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1. Introduction.

A classical result of Lyapunov [11] states that if x(t) is a nontrivial
solution of the differential system

x’(t)+p(t)x(t)=0, a\leq t\leq b

x(a)=0=x(b)

where p(t) is a continuous and nonnegative function defined in [a, b] ,
then

(b-a) \int_{a}^{b}p(s)ds>4 ,

and the constant 4 cannot be replaced by a larger number. Generaliza-
tions and/or analogous results [1-3, 5, 7, 8, 10, 13, 16, 17] have since then be
obtained for various differential and/or discrete systems. Here we are
concerned with the following partial difference system

(1. 1) \Delta_{1}^{2}u(i-1, j)+\Delta_{2}^{2}u(i, j-1)+p(i, j)u(i, j)=0 , (i, j)\in S

(1. 2) u(i, j)=0, (i, j)\in\partial S

where S is a net with exterior boundary \partial S, p(i, j)\geq 0 for (i, j)\in S, \Delta_{1} is
defined by \Delta_{1}h(i, j)=h(i+1, j)-h(i, j) and \Delta_{2} by \Delta_{2}h(i, j)=h(i, j+1)-

h(i, j) . We shall find Lyapunov type conditions of the form
(1. 3) \sum_{(i,j)\in S}p(i, j)\geq\mu(S)

which are necessary for the above system to have a nontrivial solution.
The precise definitions of a net S and its exterior boundary \partial S

together with others will be given in section two. There we shall also
derive and/or quote some preparatory results to be used in the succeeding
sections. Among these results are discrete maximum principle, discrete
Green’s identity and others which are related to the geometrical aspects of
nets. In section three, we shall define the concept of a Green’s function
and derive a general condition of the form (1. 3) in terms of the maximum
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value of this function. In contrast to the simple integral interval of an
ordinary difference system such as that discussed by Cheng [3], the
domains of definition of partial difference system can be very complicated.
We are able, however, to investigate three types of nets in sections four,

five and six, and derive the corresponding constants \mu(S) .
Discrete systems of the form (1. 1)-(1.2) arise in physical problems

including random walk and diffusion problems in lattices [19], electrical
potential problems of various metallic nets [14], etc. Our results will
therefore find applications in such problems.

2. Nets and discrete harmonic functions

The lattice points of the x, y plane have coordinates (/, j) where i

and j take on integral values. Two lattice points are neighbors if their
Euclidean distance is one. The lattice points z_{1} , z_{2} , \cdots z_{n} are said to
form a path with terminals z_{1} and z_{n} if z_{1} is a neighbor of z_{2} , z_{2} is a
neighbor of z_{3} , etc. A set of lattice points is said to be connected if any

two of its points are terminals of a path contained in the set. A comp0-

nent of a set S of lattice points is a nonempty maximal connected subset
of S. A connected and finite but nonempty set of lattice points is called a
net. Let S be a net, a lattice point is an exterior boundary point of S if
it does not belong to S but has at least one neighbor in S. The set of all
exterior boundary points of S is denoted by \partial S. The degree of a point in
a net S is the number of its neighbors in S.

The following is obvious.

LEMMA 2. 1. For any two components of a finite set S of lattice
points, none of the exterior boundary points of one component can be a

member of the other.

THEOREM 2. 2. Suppose S is a net. For any x\in S, S-{x} contains at
most four components. Furthermore, the exterior boundary of any compO-

nent of S-{x} is contained in \partial S\cup\{x\} .

PROOF. Let N(x) be the set of neighbors of x. For each y in N(x) ,

let C(y) be a component of S-{x} containing y. Since x has at most four
neighbors, there are at most four such components. Consider the set

f= \{x\}\cup\sum_{y\in N(x)}C(y) .

We need to show that J =S. The fact that J\subseteq S is clear. To see the
converse, let z\in S such that z\neq x. Since S is connected, there is a path z,

x_{1} , x_{2} , \cdots x_{m} , x contained in S. Since x_{m} and x are neighbors, x_{m}\in N(x) ,
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so that z belongs to C(x_{m}) . This implies S is a subset of J. Next we
note that x\in\partial C(y) for any y\in N(x) . Consequently, if u is an exterior
boundary point of some component C(y) , then u is either equal to x , or u

is an exterior boundary point of S. Indeed, if u\neq x , then u \not\in\sum_{y\in N(\chi)}C(y)

by Lemma 2. 1. Thus u\in\partial S since u is an exterior boundary point of
C(y)\subseteq S and u\not\in J=S. Q. E. D.

