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On the equations rot v=g and div u=7f
with zero boundary conditions
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1. Introduction

Let Q be a bounded or an exterior domain in R®. We consider the
equations

1.1 rot v=g, v|s=0
with #=3, g=(g1, 2, 3:)EL7(Q)?, and
(1.2) div u=F%, u|s=0

with n22, f€L7(Q). L7(Q) with 1<r<co denotes the usual Lebesgue
space with norm |-|,, and L7(Q)" is the corresponding space of vector
fields; dQ denotes the boundary of Q. These equations play an important
role in the theory of Navier-Stokes equations (see [9, 10, 13, 14, 19, 23, 24,
26]). The problem is to find solutions v=(v1, vz, vs) and u="(1, us, -, tn),
respectively, with the best possible regularity corresponding to the regula-
rity on the right hand sides. Our aim is to give essentially complete exist-
ence and regularity results in Sobolev spaces; we are interested in neces-
sary and sufficient conditions on g, f for solvability in these spaces.
There are various special results on the above equations. Grenz
treated the case g&L*Q)® in (1.1) if Q is simply connected. Griesinger
proved a result on (1.1) for bounded starlike domains. Recently von
Wahl gave an integral equation method for (1.1) and (1.2) in R?
which yields L-results for the lowest regularity level. Our approach to
(1.1 is completely different and has been inspired by Martensen [16]; we
get also results in higher order Sobolev spaces and we characterize the
corresponding null spaces of the operator rot. As it turns out, the theory
for (1.1) depends on topological properties of the manifold 9Q, e. g. on
the genus of dQ (the number of “handles”). Concerning (1.2) the most
complete result up to now has been given by Bogovski [1,2]. He deve-
loped the regularity theory for (1.2) in bounded domains and he proved
the result for the lowest regularity level in exterior domains. One of our
purposes is to give a complete proof of the higher regularity results in this
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case. The higher regularity in exterior domains is a crucial part of the
theory for both equations. For the sake of completeness we will also
present an outline of Bogovski’s proof on (1.2) in bounded domains. We
extend Bogovski’s result in some directions. So we give a result for di-
stributions f€H""(Q) and we prove some additional properties on the
operator f—u which chooses a certain solution « ((I'heorem 2.10).

Ladyzhenskaja and Solonnikov [14, 15] considered (1.2) in L?-spaces.
Von Wahl’s integral equation approach is a completely different way
to solve (1.2) in R®. Another approach to (1.2) in L*spaces can be
developed from Necas [20,7, Lemma 7.1] by using the gradient V and
duality arguments.

In order to establish higher regularity results for (1.1) and (1.2) in
exterior domains we have to use the homogeneous Sobolev space H""(€)
being the completion of C&(Q) under the highest order norm [V™u|,=
(Zia1=nll0°%|D)"". Here a polynomial growth of the elements «< H{""(Q) is
possible for |x|>o0, and if m=1, i.e. for higher regularities, we have to
admit such a growth for g and f in our equations. In order to develop a
theory for (1.1) and (1.2) in these homogeneous spaces, we prove first a
result on the entire space and then we argue by localization. For this
purpose we give a criterion for #€ H{""(Q) using decay properties for |x|
- oo, and we study the Laplacian A in homogeneous Sobolev spaces.

Using duality arguments, the theory on the equation (1.2) yields
immediately estimates for the gradient V. Bogovski [2, p.38] gave a
result for the lowest regularity level m=0. The general estimates on V
given here seem to be partially new. Applications can be found in

and [10].

NOTATIONS Let 1<r<oo and mEMN={0,1,2,--}. Then H™"(Q)
denotes the usual Sobolev space with norm |u|m,r=(Z\asnl0%u|D"" where
a=(a, @, , @) ENS, 0:=0/0x:, i=1,2, -, m, x=(x1, X2, **, xn)E Q, 0°=

a19¢2...9% and |e|=a1+ @+ +a.. For m=0 we obtain the usual
Lebesgue space L™(Q)=H""(Q) with norm |u|,=|ulo-. Let |x|=(xf+x}
+-+ 22 CF(Q) denotes the space of smooth functions with compact
support contained in Q, and H¢""(Q) is the completion of C&(Q) with
respect to ||u|=r. All spaces are real or complex.

