# On the bisectable metrics on the 2 -sphere $\mathrm{S}^{2}$ 

Masayuki IGARASHI<br>(Received February 16, 1989, Revised August 2, 1989)

## Introduction

A Riemannian manifold ( $M, g$ ) is called an $S C_{2 \pi}$-manifold, and its Riemannian metric $g$ an $S C_{2 \pi}$-metric on $M$, if all of its (maximal) geodesics are simply closed and have the same length $2 \pi$. For example, the standard 2 -sphere ( $S^{2}, g_{o}$ ) is an $S C_{2 \pi}$-manifold. Moreover it is known that there are many $S C_{2 \pi}$-metrics on $S^{2}$ which are essentially different from each other (see [1], Chapter 4, C, and [2] for details). Among $S C_{2 \pi^{*}}$ metrics on $S^{2}$, L. W. Green characterized the standard 2 -sphere ( $S^{2}, g_{o}$ ) in terms of the Blaschke condition (see [1] p.143). It seems interesting to study another sufficient condition for an $S C_{2 \pi}$-manifold ( $S^{2}, g$ ) to be isometric to ( $S^{2}, g_{o}$ ).

An $S C_{2 \pi}$-metric $g$ on $S^{2}$ has the property that every geodesic $\gamma$ divides $S^{2}$ into two domains. More precisely, there are two domains (connected open subsets) $H_{1}$ and $H_{2}$ in $S^{2}$ which satisfy $S^{2}=\gamma \cup H_{1} \cup H_{2}$ (disjoint union) and $\gamma=\partial H_{1}=\partial H_{2}$, where $\gamma$ should be confounded with a subset of $S^{2}$. Either of the two domains is called a hemisphere with respect to $g$. In the case of the standard metric $g_{o}$ all of its hemispheres have the same area $2 \pi$. This suggests the following definition:

An $S C_{2 \pi}$-manifold ( $S^{2}, g$ ) is a (geodesically) bisectable manifold if each geodesic divides $S^{2}$ into two hemispheres having the same area. The $S C_{2 \pi}$-metric $g$ on $S^{2}$ is then called a (geodesically) bisectable metric.

Here, we are led to the following conjecture:
If an $S C_{2 \pi}$-metric $g$ on $S^{2}$ satisfies the bisectability condition, then ( $S^{2}, g$ ) is isometric to ( $S^{2}, g_{o}$ ).

The main purpose of this paper is to give a partial affirmative answer to this conjecture.

Let us consider a one-parameter deformation $\left\{g_{t}\right\}$ of the standard metric $g_{o}$ on $S^{2}$ (such that $\left.g_{t}\right|_{t=0}=g_{o}$ ). Then we define a symmetric 2 -form $h$ on $S^{2}$ by $h=\left.\frac{\partial}{\partial t} g_{t}\right|_{t=0}$, which is called the linearization of $\left\{g_{t}\right\}$ (at $t=0$ ).

The one-parameter deformation $\left\{g_{t}\right\}$ is said to be a one-parameter bisectable deformation of $g_{o}$ on $S^{2}$ if each $g_{t}$ is a bisectable metric. Furthermore a symmetric 2 -form $h$ on $S^{2}$ is said to be an infinitesimal bisectable deformation of $g_{o}$ on $S^{2}$ if it is the linearization of a certain one-parameter bisectable deformation of $g_{o}$ on $S^{2}$.

Here, our main results may be stated as follows:
Theorem A. Any infinitesimal bisectable deformation $h$ of $g_{o}$ on $S^{2}$ is trivial, that is, there exists a vector field $X$ on $S^{2}$ such that $h=\mathscr{L}_{x} g_{o}$, $\mathscr{L}_{X}$ being the Lie derivation with respect to $X$.

ThEOREM B. Let $\left\{g_{t}\right\}_{t \in I}$ be a one-parameter bisectable deformation of $g_{o}$ on $S^{2}$, where $I$ is an open interval containing 0 . If $g_{t}$ depends real analytically on the parameter $t$, then there exists a one-parameter family $\left\{\Psi_{t}\right\}_{t \in I}$ of transformations of $S^{2}$, defined on the same interval $I$, such that $\Psi_{0}=$ identity and $g_{t}=\Psi_{t}{ }^{*} g_{o}$.