COROLLARY 2. 3. Suppose S is a net, Let x\in S. Then for any com-
point C of S-{x), \partial C\cap\partial S is not empty.

PROOF. If \partial C\cap\partial S is empty, then by Theorem 2. 2, \partial C is a subset of
\{x\} . This is impossible since any finite nonempty set of lattice points (in

particular, \partial C ) has at least four exterior boundary points. Q. E. D.
In the rest of our discussions, S shall denote a net. A real function

f(i, j) defined in S\cup\partial S is said to be discrete harmonic or preharmonic
[6] on S if

f(i, j)= \frac{1}{4}\psi(i+1, j)+f(i-1, j)+f(i, j+1)+f(i, j-1)\}

for all (/, j)\in S. Clearly, f is discrete harmonic if and only if

Df(i, j)=0, (i, j)\in S

where the discrete Laplacian D (see [6, 9]) is defined by

f(i, j)=f(i+1, j)+f(i-1, j)+f(i, j+1)+f(i, j-1)-4f(i, j)
LEMMA 2. 4. If f(i, j) is discrete harmonic on S, then f is either a

constant or it attains its maximum over S\cup\partial S on the boundary only.

The above Lemma is due to Heilbronn [9, Theorem 1] and is a dis-
crete analog of the maximum principles for harmonic functions. More
general discrete maximum principles can be found in Cheng [4].

LEMMA 2. 5. (Duffin [6, Lemma 1] If f(i, j) are real functions on
S\cup\partial S such that f(i, j)=g(i, j)=0 for (i, j)\in\partial S, then

\sum_{s}U(i, j)Dg(i, j)-g(i, j)Df(i, j)\}=0 .

3. Green’s functions and Lyapunov’s inequalities

By means of the discrete Laplacian defined in Section two, the system
(1, 1)-(1.2) can be written in the form

(3. 1) Du(z)+p (z) u(z)=0, z\in S
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(3. 2) u(z)=0, z\in\partial S.
As is well known in the theory of differential equations, the concept

of a Green’s function plays an important role in dealing with differential
systems. Here we have an analogous concept for our discrete system. A
Green’s functin G(z|w) associated with (3. 1)-(3.2) is defined as the
solution of the system

(3. 3) DG(z|w)=-\delta(z|w) , z\in S

(3. 4) G(z|w)=0 , z\in\partial S

where w is some fixed but arbitrary point of S and \delta(z|w) is the Dirac
delta function defined by \delta(z|w)=1 if w=z and \delta(z|w)=0 if w\neq z .

We can easily show that G(z|w) exists and is nonnegative by itera-
tion (see Duffin [6, p. 242]). Then by means of the maximum principle,
the positiveness and uniqueness of G(z|w) can be established by standard
arguments (see Protter and Weinberger [15]). Next, by means of the
Green’s identity (Lemma 2. 5) and the substitution property of the Dirac
delta function, it is easily shown (see Roach [6, Theorem 9. 2]) that
G(z|w)=G(w|z) for w, z\in S.

By means of the Green’s function G(w|z) , the system (3. 1)-(3.2) is
equivalent to the following equation

(3. 5) u(z)= \sum_{w\in S}G(z|w)p(w)u(w) , z\in S.

The proof is standard and is thus omitted. Suppose u(z) is a nontrivial
solution of (3. 5). Let z^{*} be a lattice point in S such that |u(z^{*})|=

\max_{z\in S}|u(z)| . By (3. 5),

|u(z^{*})| \leq\sum_{w\in S}G(z^{*}|w)p(w)|u(z^{*})|

\leq|u(z^{*})|\sum_{w\in S}G(z^{*}|w)p(w)\leq|u(z^{*})|\max_{w,z\in S}G(z|w)\sum_{w\in S}p(w) ,

so that

(3. 6) \sum_{w\in S}p(w)\geq\frac{1}{\max_{w,z\in S}G(z|w)} .

