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Introduction.

Let (M, g) be an n-dimensional Riemannian manifold. Then it is an
interesting and fundamental problem to find the minimum integer » such
that (M, ¢) can be (locally) isometrically immersed into the euclidean
space R™. Except the case where (M, g) is a space of constant curva-
ture, a few facts are known about the above integer .

Related to this problem the Gauss equation brings to us a useful infor-
mation. Let f be an isometric immersion of (M, g) into the euclidean
space R™. Then the second fundamental form of f satisfies the Gauss
equation, that is a purely algebraic equation essentially determined by the
Riemannian curvature of (M, g) and the codimension m—#n. In this
sense, the Gauss equation may be considered as an obstruction to the exis-
tence of isometric immersions. By showing the non-existence of the solu-
tions of the Gauss equation, many authors obtained estimates on the lower
bounds of m (see [23], [19], [3] etc.).

In this paper we consider the following problem: Does the existence
of solutions of the Gauss equation imply the existence of isometric immer-
sions? As the examples that will be given in this paper show, the above
problem is not true in general. There are many higher order obstructions
to the existence of isometric immersions. The main purpose of this paper
is to formulate two higher order obstructions called the first and second
Gauss-Codazzi equations and to show the usefulness of these obstructions.

Let m be an integer with m=#n. By definition, a differentiable map f
of M into R™ is called an isometric immersion if the induced metric via f
coincides with the Riemannian metric g. In other words, an isometric
immersion is regarded as a solution of a system of first order partial
differential equations with respect to a differentiable map £ of M into R™.
We consider this system from the view point of the theory of partial
differential equations. Let 4 be a non-negative integer and /*(R™) be the
k-th order jet bundle of local differentiable mappings of M into R™. The
system of isometric immersions stated above defines a subvaritey P in
J'(R™). P always forms a submanifold of J'*(R™) but does not bring any
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information about the existence of isometric immersions. To obtain use-
ful informations we have to consider the prolongations P®, P® .-- of P.

Let @ be the subvariety in J?(R™) composed of all elements of P
satisfying the Gauss equation (for the precise definitions see §A). In the
case where m=(1/2)n(n+1), by considering the property of @, we obtain
a satisfactory result. In fact, it can be shown that in case m=(1/2)n(n
+1), @ (precisely an open subset of @) forms an involutive system in the
sense of Cartan-Kihler-Kuranishi (see [9], [14]). Therefore, if (M, ¢) is
real analytic, then (M, g) can be locally isometrically immersed into R™
with m=(1/2)n(n+1) (Theorem of Janet-Cartan).

On the other hand, in case m<(1/2)n(n+1), @ is not necessarily
involutive even if @ is not empty. Therefore to obtain further informa-
tions about the existence of isometric immersions of (M, g) into R™, we
have to consider the prolongations @, @?,-- of @ and the reductions
associated with these prolongations.

First we discuss the first order prolongation Q® of @. We show that
an element a of @ is prolonged to an element of Q if and orly if @
satisfles an equation called the first Gauss-Codazzi equation (see Proposi-
tion 2). The first Gauss-Codazzi equation is obtained by the first order
derivative of the Gauss equation and integrability conditions of derivatives
of f of order lesser than or equal to 3. Generally, the first Gauss-Codazzi
equation is not trivial. We give an example of three dimensional Rieman-
nian manifold (M, ¢) such that the Gauss equation associated with
isometric immersions of (M, ¢g) into R* admits a unique solution (up to
sign) at each point of M but the first Gauss-Codazzi equation does not
admit any solution (Example 1). We note that in the special case where
(M, ¢) is locally Riemannian symmetric, the first Gauss-Codazzi equation
is always satisfied.

Next we consider the second order prolongation Q® of Q. We show
that an element B of Q® is prolonged to an element of @? if and only if
B satisfies a system of equations called the second Gauss-Codazzi
equation. The second Gauss-Codazzi equation is obtained by the second
order derivative of the Gauss equation and the integrability conditions of
derivatives of f of order lesser than or equal to 4. Theoretically, the
second Gauss-Codazzi equation may induce a reduction of @, but in gen-
eral, it cannot be represented explicitly. In some cases, the reduction in-
duced from the second Gauss-Codazzi equation may influence €. In case
Q" has a fibered manifold structure over @, it is known by the general
theory that the second Gauss-Codazzi equation can be reduced to the prob-
lem related to the Spencer cohomology groups associated with symbol of
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Q. We further show that if 1) (M, ¢) is locally Riemannian symmetric,
and 2) the first prolongation of the symbol of @ vanishes, then the second
Gauss-Codazzi equation is reduced to a non-linear algebraic equation
imposed on the second fundamental forms which is independent from the
Gauss equation (see [Proposition 7.

To show the usefulness of the first and second Gauss-Codazzi equa-
tions we study the problem of isometric immersions of the two dimen-
sional complex projective space P*(C).

As is known, the #-dimensional complex projective space P*(C) end-
owed with the Fubini-Study metric is globally isometrically imbedded into
the euclidean space R™ with m=#n?+2n (see [15]). Therefore P?*(C) is
isometrically imbedded into R®. Then it is a natural question to ask
whether P?(C) can be isometrically immersed into a lower dimensional
euclidean space or not.

We first note the fact that the Gauss equation associated with
isometric immersions of P?(C) into R® does not admit any solution. This
fact follows frow Weinstein’s theorem (see [24]) and a property of the
Riemannian curvature of P?(C). (Another proof can be seen in Agaoka
[2]D. Consequently, it can be concluded that P?(C) cannot be isometrical-
ly immersed into R® even locally. On the other hand, Agaoka gave
solutions of the Gauss equation associated with isometric immersions of
P*(C) into R’. But it has not been known whether P?(C) can be
isometrically immersed into R? or not.

In this paper we first solve the Gauss equation associated with
isometric immersions into R? under an additional condition and obtain a
class of solutions containing Agaoka’s solutions. We can show that our
solutions form an open subset in the set of all solutions of the Gauss equa-
tion. Then we prove that there are no solutions of the second Gauss Cod-
azzi equation associated with these solutions. This implies that there are
no isometric immersions of P?(C) into R” whose second fundamental
forms coincide with one of our solutions. This fact forms a contrast to
the result concerning isometric immersions of 4-dimensional Riemannian
manifolds in [6]. Our result, however, does not imply that P?(C) cannot
be isometrically immersed into R’, because our solutions do not exhaust
all of the solutions of the Gauss equation. It is still an open question
whether P2(C) can be isometrically immersed into R’ or not.