Let Q be the closure of Q. Then #<L (Q) means that ¥L"(Q N
B) for every ball BER". Similarly, v H %"(Q) means that u&H™"(Q
N B) for every ball BSR".

The seminorm |[V™u|,=(Z\ai=n|0*«|)"" is defined by the highest order
derivatives ; |[V™«|, is a norm on C:#(Q). Completing C5(Q) under the
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norm |[V™u|, we get the homogeneous Sobolev space H{*"(Q). It holds
Hr (Q)S H(Q) if 0Q is nonempty. We obtain H™(Q)=H"(Q) for
bounded domains. Therefore we use the notation H*"(Q) only for exte-
rior domains.

For the entire space, H*"(R") is in general an abstract space of Cau-
chy sequences since we cannot apply Poincaré’s inequality. Therefore, in
view of localization procedures we choose on R" another norm instead of
IV™u|,. We fix an arbitrary open ball KSR” and let H#"(R") be the
completion of CF(R") with respect to the norm |ulk,m»=|V™u|c &~
+let)lLrx).

L—1. By H-""(Q)=H&"(Q)* and
H™"(Q)=H{"(Q)* we understand the corresponding dual spaces; if Q is
bounded we obtain H-™"(Q)=H ™"(Q) with equivalent norms.

Let L7(Q)", H™"(Q)", - be the corresponding spaces of vector fields
u=(u1, s, ***, Un).

Let »’ be defined by %—F

We set <u, v>=£uv dx or {u, v>=l;u-v dx with u-v=wuv1+ uz0;

+-+usvn if u, v are vector fields. By <u, v> we denote also the value
of a distribution « at v. -

Using the gradient V=(0y, o, ***, 0») we set div ¥u=V-u=01u1+ d2u:
+o+ Onttn for wu=~(ui, uz, -, un) and rot v=_0:0s— dsv2, Gsv1— S1vs, O1 V2
—d.0n) for v=_(v, vs, v3). |

If the boundary 0Q is sufficiently smooth (e.g. of class C') we denote
by N=N(x) the outward normal vector at x£9Q. Then we define LKQ)
={veL™(Q)": div v=0, N-v|s0 =0} and H{ (Q)=H"(Q)"NLKQ) for m
ENM. We get HI(Q)={veH"(Q)": div v=0} for mEN={1,2, -} and

Pr(Q)=L%Q) for m=0.

In this paper, an exterior domain is a domain whose complement is
the closure of some nonempty bounded domain. Throughout the paper, c,
c1, ¢z, -+ are positive constants whose values may change from line to line.

2. Bounded domains

First we investigate the properties of the operator rot in Sobolev
spaces ; here we assume that QS R? is at least of class C:. We need the
spaces F(Q)={veL™(Q)*: div v=0, rot v=0, N-v|so =0} and M™(Q)=
{(VPEHT(Q): p H™?7(Q), A™2p=0} for mEN,. F(Q) and M™(Q)
are finite dimensional and do not depend on ». We will show that F(Q)=
{0} if Q is simply connected and M™(Q)={0} if 0Q is connected. Then
our main result concerning (1.1) reads as follows:
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THEOREM 2.1. Let mEN,, 1<r<o, and let QS R® be a bounded
domain of class C™*. Then for every gEHS$ (Q) such that <{g, w>=0
for all wEF(Q), there exists some vEHg ™" (Q)® with the following pro-
perties :

a) rot v=g, A™'diveo=0 n Q,
b) inf [V** v+ k)|l = |Vl
heM™Q)

where c=c(Q, m, r)>0 is a constant ; v is unique modulo M™(Q).

Since M™(Q) has finite dimension we can easily construct a linear
operator g—v for (1.1) which selects a certain solution.

COROLLARY 2.2. Let m, v, and Q be as above. Then there exists a
linear operator S=S " from F™(Q)={g=H 5 (Q):<g, w>=0 for all
weEF(Q)} into H(Q)® with the following properties :

a) rot Sg=g, A™"'div Sg=0,
b) ”VmHSg”réC”Vmg“r

for all g F™™(Q), where c=c(Q, m, v)>0 is a constant. Sg is uniquely
determined modulo M™(Q) and unique if 0Q is connected.

