) \lim_{rarrow+}\inf_{\infty}\frac{rA’(r)}{A(r)}\leq p,

the left- hand| side of (1. 2) ; for

tn \frac{A(rt)}{A(r)}=\int_{r}^{rt}\frac{A’(s)}{A(s)}ds,

hence

(tnt)^{-1}tn \frac{A(rt)}{A(r)}\geq\inf\{\frac{sA’(s)}{A(s)} : s\geq r\}

provided t>1 and r>0 . Incidentally, notice that a finite-valued Young
function A satisfies: rA’(r)\geq A(r) for every positive r .

The following are examples of Young functions, that satisfy condition
(1. 4), but do not have regular variation:

A(r)=r^{4+s\ln(ln\mapsto 1+(lnr)^{2})}

... =r^{2} \exp[(tn_{+}r)^{2}(\frac{1}{\sqrt{2}}+\frac{1}{2}\sin(tn(tnr)^{2}))]

... =r^{5}\exp[2\sqrt{tn_{+}r} sin (\sqrt{tn_{+}r})] .

(vi) Theorems 0, 1, 2 merge as follows.
As is easy to see, integrals of the form

\int_{1}^{+\infty}s^{-z}a(s)ds

share properties with the classical Dirichlet series

\sum_{k=1}^{+\infty}\frac{a_{k}}{k^{z}} .
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For instance, suppose a(r) is real or complex-valued and locally integra-

ble in [1, \infty[, \int^{\infty}a(s)ds=\infty : let

\rho=\lim_{sarrow+}\sup_{\infty}\frac{tn|\int_{1}^{s}a(t)dt|}{tns}

.

Then \rho is exactly the abscissa of convergence ,\cdot i . e . the integral in ques-
tion converges for any z satisfying Re(z)>\rho , does not converge if
Re(z)<\rho- parallel statements hold in the case \rho=\pm\infty .

Consider

(1. 6) \int_{1}^{\infty}s^{-z}\tilde{A}(s)\frac{ds}{s}

and let

(1. 7)
\rho=\lim_{sarrow+}\sup_{\infty}\frac{tn|\int_{1}^{s}\tilde{A}(t)\frac{dt}{t}|}{tns}

,

the relevant abscissa of convergence. Here \tilde{A} denotes the Young conju-
gate of function A ; recall that \tilde{A} is a Young function too and
(1. 8) \tilde{A}(s)=\sup\{rs-A(r) : 0<r<+\infty\}

for every positive s- see [ON], or [VT] for example. Clearly \rho\geq 1 ,
since \tilde{A} grows not less than linearly.

We itemize in the following way.
First case : \rho is small enough, i . e . \rho<n’ Here n=dimension and n’
stands for n/(n-1)-primes are used consistently throughout.

We have

\int^{\infty}\frac{\tilde{A}(s)}{s^{n’+1}}ds<\infty ,

by the very definition of abscissa of convergence. According to [Ta2],
this property of A ensures that every real-valued function u , that makes
\int_{G}A(|Du|)dx converge and is bounded on the boundary of G, is bounded in
G. Theorem 0 now follows from Lemma 1 below.

LEMMA 1. If a Young function A is such that

\int^{\infty}[\frac{r}{A(r)}]^{q-1}dr<\infty
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for some q greater than 1, then the Young conjugate \tilde{A} satisfifies:
\int^{\infty}\frac{\overline{A}(s)}{s^{q+1}}ds<\infty .

Thus, theorem 0 is a convenient picture of the case in hand. See
[Ta2] for details.
Second case: \rho=+\infty . Here the the recipe is theorem 1: thus theorem 1
fits the case where A(r) grows slowly as r grows –just the condition
causing \rho to be infinite. Of course, theorem 1 is de facto a recipe when
no information on A is available other than convexity.

Note that certainly \rho is infinite if A’- the derivative of A- has a
finite limit at +\infty . Because if such a limit is t , then \tilde{A}(s)=+\infty for
every s greater than t . More generally, \rho must be infinite if

\lim_{rarrow+\infty}\frac{rA’(r)}{A(r)}=1 .