Finally we refer to the relation between our Gauss-Codazzi equations
and the classical Codazzi equation (for the definitions see [8]. Our first
and second Gauss-Codazzi equations are just the purely algebraic formula-
tions of the classical Codazzi equations (details are not quoted in this
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paper). Our formulation enables us to judge whether these equations have
solutions or not and further suggests the possibility to obtain higher order
obstructions by differentiations. But they are out of the scope of this
work.

Throughout this paper we assume the differentiability of class C*.

The author wishes to express his gratitude to the referee for his kind
advices.

§A. Differential equations of isometric immersions.

In this section we consider differential equations of isometric immer-
sions (cf.[14]). Notations used here are the same that are used in [14].

Let (M, g) be an n-dimensional Riemannian manifold. We denote by
U the covariant differentiation associated with the Levi-Civita connection
of (M, g) and by R the curvature tensor field of type (1,3) with respect
tol.

Let f be a differentiable mapping of M into the m-dimensional eu-

. ks
clidean space R™. For each positive integer £ we mean by I’/ f the k-th

k-th covariant derivative of f. Then we have the following successive
integrability conditions:

Vil y=0 W F ;
V=00 W=V F =V rz0xf ;
VW=
=0 =V il kiz09f — V7 uriz 0y
=00 W —V vl s =V 3V r(u2)5F

------------------------------------------------------------

In the above equalities and in the following discussions, x, y, 2,*** mean
elements in the tangent space 7» at an arbitrary point p of M.
Let f be an isometric immersion of (M, ¢) into R™. Then we have

(D f,VF>=9(x, ),

where < , > stands for the standard inner product of R™. Differentiating
(1) covariantly and using the integrability condition for 'l f, we have

2) W «f, VF>=0.

The equality (2) implies that the second covariant derivative (V7 f),
takes its value in the normal vector space N,, the orthogonal complement
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of f+7T» in R™ with respect to <, >. (FPf), is called the second
fundamental form of f at p. Differentiating (2) covariantly, we obtain

3 V&0 <, V>0, Vol 5 F>=0.

From (3) and the integrability conditions for PP f, we have the Gauss
equation :

<4> <Vquf, VzV'yf>_<Vszf, VuVyf>=C(u, 2, X, y),
where C denotes the curvature temsor field of type (0,4) given by
Cu,z,x,y)=—9(R(u, 2)x, y).

Before proceeding to the further differentiations of the above equal-
ities, we introduce an operator Q in order to simplify the notations below.

Let K(T,) be the space of curvature like tensors of Ty, i.e., the
space of all HEAN* TFQA?* T satisfying the first Bianchi identity

£, H(x, y, 2, w)=0,

where . y@z means the cyclic sum with respect to x, v, z.
Let & nE€S*TF®R™. We define Q(&, D EA*TFRA2TH by

QCE ) (u, 2z x,v) =%{<5(u, x), 7(z, y)>+<E(z, v), p(u, x))
—<ECu, v), n(z, x)>—<E(z, x), n(u, y)>}.

Then it is easily seen that: i) Q(& 7)=Q( & ; i) Q& peE
K(Ty.

Utilizing the operator Q, we can write the Gauss equation in the fol-
lowing simple form:

(4" QUrrf,rrf)=cC.
The successive covariant differentiations of (3) and (4") yield the follow-
ing :
5)  QWITE,I7H=17.C.
(6) VGl 7V, Vs> 7l >

HT WS,V >+, Vol F>=0.
(7D Q(VquVVf,l7!7f)+Q(l7vVVf,VwVVf)Z%VwVvC.

............................................................
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Hereafter, we study the equalities (1)-(7).

Put T=T, T*=T#. Let w=T*®R"(=Hom(T, R™)). We denote
by w(T) the image of T by w and N. the orthogonal complement of
o(T) in R™ with respect to <, >. Then we have the following natural
decompositions :

R*T*QR"=Q*T*Qu(T)+Q*T*Q®N., (k=0,1,2, )Q*T*Qu(T).

For each £E®*T*®R™, we denote by &° (resp. &), the X*T*QRw(T)-
component (resp. ®Q*T*QN,-component) of & with respect to the above
decomposition.

Now let us put w=UFf,a=0UUf, B=VVVTf, y=UFFVf. Then by
equations (1)-(7) and the integrability conditions, we have :

PROPOSITION 1. Let f be an isometric immersion of (M,g) into
R™. Then w, a, B(=B+BY), y(=y"+9") satisfy the following I-IV :

L weT*Quw(T);

(A1) o), 0(¥)>=g(x, ¥).

II. a€S’T*QN,;

(A2) Qla,)=C.

. 19 ReT*QRS’T*Quw(T) ;

(A3) B, z,x)=8"z u, x)—w(R(u, 2)x);

(A4) <B%u, 2,2, w(¥)>+<alz x), alu, y)>=0.
2°) B'ES*T*QN, ;

(A5) QB @ =75 uC.

IV. 1° YeS*T*QS*T*Quw(T) ;

(A6) Y(w, u,z,x)=7"(w, z, u, x) — oW wR(u, 2)x) ;

(A7) <(w, u,z %), 0>+ (u, 2, %), alw, y)>

+<B (w, 2, x), aCu, y)>+<alz, x), B (w, u, y)>=0.
2°) r'eQ@*T*QS*T*®N. ;

(A8) r'(u, 2,5, 0=r(u,y,2 %) —alu, R(z, y)x) ;

(A9) 7' (u,z,9,00=7(2,u,y,x)—a(R(u, 2y, x)
—a(y, R(u, 2)x) ;
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(A10) Q(w®v) 1yt @)+ Qv B° wi B
+Q(vJ BY wa BY =%:7w171,c.

§B. Gauss-Codazzi equations.

As we have seen in §A, isometric immersions f which are primarily
defined as solutions of the first order differential equation (1) in §A sat-
isfy many equations involving higher order derivatives. We now observe
the equations (A1)-(A10) from the viewpoint of the theory of differential
equations.

Let J*(R™ (k=0,1,2,-) be the bundle over M composed of all k-jets
jE(F) of local differentiable mappings f of M into R™. For each k, the
equations (A1)-(A10) satisfied by all k-jets of isometric immersions deter-
mine a subvariety in J*(R™). In order to give an explicit expression for
this subvariety, we regard J*(R™ as a subbundle of the sum T*(R™ =
R™"+ T*QR™+-+R*T*Q®R™ of vector bundles Q' T*QR"(i=0,1, -, k)
by the assignment

P (p: £ D), W) TV )p).

