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Introduction

In th_{!}.s paper we discuss some perturbation problems related to the
relative compactness and boundedness of closable operators in complex
Banach spaces which are not necessarily reflexive.

Let X, Y and Z be Banach spaces, let A be an operator from X into
Z and let B be an operator from X into Y with D(A)\subset D(B) , where
D (T) denotes the domain of an operator T. We consider the following
three conditions (see T Kato [3] and S. G. Krein [4]):

(I) B is A -compact, i . e. , for any sequence \{u_{n}\} in D(A) with

\sup_{n\in N}(||u_{n}||_{X}+||Au_{n}||_{Z})<\infty . \{Bu_{n}\} has a convergent subsequence \{Bu_{n_{J}}\} in Y.
(II) B is subordinate to A with exponent \alpha\in(0,1) , i . e. , there is a

constant C_{a} such that for all u\in D(A)

||Bu||_{Y}\leq C_{a}||Au||_{Z}^{a}||u||_{x^{-a}}^{1} .

(Ill) B is A -bounded with A -bound zero, i . e. , for any \epsilon>0 there is a
constant C_{\epsilon} such that for all u\in D(A)

||Bu||_{Y}\leq\epsilon||Au||_{Z}+C_{\epsilon}||u||_{X} .

It is clear that ( II) implies (III). P. Hess [1] [2] has proved that
(I) implies (III) in the case X=Y=Z, where X is reflexive and A is
closed. He has also observed that both reflexivity of X and closedness of
A are necessary. M. Schechter [6] has proved that ( I) implies (III) in
the case X=Y=Z, where X is not necessarily reflexive, A is closed, and
B is closable.

In \S 1 we prove that exen when X, Y, Z are not reflexive and A is
not closed, ( I) implies (III) under the condition that B is closable,

which is also shown not removable. Moreover, we prove that there exist
a Banach space X , a closed operator A and a non-closable operator B in
X satisfying ( I) and (II) . Furthermore, we prove that there exist a
Banach space X and closed operators A, B in X such that (II) does not
hold for any \alpha\in(0,1) but ( I) holds. Let X=Y=Z=L2(R^{n}) and let
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\Lambda^{s}=(1-\Delta)^{s/2} , s\in R , with D(\Lambda^{s})=H_{2}^{s}(R^{n}) , the Sobolev space of order s.
Then A:=\Lambda^{s} and B:=\Lambda^{t} with 0<t<s does not satisfy ( I) but satisfies
(II) for \alpha=t/s.

Therefore in general, ( I) and (II) are irrelevant to each other.
In \S 2 we investigate the conditions (II) and (III) in view of the spec-

tral properties of A and B in the case where X=Y=Z and A is a non-
negative operator in X. We show that the decay property of B(A+\lambda)^{-1}

in the operator norm on X as \lambdaarrow\infty is closely related to the properties
(II) and (HI). We remark that the information about the decay rate for
B(A+\lambda)^{-1} with respect to \lambda also plays an important role in determining
the domains of the fractional powers (A+B)^{a_{\wedge}}\alpha\in R , of the perturbed
operator A+B (see H. Kozono &T. Ozawa [4]).

\S 1. Results on relatively compact perturbations

Our first result is:

THEOREM 1. 1 Let X, Y and Z be Banach spaces. Let A be an
operator from X into Z and let B be an A-compact operator from X into
Y. If B is closable, then B is A -bounded with A -bound zero.

The converse of Theorem 1. 1 does not hold:

THEOREM 1. 2 Let X be the Banach space C(I) , I=[0,1] , of con-
tinuous functions on I with the uniform norm. Let A and B be the opera-
tors in X given respectively by

D(A)= \{u\in X : u’=(\frac{d}{dx})^{2}u\in X, u(0)=u(1)=0\} , Au=-u^{rr}-u\in D(A) ,

D(B)=\{u\in X ; u’\in X\} , (Bu) (x)=u’(0) , u\in D(B) , x\in I. Then:
(1) B is A-compact.
(2) B it subordinate to A with exponent 1/2.
(3) B is not closable.