In § 1 we study even functions and hemispherically even functions on $\left(S^{2}, g_{o}\right)$. As usual an even function means a function on ( $S^{2}, g_{o}$ ) which is invariant under the antipodal transformation of $\left(S^{2}, g_{o}\right)$. A hemispherically even function is defined as a function $f$ on ( $S^{2}, g_{o}$ ) which satisfies

$$
\int_{H_{1}} f d A=\int_{H_{2}} f d A,
$$

where $\left(H_{1}, H_{2}\right)$ is any pair of standard hemispheres determined by a geodesic or a great circle of ( $S^{2}, g_{o}$ ), and $d A$ is the standard area element of ( $S^{2}, g_{o}$ ). We show there the following

Theorem C. A function on $\left(S^{2}, g_{o}\right)$ is an even function if and only if it is a hemispherically even function.

In § 2 we show a necessary and sufficient condition for an $S C_{2 \pi}$-metric on $S^{2}$ to be bisectable. In $\S 3$ we prove Theorem A by using a corollary to Theorem C. In §4 we prove Theorem B, following the argument due to N. Tanaka in [3].

Throughout this paper, we assume the differentiability of class $C^{\infty}$ unless otherwise stated.

The author expresses his hearty gratitude to Prof. N. Tanaka and Dr. K. Kiyohara for their valuable advice.

## § 1. Hemispherically even functions

In this section every function on ( $S^{2}, g_{o}$ ) is understood to be continuous. As usual a function $f$ on $\left(S^{2}, g_{o}\right)$ is called an odd function if $\tau^{*} f=-f$, where $\tau$ is the antipodal transformation of ( $S^{2}, g_{o}$ ). We note that every function is uniquely written as a sum of an even function and an odd function. To prove Theorem C, it is therefore sufficient to show the following

Theorem $\mathrm{C}^{\prime}$. Let $f$ be a hemispherically even function on ( $S^{2}, g_{o}$ ). If $f$ is an odd function, then $f$ vanishes identically.

Proof. We utilize the canonical polar coordinate $(\theta, \varphi)$ on ( $S^{2}, g_{o}$ ) which is defined for $0 \leq \theta \leq \pi, 0 \leq \varphi<2 \pi$. In this coordinate the north pole N corresponds to $\theta=0$. We denote by $\gamma_{\lambda}$ the meridian great circle which is represented by $\varphi=\lambda, \pi+\lambda$. If $0<\lambda<\pi$, it can be immediately seen that $\gamma_{0}$ and $\gamma_{\lambda}$ split ( $S^{2}, g_{o}$ ) into four pieces of domains $D(0<\varphi<\lambda)$, $D(\lambda<\varphi<\pi), D(\pi<\varphi<\pi+\lambda)$ and $D(\pi+\lambda<\varphi<2 \pi)$, where $D(a<\varphi<b)$ means the domain represented by $0<\theta<\pi, a<\varphi<b$. Since $f$ is a hemispherically even function on ( $S^{2}, g_{o}$ ), we have

$$
\left.\int_{D(0<\varphi<\lambda)} f d A=\int_{D(\pi<\varphi<\pi+\lambda)} f d A \quad \text { for } \lambda \in\right] 0, \pi[.
$$

This can be written in the form

$$
\left.\int_{0}^{\lambda} \int_{0}^{\pi} f(\theta, \varphi) \sin \theta d \theta d \varphi=\int_{0}^{\pi+\lambda} \int_{0}^{\pi} f(\theta, \varphi) \sin \theta d \theta d \varphi \text { for } \lambda \in\right] 0, \pi[.
$$

Since $f$ is an odd function on ( $S^{2}, g_{o}$ ), it follows that

$$
\left.\int_{0}^{\lambda} \int_{0}^{\pi} f(\theta, \varphi) \sin \theta d \theta d \varphi=0 \quad \text { for } \lambda \in\right] 0, \pi[
$$

Differentiating this equation with respect to $\lambda$, we find that

$$
\left.\int_{0}^{\pi} f(\theta, \lambda) \sin \theta d \theta=0 \quad \text { for } \lambda \in\right] 0, \pi[.
$$

This implies that

$$
\int_{0}^{\pi} f(c(s)) \sin s d s=0
$$

for any great hemicircle $c:[0, \pi] \longrightarrow\left(S^{2}, g_{o}\right)$ parametrized by arc-length $s$.