Then the subbundle J*(R™) are characterized by the integrability condi-
tions, i.e., an element (p; wo, w1, wx) E T*(R™) (0. ERQ'TFRR™, i=0, 1,
.- k) is included in J*(R™) if and only if the integrability conditions in §
A are all satisfied, where VI f are replaced by w; (i=0,1,--, k). Then
it is clear that J°(R™=T°(R™) and J'(R™)=T'(R™).

Now let us denote by P the subset of T'(R™) composed of all (p; wo,
w)E T'(R™) satisfyng (Al). P is the original differential equation of
isometric immersions of (M, g) into R™. It is easy to see that under the
assumption m=#, P forms a submanifold of J'(R™). In order to simplify
the notations below, for each element (p; wo, w1) EP, we put w=w:, T=
Ts, T*=Ts and N=N,, Moreover, to represent an element of P, we for-
mally write € P instead of writing (p; wo, w) EP.

By P® (resp. P®) we denote the first (resp. second) standard pro-
longation of P. The first prolongation P is given by the subset of
T2(R™ composed of all (w, @)ET?*(R™) satisfying w<P and €
S2T*QN. Let m: TH(R™— T*'(R™) (k=1,2,--) be the canonical
projection. Then it is easily seen that P is mapped onto P by m. In
other words, any element w<P can be prolonged to an element (w, a)E
PY. We note that m: PY—— P has a vector bundle structure over P.



196 E. Kaneda

For simplicity, we symbolically write ¢ in order to represent an element
(w, )€ PY. The second prolongation P® is given by the subset of
T3*(R™) composed of all (@, B)E T*(R™) satisfying a€ P and 1°) of III
in [Proposition 1 and S'€S*T*®N. By (A3) and (A4) we know that an
element @ can be prolonged to an element (a, 3)€P® if and only if a
satisfies the Gauss equation (A2).

Let @ be the subset of P composed of all a« satisfying (A2). By
QY (resp. Q®) we denote the first (resp. second) standard prolonga-
tion of @. Then the first prolongation Q' is given by the subset of
T3(R™) composed of all (a, 8)EP? satisfying a=@Q and III in Proposi-
tion 1. And the second prolongation Q% is given by the subset of T*(R™)
composed of all (a, B, )€ T*(R™) satisfying (a, )€ Q" and IV in Prop-
osition 1.

Now let us consider the condition under that an element a€ @ (resp.
(a, B)E Q™) can be prolonged to an element of @ (resp. Q%). Let «
eP®. We define a linear mapping Q .: S*T*QN— K(T) by Q .(&)=
Q& a) for EESPT*Q®N. For each positive integer k2, we extend Q. to a
linear mapping Q4 X*T*QS*T*QN—> Q*T*QK(T) by setting Qi=
1,8Q ., where 1. denotes the identity mapping of @*T* onto itself. Let
K®(T) be the linear subspace of T*®K(T) consisting of all elements H
ET*QK(T) satisfying the second Bianchi identity, i.e.,

x’ny"Bz H(x,y,z, u, v)=0.

Then it is known that:i) W C),€ KV (T) ; iDQ(S*T*QN)CKV(T).
We have

1

dimK(T) =ﬁn2(n2—1) : dimK®(T) =in2(n2—1) (n+2)

(see [14).
PROPOSITION 2. An element a=Q is prolonged to an element of
QY if and only if there exists an element B'ES*T*QN satisfying

(BD) QLAY =%I7C.

In particular if (M, g) is locally symmetric, i.e., VC=0, then the
canonical projection m: QV— Q is necessarily surjective.

PROOF. Let a€Q. We take an element 3°€ T*QRS*T*Qw(T) satis-
fying (A4). We note that such £° always exists and is determined unique-
ly by (A4). By virtue of the Gauss equation (A2), we can show that j°
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satisfies (A3). Now let us assume that there exists S'ES*T*QN satis-
fyig [BL). Then putting 8=4"+4", we have (e, £)E€Q". This proves
that any element ¢ can be prolonged to an element of Q. The con-
verse is obvious from III in [Proposition 1| Q.E.D.

We call the first Gauss-Codazzi equation. The following exam-
ple shows that even if the Gauss equation admits solutions at each point of
M, the first Gauss-Codazzi equation does not necessarily admit solutions.
Thus the first Gauss-Codazzi equation plays a role of an obstruction to the
existence of isometric immersions.

EXAMPLE 1. Let xi, x2, xs be the canonical field coordinates of R®
and let g=g;;dx:dx; be a covariant symmetric 2-tensor field on R® whose

where E3ni; are constants satisfying Efmi;=E¥mji= E%mii= Etmu; for 1,7, k,
[,m=1,2,3. As is easily seen, g is positive definite on a small open
neighborhood M of the origin oER® At the origin o, the Riemannian
curvature C=(Cy») and its first covariant derivative VC=nCix:) of
the Riemannian manifold (M, g) are given as follows:

Cz'jkl=8ik jl_"ail ik 5
Vmcijkl:%<E9nikjl+E‘r)njlik_E(r)niljk_Egzjkil>-

Now we consider isometric immersions of (M, g) into the euclidean
space R'. Let w=(0; wo, w1)EP and let n be a unit vector of N=N.,.
We put ao=((dx)®»n. By a direct calculation we can show that the

solution of the Gauss equation (A2) are limited to T, i.e, @Nm (W)=
{(w,*a)}. We note that since dim S*T*®@N =dim K(T)=6 and the type
number of a is equal to 3, the Gauss equation admits a unique solution
(up to sign) at each point p of M sufficiently close to the origin o (for the
definition of the type number and related facts, see [16].

We now consider the differential equation @'V at o. Since dim
S*T*QN =10 and dim KY(T)=15, the linear mapping Q&: S*T*QN—>
KY(T) (a==xa) is not surjective. Let us take an element L= (Lmijr) €
K®(T) such that L& QL(S*T*®N). Then there exists an element E=
(Ermi) € SPT*QS?T* satisfying

Lmijri :%(Emikjl + Enjiin— Enitie — E mjrir)
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for 7,7,k 1, m=1,2,3 (see [Proposition 1| in Appendix in [14]). If the con-
stants EWmi; in the definition of g¢i;’s are so chosen to be equal to the
coefficients Ewm; of the above E, we have VC=L&EQ.(S]*T*Q®N). In
other words, the first Gauss-Codazzi equation does not admit any
solution for any ae¢€@QNm'(w). Accordingly (M, g) cannot be
isometrically immersed into R*.