L EMMA 3. 1. For any z \in S,\max_{w\in S\cdot\{z\}}G(w|z)<G(z|z) . In particular,

\max_{w.z\in S}G(z|w)=\max_{z\in S}G(z|z) .

PROOF. Let C be an arbitrary component of S-{z} containing a
neighbor of z . Since G(w|z) is discrete harmonic on C and G(w|z)>0
for w\in S , and since G(w|z)=0 for w\in\partial C\cap\partial S (which is nonempty by
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Corollary 2. 3), hence G(w|z) cannot be a constant function over C\cup\partial C.
According to the maximum principle and Theorem 2. 3,

\max_{w\in S}G(w|z)<\max_{w\in\partial C}G(w|z)\leq\max_{w\in\partial S\cup\{z\}}G(w|z)=G(z|z)

as desired. Q. E. D.
The condition (3. 6) is sharp in the sense that we can find a non-

negative function p(z) on S and a nontrivial solution of (3. 1)-(3.2)
such that

\sum_{w\in S}p(w)=\frac{1}{\max_{w,z\in S}G(w|z)}=\frac{1}{\max_{z\in S}G(z1z)} .

Indeed, let z^{*} be a point in S such that

\max_{z\in S}G(z|z)=G(z^{*}|z^{*}) .

Let u(z)=G(z|z^{*}) for z\in S\cup\partial S and let p(z)= -Du(z)/u(z) for z\in S.
Then (3. 1)-(3.2) is clearly satisfied and

\sum_{z\in s}p(z)=\sum_{z\in S}-\frac{Du(z)}{u(z)}=\sum_{z\in S}\frac{\delta(z|z^{*})}{G(z1z^{*})}=\frac{1}{G(z^{*}1z^{*})}

as required.
We summarize the above discussions as follows.

THEOREM 3. 2. Suppose p(z) is a nonnegative function defined on a
net S. If (3. 1)-(3.2) has a nontrivial solution then

(3. 7) \sum_{z\in S}p(z)\geq\mu(S) ,

where \mu(S)=\{\max_{w,z\in S}G(z|w)\}^{-1}=\{\max_{z\in S}G(z|z)\}^{-1} , and the inequality is sharp.

Before we turn to the estimation of the constant \mu(S) for various
nets, note that the following comparison theorem for the Green’s function
holds.

THEOREM 3. 3. Let z_{0}\in\partial S and tetS’=S\cup\{z_{0}\} . Let G’(z|w) be the
Green ’s function of the system

DG’(z|w)=-\delta(z|w) , z\in S’

G’(z|w)=0 , z\in\partial S’

Then G(z|w)<G’(z|w) for all z\in S.

PROOF. Let h(z)=G(z|w)-G’(z|w) for z\in S\cup\partial S. Then Dh(z)=0
for z\in S and h(z)=-G’(z|w) for z\in\partial S. Since G’(z_{0}|w)>0 and since
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G’(z|w)=0 for any z\in\partial S\cap\partial S’- thus h(z) cannot be a constant function
over S\cup\partial S. By the maximum principle, we have \max_{s}h<\max_{\partial S}h\leq 0 as
required. Q. E. D.

4. Maxima of Green’s functions on straight nets

A net S said to be straight if there are exactly two points in S with
degree 1 and the remaining points in S with degree 2. An example of a
straight net is the set \{(2,2), (2, 3), (2, 4), (3, 4), (4, 4), (4, 5)\} . Suppose
a straight net S has N points, then it is not difficult to see that these
points can be ordered as a chain z_{1} , z_{2} , \cdots z_{N} such that z_{i} and z_{j} are
neighbors if and only if |i-j|=1 . As a consequence, (3. 1)-(3.2) can be
written as
(4. 1) Du (z_{i})+p(z_{i})u(z_{i})=0,1\leq i\leq N

(4. 2) u(z)=0 , z\in\partial S

and (3. 3)-(3.4) can be written as
(4. 3) DG(z_{i}|z_{j})=-\delta(z_{i}|z_{j})1\leq i\leq N

