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Introduction

A Riemannian manifold CM,g) is called an SC_{2\pi}-manifold, and its
Riemannian metric g an SC_{2\pi}-metric on M, if all of its (maximal)

geodesies are simply closed and have the same length 2\pi . For example,
the standard 2-sphere (S^{2}, g_{0}) is an SC_{2\pi}-manifold. Moreover it is known
that there are many SC_{2\pi} metrics on S^{2} which are essentially different from
each other (see [1], Chapter 4, C , and [2] for details). Among SC_{2\pi} -

metrics on S^{2} , L. W. Green characterized the standard 2-sphere (S^{2}, g_{0}) in
terms of the Blaschke condition (see [1] p. 143). It seems interesting to
study another sufficient condition for an SC_{2\pi} manifold (S^{2}g) to be
isometric to (S^{2}, g_{0}) .

An SC_{2\pi} metric g on S^{2} has the property that every geodesic \gamma divides
S^{2} into two domains. More precisely, there are two domains (connected

open subsets) H_{1} and H_{2} in S^{2} which satisfy S^{2}=\gamma\cup H_{1}\cup H_{2} (disjoint

union) and \gamma=\partial H_{1}=\partial H_{2} , where \gamma should be confounded with a subset of
S^{2} . Either of the two domains is called a hemisphere with respect to g .
In the case of the standard metric g_{0} all of its hemispheres have the same
area 2\pi . This suggests the following definition:

An SC_{2\pi} manifold (S^{2}, g) is a (geodesically) bisectable manifold if
each geodesic divides S^{2} into two hemispheres having the same area. The
SC_{2\pi} metric g on S^{2} is then called a (geodesically) bisectable metric.

Here, we are led to the following conjecture:
If an SC_{2\pi} metric g on S^{2} satisfies the bisectability condition, then

(S^{2}, g) is isometric to (S^{2}, g_{0}) .
The main purpose of this paper is to give a partial affirmative answer

to this conjecture.
Let us consider a one-parameter deformation \{g_{t}\} of the standard met-

ric g_{0} on S^{2} (such that g_{t}|_{t=0}=g_{0}). Then we define a symmetric 2-form h

on S^{2} by h= \frac{\partial}{\partial t}g_{t}|_{t=0} , which is called the linearization of \{g_{t}\} (at t=0).
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The one-parameter deformation \{g_{t}\} is said to be a one-parameter bisecta-
ble deformation of g_{0} on S^{2} if each g_{t} is a bisectable metric. Furthermore
a symmetric 2-form h on S^{2} is said to be an infinitesimal bisectable defor-
ma in of g_{0} on S^{2} if it is the linearization of a certain one-parameter
bisectable deformation of g_{0} on S^{2} .

Here, our main results may be stated as follows:

THEOREM A. Any infinitesimal bisectable deformation h of g_{0} on S^{2}

is trivial, that is, there exists a vector field X on S^{2} such that h=\mathscr{L}_{X}g_{0},

\mathscr{L}_{X} being the Lie derivation with respect to X.

THEOREM B. Let \{g_{t}\}_{t\in I} be a one-parameter bisectable deformation of
g_{0} on S^{2} . where I is an open interval containing 0. If g_{t} depends real
analytically on the parameter t, then there exists a one-parameter family
\{\Psi_{t}\}_{t\in I} of transformations of S^{2}- defined on the same interval I, such that
\Psi_{0}=identity and g_{t}=\Psi_{t}^{*}g_{0} .

In \S 1 we study even functions and hemispherically even functions on
(S^{2}. g_{0}) . As usual an even function means a function on (S^{2}, g_{0}) which is
invariant under the antipodal transformation of (S^{2}g_{0}) . A hemispherical-
ly even function is defined as a function f on (S^{2}, g_{0}) which satisfies

\int_{H_{1}}fdA=\int_{H_{2}}fdA ,

where (H_{1}, H_{2}) is any pair of standard hemispheres determined by a
geodesic or a great circle of (S^{2}\backslash g_{0}) , and dA is the standard area element
of (S^{2}. g_{0}) . We show there the following

THEOREM C. A function on (S^{2}, g_{0}) is an even function if and only
if it is a hemispherically even function.