In order to obtain a higher order obstruction, we prepare some nota-
tions and lemmas.

Let a€P. We define S.€S*T*RT*QT by

9(Se(z, D u, y)=—C(alz, x), alu, y)>.

Further we define 3.€EX*T*QXS*T*QN and ®(a)EA’T*QRS*T*®N by
setting

Xe(w, v, u, x)=a(w,S«(u, x)v)
&) (w, v, u,x)=—a(R(w, v)u,x)—au, R(w, v)x)
—xa(w, v, u, x) +xa(v, w, u, x).
LEMMA 3. (1) Let a€Q. Then:
R(u, 2)x=S.(u, x)z2— Sa(z, x) u.

(2) Letla, HE®. Then:
BCu, z, x)=w(S.(z, x)u).

PrOOF. The assertion (1) is clear from (A2). Let (@, B)EQW.
Because of (A4) and (Al), we have

Bu, z,x), w(y)>=—<alz, x), alu, v)»
=9(Se(z, x)u, v) =Cw(S.(z, x)u), o(¥).

Since B°(u, z, x)Ew(T), it follows that B°(u, z, x)=w(S«(z, x)u). This
proves the assertion (2). Q.E.D.

Let s and £ be any integers with 0=s=<%k—1. We define a linear
mapping Js: Q*T*— ®*T* by
S+1 ]
(53X) (Xl,"', Xk>:i§1<_1>ZX(X1,"‘, JACi,"', Xs+1, Xiy, Xs+2,""", Xr)

for Xe®*T*. Putting §s=0:®1x, we extend ds to a linear mapping &
R*T*QN— X*T*QN.

LEMMA 4. Let (a, QY. Then:
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1 QUw®v) 4 e, @) +Q(w 1 8°% w1 BY=0.
@) &0(a)=0: u§<q><a>>=—§—al<m7c>.

PrOOF. By and by the definitions of y. and S., we have
xa(w, v, u, %), alz, y)>=<a(w, S.(u, x)v), alz, y)>
=—g(Sa(u, x)v, Se(z, VW) =—<w(S(u, x)v), w(S.(2, Y w)>
=—<{B%v, u, x), B%w, z, y)>=—<(vIB% (u, x), (w2 B (z, y)>.

Then by the definition of Q we have the desired equality (1).

We now show the assertion (2). The first equality can be easily
proved by a simple calculation. Next we prove the second equality. By
the Ricci formula we have:

—-6re (w,v,u, z x,y)
=—VulVoCu, 2, %, y)+VoVwC(u, z,x, y)
=CRw, vu,z x,y)+Cu, RQw, v)z,x, y)
+C(u, z, Rtw, vx, y)+C(u, z, x, R(w, v)y)
=<a(R(w, u, x), a(z, v)>—<a(R(w, vu, y), a(z, x)>
+<alu, x), a(R(w, v)z, v)>—<alu, v), a(R(w, v)z, x)>
+<alu, R(w, v)x), a(z, y)>—<alu, v), alz, R(w, v)x)>
+<alu, x), alz, R(w, v)y)>—<alu, R(w, v)y), a(z, x)>.
In view of the above and the equality (1), we obtain
(W) 18(@), D=5 (W) 18P C)
—Qv 2B wIBY+Q(w 8% vIB%
=1 (w®v 1677 0.

Hence we have Q%(@(CY)):%(?I(V 7C). This completes the proof of the
assertion (2). Q.E.D.

LEMMA 5. Let (a, B, 7 )EQ®. Put x=y'—xo. Then x<
T*RS*T*QN and

(B2) QUw®uv) Jx, a) +Q(w 2B w1 BY) Z%VWVUC;
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(B3) S1x=®(a).

PROOF.  Since both 7' and x. belong to Q*T*QRS*T*XN, we have x
EXR*T*QS*T*®N. Moreover by (A8) we have

x(w, v, u, x)—x(w, u, v, x)
=7 (w, v, u, x)—r'(w, u, v, x)
—xo(w, v, u, x) + x.(w, u, v, x)
=—a(w, R, wx)—a(w, Se(u, x)v—S.(v, x)u)
=—a(w, R, ux)—alw, R(u, v)x)
=0.

This implies that x€ T*®S*T*®N. The equality (B2) is immediately
obtained by (A10) and (1) of Lemma 4. Finally we prove (B3). By
(A9) we have

Six(w, v, u, x)=7"(w, v, u, x)—7r" (v, w, u, x)
—xa(w, v, u, x)+x(v, w, u, x)
=—a(R(w, Vu,x)—alu, R(w, v)x)
—xa(w, v, u, x)+x.(v, w, u, x)
=0(a) (w, v, u, x).
Hence we have §1x=®(a). Q.E.D.
We are now in a position to prove

THEOREM 6. An element (a, B)EQY is prolonged to an element
of QP if and only if there exists x€E T*QS*T*QN satisfving (B2) and
(B3).

Proor. Let (a, )EQY. We assume that there exists xE
T*®S*T*QN satisfying (B2) and [B3). Put y'=x+x. Then it is eas-
ily checked that Y'€Q*T*QS*T*QN satisfies (A8), (A9 and (A10).
Let 7’ be the element of S*T*®RS*T*Q@w(T) determined uniquely by
(A7). Then by we know that y° satisfies (A6). Thus putting y=7°
+7', we have (@, 8, y)€Q®. The converse is obvious. Q. E. D.

We call the system composed of (B2) and the second Gauss-
Codazzi equation.

Let e PV, We denote by g, the kernel of the linear mapping Q., i.
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e., 0.={EEST*QN| Q(&, a)=0}. If a=Q, g. is called the symbol of the
differential equation @ at a@. For each positive integer k&, we define the
k-th prolongation g%’ of g« by g¥@=S*T*®a.NS***T*Q®N. Then it is
easy to see that

g¥’=Ker QsN S*?T*®N.

We note that a solution A! of the first Gauss-Codazzi equation, if exists, is
uniquely determined up to modulo g&’.
We now consider a special case.

PROPOSITION 7. Let (M, g) be a locally Riemannian symmetric
space and let a=Q satisfy ¢8'=0. Then a is uniquely prolonged to an
element (a, 3)EQ®. And (a,B) is prolonged to an element of QP if
and only if a satisfies the equality ®(a)=0.