It is not difficult to see that every < H**""(Q)* has a unique decom-
position #=Vp+uo with p€ HI"**"(Q), uoE H"**7(Q)% and A "' div uo=
0; this follows from well known properties on Dirichlet’s boundary value
problem for A™**[22]. Recall that A”*'div is understood in the distribu-
tion sense, and that the norm on the left in 2.1 b) is that of the quotient
space H{"'(QP/M™(Q). We see that the operator

rot: {vEHF " (Q)?: A" div u=0} - Hi% (Q)

has the closed range R(rot)=F™"(Q) and the null space M™(Q). It holds
F™(Q)=H{(Q) if Q is simply connected and the bounded inverse opera-
tor rot™' exists if 0Q is connected.

We need some topological properties of the two-dimensional manifold
0Q. Let 6.Q, 3Q, -, 3,0 (b&N) be the connected components of 0Q;
thus we get b=1if dQ is connected. These are connected two-
dimensional manifolds in R*® which can be completely classified (see [25,
3]). Each such manifold is homeomorphic to a sphere with “handles”
added in the sense of [3, p.14]. The number 4. of handles of the manifold
0:Q is the so-called genus of 9:.Q, i=1,2, -, b [25,p.58]. If Q is simply
connected, then there are no handles at each of aQ, 30, :*-, 3:Q.
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Using Dirichlet’s boundary value problem for A™**[22] we see that
M™(Q) is the set of all linear combinations cip:i+ cepz2+--*+ cop» Where pi,
D2, -, PyEH™?7(Q) are defined by Vp,€ H"*'"(Q)%, A™?p,=0, and p:lsn=
84, 1,7=1,2,---, b. The dimension of this space is #—1 such that M™(Q)
={0} if 9Q is connected.

Next we consider the space F(Q) of so-called Neumann vector fields
and show that the dimension of F(Q) is equal to A=hi+ hs++--+ h, which
is the total number of handles of dQ. To prove this we assume for simp-
licity that b=1 and ~2=%",. Then we consider % disjoint curves ki, ks, **,
k» inside Q surrounding the holes of the handles and also % curves ki, k¥,
-+ k¥ inside the complement R*\Q surrounding the handles (complemen-

tary curves). Let T=T(y) be the unit tangent vector to AF and / ds

(y) the usual line integral. Then we define
Ai(x)=(1/47r)@x—y|"lT(y)dS(y), Ji=rot A;, 6;=P,J;

for i=1,2, -, h where P, denotes the usual projection from L7(Q)® onto
L¥Q) associated with the Helmholtz decomposition (in the sense of [8, 18,

23]). An elementary calculation (see [16, p. 33]) shows that j; ,]j' T ds=0
if 7#7 and ==*1 if /=j. We choose the orientation of the curves k: in
such a way that fki]j- T ds=1 for i1=j, 1=1,2, -, h.

The well known properties of P, [18] imply 4. €F(Q) for each i=1,
2, h. Conversely, let 6€F(Q) and define ci= [ 6+T ds for i=1,2, -,

h (so-called circulations). Then for AHA =0—2Xr,c:0: all circulations van-
ish ; this leads to the representation 8 =Vp» Witl‘l some p€H""(Q). Using
the Helmholtz decomposition we conclude that § =0. The elements &, &,

-+, 6, are linearly independent because of ﬁ Ji* T ds=06:;; where 6;=1 for
i=j and =0 for 7/#j. Thus we obtain that % is the dimension of F(Q).

PROOF OF THEOREM 2.1. Let g€ H{ (Q) with <g, 8>=0 for all &
F(Q). Extending g by zero we obtain g€ H{%'(R®). Let F: be the funda-
mental solution of the Laplacian such that AFs(x)=¢8(x) with Dirac’s ¢-
distribution. We set w=—rot F3*g where * means the convolution.
Using rotrot +A=Vdiv and div g=0 we get rot w= —rotrot F3xg=AF3*g
=g, and the Calderon-Zygmund theorem yields |V**?Fs*g|.<c|V™gl,. It
follows wEHZ(R®)®. Since g=0 in R*\Q we get also rot w=0 in R®\
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Q. Using Fubini’s theorem and <g, §>=0 for all 4 F(Q) it follows ‘éw

T ds=0 for i=1,2, -, h: therefore, w has no circulations within R*\Q
and we get w=Vp with some pE HZ>"(R\Q) (use 4.5a) for example).
Now we solve Dirichlet’s boundary value problem

A™?p=0 in Q, 0%(p— p)laa=0 for all |e|<m+1

by Simader’s theory in the weak sense. This gives a solution pE
H™?"(Q) with with w—VpEHP*"(Q)?. We set v=w—Vp and obtain
rot v=g¢ and A™"'div v=A""?p=0 since div w=0.