The following theorem shows that ( I) does not imply (II) .

THEOREM 1. 3 LelX be as in Theorem 1. 2. Let A and B be the
operators given respectively by
D(A)=X, (Au) (x)=u(0) , u\in X, x\in I,

D(B)=X, (Bu) (x)= \int_{0}^{\chi}u(y)dy, u\in X, x\in I. Then:

(1) B is A-compact.
(2) For any \alpha\in(0,1) , B is not subordinate to A with exponent \alpha .
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Proof OF THEOREM 1. 1 We prove the theorem by contradiction.
Suppose that there exist \epsilon_{0}>0 and a sequence \{u_{n}\} in D(A) satisfying
u_{n}\neq 0 and

(1. 1) ||Bu_{n}||_{Y}>\epsilon_{0}||Au_{n}||_{Z}+n||u_{n}||_{X}

For all n\in N . We set v_{n}=u_{n}/||Bu_{n}||_{Y}. It follows from (1. 1) that
\sup_{n\in N}(||v_{n}||_{X}+||Av_{n}||_{z})<\infty and therefore \{Bv_{n}\} has a subsequence \{Bv_{n_{J}}\} such

that for some w\in Y, Bv_{n_{J}}arrow w in Y as jarrow\infty . On the other hand we see
from (1. 1) that v_{n_{J}}arrow 0 in X as jarrow\infty . Since B is closable, we have w=0 .
This contradicts the fact that ||Bv_{n}||_{Y}=1 for all n\in N .

Proof OF THEOREM 1. 2 (1) For any \lambda\not\in\{n^{2}\pi^{2} ; n\in N\cup\{0\}\} , we
have \lambda\in\rho(A) , the resolvent set of A , and

((\lambda-A)^{-1}u)(x)

+( \lambda^{1/2}\sin\lambda^{1/2})^{-1}(\sin(\lambda^{1/2}(x-1))\int_{0}^{\chi}\sin(\lambda^{1/2}y)u(y)dy

+ \sin(\lambda^{1/2}x)\int_{x}^{1}\sin(\lambda^{1/2}(y-1))u(y)dy) , u\in X, x\in I.

Thus

(B(\lambda-A)^{-1}u)(x)

=( \frac{d}{dx}(\lambda-A)^{-1}u)(0)=(\sin\lambda^{1/2})^{-1}\int_{0}^{1}\sin(\lambda^{1/2}(y-1))u(y)dy .

It therefore follows from the Ascoli-Arzel\‘a theorem that B(\lambda-A)^{-1} is a
compact operator. This proves part (1).

(2) We prove that ||Bu||\leq 2^{1/2}||Au||^{1/2}||u||^{1/2},-u\in D(A) . Let

(1.2) u(x)=xu’(0)+ \int_{0}^{x}(x-y)u’(y)dy, x\in I,

(1.3) u’(0)=- \int_{0}^{1}(1-y)u’(y)dy .

If ||Au||/||u||\geq 2 , then by (1. 2) we obtain for x\in(0,1]

(1.4) |u’(0)| \leq x^{-1}||u||+x^{-1}\int_{0}^{x}(x-y)||Au||dy=x^{-1}||u||+2^{-1}x||Au|| .

We set x_{1}=2^{1/2}||u||^{1/2}||Au||^{-1/2}- Since x_{)}\in(0,1] , we obtain the desired in-
equality by replacing x by x_{J} in (1. 4).

If ||Au||/||u||<2 , then by (1. 3)

|u’(0)| \leq\int_{0}^{1}(1-y)||Au||dy=2^{-1/2}||Au||\leq 2^{-1/2}||Au||^{1/2}||u||^{1/2} .
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This proves part (2).