PrROOF.  Putting 7C=0 into [B1), we have g'€g%’. Since g&’=0, it
follows that B'=0. This implies the uniqueness of (@, £EQY. Now
suppose that (e, B)EPY is prolonged to an element of Q®. Then there
exists an element x€ T*QS*T*®N satisfying (B2) and (B3) (Theorem
6). From (B2) we have xE€Q?*T*Qg.NT*RS*T*QN=T*Rqa? =0.
Hence we have x=0. Consequently it holds that ®(a)=0. Conversely if
®(a)=0, then x=0 satisfies both (B2) and and hence (a, 8) can be
prolonged to an element of Q® (Theorem 6). Q.E.D.

As is seen in the above proposition, the quantity ®(a) plays an impor-
tant role. It seems an interesting problem to determine isometric immer-
sions satisfying ®(a)=0. In the following, we show examples of
isometric immersions satisfying ®(a)=0. Particularly, Example 3 indi-
cates that the equation ®(a)=0 is independent from the Gauss equation
(A2) in general.

EXAMPLE 2. Let M=G/K be a symmetric R-space. Then there
exists a standard isometric imbedding of M into a euclidean space induced
by a group representation of G associated with a graded Lie algebra of
the first kind. The second fundamental form « of this isometric imbed-
ding satisfies the equality ®(a) =0 at every point of M (see Proposition 5.

5 in [14].

ExaMPLE 3. Let (M, g) be a connected 2-dimensional Riemannian
manifold of constant curvature K(=+0). As is known, there are infinitely
many local isometric immersions of (M, g) into R® not equivalent to each
other under the action of euclidean motions of R®. Now let us assume
that an isometric immersion f: M— R? satisfies the equation ®(a)=0 at
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each point of M. Let pEM and let n be a unit normal vector at f(p).
Then the second fundamental form @, can be written in the form a,=
A®n, where AES*T*. We choose an orthonormal basis {el, e2} of T
such that A(e;, ¢;) =A:0;;. Then we have

K=AA; R(e; ej)e;=—Ke; (i#)) ;
SeCes, e ei=—Ae; (1=1,2),
Soei, e)ej=—MAe;; Sales, ei)en=0 (IF7]).
By a simple calculation we obtain
®(a) (e, e, e, e)=0 (i=1,2); ®(a) (e, e, €1, e2) =K (l—A)n.

Consequently we have A4i=4, and hence K=A?>0. Therefore (M, g) is a
space of constant positive curvature and F(M) is totally umbilic in R®.
Hence f(M) is contained in a sphere in R®.

REMARK. The assertion of also holds even if the equa-
tion is replaced by the following weaker condition

(B3) Six=®(a) mod §,(T*®gM).

In fact if there is an element %< T*®g%’ such that §x0=81x—®(a), we
put x'=x—x. Then it is easy to see that x’ satisfies both the equations

(B2) and [(B3).
Generally for an element x&€ T*QS*T*QN satisfying (B2), it holds

that §1x—®(a) EA2T*®ag.. This fact follows from Q4(®(a)) =

%510717@«2) of Cemma 4) and from the equality Q( 51;{):%51(7:70)

that can be obtained by (B2). Further by the definition of 82 and (2) of
Lemma 4, we have §:(81x—®(@))=0. Now consider the following com-
plex :

T*QaP—OL A2 T*Rg,-0% A*T*R T*QN.

We denote by e(a, 8) the cohomology class at A *T*®g. determined by
S1x—®(a). The equation (B3") requires that e(e, #)=0. Thus in case
the cohomology group of the above complex vanishes, the equation (B3")
is automatically satisfied.

The cohomology class e€(a, 8) that does not depend on the choice of
x, is called the curvature of the differential equation Q" (see [10]).
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§C. Isometric immersions of P*(C).

As an application of the discussions in §B, we study the problem of
isometric immersions of 2-dimensional complex projective space P?*(C)
into the euclidean space R”. Here we assume that P?(C) is endowed with
the Fubini-Study metric with constant holomorphic sectional curvature 2.

Let T(resp. N be the complexification of T (resp. N). We
extend the complex structure / to a complex linear endomorphism of T¢
and extend the inner product g (resp. <, >) to a non-degenerate complex
symmetric bilinear form of T°(resp. N° in a natural manner. For z&
T (resp. wEN°) we denote by z (resp. @) the complex conjugate of z
(resp. w) with respect ot T(resp. N). We choose and fix a basis
{e1, ey, ei, ez} of TC such that:

Jei=v—1le;, e=e:(i=1,2);
ges, e)=10=1, 2); g(ei, es)=g(es, e1) =0.

In the following discussions we promise that the indices ¢, j,** run over the
range 1,2 and the indices 4, #, v--* run over the range 1,2, 1,2 and promise
that T=1 2=2.

Now let us solve the Gauss equation associated with isometric immer-
sions of (P?(C), g) into R”. For this purpose we extend the Riemannian
curvature tensor C to an element of A’T**®.A*T*° and the unknown a&
S?T*QN to an element of S2T**Q.N° in a natural way. We put Ciwe=
C(es, eu, ey, es) and aw=a(es, ex). Then we have Cimo=Crivs: tw=0ar;
and

Cirr=— sz’kf—_— —Cin=— <5ij5kz+ Ou jk) ;
Cime=0 otherwise,

(see [16]). The Gauss equation Q(e, @)=C is then given by the following
system of equations:

(C1212)  Cun=<au, an> —<an,a>=0.
(C1211)  Cumi=<aun, @ —<{a,axn>=0.
(C1212)  Cuz={au, aw>—<az,an>=0.
(C1221)  Cumi=<awn, @ —<aig,an>=0.
(C1222)  Cun={aw, aw> —<{as, ax>=0.
(C111D  Cwmi={au, aim> —<{ai, ai>=—2.
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(C2222)  Cun={aw, an>—<{an, an)=—2.
(C1122)  Cim={aw, ai>—<{ay, apy=—1.
(C1221D)  Cmi={aw, am>—<{an, an>=—1.
(C1112)  Ciz={au, ai>—<ay, an>=0.
(C1222)  Cum=(aw, an>—<aw, an)=0.
(C1212)  Cuz={au, an>—<{az, az>=0.

It seems_di_fﬁcult to obtain all the solutions of the system of equations
(C1212)-(C1212). In the following we solve the above system under the
additional condition a1;=0.

PROPOSITION 8.  For each solution a=S*T*QN of the Gauss
equation satisfying an=0, there exists an orthonoraml! basis {&, &, &) of
N and complex numbers a, b, p with |al*=3, |b]*=|al*+1 and |p|*=
A/2lalXb)*(al*—3) such that

an=0, aiz=an, ae=céE+kyp+ms;
ai=v 2 &, an="by, an=dE+ py+ p¢;

where £=&, 1=1/y2)(&—V—1 &), (=1/V2)(&+V—1 &), c=1/V/2)
ab,d=Q/Jy2)|bl%, k=(bla)p, m=(a/b) p.