As for the proof, we can suppose A’(r)arrow+\infty as rarrow+\infty ; for simplicity,
we suppose also that A is strictly convex and continuously differentiable.
We have then

A(s)=rA’(r)-A(r) \frac{d\tilde{A}}{ds}(s)=r

by (1.8), the very definition of Young conjugate –here r and are
related via the equation:

s=A’(r) .

We may rewrite this way:

[ \frac{s\frac{d\overline{A}}{ds}(s)}{\tilde{A}(s)}-1][\frac{r\frac{dA}{dr}(r)}{A(r)}-1]=1

,

provided r and s are so large that A(r) and \overline{A}(s) are different from zero.
Thus, if rA’(r)/A(r)arrow t as rarrow+\infty , then sd\tilde{A}(s)/\tilde{A}(s)ds- t’ as sarrow+\infty ,

where

\frac{1}{t}+\frac{1}{t’}=1 .

On the other hand, formula (1. 7) and H\^opital rule give
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\rho=\lim_{sarrow+\infty}\frac{s}{A(s)}\frac{d\tilde{A}}{ds}(s) ,

provided the limit exists. The conclusion follows.
Apropos examples are the following:

Third case: \rho is finite –but not too small, i . e . n’\leq\rho<\infty . Now our
strategy results in theorem 2. Lemma 1 above enables us to test for finite
\rho –thus theorem 2 covers cases where suitable information is available
about the growth of A(r) as r grows. As a matter of fact, hypothesis
(1. 2) ensures per se that \rho is finite: we have indeed
(1. 9) \rho\leq p^{r}

by virtue of lemma 2 below. Notice that hypothesis (1. 2) yields case
one, i . e . \rho<n’ . if p is too large, i . e . p>n- thus theorem 2 is significant
only if p\leq n .

LEMMA 2. Assume condition (1. 2) is in force and let q be any num-
ber such that 1<q<p . Then (i) a positive constant exists such that

A(s)\geq Const. A(r)(s/r)^{q}

if s\geq r and r is large enough; (ii) a large constant exists such that
\tilde{A}(s)\leq Const.\tilde{A}(r)(s/r)^{q}

if s\geq r and r is large enough.
Let us sketch a proof of lemma 2. By inequality (1. 2), a number t-

greater than 1 –and a positive R exist such that A(rt)\geq t^{q}A(r) for every
r larger than R . Suppose r and s are such that s\geq r\geq R . Then s\geq rt^{k} .
A(rt^{k})\geq t^{qk}A(r) and t^{k}>t^{-1}(s/r) if k is the integer part of tn(s/r)/tnt .
Hence A(s)\geq t^{-q}(s/r)^{q}A(r) . Assertion (i) is demonstrated. We claim:

(iii)
\inf_{t>1}\lim_{sarrow}\sup_{+\infty}\frac{tn\frac{\tilde{A}(st)}{A(s)}}{tnt}\leq p’
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A proof of (iii) parallels that of [BGT, thm 1. 8. 10] and is omitted here.
Property (ii) can be derived from (iii) as property (i) was derived from
(1. 2).

\S 2 Proofs

The proofs of theorems 1 and 2 start in a standard way. Let u be a
minimizer. We have

(2. 0) \int_{G}f ( u, Du) dx \leq\int_{G}f(v, Dv)dx

for any competing function v . By virtue of hypotheses, functions
defined by:

(2. 1) v(x)=\{

u(x) where- t<u(x)<t
t where u(x)\geq t

-t where u(x)\leq-t

are in competition if interval ]- t , t [ includes the range of the boundary
datum. We deduce

(2. 2) \int_{\{x\in G}|u(x)|>t\}f ( u, Du) dx \leq\int_{\{x\in G}|u(x)|>t\}f(tsgn(u), 0)dx,

a fortiori

(2. 3) \int_{\{x\in G}|u(x)|>t\}[A(|Du|)-A(\lambda|u|)]dx\leq\mu(t)B(t)

for any t such that

(2. 4) t> \sup|g| ,

the 1. u . b . of the boundary datum. Here A and B are related to inte-
grand f by (0. 1) and (0. 2) respectively;

(2. 5) \mu(t)=m\{x\in G:|u(x)|>t\} ,

the distribution of u . In the above derivation we used the chain rule in a
version for weakly differentiable functions; see [A, lemma 8.31].