(3) Let {un} be the sequence in D(B) defined by u_{n}(x)=

n^{-1/2}\sin(n^{1/2}\pi x) , x\in I. Then, ||u_{n}||=n^{-1/2}arrow 0 as narrow\infty . On the other hand
(Bu_{n})(x)=\pi for all x\in I and n\in N , so that B is not closable.

Proof OF THEOREM 1. 3 Part (1) follows from the Ascoli-Arzel\‘a
theorem. We prove part (2) by contradiction. Suppose that there exist
\alpha\in(0,1] and C>0 such that ||Bu||\leq C||Au||^{a}||u||^{1-a}-u\in X. But this does
not hold for u(x)=x\in X.

\S 2. Results on relatively bounded perturbations with relative bound
zero

For a Banach space X, B(X) denotes the space of all bounded linear
operators in X with norm ||\cdot||_{B(X)} .

THEOREM 2. 1 Let X be a Banach space. Let A be a closed operator
in X such that the resolvent set \rho(A) of A contains the negative real axis
(-\infty, 0) and \sup_{\lambda>0}\lambda||(A+\lambda)^{-1}||_{B(X)}<\infty . Let B be a closable operator in X

with D(B)\supset D(A) . Let \alpha\in[0,1] . Then, B is subordinate to A with
exponent \alpha if and only if \sup_{\lambda>0}\lambda^{1-a}||B(A+\lambda)^{-1}||_{B(X)}<\infty .

THEOREM 2. 2 Let X, A and B be as in Theorem 2. 1. Suppose

that there is \lambda_{0}\geq 0 such that \int_{\lambda 0}^{\infty}||B(A+\lambda)^{-2}||_{B(X)}d\lambda<\infty . Then, B is A-

bounded with A bound zero.

COROLLARY. Let X, A and B be as in Theorem 2. 1. Suppose that

there is \lambda_{0}\geq 0 such that \int_{\lambda_{0}}^{\infty}\lambda^{-1}||B(A+\lambda)^{-1}||_{B(X)}d\lambda<\infty . Then, B is A-

bounded with A bound zero.

The converse of Theorem 2. 2 does not hold:

THEOREM 2. 3 Let X be a Hilbert space and let H be a self-adjoint
operator. Let A and B be the operators in X given respectively by A=|H| ,

B=|H|/\log(1+|H|) . Then:
(1) B is A bounded with A bound zero.
(2) For any N\geq 0 , the map (N, \infty)\ni\lambda\mapsto||B(A+\lambda)^{-2}||_{B(X)}\in R is not

integrable.

Proof OF THEOREM 2. 1 Since A is closed and B is closable with
D(B)\supset D(A) , we have B(A+\lambda)^{-1}\in B(X) for all \lambda>0 . We set M=
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\sup_{\lambda>0}\lambda||(A+\lambda)^{-1}||_{B(X)} . If B is subordinate to A with exponent \alpha , then there

is a constant C such that ||Bu||\leq C||Au||^{a}||u||^{1-a} for all u\in D(A) . there
fore for any v\in X we have

||B(A+\lambda)^{-1}v||\leq C||A(A+\lambda)^{-1}v||^{a}||(A+\lambda)^{-1}v||^{1-a}

\leq C(||v||+\lambda||(A+\lambda)^{-1}||_{B(X)}||v||)^{a}(\lambda^{-1}M||v||)^{1-a}

\leq C(1+M)^{a}M^{1-a}\lambda^{a-1}||v|| .

Hence,

\sup_{\lambda>0}\lambda^{1-a}||B(A+\lambda)^{-1}||_{B(X)}\leq C(1+M)^{a}M^{1-a}

Conversely, suppose that \overline{M}

:= \sup_{\lambda>0}\lambda^{1-a}||B(A+\lambda)^{-1}||_{B(X)}<\infty . Let u\in D(A) ,

u\neq 0 . We obtain for any \lambda>0

||Bu||\leq||B(A+\lambda)^{-1}||_{B(X\rangle}(||Au||+\lambda||u||)\leq\overline{M}\lambda^{a-1}(||Au||+\lambda||u||) .