Now, we take an arbitrary point $q$ of ( $S^{2}, g_{o}$ ), and show that $f(q)=0$. Clearly we may assume that $q$ is the north pole $N$. Let
$c:[0, \pi] \longrightarrow\left(S^{2}, g_{o}\right)$ be a great hemicircle parametrized by arc-length $s$ which satisfies the following conditions:

1) It issues from the point represented by ( $\pi / 2,0$ ) in the canonical polar coordinate.
2) It does not pass through the north pole $N$.
3) The upper standard hemisphere contains $c(] 0, \pi[)$.

Let $S$ be the antipodal point of $N$, that is, the south pole. Let $r$ be the angle between the $N S$-axis and the plane which contains the great hemicircle $c$. Then, in the canonical polar coordinate, $c$ can be represented in the form

$$
c(s)=(\theta(s), \varphi(s))
$$

and $(\theta, \varphi)=(\theta(s), \varphi(s))$ is related to $s$ by the following rule:

$$
\left\{\begin{array}{l}
\sin \theta \cos \varphi=\cos s \\
\sin \theta \sin \varphi \\
\cos \theta
\end{array}=\sin s \sin r, ~=\sin s \cos r, ~ l\right.
$$

Recalling the argument above, we have

$$
\int_{0}^{\pi} f(\theta(s), \varphi(s)) \sin s d s=0
$$

Performing the change of the variables, $s \longrightarrow \theta$, in this integral equation, we get

$$
\int_{r}^{\frac{\pi}{2}}\{f(\theta, \varphi(\theta))+f(\theta, \pi-\varphi(\theta))\} \frac{\sin \theta \cos \theta}{\sqrt{\sin ^{2} \theta-\sin ^{2} r}} d \theta=0 .
$$

Since this equation is invariant under the $S^{1}$-action of revolution whose rotation axis is the $N S$-axis, it follows that

$$
\int_{r}^{\frac{\pi}{2}}\{f(\theta, \varphi(\theta)+u)+f(\theta, \pi-\varphi(\theta)+u)\} \frac{\sin \theta \cos \theta}{\sqrt{\sin ^{2} \theta-\sin ^{2} r}} d \theta=0 .
$$

for any $u \in[0,2 \pi[$. Thus this gives

$$
\int_{0}^{2 \pi} \int_{r}^{\frac{\pi}{2}}\{f(\theta, \varphi(\theta)+u)+f(\theta, \pi-\varphi(\theta)+u)\} \frac{\sin \theta \cos \theta}{\sqrt{\sin ^{2} \theta-\sin ^{2} r}} d \theta d u=0 .
$$

Putting $F(\theta)=\int_{0}^{2 \pi} f(\theta, u) d u$, we see from the Fubini theorem that

$$
\int_{r}^{\frac{\pi}{2}} \frac{F(\theta) \sin \theta \cos \theta}{\sqrt{\sin ^{2} \theta-\sin ^{2} r}} d \theta=0 .
$$

Here we remark that this equation holds for any $r \in] 0, \pi / 2[$, and $F(\theta)$ is independent of $r$. Thus by the same way as in the proof of Theorem 4.13 in [1], pp. 102-104, we obtain

$$
\left.F(\theta)=\int_{0}^{2 \pi} f(\theta, u) d u=0 \quad \text { for any } \theta \in\right] 0, \frac{\pi}{2}[
$$

Letting $\theta$ tend to 0 , we get

$$
f(N)=0 .
$$

Q. E. D.

A function $f$ on ( $S^{2}, g_{o}$ ) is called a hemispherically zero function if it satisfies

$$
\int_{H} f d A=0
$$

for any standard hemisphere $H$ of ( $S^{2}, g_{o}$ ).
Corollary. Every hemispherically zero function on ( $S^{2}, g_{o}$ ) is an even function on ( $S^{2}, g_{o}$ ).