Theorems 1 and 2 are nothing but decoding information comprised in
inequalities (2. 3) and (2. 4). We commence by putting these inequalities
in a more convenient form.

Let

(2. 6) C_{n}=\pi^{n/2}/\lceil(1+n/2) ,

the measure of the unit ball in R^{n}j
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(2. 7) \chi_{n}=nC_{n}^{1/n} .

the isoperimetric constant in R^{n}\wedge Lemma 3 below tells us that

(2. 8) \int_{\{x\in G}|u(x)|>t\}[A(|Du|)-nA(\chi_{n}\frac{|u|-t}{n\mu(t)^{1’ n}})]dx\geq 0

if t satisfies inequality (2.4) but is less than the essential supremum of
|u| – so that the level set \{x\in G:|u(x)|>t\} does not lean on the boundary
of G and has a positive measure. On the other hand, the convexity of A
gives

(2. 9) A( \lambda|u|)\leq\frac{n\lambda}{\mathcal{X}n}\mu(t)^{1/n}A(\chi_{n}\frac{|u|-t}{n\mu(t)^{1n}},)+(1-\frac{n\lambda}{Xn}\mu(t)^{1/n})\cross

A( \frac{\lambda t}{1-\frac{n\lambda}{\chi_{n}}\mu(t)^{1/n}})

provided |u| is larger than t and t is so large that

(2. 10) \lambda^{n}\mu(t)<C_{n}

but is smaller than ess sup |u| . Combining (2.3), (2.4), (2.8), (2.9) and
(2. 10) gives

(2. 11)
\int_{\{x\in G}|u(x)|>t\}A(|Du|)dx\leq\mu(t)\{\frac{B(t)}{1-\frac{n\lambda}{\chi_{n}}\mu(t)^{1/n}}+A(\frac{\lambda t}{1-\frac{n\lambda}{\chi_{n}}\mu(t)^{1/n}})\}

for any t such that

(2. 12) t>L .

Here L stands for the greatest lower bound of levels satisfying (2. 4) and
(2. 10). Inequalities (2. 11) and (2. 12) are the grounds for the next sec-
tions.

LEMMA 3. Let w be a real-valued weakly differentiable function,
defifined in the whole of euclidean n-dimensional space R^{n} Assume sprt w,

the support of w, has fifinite measure V and Dwy the gradient of w, is such
that A(|Dw|) is integrable over R^{n} . Then the following inequality holds:

\int_{R^{n}}A(\frac{\chi_{n}}{n}V^{-1n}|w|)dx\leq\frac{1}{n}\int_{R^{n}}A(|Dw|)dx.

Here \chi_{n} is the isoperimetric constant of R^{n} and A is any Young function.
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PROOF. Let w^{*} be the decreasing rearrangement of w is the sense of
Hardy & Littlewood, i . e . the function which is defined in [0, \infty [, is non-
negative, decreasing and equidistributed with |w| . See [K] for example.
Clarly sprt w^{*}\subseteq[0, V] , hence

w^{*}(s)=- \int_{s}^{V}\frac{dw^{*}}{dt}(t)dt.

Then

(V^{1/n}-s^{1/n})A(, \frac{\chi_{n}/n}{V^{1n}-s^{1/n}}w^{*}(s))\leq

\frac{1}{n}\int_{s}^{V}A(-\chi_{n}t^{1-1/n}\frac{dw^{*}}{dt}(t))t^{-1+1/n}dt

by Jensen inequality for convex functions. The convexity of A implies.
also that the left-hand side of the last inequality is greater than, or
equal to

V^{1/n}A( \frac{\chi_{n}}{n}V^{-1/n}w^{*}(s)) .