- To show 2.1b) we let vEH{*""(Q)° be such that rot v=0 and A™"
div v=0. Extending v by zero we obtain v€EH™""(R®)?. Since R® is
simply connected we get a representation v=Vp with some p<= Hn">"(R?)
such that VpeHI*"(Q)°. From A™*?p=A""'divv=0 it follows VpE
M™Q). Thus we get that rot: {vEH7(Q)%: A™div v=0}->F™"(Q) is
a bounded and surjective operator with null space M™(Q). The estimate
in 2.1b) now follows from the closed range theorem. This proves Theo-
rem 2.1.

The assertion of [Theorem 2.1 becomes very simple if Q is simply
connected and 0Q is connected.

COROLLARY 2.3. Let 1<r<oo,

a) If QSR® is a bounded simply commected domain of class C* with
connected boundary 0Q, then for every g=L¥Q) there exists a unique vE
Hy™(Q)? such that rot v=g, Adiv v=0, and |Vo|-Zclglr where c=c(Q,
r)>0 is a constant.

b) If Q SR® is a bounded simply connected domain of class C™"*(meE
M) such that 0Q is conmected, them for every gEH{S (Q) there exists a
unique vEHP V7 (Q) such that rot v=g, A ™" div v=0, and |[V"*'v|,<
clV™gl: where c=c(Q, m, r)>0 is a constant.

Following Bogovski [1, 2] ‘we give now an outline of the theory on div
in bounded domains. As before we study the linear operator f—u which
selects a certain solution # to the equation (1.2). Apart from this formu-
lation, the assertions a), b), and ¢) of the following main theorem are
essentially due to Bogovski [2]. The assertion d) seems to be new as
well as the next Theorem 2.10 which shows that the norm of the above
operator f—- u remains unchanged if Q varies over a certain class of
domains. This will be applied in Section 4.

THEOREM 2.4. Let QSR" (n=2) be a bounded Lipschitz domain
and 1<r<oo, mEN,. Then there exists a linear operator R=Rq "~ from
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Q) into HEV(Q)" with the following properties :
a) div Rf=f for all fEHP(Q) with A £ de=0,

b) (V™R Z V™, for all FEHP(Q) where c=c(Q, m, »)>0 is a
constant,

c) RIreCy(Q)" if fECF(Q), and Rf=RY "f depends only on f and Q
if fECe(Q),

d) |RA=clfla-rr for all FEH(Q) where c=c(Q, »)>0 is a con-
stant.

PrRoOOF. Following we give the proof first for a domain QS R”
which is bounded and starlike with respect to some open ball B such that
B<Q. This means that Q={tx+(1—¢)y: xEB, y€Q, t<[0,1]}. We fix a

function 2€ Cg(B) with th dx=1, and we define Rf for each f€C§(Q)

by Bogovski’s formula

(RO(0)= [, Glx, 7 () dy, Glx, )=(x—y) [Thly+1(x
—y)t"'dt.

Extending f by zero outside Q, we conclude immediately that the sup-
port supp Rf of Rf is contained in the closure of {xx+(1—1¢)y:xEB, yE
supp f, t€[0,1]}. It follows RCF(Q)S C(Q)" and 2.4 ¢).

First we prove 2.4 b) for m=0. In the following calculations we
need each of the integral transformations ¢=|x—y|™'r, t=1+|x—y| 'z, z
=x—y, and t=r+1. Let 0;=0/ox: for i=1,2,--, n. For >0 we set

(Ref)(x)= f Gx, )/ (y)dy
—[ = f hx+(t—1)2)" f(x — 2)didz
F{EX3 1
and we obtain the decomposition 0:R.f= Vif+Sif, i=1,2, -+, n, where

(Vinw= [ a6, WAy

and

(SI0= [ (r=3dlx=3I"Glx, ) (v)doy

f---doy means the usual surface integral. Using the transformation x—y

=ez, doy=¢e""'do. we obtain
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(Séf)(x)=L|=lzzi£wh(x+ 2)(r+ )" ' f(x — ez)drdo..