In \S 2 we show a necessary and sufficient condition for an SC_{2\pi}-metric
on S^{2} to be bisectable. In \S 3 we prove Theorem A by using a corollary
to Theorem C. In \S 4 we prove Theorem B, following the argument due
to N. Tanaka in [3].

Throughout this paper, we assume the differentiability of class C^{\infty}

unless otherwise stated.
The author expresses his hearty gratitude to Prof. N. Tanaka and Dr.

K. Kiyohara for their valuable advice.
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\S 1. Hemispherically even functions

In this section every function on (S^{2}, g_{0}) is understood to be continu-
ous. As usual a function f on (S^{2}, g_{0})is called an odd function if \tau^{*}f=-f,

where \tau is the antipodal transformation of (S^{2}. g_{0}) . We note that every
function is uniquely written as a sum of an even function and an odd func-
tion. To prove Theorem C, it is therefore sufficient to show the following

THEOREM C’\tau Let f be a hemispherically even function on (S^{2}. g_{0}) .
If f is an odd function, then f vanishes identically.

PROOF. We utilize the canonical polar coordinate (\theta, \varphi) on (S^{2}, g_{0})

which is defined for 0\leq\theta\leq\pi , 0\leq\varphi<2\pi . In this coordinate the north pole
N corresponds to \theta=0 . We denote by \gamma_{\lambda} the meridian great circle which
is represented by \varphi=\lambda , \pi+\lambda . If 0<\lambda<\pi , it can be immediately seen
that \gamma_{0} and \gamma_{\lambda} split (S^{2}, g_{0}) into four pieces of domains D(0<\varphi<\lambda) ,
D(\lambda<\varphi<\pi) , D(\pi<\varphi<\pi+\lambda) and D(\pi+\lambda<\varphi<2\pi) , where D(a<\varphi<b)

means the domain represented by 0<\theta<\pi , a<\varphi<b . Since f is a hemi-
spherically even function on (S^{2}, g_{0}) , we have

\int_{D(0<\varphi<\lambda)}fdA=\int_{D(\pi<\varphi<\pi+\lambda)}fdA for \lambda\in ] 0, \pi [ .

This can be written in the form

\int_{0}^{\lambda}\int_{0}^{\pi}f(\theta, \varphi)\sin\theta d\theta d\varphi=\int_{0}^{\pi+\lambda}\int_{0}^{\pi}f(\theta, \varphi)\sin\theta d\theta d\varphi for \lambda\in ] 0 , \pi [ .

Since f is an odd function on (S^{2}, g_{0}) , it follows that

\int_{0}^{\lambda}\int_{0}^{\pi}f(\theta, \varphi)\sin\theta d\theta d\varphi=0 for \lambda\in ]0, \pi[ .

Differentiating this equation with respect to \lambda , we find that

\int_{0}^{\pi}f(\theta, \lambda)\sin\theta d\theta=0 for \lambda\in ]0, \pi[ .

This implies that

\int_{0}^{\pi}f(c(s))\sin sds=0

for any great hemicircle c : [0, \pi]– (S^{2}, g_{0}) parametrized by arc-length
s.

Now, we take an arbitrary point q of (S2. g_{0}) , and show that
f(q)=0. Clearly we may assume that q is the north pole N. Let
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c : [0, \pi]– (S^{2}, g_{0}) be a great hemicircle parametrized by arc-length s

which satisfies the following conditions:
1) It issues from the point represented by (\pi/2,0) in the canonical

polar coordinate.
2) It does not pass through the north pole N.
3) The upper standard hemisphere contains c(]0, \pi[) .