Here 0<s<V. Thus

\int_{0}^{V}(V/s)^{1/n}A(\frac{\chi_{n}}{n}V^{-1/n}w^{*}(s))ds\leq\frac{1}{n-1}\int_{0}^{V}A(-\chi_{n}s^{1-1/n}\frac{dw^{*}}{ds}(s))ds.

Chebyshev inequality [M, \S 2. 5, thm 8] tells us that

V \int_{0}^{V}a(s)b(s)ds\geq\int_{0}^{V}a(s)ds\int_{0}^{V}b(s)

if a & b are (nonnegative and) both increasing or both decreasing. Con-
sequently,

\int_{0}^{V}(V/s)^{1/n}A(\frac{\chi_{n}}{n}V^{-1/n}w^{*}(s))ds\geq\frac{n}{n-1}\int_{0}^{V}A(\frac{\chi_{n}}{n}V^{-1/n}w^{*}(s))ds.

We have shown that

\int_{0}^{V}A(\frac{\chi_{n}}{n}V^{-1/n}w^{*}(s))ds\leq\frac{1}{n}\int_{0}^{V}A(-\chi_{n}s^{1-1/n}\frac{dw^{*}}{ds}(s))ds .

Now

\int_{0}^{V}A(\frac{\chi_{n}}{n}V^{-1/n}w^{*}(s))ds=\int_{R^{n}}A(\frac{\chi_{n}}{n}V^{-1/n}|w|)dx,

since |w| and w^{*} are equidistributed; and
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\int_{0}^{V}A(-\chi_{n}s^{1-1/n}\frac{dw^{*}}{ds}(s))ds=\int_{R^{n}}A(|Dw^{\star}|)dx,

where w^{\star} is the symmetric rearrangement of w . Recall that
w^{\star}(x)=w^{*}(C_{n}|x|^{n})

and C_{n}=(\chi_{n}/n)^{n} the measure of the unit ball in R^{n}- P\‘olya &Szeg\"o proof
ciple –or a generalization of it, see [BZ] for instance –yields

\int_{R^{n}}A(|Dw|)dx\geq\int_{R^{n}}A(|Dw^{\star}|)dx.

The proof is complete.

\S 3 Proof of theorem 1, continued

We claim

(3. 0)
\int_{\{x\in G}|u(x)|>t\}|Du|dx\leq\frac{\mu(t)}{1-\frac{n\lambda}{\chi_{n}}\mu(t)^{1/n}}[A^{-1}(B(t))+\lambda t]

for any t satisfying (2. 12). In fact, inequality (3. 0) is trivially true if
t\geq ess sup |u| . If ess sup |u|>t>L , (2. 11) and Jensen inequality for con-
vex functions give

A( \frac{1}{\mu(t)}\int_{\{x\in G}|u(x)|>t\}|Du|dx)\leq\frac{B(t)}{1-\frac{n\lambda}{Xn}\mu(t)^{1/n}}+A(\frac{\lambda t}{1-\frac{n\lambda}{Xn}\mu(t)^{1/n}}) .

Now A^{-1} . the inverse function of A , is concave and takes a nonnegative
value at 0: thus A^{-1}(kr)\leq kA^{-1}(r) whenever k\geq 1 and A^{-1} is subad-
ditive - i . e . A^{-1}(r+s)\leq A^{-1}(r)+A^{-1}(s) . Hence (3. 0) follows.

Notice that

(3. 1) \int_{\{x\in G|u(x)|>t\}}|Du|dx\geq\chi_{n}\int_{t}^{\infty}\mu(t’)^{1-1/n}dt’

for any t satisfying (2. 4). Inequality (3. 1) is an easy consequence of
coarea formula [FR] and isoperimetric inequality [DG], as well as a spe-
cial case of lemma 4, section 4.

Inequalities (3. 0) and (3. 1) yield

(3. 2)
\chi_{n}\int_{t}^{\infty}\mu(t’)^{1-1/n}dt’\leq\frac{\mu(t)}{1-\frac{n\lambda}{\chi_{n}}\mu(t)^{1/n}}[A^{-1}(B(t))+\lambda t]
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for any t satisfying (2. 12).