Setting d=diam Q=sup{|lx—y|: x, vEQ} we obtain the estimate
2.5 |IS¥l-=cle+d) |kl 11
where IIhIIwzsgpIh(x)l, and ¢>0 is a constant. We also obtain lig)lSéifZ
fg', i=1,2, -, n, with
g"(x):_/l;lzlzzil W(x+tz) " 'drdo,

- / (x— ) (xi—vi)lx —"2h(3)dy.

Using the notation ei=(1,0, -+, 0), --*, ex=(0, -+, 0, 1) we get the decom-
position

0:G(x, v)=Mx, x—y)+Nx, x—y)

where
M(x, x—y)=ei|x—y|‘"fh(x+ r(x—y)x—y™)
(2P =y ) dr
==y [ @)+ el =y
(2@ — ") dr
and

d
Nf(x,x—y)zeilx—yl‘”fo WMx+t(x—y)|x—y|™) " dr
d
+(x—y)|x—y|‘"“£ (0:h)(x+ r(x —¥)|lx — y|™) c"dr.

Here Nix,x—y) is strongly and M.x, x—y) weakly singular at x=
y. We obtain |Mi(x, 2)|< c(ZI2| hled” 2|71+ X223 0:iblled* | 2|7) and

2.6)  |Mifl-<c(|hlwd™+0:Rled™ DIf]-.

Since [ZI:I Ni(x, z)a’osz(a/&yi)(yh(x+y))dy=0, Sup sup |IN:(x, 2)| <

c(|4lled™+|0:k)wd™ "), we can apply the Calderon-Zygmund theorem [5, 21]
to Ni{(x,x—7y) to obtain the existence of Nif=1i£51Nz-,ef where N;.f is

defined by (Ni,ef)(x)z'll;_ylzeNi(x,x—y)f(y)dy. We also obtain the esti-

mate

2. D INuefl-=clhl-d” +0:hled™ DI
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Thus the limit &RfZIeip(}az-Ref exists in L7(Q)" and from (2.5), (2.6),
(2.7) we obtain
2.8) VRS- = clhlled™ + IV Rlld ™ DI -

which leads to 2.4 b) for m=0 using a closure argument. The assertion
2.4 a) follows from

div szzin:lli_I:I;]lai(Ref)i:Zzﬂzllei_I:IO]ei' Veif+21-”=1fe,-'g"=—h£f dx+f.

To prove 2.4 d) we consider some f&H ""(Q) and we choose ¢:<
LT(Q), Z"—‘l, 2, R /8 with <f, U>:<91, (911}>+<gz, 8zv>+--'+<gn, anv')=—<div
g, v> for all vEHy"(Q), and with |flla-1-=|gll-; every FEH"7(Q) has
the form f=divg with some ¢g=L"(Q)". Thus the set of all f=divg
with g€ C5(Q)" is a dense subspace of H7'7(Q). With ¢g=Ce(Q)" we
obtain the representation

(0:Rg:)(x)= [z|z]™" f T{(r?fh)(x—z+ 22|27 " gi(x — 2)
+h(x—z+t2|z| ™) "1 0ig:(x — 2)} drdz,

and Ro.g:=0:Rg:+ W;, where W; has a weakly singular kernel. Using
(2.8) and the same argument as for (2.6), we get |Rd:g:{l-<cl|g|- and 2.4
d) follows.