Setting \lambda=||Au||/||u|| , we have the desired estimate.

Proof OF THEOREM 2. 2 It follows from the resolvent equation that
for any j\in N the map (0, \infty)\ni\lambda\mapsto B(A+\lambda)^{-j}\in B(X) is continuous.
Since we have for any h\neq 0 ,

||h^{-1}(B(A+\lambda+h)^{-1}-B(A+\lambda)^{-1})+B(A+\lambda)^{-2}||_{B(X)}

=|h|||B(A+\lambda)^{-2}(A+\lambda+h)^{-1}||_{B(X)} ,

the map (0, \infty)\ni\lambda\mapsto B(A+\lambda)^{-1}\in B(X) is continuously differentiate and

\frac{d}{d\lambda}B(A+\lambda)^{-1}=-B(A+\lambda)^{-2}- Therefore

B(A+ \lambda)^{-1}-B(A+\mu)^{-1}=-\int_{\mu}^{\lambda}B(A+\nu)^{-2}d\nu, \lambda>\mu>0 ,

and by our assumption we see that \{B(A+\lambda)^{-1} : \lambda\geq\lambda_{0}\} is convergent in
B(X) . Hence there is an operator T\in B(X) such that B(A+\lambda)^{-1}arrow T

in B(X) as \lambdaarrow\infty . Let u\in X. We have (A+\lambda)^{-1}u-0, B(A+\lambda)^{-1}u-arrow

Tu in X as \lambdaarrow\infty . Since B is closable, we conclude that Tu=0 for all
u\in X. This implies that B(A+\lambda)^{-1}arrow 0 in B(X) as \lambdaarrow\infty . The result
now follows from the inequality

||Bu||\leq||B(A+\lambda)^{-1}||_{B(X)}(||Au||+\lambda||u||) , u\in D(A) , \lambda>0 .

Proof OF THEOREM 2. 3 (1) Since (-\infty, 0)\subset\rho(A) , it suffices to
prove that B(A+\lambda)^{-1}arrow 0 in B(X) as \lambdaarrow\infty . We estimate B(A+\lambda)^{-1} in
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B(X) for \lambda\geq 10 as

||B(A+ \lambda)^{-1}||_{B(X)}=\sup_{\mu\geq 0}\mu(\log(1+_{\mu}))^{-1}(_{\mu}+\lambda)^{-1}

\leq\sup_{j\in N2^{J-1}}\sup_{\lambda\leq\mu<2^{J}\lambda}\mu
( log (1+_{\mu}))^{-1}(_{\mu}+\lambda)^{-1}

+ \sup_{0\leq\mu<\lambda}\mu
(log (1+_{\mu}))^{-1}(_{\mu}+\lambda)^{-1}

\leq\sup_{j\in N}2^{j}\lambda(\log(1+2^{j-1}\lambda))^{-1}(2^{j-1}\lambda+\lambda)^{-1}

+\lambda (log (1+\lambda))^{-1}(2\lambda)^{-1}

\leq\sup_{j\in N}2^{j}((j-1)\log 2+\log\lambda)^{-1}(2^{j-1}+1)^{-1}

+ (2 log \lambda)^{-1}\leq 3(\log \lambda)^{-1} .

This proves part (1).
(2) For any \lambda>0 . we have

||B(A+ \lambda)^{-2}||_{B(X)}=\sup_{\mu\geq 0}\mu(\log(1+\mu))^{-1}(\mu+\lambda)^{-2}

\geq\lambda (log (1+\lambda))^{-1}(2\lambda)^{-2}\geq(4(1+\lambda)\log(1+\lambda))^{-1} .

The R. H. S. of the last inequality is not integrable. This proves part (2).
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