Inequality (3. 2) can be rewritten in this way:

(3. 3) \frac{\chi_{n}}{n}[\frac{1-\frac{n\lambda}{\chi_{n}}\mu(t)^{1/n}}{A^{-1}(B(t))+\lambda t}]^{1-1/n}\leq-\frac{d}{dt}[\chi_{n}\int_{t}^{\infty}\mu(t’)^{1-1/n}dt’]^{1/n}

Integrating both sides of (3. 3) between L and ess sup |u| gives

(3. 4) \frac{\mathcal{X}n}{n}\int_{L}^{ess\sup|u|}[\frac{1-\frac{n\lambda}{\chi_{n}}\mu(t)^{1/n}}{A^{-1}(B)t))+\lambda t}]^{1-1/n}dt\leq[\chi_{n}\int_{L}^{\infty}\mu(t)^{1-1/n}dt]^{1/n}

Inequalities (3. 2) and (3. 4) yield

(3. 5) [ \frac{\chi_{n}}{n}-\lambda\mu(L)^{1/n}]\int_{L}^{ess\sup|u|}\frac{dt}{[A^{-1}(B(t))+\lambda t]^{1-1/n}}\leq

m(G)^{1/n}[A^{-1}(B(L)+\lambda L]^{1/n} .

Hypothesis (1. 1) and lemma Al tell us that

(3. 6) \int_{L}^{\infty}\frac{dt}{[A^{-1}(B(t))+\lambda t]^{1-1/n}}=\infty .

Clearly, (3. 5) and (3. 6) imply

(3. 7) ess sup |u|<\infty ,

Q. E. D.
Note incidentally that L= \sup|g| in the case \lambda=0 . Because condition

(2. 10) is empty in such a case. Thus, if \lambda=0 inequality (3. 5) reads

\int_{\sup|g|}^{ess\sup|u|}\frac{dt}{[A^{-1}(B(t))]^{1-1/n}}\leq[\frac{1}{C_{n}}m(G)A^{-1}(B(\sup|g|))]^{1/n}-.

an actual a priori bound for the essential supremum of |u| .

\S 4 Proof of theorem 2, continued

So far the only property of A , that has played a role, is convexity.
Now we assume an extra hypothesis: for the time being, let us suppose \rho

is finite –as in section 1, remark (vi), \rho stands for the abscissa of con-
vergence of integral (1. 6).

Let E_{k} be the Young function whose conjugate obeys:

(4. Oa) \overline{E}_{k}(r)=k’\int_{r}^{\infty}\tilde{A}(t)(\frac{r}{t})^{k’}\frac{dt}{t}
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for every nonnegative r . Here k’=k/(k-1) : k-a parameter to be
specifified later –is larger than 1 but so small that k’>\rho , i . e .

(4. 1) 1<k<\rho’ .

The following properties hold:
(i) \overline{E}_{k} is nonnegative, increasing, convex and vanishes at 0 –thus is
actually a Young function.
(ii) \overline{E}_{k}(r)\geq\tilde{A}(kr) – hence E_{k}(r)\leq A(r/k) .
(iii) \tilde{E}_{k}(r)arrow\tilde{A}(r) as karrow*1 .
(iv) \overline{E}_{h}(r)\geq\overline{E}_{k}(r) if 1<h<k : more precisely,

\overline{E}_{k}(r)-\tilde{E}_{h}(r)\geq\frac{k-h}{h(k-1)}[\overline{E}_{h}(kr)-\overline{E}_{h}(r)] .