The proof of 2.4 b) for arbitrary m&N can be reduced to the case
m=0. For f€CF(Q), a=(a, a, -, @») with |a|=m, 0*=080§---02", we
obtain

(8"1?}’)(90=fz|z|‘"‘I/;lo Hh(x—z+ 2|z ™) " (x — 2)}drdz
=Ys=a(§) zlzl‘”fl:(a"h)(x—an rz|z|™) !
(0 *f)(x—z)drdz
= S5aa(§) [ GPx, 9N 1))y

where G*(x, y)=(x—y)/l‘w(8”h)(y+t(x—-y))t”“a’t. Applying the estimate
from above now to G*(x, y), d*°*f instead of G(x, y), f, we obtain
2.9 [VORflr = cZssa|0°Allwd™ + |V 0% Rllwd ™ D)l 0*~#1]

for all @ with |a|=m. This proves 2.4 b).
Now we consider the general domain Q as in 2.4. This case can be
reduced to the case above by localization. Using the Lipschitz regularity
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of 00 we can choose bounded domains U; and functions ¢.€ C5(U;), i=
1,2, -, k, with following properties: 0= ¢.:=1, the Q.,=QN U, are starlike,
QSUL U, Yhi¢x)=1 for x€Q. Then we construct a decomposition

f=T1(f)+To(f)+--+Tx(f) such that [)ri(f)dxzo if /€C3(Q) and
'/Q-f dx=0. For simplicity we assume k£=2. Now we choose ¥<Cy(Q:N

Q2) with f ydr=1 and set T:(f)=gif —( /¢1fdx)¢f. Then it follows that

the T'; are linear operators from Ci(Q) into CF(Q.) with the desired prop-
erty. Let R; be the operator R from above with Q. instead of Q. Then
we define Rf=Rili(f)+ R.I2(f) for f€Ce(Q). Using Poincaré’s inequal-
ity we get |[V*"T:(A)I-=c|V™f|, and this leads to 2.4 a), b), and ¢). A
similar argument leads also to 2.4 d). This proves [Theorem 2.4.

The next theorem extends Bogovski’s result and shows that the con-
stant ¢ in 2.4 b) does not depend on Q if Q varies over a certain class of
domains.

THEOREM 2.10. Let QSR (n=2) be a bounded Lipschitz domain,
1<r<oo, and m&Ny,. Consider yER", 0+rER and set Qy, r)=(1
—)y+Q={(1—0)y+wx : xE€Q}. Then there exists a linear operator Ry..
=R 8y o from H& (Q(y, 7)) into HI M (Q(y, ©))" with the properties

div Ry..f=f for all fEH" (Qy, 1)) with Ay T)fdeO, R,,.Ce(Qy, 1)) <
Ce(Q(y, )", and

IV Ry, ef |0 or = IV llraw, o, FEHE (U, 1)),
where the constant c¢=c(Q, m, r)>0 does not depend on f, v, and .

PROOF. We may assume that y=0 and we set Q(7)=Q(0, 7)=1rQ.
We assume first that Q is starlike and we use the notations 7%, d, R, Q:, ¢.,
¥, -+ as in the foregoing proof. Let %: be defined by &.(x)=|z|""h(r %),
and let R: be the operator R constructed with %., Q(z) instead of %, Q in
Bogovski’s formula. Let ¢f ¢° be defined by ¢¥x)=¢(r'x), ¥"(x)=
lz|""¢(z7'x), let Q:(r)=17Q;, and let '} be defined in the same way as T':
with ¢f, ¢° instead of ¢., ¢. Let d.=|r|d.

Using ||« =|z|™"| 2w and |Vi:|-=|z]"" YV i]- we get from (2.8) the
estimate

VR @ = erllheled? + [V e lwd? I e
= ol Alld™ + [V Rlled ™ DI fllracey, fE CH(Q(2)),
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which proves the case m=0 in the estimate of 2.10. In case mEN we
get from (2.9) the estimate

IVO*Ref | rator < cZpsa(l0°held i+ IV R llwd? ) 0%~ fll o,
and using
0% kel < 2|10 hc o, [V helloo =] 2|7 *1 1|V O R,
and Poincaré’s inequality
10l raen < cd|0°F | e
we obtain the estimate
IV Ref | raor < |V e
which proves 2.10 for starlike Q. For general Q we obtain

||8aI‘f(f)”r§ Cl(zﬁsa1|(aﬁ¢§)(aa-ﬁf)||r)+ CZ||f||T”aa¢T"r|T|mr, é1 ‘r’
< oA Spaall M 10%71,) %1 e
< csl|0%fl-, |lal=m,

IV*TH ) i = eVl e,

and
IV Ref | oy < ar(IVT A craen IV TE ) Lraien)
< ool V™l e,

This proves the theorem.
3. Exterior domains

First we consider the operators rot and div in homogeneous Sobolev
spaces for the entire space. Then we get our results for exterior domains
by localization.