Remark. R. Michel has obtained the following result which is equivalent to this corollary :

Theorem (R. Michel [4]). Let $\omega$ be a 1-form on the 2-dimensional standard real projective space $\left(\boldsymbol{R} P^{2}, \hat{g}_{o}\right)$. If the integral of $\omega$ on any closed geodesic of $\left(\boldsymbol{R} P^{2}, \hat{g}_{o}\right)$ vanishes, then $\omega$ is exact.

In fact, it can be easily seen that a function on ( $S^{2}, g_{o}$ ) is an odd function if and only if there exists a 1 -form $\omega$ on $\left(\boldsymbol{R} \boldsymbol{P}^{2}, \widehat{g}_{o}\right)$ such that

$$
f d A=d\left(p^{*} \omega\right),
$$

where $p$ is the canonical projection of ( $S^{2}, g_{o}$ ) onto ( $\boldsymbol{R} P^{2}, \widehat{g}_{o}$ ).
Furthermore we have

$$
\int_{H} f d A=\int_{H} d\left(p^{*} \omega\right)=\int_{\partial H} p^{*} \omega=2 \int_{p(\partial H)} \omega
$$

for any standard hemisphere $H$ of $\left(S^{2}, g_{o}\right)$. From these facts follows immediately the equivalence.

## § 2. The bisectability condition

In this section we discuss the bisectability condition for an $S C_{2 \pi}$-metric on $S^{2}$. For this purpose we may only deal with an $S C_{2 \pi}$-metric $g$ of the
following form:

$$
g=e^{2 \rho} g_{o},
$$

where $\rho$ is a certain function on $S^{2}$.
Proposition. Let $g=e^{2 \rho} g_{o}$ be an $S C_{2 \pi}$-metric on $S^{2}$. Then, $g$ is a bisectable metric if and only if the following equality holds for each hemisphere $H$ with respect to $g$ :

$$
\int_{H}\left(1-e^{2 \rho}+\Delta \rho\right) d A=0,
$$

where $\Delta$ and $d A$ are the Laplacian and the area element of $g_{o}$ respectively.
Proof. Let $K$ and $d A_{\rho}$ be the Gaussian curvature and the area element with respect to $g=e^{2 \rho} g_{o}$ respectively. A short calculation gives

$$
K-e^{-2 \rho}=e^{-2 \rho} \Delta \rho .
$$

Since $\int_{H} K d A_{\rho}=2 \pi$ by the Gauss-Bonnet theorem, it follows that

$$
2 \pi-\int_{H} d A_{\rho}=\int_{H}\left(1-e^{2 \rho}+\Delta \rho\right) d A .
$$

By the Weinstein's theorem ([1] p. 59 and [5]) we know that the area of ( $S^{2}, g$ ) is equal to $4 \pi$. Hence we obtain the proposition.
Q. E. D.

## § 3. Proof of Theorem $A$

Now, we will prove Theorem A. Let h be an infinitesimal bisectable deformation of $g_{o}$ on $S^{2}$, that is, it is the linearization of a certain oneparameter bisectable deformation $\left\{g_{t}\right\}$ of $g_{o}$ on $S^{2}$. For the one-parameter deformation, we can find a smooth one-parameter family $\left\{\varphi_{t}\right\}$ of transformation of $S^{2}$ such that $\varphi_{0}=$ identity and $\varphi_{t}{ }^{*} g_{t}$ is of the form:

$$
\varphi_{t}{ }^{*} g_{t}=\exp \left(2 \rho_{t}\right) g_{o},
$$

where $\left\{\rho_{t}\right\}$ is a certain one-parameter family of functions on $S^{2}$ which satisfies $\rho_{0} \equiv 0$ (see [6], the proof of lemma 1, and [7]). Then $h$ can be written as

$$
h=2 \dot{\rho} g_{o}-\mathscr{L}_{\mathrm{Y}} g_{o},
$$

where $\dot{\rho}$ is the derivation of $\rho_{t}$ with respect to $t$ at $t=0$, and $Y$ is the infinitesimal transformation of the one-parameter family $\left\{\varphi_{t}\right\}$ of transfor-
mations of $S^{2}$. Since $\varphi_{t}{ }^{*} g_{t}=\exp \left(2 \rho_{t}\right) g_{o}$ is also a one-parameter bisectable deformation of $g_{o}$, it follows from Proposition in $\S 2$ that