PrROOF.  We first observe (C1111). Since @1=0, we have {ai1, ai)=
2. Put £§=1/V/2)mi. Then we have <&, &>=1, £,=& and hence &E
N. We select two vectors &, & of N so that {&, &, &} forms an ortho-
normal basis of N. By (C1211) and (C1112) we know that . and ai
can be represented by linear combinations of &, & Now we write ai.=
a1Es+ azbs, aiz=b:1E+ b6 Then by (C1212), (C1212) and (C1212) we
have ai+a3=0, bi+b5=0 and a1b1+a:6:=0. By exchanging & and —&; if
necessary, we can assume that b=—4y—1 b.. Since an=+0 (see (C1122)),
we have b#0 and hence a.=—v—1 a.. Thus setting 7=>1/v/2)(&
—V—=1 &), we have az=an, au=0byp (a=v2a;, b=y2b). Put ¢=7.
Then it holds that <7, 7>=<¢, £>=0, <7, £>=1 and that {&, 5, ¢} (£=&)
forms a basis of T¢.

Now let us set aee=cé+kp+mé and ax=dE+pn+ &, where ¢, k, m, p
€C and d€R. Then we have:

(C122D ab—+2 c=0.
(C1222) ap—bm=0.
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(C2222)  |cP+|kP+|ml*— (d*+2]pH)=—2.
(C1122)  |al*—|b)*=—-1.

(C122D)  |af—V2d=-1.

(C1222)  ak—bp=0.

First we assume that ¢=0. Then by the above equations except for
(C2222), we obtain |b)*=1, c=0,d=1/v2, m=0 and p=0. Putting these
into (C2222), we have |k[*=—(3/2). This is a contradiction. Conse-
quently we have a+0 and hence |b*=|al*+1,c=Q1/V2)ab,d=Q1/J/2)
612, m=(a/b) B, k=(b/@)p and |pl’=C1/2)|alf|b|*(lal*—3). By the last
equality, we obtain the inequality |al?=3. Q.E.D.

In what follows we fix an orthonormal basis {&, &, &} of N. Let us
denote by a(a, b, p) the solution given in [Proposition 8 where a, b, p are
complex numbers satisfying the relations stated there. We note that the
solutions of the form a=a(a, b,0) have been obtained in Agaoka [2] «
(a, b, p) is a special solution in the sense that it satisfies the additional
condition @;=0, but it turns out that a(a, b, p) is generic in the set of
solutions Q(a, @) =C (see [Proposition 9 and Remark after it).

Let a=a(a, b,p). We define a basis {E), E1, E», Ez} of T° by setting
E\=e, Ei=ei, Ex=be;—aer and Ez=— @e.+ bes. Clearly we have E.=Ex
and a(E;, Ex) =a(E1, E»). Moreover we have :

a(E, E1)=0 ; a(E:, E2)=0 ; a(E,, Ez)zx/? A&+ Py;
a(Ey, ED=V2 &; a(E\,ED=n;a(E, E»)=V2B¢,
where we set A=—ab/2, B=|b[*/2, P=p/ab.

PROPOSITION 9. Let a=a(a, b,p). Then:

(1) dim ga=10

S
@ dame={) 17
(9914

In case p=0, the complexification ¢ ¢ of a% is generated by the
following four elements: (E¥)*®¢, (E*)*®7, (E:*)*Q7, (E*)*®E, where
(E¥, Et*, Ex*, E3*} is the dual basis of {E\, Ei, E, Ez} and (E¥)*=
E¥QEFQEY, etc.

The results corresponding to the case p=0 were first obtained by
Agaoka. In the next section we give a proof of the above proposition in a
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unified manner.

REMARK. Let Wi be the set of all a=P® satisfying dim g.=10.
Then we have:1) W is an open dense subset of P® such that PO\ W, is
an algebraic subvariety of P®; 2) @ N W; forms a submanifold of P,
In fact since g. is the kernel of the map Q.: S’T*QN— K(T), it follows
that dim g.=dim S*T*@N —dim K(T)=30—20=10 (see [14]). Moreover
we know that the function P> a——dim g.=Z is upper semi-continuous.
Hence Wi is an open subset (not empty because a(q, b, p)E W, of PV
and PP\W, is an algebraic subvariety of P". The assertion 2) follows
by the fact that the rank of the map PY20—Q(a, a)EK(T) is con-
stant around each a& Wi Consequently, our solutions «(q, b, p) are
generic points of §. Let W: be the set of all a€ P satisfying dim g.=10
and g.""=0. Then W, has the above properties 1) and 2), where W, is
replaced by W,. (Recall that 8. is the kernel of the map QL:
S*T*QN— K"(T).) In this sense Agaoka’s solutions a(a, b,0) are sin-
gular points, i.e., a(a, b,0)E Wi\ Wa.

We now prove the main theorem of this section.

THEOREM 10. Let a=a(a, b, p). Then any element (a, f)E QP
cannot be prolonged to an element of QP. Accordingly there is no
isometric immersion of P?(C) into R” whose second fundamental form is
equal to a.

We first prove
LEMMA 11. Let a=a(a, b,p). Then ®(a)(E,, E1, E\, E3)+0.
PrROOF. By simple calculations we have:
D S.(E,, EDEi=0, S.(E\, E)E\=—2E;;
2) S.(E\, E»)Ei=—2abE,— (lal*+|b/») E3,
S«(E5, E2) E1=0;
3) S.(E\, E3) E\=0.
Thus we have
R(E,, EDE\=S.(E\, ED)E1—So«(E1, EV) Ey=2E;;
R(E\, EDE>=S.(E\, E») Ei—S.(Ei, E») E,
=—2ab E,—(al+|b]» E-.

Therefore



On the Gauss-Codazzi equations 207

®(a)(Ey, By, Ey ED)=—a(R(E\ EVE, E;) —a(Ey, R(Ey, E1)E3)
+a(S.(Ey, ED) Ey, ED —a(Ey, So(Ey, Ez) Ex
=—aE\, E?)—a(E\,—2abE;
—(lal*+16/» Ez)
+a(0, ED —a(E,,—2abE>:— (|al*+|b») E2)
=4lal*n+0. Q.E.D.

PrROOF OF THEOREM 10. First consider the case p+0. Then our
assertion immediately follows from [Proposition 7, because we have g#’ =0

(Proposition 9 and ®(a)+0 (Lemma 11D.