In view of this localization procedure it is convenient to use on R”
the Sobolev space HZ"(R")" which is by definition the completion of

C(R™)" under the norm |u|x,m,»=|V"u| -+ |ulr); in the following
K<SR"is a fixed open ball. Thus we get HZ"(R")"SH % (R")".
Furthermore we use the subspace HZ4(R")={veHF"(R")":div v=0}
with the same norm. We also use the notation H{Y (Q)={vEH"(Q)*:
div v=0} for m=1,2, -+ and HS(Q)=LKQ)={vEL™(Q)":div v=0, N*v|x
=0} for m=0.

Our main result on the entire space reads as follows:

THEOREM 3.1. Let mEN, and 1< r <co,

a) There exists a bounded linear operator M™" from HE5(R®) into
HZET(R®) such that rot M™"g=g for all g= HE'§(R®).
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b) Let n=2. There exists a bounded linear opervator J™7 from
HET(R") into HE*'(R™)" such that div J™"f=f for all fEHF"(R").

This leads to our main result on rot for exterior domains; here we
consider only simply connected domains.

THEOREM 3.2. Let mEN,, 1<r<o, and let QSR® be a simply
connected extevior domain of class C™?. Then there exists a linear opera-
tor S=SI’ from HF(Q) into ﬁof’“'T(Q)B' such that rot Sg=g and
IV Sqlrr = eIVl @e for all gEHS(Q); c=c(Q, m, )>0 is a con-
stant.

The following theorem is the main result on div for exterior domains.
For the lowest regularity level m=0, a complete proof is contained in [2].

THEOREM 3.3. Let mEN,, 1<r<o, and let Q<R" (n=2) be an
exterior Lipschitz domain. Then there exists a linear operator R=Rg "
from HF(Q) into HIV(Q)' such  that div Rf=F and V™' Rf||L-@r <
clV™ o for all FEHP(Q); c=c(Q, m, ¥)>0 is a constant.

In order to prove these theorems we prepare two lemmas on the
spaces HZ"(R™). First we observe that the norms ||u|x,m- and |u|k: mr
are equivalent if K’ is another open ball in R” [17,p.161]. Then we note
that HP"(R")S HZ"(R") and H{(Q)S HZ"(R"); thus the space H*"(Q)
obtained by completion of C§(Q) under |V™u|, is embedded in H#"(R");
this follows easily by applying Poincaré’s inequality near the boundary
Q.

In our first lemma we give a criterion for v HP"(R") using decay
properties.

LEMMA 3.4. Let mEN,, 1<r<co, n=2. Suppose ucH % (R")
and assume that for all B=(p, B, -, Br)EN the following holds :

a) If 0§m——% and 0§|B|§m——z, then 0% u(x)| < clx|™ 7" for all
sufficiently large |x| with some c=c(u)>0.

b) If m——Z<|,8|§m, then *us LY (R") wherve q=2r is defined by m

_n_p
g2,
Then it holds usHE"(R").

PROOF. Let u be as in 3.4. It suffices to construct w;EH™"(R")
with compact supports such that |V™*(u#—u;,)|l-~0 and |#— wil.rx)~0 as
j—co. Observe that |V™u|,<oo; this follows from b) with |3|=m and
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g=v. In order to construct the approximations #; we choose a function
$= Cr(R™) with ¢=1 for |x|<1, 0<¢<1, and #(x)=0 for |x|=2. Then
we set #i(x)=¢('x) and v;(x)=u(x)¢,(x). We get [*¢;(x)|<c/™"" with
some c=c(8)>0, and for all = Ny* with |e|=m we obtain

l6°0 = cCla“uli+ Soce |

j§|x|§2j|

0°~*9,|"0%ul"dx).