Note the alternative formulas:

(4. Ob) \overline{E}_{k}(r)=\int_{1}^{\infty}\tilde{A}(rt)\frac{k’}{t^{1+k’}}dt

(4. oc) = \int_{0}^{1}\tilde{A}(rt^{-1+1/k})dt,

which are easily derived from (4. Oa) via changes of variables. Property
(i) follows at once from (4. oa) or (4. Oc). Property (ii) follows from
(4. Oa) and Jensen inequality for convex functions. Formula \backslash \prime 4 . Oa) tells
us that \overline{E}_{k} is the convolution of \overline{A} against a kernel –the set of positive
real numbers and dt/t being the relevant topological group and Haar
measure. Such a kernel obeys

J_{k}(r)\geq 0 , \int_{0}^{\infty}J_{k}(r)\frac{dr}{r}=1

for every k greater than 1, and

( \int_{0}^{1/8}+\int_{8}^{\infty})J_{k}(r)\frac{dr}{r}arrow 0 as karrow 1

whenever \delta>1 – in other words, we have an approximation of Dirac
mass. Property (iii) follows. By the way, the convolution in hand is
nothing but the inverse of the differential operator 1-(r/k’)d/dr coupled
with an appropriate boundary condition. In other words, \tilde{E}_{k} is character-
ized by :

( \frac{r}{k’}\frac{d}{dr}-1)\tilde{E}_{k}(r)+\tilde{A}(r)=0 ,

r^{-k’}\overline{E}_{k}(r)arrow 0 as rarrow\infty .
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Formulas (4. 0) yield

\overline{E}_{k}(r)-\overline{E}_{h}(r)=\frac{k-h}{h(k-1)}[k’\int_{r}^{\infty}\tilde{E}_{h}(t)(\frac{r}{t})^{k’}\frac{dt}{t}-\overline{E}_{h}(r)] ,

an equation reflecting algebraic properties of the family of operators k
arrow 1-(r/k’)d/dr and their inverses. Property (iv) follows.

We claim that

(4. 2) E_{k}( \chi_{n}\mu(t)^{-1/k}\int_{t}^{\infty}\mu(s)^{1/k-1/n}ds)\leq\frac{1}{\mu(t)}\int_{\{x\in G}|u(x)|>t\}A(|Du|)dx

if t satisfies inequality (2. 4) but is less than ess sup |u| . Indeed, Young’s
inequality – ab\leq A(a)+\tilde{A}(b)- gives

r( \chi_{n}\mu(t)^{-1k}\int_{t}^{\infty}\mu(s)^{1/k-1/n}ds)\leq

\frac{1}{\mu(t)}\int_{t}^{\infty}\tilde{A}(r\frac{\mu(t)^{1-1/k}}{\mu(s)^{1-1/k}})[-\mu’(s)]ds+

\frac{1}{\mu(t)}\int_{t}^{\infty}A(\chi_{n}\frac{\mu(s)^{1-1/n}}{-\mu’(s)})[-\mu’(s)]ds.

The middle term above

\leq\frac{1}{\mu(t)}\int_{t}^{\infty}\tilde{A}(r\frac{\mu(t)^{1-1/k}}{\mu(s)^{1-1/k}})[-d\mu(s)] ,

since distribution function \mu decreases monotonically. The last quantity
=\overline{E}_{k}(r) ,

as formulas (4. 0) show. Here r is any positive number. Therefore

E_{k}( \chi_{n}\mu(t)^{-1/k}\int_{t}^{\infty}\mu(s)^{1/k-1/n}ds)\leq\frac{1}{\mu(t)}\int_{t}^{\infty}A(\chi_{n}\frac{\mu(s)^{1-1/n}}{-\mu’(s)})[-\mu’(s)]ds,

by the very definition of Young conjugate. Inequality (4.2) follows via
lemma 4 below.

Inequalities (2. 11) and (4. 2) give

(4. 3)
E_{k}( \chi_{n}\mu(t)^{-1/k}\int_{t}^{\infty}\mu(s)^{1/k-1/n}ds)\leq\frac{B(t)}{1-\frac{n\mu}{\chi_{n}}\mu(t)^{1/n}}+

A( \frac{\lambda t}{1-\frac{n\lambda}{\chi_{n}}\mu(t)^{1/n}})

for any t satisfying inequality (2. 12).
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Denote the right-hand side of (4. 3) by R(t) . Then we have

(4. 4) \chi_{n}\mu(t)^{-1/k}\int_{t}^{\infty}\mu(s)^{1/k-1/n}ds\leq E_{k}^{-1}(R(t)) .