$$
\int_{H_{t}}\left\{1-\exp \left(2 \rho_{t}\right)+\Delta \rho_{t}\right\} d A=0
$$

for each hemisphere $H_{t}$ with respect to $\varphi_{t}{ }^{*} g_{t}$. Notice that $1-\exp \left(2 \rho_{0}\right)+\Delta \rho_{0} \equiv 0$. Differentiating this equation with respect to $t$ at $t=0$, we have

$$
\int_{H}(\Delta \dot{\rho}-2 \dot{\rho}) d A=0
$$

for each standard hemisphere $H$ of $\left(S^{2}, g_{o}\right)$, or, in other words, $\Delta \dot{\rho}-2 \dot{\rho}$ is a hemispherically zero function on ( $S^{2}, g_{o}$ ). By Corollary in $§ 1$ this equation implies that $\Delta \dot{\rho}-2 \dot{\rho}$ is an even function on $\left(S^{2}, g_{o}\right)$. On the other hand we assert that $\Delta \dot{\rho}-2 \dot{\rho}$ is an odd function on $\left(S^{2}, g_{o}\right)$. Indeed, $h=2 \dot{\rho} g_{o}$ satisfies the so-called zero energy condition (cf. [1] p. 151), because $\left\{g_{t}\right\}$ is a one-parameter $S C_{2 \pi}$-deformation of $g_{o}$ on $S^{2}$, that is, each $g_{t}$ is an $S C_{2 \pi}$-metric on $S^{2}$. It follows that $\dot{\rho}$ and hence $\Delta \dot{\rho}-2 \dot{\rho}$ are odd functions on ( $S^{2}, g_{o}$ ), which proves our assertion (see [1] p. 123). We have therefore shown that

$$
\Delta \dot{\rho}=2 \dot{\rho}
$$

Hence we see that $\dot{\rho}$ is the restriction of a certain linear function on $\boldsymbol{R}^{3}$ to $\left(S^{2}, g_{o}\right.$ ) (see [8] p. 160). As is well known, this implies that there is an infinitesimal conformal transformation $X$ of $\left(S^{2}, g_{o}\right)$ such that $\mathscr{L}_{x} g_{o}=2 \dot{\rho} g_{o}$, which proves Theorem A.

## § 4. Proof of Theorem B

In this section, we will give the proof of Theorem $B$, following the same reasoning as in Appendix in [3].

Let $\left\{h_{t}\right\}_{t \in I}$ and $\left\{\tilde{h}_{t}\right\}_{t \in I}$ be two one-parameter families of symmetric 2 -forms on $S^{2}$, $I$ being an open interval containing 0 . By the notation $h_{t} \equiv \tilde{h}_{t}\left(\bmod t^{m}\right)$ we mean that there is a one-parameter family $\left\{k_{t}\right\}_{t \in I}$ of symmetric 2 -forms on $S^{2}$ such that

$$
h_{t}=\tilde{h}_{t}+t^{m} k_{t}
$$

The same notation will be also used for one-parameter families of functions on $S^{2}$.

LEMMA. Let $\left\{\bar{g}_{t}\right\}$ be a one-parameter bisectable deformation of $g_{o}$ on
$S^{2}$. Assume that $\bar{g}_{t}$ is of the following form:

$$
\bar{g}_{t}=\exp \left(2 \rho_{t}\right) g_{o},
$$

where $\rho_{t}$ is a certain function on $S^{2}$. Then, there exist a series of infinitesimal conformal transformations $\left\{X^{(i)}\right\}_{i=0}^{\infty}$ of $\left(S^{2}, g_{o}\right)$ such that for each integer $m \geq 0$
$(*)_{m} \quad \mathscr{L}_{x t} \bar{g}_{t} \equiv \frac{\partial}{\partial t} \bar{g}_{t}\left(\bmod t^{m+1}\right)$,
where $X_{t}=\sum_{i=0}^{m} t^{i} X^{(i)}$.
Proof. We will define $\left\{X^{(i)}\right\}_{i=0}^{\infty}$ inductively as follows. By the proof of Theorem A we can find an infinitesimal conformal transformation $X^{(0)}$ such that