Let S be the antipodal point of N, that is, the south pole. Let r be the
angle between the NS-axis and the plane which contains the great hemicir-
cle c . Then, in the canonical polar coordinate, c can be represented in
the form

c(s)=(\theta(s), \varphi(s))

and (\theta, \varphi)=(\theta(s), \varphi(s)) is related to s by the following rule:

\{\begin{array}{l}sin\theta cos\varphi=cosssin\theta sin\varphi=sinssinrcos\theta =sinscosr\end{array}

Recalling the argument above, we have

\int_{0}^{\pi}f(\theta(s), \varphi(s))\sin sds=0 .

Performing the change of the variables, sarrow\theta , in this integral equation,
we get

\int_{r}^{\frac{\pi}{2}}\psi(\theta, \varphi(\theta))+f(\theta, \pi-\varphi(\theta))\}\frac{\sin\theta\cos\theta}{\sqrt{\sin^{2}\theta-\sin^{2}r}}d\theta=0

Since this equation is invariant under the S^{1} -action of revolution whose
rotation axis is the NS-axis, it follows that

\int_{r}^{\frac{\pi}{2}}\{f(\theta, \varphi(\theta)+u)+f(\theta, \pi-\varphi(\theta)+u)\}\frac{\sin\theta\cos\theta}{\sqrt{\sin^{2}\theta-\sin^{2}r}}d\theta=0 .

for any u\in[0,2\pi [. Thus this gives

\int_{0}^{2\pi}\int_{r}^{\frac{\pi}{2}}\psi(\theta, \varphi(\theta)+u)+f(\theta, \pi-\varphi(\theta)+u)\}\frac{\sin\theta\cos\theta}{\sqrt{\sin^{2}\theta-\sin^{2}r}}d\theta du=0 .

Putting F( \theta)=\int_{0}^{2\pi}f(\theta, u) du, we see from the Fubini theorem that

\int_{r}^{\frac{\pi}{2}}\frac{F(\theta)\sin\theta\cos\theta}{\sqrt{\sin^{2}\theta-\sin^{2}r}}d\theta=0



On the bisectable metrics on the 2-sphere S^{2} 253

Here we remark that this equation holds for any r\in ] 0 , \pi/2 [, and F(\theta) is
independent of r. Thus by the same way as in the proof of Theorem 4. 13
in [1], pp. 102-104, we obtain

F( \theta)=\int_{0}^{2\pi}f(\theta, u)du=0 for any \theta\in ] 0, \frac{\pi}{2}[ .

Letting \theta tend to 0, we get

f(N)=0 . Q. E. D.

A function f on (S^{2}, g_{0}) is called a hemispherically zero function if it
satisfies

\int_{H}fdA=0

for any standard hemisphere H of (S^{2}, g_{0}) .

COROLLARY. Every hemispherically zero function on (S^{2}. g_{0}) is an
even function on (S^{2}. g_{0}) .

REMARK. R. Michel has obtained the following result which is equiv-
alent to this corollary:

THEOREM (R. Michel [4]). Let \omega be a 1-form on the 2-dimensi0nal
standard real projective space (RP^{2}.\hat{g}_{o}) . If the integral of \omega on any
closed geodesic of (RP^{2}.\hat{g}_{o}) vanishes, then \omega is exact.

In fact, it can be easily seen that a function on (S^{2}, g_{0}) is an odd func-
tion if and only if there exists a 1-form \omega on (RP^{2}.\hat{g}_{o}) such that

fdA=d(p^{*}\omega)

where p is the canonical projection of (S^{2}, g_{0}) onto (RP^{2},\hat{g}_{o}) .
Furthermore we have

\int_{H}fdA=\int_{H}d(p^{*}\omega)=\int_{\partial H}p^{*}\omega=2\int_{p(\partial H)}\omega

for any standard hemisphere H of (S^{2}. g_{0}) . From these facts follows
immediately the equivalence.