(4. 4) G(z|z_{j})=0 , z\in\partial S,

where z_{j} is some point of S. For convenience’s sake, we shall write
G(i, j) instead of G(z_{i}|z_{j}) . We shall find an explicit formula for G(i, j) .
In order to do this, let X_{-1}=0 , X_{0}=1 and X_{k} be defined by the recurrence
relation

(4. 5) X_{k}=4X_{k-1}-X_{k-2} ,

for k=2,3 , \cdots We can verify that

(4.6) X_{k}= \frac{1}{2\sqrt{3}}(\alpha^{k+1}-\alpha^{-(k+1)}) , \alpha=2+\sqrt{3}

for k\geq 0 . By means of (4. 6), it is easy to check that x_{k} is positive and
increasing. Also

G(i, j)=\{\begin{array}{l}X_{i-1}X_{N-j}X_{N}^{-1}X_{N-i}X_{j-1}X_{N}^{-1}\end{array} j\leq i\leq N’1\leq i\leq j

and

\max_{1\leq i\leq N}G(i, j)=\{ X_{m}^{2}X_{N}^{-1}X_{m-1}X_{m}X_{N}^{-1}

N=2m
N=2m+1^{\cdot}

The proof of these assertions amounts to direct verification which is
straightforward. In view of Theorem 3. 2 and the above discussions, we
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have the following

THEOREM 5. 1. Let S be a circular net with N points. If (4. 1)-
-(4.2) has a nontrivial solution, then (1. 3) holds where

\mu(S)=\{
X_{N}X_{\overline{m}-1}^{1}X_{\overline{m}^{1}} , N=2m
X_{N}X_{\overline{m}^{2}} , N=2m+1

and X_{k} is given by (4. 6). The inequality is sharp.
The function \mu(S) is a decreasing but bounded function of the size of

S as can be seen from the following

THEOREM 4. 2. Let M_{N}= \max_{1\leq i\leq N}G(i, i) . Then \{M_{N}\}_{N=1}^{\infty} is an increas-

ing sequence and has the limit \sqrt{3}/6 .

PROOF. We have
M_{2k+1}=X_{2k+1}^{-1}X_{k}^{2}= \frac{(2\sqrt{3})^{-2}(\alpha^{k+1}-\alpha^{-k-1})^{2}}{(2\sqrt{3})^{-1}(\alpha^{2k+2}-\alpha^{-2k-2})}

= \frac{1-2\alpha^{-2k-2}+\alpha^{-4k-4}}{2\sqrt{3}(1-\alpha^{-4k-4})}-\frac{\sqrt{3}}{6} .

Similarly, M_{2k}arrow\sqrt{3}/6 . Next

M_{2k+2}-M_{2k+1}=X_{2k+2}^{-1}X_{k+1}X_{k}-X_{2k+1}^{-1}X_{k}X_{k}

=X_{2k+2}^{-1}X_{2k+1}^{-1}X_{k}(X_{2k+1}X_{k+1}-X_{2k+2}X_{k})

=X_{2k+2}^{-1}X_{2k+1}^{-1}X_{k}\{X_{2k+1}(4X_{k}-X_{k-1})-(4X_{2k+1}-X_{2k})X_{k}\}

=X_{2k+2}^{-1}X_{2k+1}^{-1}X_{k}(X_{2k}X_{k}-X_{2k+1}X_{k-1})

=X_{2k+2}^{-1}X_{2k+1}^{-1}X_{k}(X_{k+1}X_{1}-X_{k+2}X_{0})

=X_{2k+2}^{-1}X_{2k+1}^{-1}X_{k}^{2}

>0 .

Similarly, M_{2k+1}-M_{2k}>0 . The proof is complete.