$$
\mathscr{L}_{X^{(0)}} g_{o}=2 \dot{\rho} g_{o} .
$$

This implies (*) ${ }_{0}$. Now, we assume that there are infinitesimal conformal transformations $\left\{X^{(i)}\right\}_{i=0}^{m}$ which satisfy (*) $)_{m}$. Let $\left\{\Phi_{t}^{(m)}\right\}$ be the (smooth) one-parameter family of conformal transformations of ( $S^{2}, g_{o}$ ) generated by $X_{t}=\sum_{i=0}^{m} t^{i} X^{(i)}$, that is, $\Phi_{0}^{(m)}=$ identity and

$$
\frac{\partial}{\partial \mathrm{t}} \Phi_{t}^{(m)}(q)=X_{t}\left(\Phi_{t}^{(m)}(q)\right)
$$

We define a Riemannian metric $\bar{g}_{t}^{(m)}$ on $S^{2}$ by $\bar{g}_{t}=\left(\Phi_{t}^{(m)}\right)^{*} \bar{g}_{t}^{(m)}$. Since $\Phi_{t}^{(m)}$ is a conformal transformation, $\bar{g}_{t}^{(m)}$ can be also written as

$$
\bar{g}_{t}^{(m)}=\exp \left(2 \rho_{t}^{(m)}\right) g_{o},
$$

where $\rho_{t}^{(m)}$ is a certain function on $S^{2}$. Now, we have

$$
\mathscr{L}_{X_{t}} \bar{g}_{t}+\left(\Phi_{t}^{(m)}\right) *\left(\frac{\partial}{\partial t} \bar{g}_{t}^{(m)}\right)=\frac{\partial}{\partial t} \bar{g}_{t}
$$

It follows from (*) ${ }_{m}$ that

$$
\frac{\partial}{\partial t} \bar{g}_{t}^{(m)} \equiv 0\left(\bmod t^{m+1}\right)
$$

which implies

$$
\partial^{j} \rho^{(m)}=\left.\frac{\partial^{j}}{\partial t^{j}} \rho_{t}^{(m)}\right|_{t=0}=0 \quad \text { for } j=1, \cdots, m+1
$$

Since $\left\{\bar{g}_{t}^{(m)}\right\}$ is a one-parameter bisectable deformation of $g_{o}$ on $S^{2}$, it follows from Proposition in § 2 that

$$
\int_{H}\left\{\Delta\left(\partial^{m+2} \rho^{(m)}\right)-2 \partial^{m+2} \rho^{(m)}\right\} d A=0
$$

for each standard hemisphere $H$ of ( $S^{2}, g_{o}$ ). Furthermore we can easily verify that $\partial^{m+2} \rho^{(m)}$ is an odd function on ( $S^{2}, g_{o}$ ). Hence, in the same way as in § 3, we know that

$$
\Delta\left(\partial^{m+2} \rho^{(m)}\right)=2 \partial^{m+2} \rho^{(m)},
$$

which implies that there exists an infinitesimal conformal transformation $X^{(m+1)}$ such that

$$
\mathscr{L}_{X^{(m+1)}} g_{o}=\frac{2 \partial^{m+2} \rho^{(m)}}{(m+1)!} g_{o} .
$$

Therefore, putting $Y_{t}=X_{t}+t^{m+1} X^{(m+1)}$, we have

$$
\mathscr{L}_{Y_{t}} \bar{g}_{t} \equiv \frac{\partial}{\partial t} \bar{g}_{t}\left(\bmod t^{m+2}\right) .
$$