\S 2. The bisectability condition

In this section we discuss the bisectability condition for an SC_{2\pi}-metric
on S^{2}- For this purpose we may only deal with an SC_{2\pi}-metric g of the
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following form:

g=e^{2\rho}g_{0} ,

where \rho is a certain function on S^{2}-

PROPOSITION. Let g=e^{2\rho}g_{0} be an SC_{2\pi} metric on S^{2} . Then, g is a

bisectable metric if and only if the following equality holds for each hemi-
sphere H with respect to g :

\int_{H}(1-e^{2\rho}+\Delta\rho) dA=0 .

where \Delta and dA are the Laplacian and the area element of g_{0} respectively.

Proof. Let K and dA_{\rho} be the Gaussian curvature and the area ele-
ment with respect to g=e^{2\rho}g_{0} respectively. A short calculation gives

K-e^{-2\rho}=e^{-2\rho}\Delta\rho

Since \int_{H}KdA_{\rho}=2\pi by the Gauss-Bonnet theorem, it follows that

2 \pi-\int_{H}dA_{\rho}=\int_{H}(1-e^{2\rho}+\Delta\rho) dA

By the Weinstein’s theorem ([1] p. 59 and [5]) we know that the area of
(S^{2}, g) is equal to 4\pi . Hence we obtain the proposition. Q. E. D.

\S 3. Proof of Theorem A

Now, we will prove Theorem A. Let h be an infinitesimal bisectable
deformation of g_{0} on S^{2} , that is, it is the linearization of a certain one-
parameter bisectable deformation \{g_{t}\} of g_{0} on S^{2} . For the one-parameter
deformation, we can find a smooth one-parameter family \{\varphi_{t}\} of transfor-
mation of S^{2} such that \varphi_{0}=identity and \varphi_{t}^{*}g_{t} is of the form:

\varphi_{t}^{*}g_{t}=\exp(2\rho_{t})g_{0} .

where \{\rho_{t}\} is a certain one-parameter family of functions on S^{2} which
satisfies \rho_{0}\equiv 0 (see [6], the proof of lemma 1, and [7]). Then h can be
written as

h=2\dot{\rho}g_{0}-\mathscr{L}_{Y}g_{0}

where \dot{\rho} is the derivation of \rho_{t} with respect to t at t=0, and Y is the
infinitesimal transformation of the one-parameter family \{\varphi_{t}\} of transfor-



On the bisectable metrics on the 2-sphere S^{2} 255

mations of S^{2} Since \varphi_{t}^{*}g_{t}=\exp(2\rho_{t})g_{0} is also a one-parameter bisectable
deformation of g_{0} , it follows from Proposition in \S 2 that

\int_{H_{t}} {1- exp (2\rho_{t})+\Delta\rho_{t} }dA=0

for each hemisphere H_{t} with respect to \varphi_{t}^{*}g_{t} . Notice that
1-exp (2\rho_{0})+\Delta\rho_{0}\equiv 0 . Differentiating this equation with respect to t at
t=0, we have

\int_{H}(\Delta\dot{\rho}-2\dot{\rho}) dA=0

for each standard hemisphere H of (S^{2}. g_{0}) , or, in other words, \Delta\dot{\rho}-2\dot{\rho} is
a hemispherically zero function on (S^{2}, g_{0}) . By Corollary in \S 1 this equa-
tion implies that \Delta\dot{\rho}-2\dot{\rho} is an even function on (S^{2}, g_{0}) . On the other
hand we assert that \Delta\dot{\rho}-2\dot{\rho} is an odd function on (S^{2}, g_{0}) . Indeed,
h=2\dot{\rho}g_{0} satisfies the s0-called zero energy condition (cf. [1] p. 151),

because \{g_{t}\} is a one-parameter SC_{2\pi} deformation of g_{0} on S^{2} . that is, each
g_{t} is an SC_{2\pi}-metric on S^{2} . It follows that \dot{\rho} and hence \Delta\dot{\rho}-2\dot{\rho} are odd
functions on (S^{2}, g_{0}) , which proves our assertion (see [1] p. 123). We
have therefore shown that

\Delta\dot{\rho}=2\dot{\rho}

Hence we see that \dot{\rho} is the restriction of a certain linear function on R^{3} to
(S^{2}, g_{0}) (see [8] p. 160). As is well known, this implies that there is an
infinitesimal conformal transformation X of (S^{2}, g_{0}) such that \mathscr{L}_{X}g_{0}=2\dot{\rho}g_{0} ,

which proves Theorem A.