We next consider the case p=0. Suppose that there exist S'€g¥ and
rET*QS*T*QN satisfying (B2) and [(B3). We note that by using com-
plex numbers X and Y, #' can be written in the form

B'=X(EF*Q¢+X(E)’Qnp+ Y (E*®p+ YV (E*)*®¢,
(Proposition 9). Then clearly we have Q(E: 18", E1 2 8)=0. Hence by
(B2) we have QU(EI/QE)) Jx, @)=0. Consequently we have Q((E:®E;) J

x, @) (E1, Es, E1, E?) :@ A <x(Ei, Ei, E1, E1), £5=0. On the other hand

since QUEIQED Jx, a)(Ey, E1, E1, ED)=—J2<x(E\, Ei, E\, E1), £,it fol-
lows that

QU(E\QED Jx, a)(Ey, Ei, E1, E1)=0.
Therefore by (B2) we have
0=2Q(E\ 18", E1 1 BV (Ey, E, Ey, Ev)
=<B'(Ey, E\, Ev, B'(E1, Ei, ED>+<B'(Ey, Ei, ED), B (Ex, E\, ED)
—<{B'(E\, Ey, ED, B'(Ej, E1, EDY—<B'(E\, Ei, EV, A(Ei, Ey, ED)
=| X2

Hence we have X=0. Consequently E;Jp'=Ei1p'=0. Thus by
(B2) we have QUEIQE) tx,a)=QUEIQED Jx,2)=0 (A=1,1, 2,2).
This implies that E1 1x and E1Jx<g%°. In view of the basis of g¥'¢, we
know that x(E, Ei, E\, Ez)=x(Eji, E\, E\, E3)=0. Therefore by we
have ®(a)(E,, Ei, E1, E3)=0. This contradicts Lemma 11. Therefore our
assertion holds even for the case p=0. Q.E.D.

REMARK. Let W be the subset of P consisting of all a=P™ such



208 E. Kaneda

that dim g.=10, dim ¢®’=0 and ®(@)+0. Then it is obvious that W forms
an open dense subset of P*. By [Proposition 7 we know that for any €
QN W there is no isometric immersion f of P*(C) into R” whose second
fundamental form at p= P?(C) is equal to a.

§D. Proof of Proposition 9.

Let a=a(a, b, p)EQ. We define a linear map ®: N—>S*T* by set-
ting ®(v) (x, y)=<v, alx, y)> for vEN, x, yET. Since the vectors
{a(x, ¥)|x, yE T} generate N, it follows that @ is injective. Put n=0(N).
We set H=n+A’T*(CR*T*) and denote by 7 the canonical projection of
b onto n. For each non-negative integer k2, we mean by H* the k-th pro-
longation of 9, 1. e., *'=S*T*QT*N S*T*RQYH and by q* the image of H*
via the map 7*=1.Qx. Then for each £=2, we have

H™=q*; o*=0"(gc™?),

where we put 0* =1.Q0 (see ). Since ©®* is injective, we have
dim H® = dim g."*"?. Therefore, to determine dimg. and dimg%, it
suffices to determine dim H® and dim H®.

Let Ann(5*)(£=0, 1, 2,---) be the annihilator of §® in S*"'TRT, the
dual space of S*"'T*®QT*. We define a linear map ¥* : S*T®Ann(H)
—> S*ITQT by setting ¥*(w®r)=w® ¢ for wES*T and rEAnn(l).
Here the product ® is defined to satisfy the following :

(51°:8.) O (11 Q1) = (51 S 1) Q1

where s+, s, and #, LET. As is well known, it holds that Ann(§*) =

S*T ® Ann(h), i.e., Ann(H*) = Im ¥ *(£=0, 1, 2,--) (see [17D. Hence we
have

dim §®=dim S*"' TR T —dim S*T®Ann(H) +dim Ker ¥*.

We now determine dim Ker ¥*(£=2, 3).

Utilizing the basis Ei, Ei, Ez;, Ez of T¢, let us regard the
complexification S*T°¢ of S*T as the complex vector space of homogene-
ous polynomials of degree k& of the variables E\, Ei, E», E2. We define
elements Fi, Fi,:-, Fy of S?T° by :

Fi=E} Fi=Ei*; F,=E:*E; F;=FEi*E;
Fs=E3}—E,+(AEi+ PE3), F3=E#—Ei*(AE\+ PE)) ;
F4:E2'E§—BE1‘E‘1.

Then it is clearly seen that Fi, Fi,---, Fy are linearly independent and F:=
F:(z=1,2,3) and Fi\=F.,.
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LEMMA 12. The elements F\, Fi, -+, Fy form a basis of Ann(§°).

PrROOF.  Since H=n+A?T* Ann(h) coincides with the annihilator
Ann(n) of n in S®*T. Viewing the expression of @ with respect to the
basis {Ei, E1, E:, Ez} of T¢, we know that the elements F, Fi---, Fy belong
to Ann(n)¢. Hence F, Fi,-, Fue Ann(§)°. On the other hand, since
dimn=3, we have dim Ann(§)=dim Ann(n)=dim S*T —dimn=10—3=7.
Thus our assertion follows immediately.

LEMMA 13. (1) dim Ker ¥2=0).

(2) dim Ker ¥3= {g Z‘[ iig.

Proor. We first prove the assertion (2). Let I" be an element of.
S*T®Ann(). In view of Lemma 12, we can write

I=32 (i®F+ [:®F) +/®F,

where fi, 2, f3, Li( Fa=f)ES3TC. Write ¥3(I') in the form ¥*(IM)=
2 —
E(Qi@Ei+ T RE) (g, 2=S5*T*).

Then we have
a=2hHE\+ foE;— fs(AEi+ PE3)
—Af3Ei—B fiEj,
g:=foE1+2fE:— Pf3E1+ fiEn.

Let '€Ker ¥®. Then we have ¢i=¢,=0. Putting this into the above
equalities, we have

2HE}={f(AE1+ PE) +(Afs+Bf) Ei} E
+QfsE:—PfsEi+ fiED Es,
foEi=—2fE,+ PfsE1—f.Es.
Now let us set A=/, u=f; and
[ =2AE.— PAEi+ pE;s,
[1=(AA+AA+ By Ei+ PAE;+(/E) E..

Then we have E\|l, Ei|lI, f1=%(II/E1) and fo=—/E)). Conversely, it is
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easily checked that if Ei|l, Eilll, f1=%(II/E1) and fo,=—(/E.), then gi=g-

=0,i.e., 'eKer ¥

We now assume 'EKer ¥, We determine A and g by the conditions
E1|I and E1|H.