Q. E. D.

We are now in a position to prove Theorem B. We know that there is a smooth one-parameter family $\left\{\varphi_{t}\right\}_{t \in I}$ of transformations of $S^{2}$ such that $\varphi_{0}=$ identity and $\varphi_{t}{ }^{*} g_{t}$ is of the form:

$$
\varphi_{t}{ }^{*} g_{t}=\exp \left(2 \rho_{t}\right) g_{o},
$$

where $\rho_{t}$ is a certain function on $S^{2}$. We put $\bar{g}_{t}=\varphi_{t}{ }^{*} g_{t}$, and apply Lemma together with its proof to the one-parameter bisectable deformation $\left\{\bar{g}_{t}\right\}$ of $g_{o}$ on $S^{2}$. For each m let $\Phi_{t}^{(m)}$ and $\bar{g}_{t}^{(m)}$ be as in the proof of Lemma, and let $\bar{K}_{t}^{(m)}$ and $K_{t}$ be the Gaussian curvature of $\bar{g}_{t}^{(m)}$ and $g_{t}$ respectively. Now, we have

$$
\frac{\partial}{\partial t} \bar{g}_{t}^{(m)} \equiv 0\left(\bmod t^{m+1}\right)
$$

for each $m$,
which means that

$$
\bar{g}_{t}^{(m)} \equiv g_{o}\left(\bmod t^{m+2}\right)
$$

for each $m$.
Therefore we obtain

$$
\bar{K}_{t}^{(m)} \equiv K_{0}(=1)\left(\bmod t^{m+2}\right) \quad \text { for each } m
$$

Since $K_{t}=\left(\Phi_{t}^{(m)}{ }^{\circ} \varphi_{t}^{-1}\right)^{*} \bar{K}_{t}^{(m)}$, it follows that

$$
K_{t} \equiv K_{0}\left(\bmod t^{m+2}\right)
$$

for each $m$.
Since $g_{t}$ and hence $K_{t}$ depend real analytically on the parameter $t$, we have thus seen that

$$
K_{t}=K_{0}=1
$$

for any $t \in I$.
By a standard method we can therefore construct a one-parameter family $\left\{\Psi_{t}\right\}_{t \in I}$ of transformations of $S^{2}$ such that $\Psi_{0}=$ identity and $g_{t}=\Psi_{t}{ }^{*} g_{o}$, which completes the proof of Theorem B.

## References

[1] A. BESSE, Manifolds all of whose Geodesics are Closed, Springer, Berlin-Heidelberg. New York, 1978.
[ 2 ] V. Guillemin, The Radon transform on Zoll surfaces, Adv. in Math., 22 (1976), 85119.
[ 3] K. Kiyohara, On the infinitesimal Blaschke conjecture, Hokkaido Math. J., 10 (1981), 124-142.
[ 4] R. Michcel, Sur quelques problèmes de Géométre Globale des Géodésiques, Bol. Soc. Brasil. Mat., 9 No. 2 (1978), 19-38.
[5] A. Weinstein, On the volume of manifolds all of whose geodesics are closed, J. Diff. Geom., 9 (1974), 513-517.
[6] A. Frölicher and A. Nijenhuis, A theorem on stability of complex structures, Proc. Nat. Acad. Sci., U. S. A., 43 (1957), 239-241.
[7] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures, III. Stability theorems for complex structures, Ann. of Math., 71 (1960), 43-76.
[8] M. Berger, P. Gauduchon and E. MAzet, Le spectre d'une variété riemannienne, Lecture Notes in Math., 194, Springer, Berlin-Heidelberg-New York, 1967.

> Department of Mathematics Hokkaido University
> Sapporo 060, Japan

## Added in Proof

For the latter half of the proof of Theorem $\mathrm{C}^{\prime}$ in $\S 1$, more precisely, the part which followed after the sentence "Now, we take......", a simpler and more elegant method was suggested by the referee of this paper. He proposed to use a linear function $x \longrightarrow\langle v, x\rangle$ on $\boldsymbol{R}^{3}$, where $\langle\cdot, \cdot\rangle$ is the canonical inner product in $\boldsymbol{R}^{3}$ and $v$ is an arbitrary element of $\boldsymbol{R}^{3}$. Since $x \longrightarrow\langle v, x\rangle f(x)$ is an even function on ( $S^{2}, g_{o}$ ), $\int_{0}^{2 \pi} f(c(s))\langle v, c(s)\rangle d s=0$ implies $f(x) \equiv 0$ from the Theorem 4.53 in [1], where $c(s)$ is an arbitrary great circle parametrized by the arc-length $s$. We are grateful to the referee for this comment.