\S 4. Proof of Theorem B

In this section, we will give the proof of Theorem B, following the
same reasoning as in Appendix in [3],

Let \{h_{t}\}_{t\in I} and \{ \tilde{h}_{t}\}_{t\in I} be two one-parameter families of symmetric
2-forms on S^{2} , I being an open interval containing 0. By the notation
h_{t}\equiv\tilde{h}_{t} (mod t^{m} ) we mean that there is a one-parameter family \{k_{t}\}_{t\in I} of
symmetric 2-forms on S^{2} such that

h_{t}=\tilde{h}_{t}+t^{m}k_{t} . t\in I.

The same notation will be also used for one-parameter families of func-
tions on S^{2} .

LEMMA. Let \{ \overline{g}_{t}\} be a one-parameter bisectable deformation of g_{0} on
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S^{2} Assume that \overline{g}_{t} is of the following form:
\overline{g}_{t}=\exp(2\rho_{t})g_{0} .

where \rho_{t} is a certain function on S^{2}- Then, there exist a series of
infinitesimal conformal transformations \{X^{(i)}\}_{i=0}^{\infty} of (S^{2}. g_{0}) such that for
each integer m\geq 0

(*)_{m} \mathscr{L}_{Xt}\overline{g}_{t}\equiv\frac{\partial}{\partial t}\overline{g}_{t} (mod t^{m+1} )

where X_{t}=\Sigma_{i=0}^{m}t^{i}X^{(i)} .

PROOF. We will define \{X^{(i)}\}_{i=0}^{\infty} inductively as follows. By the proof
of Theorem A we can find an infinitesimal conformal transformation X^{(0)}

such that

\mathscr{L}_{X^{10)}}g_{0}=2\dot{\rho}g_{0} .

This implies (*)_{0} . Now, we assume that there are infinitesimal conformal
transformations \{X^{(i)}\}_{i=0}^{m} which satisfy (*)_{m} . Let \{\Phi_{t}^{(m)}\} be the (smooth)

one-parameter family of conformal transformations of (S^{2}, g_{0}) generated
by X_{t}=\Sigma_{i=0}^{m}t^{i}X^{(i)} . that is, \Phi_{0}^{tm)}=identity and

\frac{\partial}{\partial t}\Phi_{t}^{(m)}(q)=X_{t}(\Phi_{t}^{(m)}(q)) for q\in S^{2} .

We define a Riemannian metric \overline{g}_{t}^{(m)} on S^{2} by \overline{g}_{t}=(\Phi_{t}^{(m)})^{*}\overline{g}_{t}^{(m)} . Since \Phi_{t}^{(m)}

is a conformal transformation, \overline{g}_{t}^{(m)} can be also written as
\overline{g}_{t}^{tm)}=\exp(2^{tm)}\rho_{t})g_{0} ,

where \rho_{t}^{(m)} is a certain function on S^{2} . Now, we have

\mathscr{L}_{X\ell}\overline{g}_{t}+(\Phi_{t}^{(m)})^{*}(\frac{\partial}{\partial t}\overline{g}_{t}^{(m)})=\frac{\partial}{\partial t}\overline{g}_{t}

It follows from (*)_{m} that

\frac{\partial}{\partial t}\overline{g}_{t}^{(m)}\equiv 0 (mod t^{m+1}).