Let us regard I and II as polynomials of Ei, Ei and denote by I:;
(resp. II.;) the coefficient of E{EVY (i,7=0,1,2,---) in I (resp. ID.
Then I;; and Il ;; are homogeneous polynomials of E, and E3 of degree
4—(7+j). Then the conditions Ei|l and Ei|Il are stated in the form Io;=
IIo,j=O (]:O, 1, 2,) Write

A=AEIE1+ AE +AE1+ A,
p=mEE1t B+ isEi+
A=rE1+sEi+ ¢,

wm=tE1+ tE1t+ ¢

A=LE}+ ¢:E1+ 0s,
te=n:Ei+ ¢ E1+ 12
A=unEr+ s Ei+ 03,

= Ei?+ ¢ E1+ T2

where 7, s, t, b, s, mz are complex numbers and @1, @2, @3, ¢1 (F1=¢1), P&
TC; 05 03, ES T ; Ay, s (Ea=p)ES*TC are homogeneous polynomials
of the variables E; and E; . Putting the above into I and II, we have:

(D1) 1o0=2AFE:+ mEs=0.
(D2) lo1=20:E:— PAs+ HE>=0.
(D3) lo:=2¢sE2— P2+ ¢2E>=0.
(D4) To3=2hE—P@s+mE>=0.
(D5) loa=—PI.=0.
(D6) loo=PUEs+ Q0:E:+nEy) E:=0.
(D7) Hoy=C(AM+AX+B )+ PosE>
+ Q@1 E;— P63+ 1 Ez) E2=0.

(D8) Mo2=(A0s+AG:+Bf)+P p:F>

+ (2sE.— Pg.+ tE») E.=0.
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<D9> 110,3:(A§03+A§;2+B§52)+Pl3Eé—ﬁ7—’Ez=0.
(DlO) 110,4:A13+A72+B77l2:0.

We consider the equations (D1)-(D10). First we assume that p=0.
Then by (D5) and (D6) we have /=0 and E:lA. Since E:|A, it follows
from (D1) that E?|z. On the other hand since =g, we have EZE7|us.
This implies that =0, because < S*T°. Hence by (D1) we have A:=0.
Putting Av==0 into (D6) and (D7), we have E:lz and E:o0s. Then
from (D2), it follows that E3?|0s and hence E:.E3*|0s. This implies that o3
=0, because 0:=S?T°. Therefore by (D2) and (D6) we have c.=r=0.
Similarly by (D8) and (D3) we obtain ¢@s=¢.=0. Putting the above
results into (D4) and (D7)-(D10), we have:

(D4 2[3E2‘—p¢2+ maF3=0.
(D 7 /> 2¢1E2+ ¢1E2=0.

(D8") 2sE:— P@+ t E>=0.
(D 9 ,) /T@z‘f‘PlgEé_F;Ez:O
(D10") Al+ Bim,=0.

By (D7) we have E3¢:.. On the other hand since ¢=¢, it follows
that E:E3¢1. This implies ¢1=0, because ¢, T°. Consequently we have
¢1=0. Hence by (D8) we obtain_ that s=¢=0. Eliminating ¢. from
(D4") and (DY), we have |P|?ls+ Am.=0. This together with (D10")
means that s=wm.=0, because |P|?’B—|A[*=—(3/4)|b/*+0. Therefore by
(D4) and (DY) we have ¢,=0 and »=0. Thus we have A=yg=0 and
hence I=II=0. Therefore we have fi=f.=f=f=0,i.e.,, '=0. This
shows that Ker ¥*=0 in case p=+0.

Next we consider the case p=0. By a similar argument as in the case
p#+0, we know that there are two complex numbers x and y such that

A={yE1— (%/A) (AE.—2BE3)} E*+xE:E?;

p=—2 {xE:Ei*+ xE:E?}.
As above f;=A and fi=py are parameterized by two arbitrary complex
numbers x and y. On the other hand since fr——%(H/El) and f,=—/ED,

f1 and f» are uniquely determined by f; and fi.. Consequently, we know
that Ker ¥® is isomorphic to C? as a real vector space. Hence we have
dim Ker ¥*=4 in case p=0.

Finally we show the assertion (1). Let us suppose that there are four
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elements %, ha, ha, hs (ha=hs) of S*T° such that B =§1(hi®Fi+ h:QF;)

3
+ Q@ F,< Ker 2. Then we have (E1+EDE =§{(E1+Ei>hi®Fi+(E1

+ED) b QF}+ (Ei+ ED) @ F,EKer ¥°. However as we have seen in the
proof of the assertion (1), Ker ¥* does not contain any non-trivial ele-
ment of the above form. This proves 2=0 and hence Ker ¥*=(. Q.E.D.

PROOF OF PROPOSITION 9.  First we note dim S*7T*=10; dim S*T*
=20; dim S*T*=35. Since Ker ¥?2=(0 ((1) of Lemma 13) and
dim Ann(§) =7, we have

dim H®=dim S*T® T —dim S*TX®Ann(H)

=80—70=10;
dim H®=dim S*TR T —dim S*TR®Ann(H) +dim Ker ¥*
=140—140+dim Ker ¥*=dim Ker ¥,

Since g.=H®, the assertion (1) follows from the first equality. By (2) of
Lemma 13 and by the second equality, we have dimg%’=0 in case p+0
and dim ¢’=4 in case p=0. This proves the assertion (2).

Finally we show that if »p=0, then g%’° contains elements of the form
(E¥)’®¢, (Ei*)*Q®7, (E*)*Q7 and (E*)*®¢. Viewing the expression of
a with respect to the basis {E¥, Ei*, E¥, E7*}, we have 0(5)=E1* O E,*,
®({)=E* O E;*, where Ois the symmetric product. Hence Ei*®E.*,
E*QFE*, Ev*QE>* and Ex*®EFEh. Therefore it can be easily checked
that H®° contains elements of the form (Ei*)‘QFE¥, (Ef)*QE*, (E¥)*
QE:* and (E*)'®EF. Consequently (Ei*)*Q(Ei*0 EF), (EF)*Q(E* 0

), (E¥)*Q(EF 0 Ez*) and (E*)*®(EF 0 E3*)eg®*. Considering the
inverse of the isomorphism ©?%: g¥’“— %, we know that g¥’¢ contains ele-
ments of the form (Ei*)}Qn, (E¥)*Qp, (EF)*®¢ and (E:*)*®¢. This
completes the proof of the assertion (2). Q.E.D.
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