5. Maxima of Green’s functions on circular nets

A net S is said to be circular if every one of its points has degree 2.
An example of a circular net is the set { (1,1) , (1, 2) , (1, 3) , (1, 4) , (2, 4) ,

(3, 4) , (3, 3) , (4, 3) , (4, 2) , (4,1)\backslash ’(3,1) , (2, 1)\} . Suppose a circular net S
has N points, then it is not difficult to see that these points can be ordered
as a ” closed ” chain z_{1} , z_{2} , \cdots . z_{N} such that z_{1} has only two neighbors z_{N}

and z_{2} , z_{k} has only tow neighbors z_{k-1} and z_{k+1} where k=2,3 , \cdots N-1 ,

and z_{N} has only two neighbors z_{N-1} and z_{1} . Again, (3. 1)-(3.2) and (3.

3)-(3.4) can be written as (4. 1)-(4.2) and (4. 3)-(4.4) respectively.
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We will also write G(i, j) instead of G(z_{i}|z_{j}) as in Section 4. We shall
need an explicit formula for G(i, j) . In order to do this, let Y_{k} , - 1\leq k\leq

N. be defined by

(5. 1) Y_{k}=\{
X_{k} -1\leq k\leq N-1

4X_{N-1}-2X_{N-2}-2 k=N,

where X_{k} has been defined in Section 4. We have already shown that
X_{k}>1 for k\geq 2 and X_{k+1}-X_{k}>0 for k\geq 0 , thus

Y_{N}=2(X_{N-1}-X_{N-2})+2(X_{N-1}-1)>0 .

We now assert that

(5. 2) G(i, j)=(Y_{|i-j|-1}+Y_{N-1-|i-j|)Y_{N}^{-1}} .

Again the proof amounts to straight-forward verification and the detail is
omitted. Note further that G(i, i)=Y_{N-1}Y_{N}^{-1} . In view of Theorem 3. 2,
we have the following

THEOREM 5. 1. Let S be a circular net with N points. If (4. 1)-
(4.2) has a nontrivial solution, then (1. 3) holds where \mu(S)=Y_{N-1}^{-1}Y_{N}

and Y_{N-1} , Y_{N} are given by (5. 1). The inequality is sharp.
We shall show that the sequence \{ Y_{N-1}Y_{N}^{-1}\}_{N=0}^{\infty} is decreasing and its

limit is \sqrt{3}/6 . For this purpose, we first show that X_{k}^{2}-X_{k-1}X_{k+1}=1 for
k=0,1 , \cdots

r. N-1 . Indeed, X_{0}^{2}-X_{-1}X_{1}=1 by definition. Assume that out
hypothesis holds for k=m. Then

X_{m+1}^{2}-X_{m+2}X_{m}=(4X_{m}-X_{m-1})X_{m+1}

-X_{m}(4X_{m+1}-X_{m})=X_{m}^{2}-X_{m+1}X_{m-1}=1 .

THEOREM 5. 2. The sequence \{ Y_{N-1}Y_{N}^{-1}\}_{0}^{\infty} is decreasing and
approaches \sqrt{3}/6 .

PROOF. We have

Y_{N+1}^{-1}Y_{N}-Y_{N}^{-1}Y_{N-1}=Y_{N+1}^{-1}Y_{N}^{-1}\{(4X_{N-1}-2X_{N-2}-2)X_{N}

-(4X_{N}-2X_{N-1}-2)X_{N-1}\}=

Y_{N+1}^{-1}Y_{N}^{-1}\{2X_{N-1}^{2}-2X_{N}X_{N-2}+2X_{N-1}-2X_{N}\}=

-2 Y_{N+1}^{-1}Y_{N}^{-1}(X_{N}-X_{N-1}-1) .

Since X_{N}-X_{N-1}\geq 3 (see (4. 6)), thus the last term of the above chain of
equalities is negative. Also, by means of (4. 6) and (5. 1), it is easily

verified that Y_{N-1}Y_{N}^{-1} approaches \sqrt{3}/6 . The proof is complete.
It is interesting to note that \mu(A)\geq 6/\sqrt{3}\geq\mu(B) for any circular net

A and straight net B.
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6. Maxima of Green’s functions on rectangular nets

A net S is said to be rectangular if S consists of n rows of m lattice
points, that is,

(6. 1) S= { (i, j)|1\leq i\leq m, 1\leq j\leq n where i, j, m, n are integers}.