Consequently,

(4. 5) [E_{k}^{-1}(R(t))]^{-1+k/n} \leq-\frac{n}{k\chi_{n}}\frac{d}{dt}[\chi_{n}\int_{t}^{\infty}\mu(s)^{1/k-1/n}ds]^{k/n}

provided (2. 12) holds and
k\leq n .

Integrating both sides of (4. 5), then estimating the resulting right-
hand side via (4. 4) gives

(4. 7) \int_{L}^{ess\sup|y|}\frac{dt}{[E_{k}^{-1}(R(t))]^{1-k/n}}\leq\frac{n}{k\chi_{n}}m(G)^{1/n}[E_{k}^{-1}(R(L))]^{k/n} .

The right-hand side of ( (4. 7) is a finite quantity for every k satisfy-
ing inequality (4. 1) – recall that L was defined as the g. 1. b . of levels t

satisfying inequalities (2. 4) and (2. 10). Then (4. 7) implies

(4. 8) ess sup |u|<\infty ,

the goal, if we are able to show that

(4. 9) \int^{\infty}\frac{dt}{[E_{k}^{-1}(R(t))]^{1-k/n}}=\infty

for some k satisfying (4. 1) and (4. 6).

Actually, (4. 9) is a consequence of (1. 3). Note however that prop-
erties (ii) (iii) (iv) of E_{k} go in the wrong direction: this is the reason
why hypothesis (1. 2) comes in. Call therefore (1. 2) into play and let

(4. 10) 1<k<p .

Lemma 2, section 1, tells us that abscissa of convergence \rho\leq p’ Then
(4. 1) is true. As already pointed out in remark (vi), section 1, we can
assume p\leq n without loss of generality. Then (4. 6) is true too. Impor-
tantly, lemma 2 gives also a reverse of property (ii), namely:

(4. 11) \tilde{E}_{k}(r)=O( \tilde{A}(r)) as rarrow\infty .

Consequently,

(4. 12) E_{k}^{-1}(r)=O( A^{-1}(r)) as rarrow\infty .
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It is now clear that (1. 3) and (4. 12) yield (4. 9). The derivation is
immediate in the case \lambda is zero – when R(t) is the same as B(t) –

otherwise involves lemma Al – details are as in section 3.
The proof is complete.

LEMMA 4. Let w be a real-valued weakly differentiable function,
defifined in R^{n} Assume the support of w has a fifinite measure and A(|Du|)
is integrable over R^{n} . Then

\int_{R^{n}}A(|Dw|)dx\geq\int_{0}^{\infty}A(\chi_{n}\frac{\mu(t)^{1-1/n}}{-\mu’(t)})(-\mu’(t))dt.

Here \mu is the distribution function of w,\cdot\chi_{n} is the isoperimetric constant of
R^{n} ; A is any Young function.

PROOF. Let t be positive. Jensen inequality for convex functions
yields

\frac{1}{h}\int_{\{x\in R^{n}}t<|w(x)|\leq t+h\}A(|Dw|)dx\geq

A( \frac{\int_{\{x\in R^{n}t<|w(x)|\leq t+h\}}|Dw|dx}{\mu(t)-\mu(t+h)})\frac{\mu(t)-\mu(t+h)}{h}

Fleming-Rishel coarea formula [FR] tells us that

\int_{\{x\in R^{n}}t<|w(x)|\leq t+h\}|Dw|dx

equals

\int_{t}^{t+h}perimeter of \{x\in R^{n} : |w(x)|>t’\}dt’

therefore is greater than (or equal to)

\chi_{n}\int_{t}^{t+h}\mu(t’)^{1-1/n}dt’ .

thanks to the isoperimetric inequality [DG]. In the above formulas h is
any positive parameter.

Letting h tend to zero gives

- \frac{d}{dt}\int_{\{x\in R^{n}}|w(x)|>t\}A(|Dw|)dx\geq A(\chi_{n}\frac{\mu(t)^{1-1/n}}{-\mu’(t)})(-\mu’(t))

for almost every positive t. Indeed the involved functions are decreasing
-hence almost everywhere differentiable.
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In particular, we have shown that – \mu’(t)>0 for almost every posi-
tive t , at least in the case A grows more than linearly – i . e . A(r)/r
arrow\infty for rarrow\infty .