which implies

\partial^{j}\rho^{tm)}=\frac{\partial^{j}}{\partial t^{j}}\rho_{t}^{(m)}|_{t=0}=0 for j=1 , \cdots
r, m+1 .
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Since \{ \overline{g}_{t}^{(m)}\} is a one-parameter bisectable deformation of g_{0} on S^{2} , it fol-
lows from Proposition in \S 2 that

\int_{H}\{\Delta(\partial^{m+2}\rho^{(m)})-2\partial^{m+2}\rho^{(m)}\}dA=0

for each standard hemisphere H of (S^{2}, g_{0}) . Furthermore we can easily
verify that \partial^{m+2}\rho^{(m)} is an odd function on (S^{2}, g_{0}) . Hence, in the same
way as in \S 3, we know that

\Delta ( a m+2(m)\rho) =2 am+2(m)\rho

which implies that there exists an infinitesimal conformal transformation
X^{(m+1)} such that

\mathscr{L}_{x^{(m+1)}}g_{0}=\frac{2\partial^{m+2}\rho^{(m)}}{(m+1)!}g_{0}

Therefore, putting Y_{t}=X_{t}+t^{m+1}X^{(m+1)} , we have

\mathscr{L}_{Y_{t}}\overline{g}_{t}\equiv\frac{\partial}{\partial t}\overline{g}_{t} (mod t^{m+2} ) Q. E. D.

We are now in a position to prove Theorem B. We know that there
is a smooth one-parameter family \{\varphi_{t}\}_{t\in I} of transformations of S^{2} such
that \varphi_{0}=identity and \varphi_{t}^{*}g_{t} is of the form:

\varphi_{t}^{*}g_{t}=\exp(2\rho_{t})g_{0} .

where \rho_{t} is a certain function on S^{2}- We put \overline{g}_{t}=\varphi_{t}^{*}g_{t} , and apply Lemma
together with its proof to the one-parameter bisectable deformation \{\overline{g}_{t}\}

of g_{0} on S^{2} . For each m let \Phi_{t}^{(m)} and \overline{g}_{t}^{(m)} be as in the proof of Lemma,
and let \overline{K}_{t}^{(m)} and K_{t} be the Gaussian curvature of \overline{g}_{t}^{(m)} and g_{t} respectively.
Now, we have

\frac{\partial}{\partial t}\overline{g}_{t}^{(m)}\equiv 0 (mod t^{m+1} ) for each m ,

which means that
\overline{g}_{t}^{tm)}\equiv g_{0} (mod t^{m+2}) for each m .

Therefore we obtain
\overline{K}_{t}^{(m)}\equiv K_{0}(=1) (mod t^{m+2}) for each m .

Since K_{t}=(\Phi_{t}^{(m)-1}\circ\varphi_{t})^{*}\overline{K}_{t}^{(m)} , it follows that
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K_{t}\equiv K_{0} (mod t^{m+2}) for each m .

Since g_{t} and hence K_{t} depend real analytically on the parameter t, we
have thus seen that

K_{t}=K_{0}=1 for any t\in I.

By a standard method we can therefore construct a one-parameter family
\{\Psi_{t}\}_{t\in I} of transformations of S^{2} such that \Psi_{0}=identity and g_{t}=\Psi_{t}^{*}g_{0} ,

which completes the proof of Theorem B.
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Added in Proof

For the latter half of the proof of Theorem C’ in \S 1, more precisely,
the part which followed after the sentence “ Now, we t he\cdots \cdots .’’ a
simpler and more elegant method was suggested by the referee of this
paper. He proposed to use a linear function xarrow\langle v,x\rangle on R^{3} . where
\langle ., .\rangle is the canonical inner product in R^{3} and v is an arbitrary element

of R^{3} . Since x arrow\langle v, x\rangle f(x) is an even function on (S2.g_{0}) ,

\int_{0}^{2\pi}f(c(s))\langle v, c(s)\rangle ds=0 implies f(x)\equiv 0 from the Theorem 4. 53 in [1],

where c(s) is an arbitrary great circle parametrized by the arc-length s.
We are grateful to the referee for this comment.
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