Writing z as (/, j) and w as (a, b) , the Green’s function G(z|w) of the
system (3. 3)-(3.4) associated with the net (6. 1) is given by (see

McCrea and Whipple [12] )

(6. 2) \{\begin{array}{l}\frac{2}{m+1}\sum_{r=1}^{m}sin\frac{ar\pi}{m+1}sin\frac{ir\pi sinh(j\beta_{r})}{m+1sinh(\beta_{r})}\frac{sinh((n+1-j)\beta_{r})}{sinh((n+1)\beta_{r})}\frac{2}{m+1}\sum_{r=1}^{m}sin\frac{ar\pi}{m+1}sin\frac{ir\pi sinh(b\beta_{r})}{m+1sinh(\beta_{r})}\frac{sinh((n+1-j)\beta_{r})}{sinh((n+1)\beta_{r})}\end{array} j\geq bj\leq b

where \beta_{r} , 1\leq r\leq m , are the roots of the equation

(6. 3) cos (r\pi/(m+1))+\cosh(\beta_{r})=2 .

As a consequence,

(6. 4) G(a, b|a, b)= \frac{2}{m+1}\sum_{r=1}^{m}(\sin\frac{ar\pi}{m+1})^{2}\frac{\sinh(b\beta_{r})\sinh((n+1-b)\beta_{r})}{\sinh(\beta_{r})\sinh((n+1)\beta_{r})}

For convenience’s sake, we shall write g(a, b) instead of G(a, b|a, b) .
We need to find the maximum of g(a, b) for 1\leq a\leq m , 1\leq b\leq n . Various
cases have to be considered. We first consider the case where n is odd.
We assert that for any fixed a,

\max_{1\leq b\leq n}g(a, b)=g(a, (n+1)/2) .

Note first that

sinh (b\beta_{r}) sinh (n+1-b) \beta_{r})=\frac{1}{2} cosh ((b+n+1-b)\beta_{r})

cosh ((b-n-1+b)\beta_{r})\}

= \frac{1}{2} cosh ((n+1)\beta_{r})- cosh ((n+1-2b)\beta_{r})\} .

Since cosh x is an even function and increasing for x\geq 0 , the minimum of
sinh b\beta_{r} \sinh [(n+1-b)\beta_{r}] occurs when 2b=n+1 . In view of (6. 4), and
the fact that \sinh(\beta_{r})\sinh(n+1)\beta_{r})>0 , our assertion is proved. Similarly,
when n is even, then for any fixed a ,

\max_{1\leq b\leq n}g(a, b)=g(a, n/2)=g(a, n/2+1) .
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By symmetry considerations, we see that when m is odd, then for any b ,

\max_{1\leq a\leq m}g(a, b)=g((m+1)/2, b)

and when m is even, then for any b ,

\max_{1\leq a\leq m}g(a, b)=g(m/2, b)=g(m/2+1, b) .

The following is now clear.

LEMMA 6. 1. For the rectangular net (6. 1), the nmimum M of the
associated Green ’s function G(i, j|a, b) is given by

(6. 5) M=\{

g(m\pm 2, (n+1)/2) m is even, n is odd
g(m+1)/2, n/2) m is odd, n is even
g(m/2, n/2) m is even, n is even
g(m+1)/2, (n+1)/2)m is odd, n is odd,

where g(i, j)=G(i, j|i, j) .

THEOREM 6. 2. Let S be a rectangular net of the form (6. 1). If
(3. 1)-(3.2) has a nontrivial solution then (1. 4) holds where \mu(S)=M^{-1} ,
where M is given by (6. 5), and the inequality is sharp.