Recall that \varphi(0)-\varphi(\infty)\geq-\int_{0}^{\infty}\varphi’(t)dt , if \varphi is a decreasing function.
Thus, integrating both sides of the above inequality concludes the proof.

APPENDIX

LEMMA Al. Let w be an increasing strictly positive function of a real
variable t, defifined in a neighborhood of +\infty . Let a be nonnegative and
large enough; then

\int_{a}^{\infty}\frac{dt}{w(t)+t}\geq tn(1+\frac{\int_{a}^{\infty}\frac{dt}{w(t)}}{1+\frac{a}{w(a)}})

In particular, if \int^{\infty}\frac{dt}{w(t)} diverges, then \int^{\infty}\frac{dt}{w(t)+t} diverges too.

PROOF. Replace w by 1/w and use lemma A2 below.

LEMMA A2. Assume w is positive and decreasing in [a, b [: assume a
\geq 0 . Then

(A 1) \int_{a}^{b}\frac{w(t)}{1+tw(t)}dt\geq tn(1+\frac{\int_{a}^{b}w(t)dt}{1+aw(a)})

Inequality (Al) is sharp : equality holds in (Al) if w is constant near
point a and vanishes elsewhere.

PROOF. The proof consists in showing that the variational problem:

(A 2)

\int_{a}^{b}\frac{w(t)}{1+tw(t)}dt=minimum ,

under the conditions:
w is positive and decreasing,
\int_{a}^{b}w(t)dt=A ,

w(t)\leq B for a\leq t<b

has the following solution:

(A 1) w(t)=\{
B if a<t<a+A/B
0 otherwise.
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Here A and B are positive constants, such that B\geq A/(b-a) .
Let us discretize this problem, i . e . restrict the competing functions to

run in a class of piecewise constant functions. Thus the problem becomes
to render

(A 4) \sum_{i=1}^{N}\int_{t_{\iota-1}}^{t_{i}}\frac{w_{i}}{1+tw_{i}}dt

a minimum under the following constraints:
(t_{1}-h)w_{1}+(t_{2}-t_{1})w_{2}+\ldots+(t_{N}-t_{N-1})w_{N}=A ,(A 5)
B\geq w_{1}\geq w_{2}\geq\ldots\geq w_{N}\geq 0 .

Here w_{1} , w_{2} , \ldots w_{N} are real –the competing variables; knots h , t_{1} , \ldots
t_{N}

are given by

t_{i}=a+i\Delta t,

mesh size \Delta t and number N are given by

\Delta t=A/(hB) ,

N=integer part of (b-a)/\Delta t,

h is a large integer –the discretization parameter. Note that a=k , b=
t_{N}+O(1/h) as harrow+\infty and

t_{h} , knot no. h, =a+A/B.

Two remarks are basic at this stage. First, (A4) is a concave func-
tion of w_{1} , w_{2} , \ldots . w_{N} . Indeed, its second order derivatives are

-2 \delta_{ij}\int_{t_{\iota-1}}^{t_{i}}t(1+tw_{i})^{-3}dt.

Second, the set of points (w_{1}, w_{2}, \ldots.w_{N}) satisfying (A5) is a simplex.
Thus the minimum in question is attained at one of the vertices.

Note that the vertices of (A5) are just the (N-k+1) points in R^{N} whose
coordinates are displayed in the following tables:

i=h, \ldots N.

The values of (A2) at the vertices above are
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tn(1+ \frac{A}{1+aA/(t_{i}-h)}) (i=h, \ldots N) ,

an increasing sequence.
Then the sought after minimum and the sought after minimizer respec-

tively are

tn(1+ \frac{A}{1+aB})

and the point whose components obey

w_{1}=\ldots=w_{h}=B, w_{h+1}=\ldots=w_{N}=0 .

The lemma follows, owing to an obvious approximation argument.
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