7. Final remarks

We have discussed three special types of nets. In general, nets can
take on various forms. The question then arises whether explicit Green’s
functions can be found for other types of nets, and if not, whether \mu(S)

can be calculated or estimated. In view of the fact that the Green’s func-
tion for the rectangular net is implictly given, it is unlikely that explicit
Green’s function for other types of nets can be found. Even if these func-
tions can be found, their values are not vital since we have found (after a
huge amount of computer experimentation) an elementary algorithm for
locating the maximal points of the Green’s function for an arbitrary net.
It is unfortunate that a proof for the validity of our algorithm is not yet
known. However, given that the maximal points can befound, it is then
straightforward to use standard computer packages to calculate the max-
ima of these functions (by means of (3. 3)-(3.4) ). As for now, we can
rely on Theorem 3. 3 for estimation purposes. Indeed, if the nets S_{1} and
S_{2} are related by S_{1}\subseteq S_{2} , then by Theorem 3. 3, their corresponding Green’s
functions G_{1} and G_{2} are related by max G_{1} \leq\max G_{2} so that \mu(S_{1})\geq\mu(S_{2}) .
In actual applications, we can take S_{1} to be any of the three types of nets
discussed before, or any net whose corresponding \mu(S_{1}) is known and get
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a lower bound \mu(S_{1}) for \sum_{s_{2}}p .

References

[1 ] G. BORG. On a Liapounoff criterion of stability, American J. Math., 71 (1949), 67-70.
[2] L. S. CHEN, A Liapunov inequality and forced oscillations in general nonlinear nth

order differential-difference equations, Glasgow Math. J., 18 (1977), 161-166.
[3] S. S. CHENG, A discrete analogue of the inequality of Lyapunov, Hokkaido Math. J.

12 (1983), 105-112.
[4 ] S. S. CHENG, Maximum principles for solutions of second order partial difference in-

equalities, Proceedings of Symposium of Functional Analysis and Applications
(held at Tsing Hua University, Hsinchu, Taiwan, Republic of China, 1980), 395
-401.

[5] J. H. E. COHN, Consecutive zeros of solutions of ordinary second order differential
equations, J. London Math. Soc, (2), 5 (1972), 465-468.

[6] R. J. DUFFIN, Discrete potential theory, Buke Math. J., 20 (1953), 233-251.
[7] S. B. ELIASON, a Lyapunov inequality for a certain second order nonlinear

differential equation, J. London Math. Soc., (2) 2 (1970), 461-466.
[8] H. GUGGENHEIMER, Concave solutions of a Dirichlet problem, Proc. Amer. Math. Soc,

40 (1973), 501-506.
[9 ] H. A. HEILBRONN, On discrete hamronic functions, Proc. Cambridge Phil. Soc., 45

(1949), 194-206.
[10] M. K. KWONG, On Lyapunov’s inequality for disfocality, J. Math. Anal. Appl., 83

(1981), 486-494.
[11] A. LIAPOUNOFF, “ Probleme general de ler Stabilite du Movement ”. Princeton Univer-

sity Press, Princeton, N. J.,1947.
[12] W. H. RcCREA and F. J.W. Whipple, Random paths in two and three dimensions,

Proc Roy. Soc. Edinburgh, 60 (1939-1940), 281-298.
[13] Z. NEHARI, some eigenvalue estimates, J. D’Analyse Math., 7 (1959), 79-88.
[14] H. B. PHILLIPS and N. Wiener, Nets and the Dirichlet problem, J. of Math, and

Phy., 2 (1923), 105-124.
[15] M. H. PROTTER and H. F. Weinberger, “Maximum Principles in Differential Equa-

tions ”, Prentice Hall, Englewood Cliff, N. J., 1967.
[16] W. T. REID, A matrix Liapunov inequality, J. Math. Anal. Appl., 32 (1970), 424-434.
[17] W. T. REID, A generalized Liapnnov inequality, J. Diff. Eq., 13 (1973), 182-196.
[18] G. F. ROACH, “ Green’s Functions ”. 2nd edition, Cambridge University press, Cambrid-

ge, 1982.
[19] F. SPITZER, “ Principles of Random Walk ”, Van Nostrand, 1964.

National Tsing Hua University
Department of Mathematics
Hsinchu, Taiwan 300
Republic of China


	1. Introduction.
	2. Nets and discrete harmonic ...
	THEOREM 2. ...

	3. Green's functions and ...
	THEOREM 3. ...

	4. Maxima of Green's functions ...
	THEOREM 5. ...
	THEOREM 4. ...

	5. Maxima of Green's functions ...
	THEOREM 5. ...
	THEOREM 5. ...

	6. Maxima of Green's functions ...
	THEOREM 6. ...

	7. Final remarks
	References