Using 3.4 a) we obtain for Oélﬁlém——z and sufficiently large j the

estimate
. B n 2j _
f 1024|710 u|"dx < ¢, 771417181+ "9""[ " Ydr< o,
Js|x|=25 J

where ci=ci(#)>0 and c:=c(u) >0 are independent of j. Using 3.4 b)

_1._+_7m_|3| 1

the estimate
n v

with m——jﬁ< |B|< m, we obtain with

2j (m=I81)
[g |sz~|aa_ﬁ¢j|r|aﬁulrdx§Clj_(lal_lﬂl)r“aau||5(_[ T"—1d1'>n =0
JS(XI=27 ;

where ci=ci(m, r, n) >0 and c.=c2(u)>0 are constants. Thus we get
10“v;|r<c where c=c(u)>0 is independent of j. The properties of @,
yield the weak convergence of 0%v; to 0°u for all @ with |e|=m. Then
Mazur’s theorem [28, V, 1] implies the existence of a sequence (u;) of con-
vex combinations of the v; such that |[V™(#—u;)|-~0 as j—>oo. Since
u(x)=u;(x) for x€K if j is sufficiently large, we obtain also [|V™(u
—u)lr+ e —w;|Lry—>0 as joco. This proves the lemma.

Our second lemma gives the properties of the Laplacian A in the
spaces H#'"(R"); we set A=+ 5+ + 32

LEMMA 3.5. Let meNy,, 1<r<co, and n=2. Then A is a boun-
ded surjective operator from HEY*"(R") onto HF"(R") with finite dimen-

sional null space N™ ={vEHEF*"(R"): Av=0}. In case m+2——7:,<0, it
holds N™"={0}, and in case m+2——¢20, N™" s the space of harmonic

polynomials P with degree d(P)é’m—l—Z——’f,. There is a bounded linear

opevator V™" : HE"(R") - HEF™>"(R") such that AV™'f=f for f€
HZ"(R"). The operator A: HE**"(R")IN™ > HEF"(R") is an isomorphism.

PrOOF. V™" can be constructed as follows. Let F, be the funda-
mental solution of A, i.e. it holds A Fu.(x)=0(x) with Dirac’s 6-
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distribution. Consider any bounded linear projection @™’ from
HZ**"(R™) onto the finite dimensional space N™". Then we set V™'f=
(I—Q™")F,*f first for f€CF(R") and then by continuity for all f&
HZ"(R"). Here I means the identity and * the convolution.

The continuity of A: H#™*"(R")- HZ"(R") follows from the estimates
IV™Av|l, < c|V™20|, and |Av|r < (V™ 20|y +l0llrky). To prove the
surjectivity of A we consider some fEHF"(R") and a sequence f;&
Cy(R™) such that |f—fillk.mr—0 as jooo. Let w, be defined by w;(x)=

(Fn*fj)(x)=/Fn(x—y)fj(y)dy. The Calderon-Zygmund theorem yields

IV™*2w;l, < c|lV™fill, with some c=c(m, »)>0. Using the elementary
properties |Fn(x)|= cllx>""(#=23) and |Fa(x)|< collogl|x|| we see that w,E

LYR"™) for m+2——’;<|,8|§m-|-.2, m+2——7;f=|6|—%, and that |0*w;(x)|<

clx|m2 718 for 0§|,8|§m+2——?7 and large |x| if m+2——1ﬁ§0. Thus
from 3.4 it follows w,E HZ**"(R"), j=1,2, - .

Now we consider the conditions m+2——g=u—% with 0Sv=m+2, ¢q

>y. Then for m+2——?;< v<m+2 we obtain |[V'w;|l¢< V™" ?w;|, by
Sobolev’s inequality [7, p. 24], and it follows |V w;|¢< cl|V™fillr and [|[V¥(w;
—wille = c|lV*(fi—Ffll-—0 as j, i~ co. In case m+2——Z<0 it follows |w;
—w:q—0 and therefore |w;— w:lxk,nr—0 as j, i ; we get some weE

’

Hz**"(R") with |w— wilk,n-—0. In case m-|-2——7;f%0 we let £ be the
largest integer such that 2= m+2——7;f. Let ¢=7 be defined by m+2——’;

=k+1—2 Then we get |V* ' w;|,< c|V™*2w,|, as above since m+2——=
q r

<k+1=m+2, and it follows |V*'w;|=<c|V™fl7r and |[VEHw,— w:)| <
IV (fi= £l

In the next step we use the general Poincaré inequality [20, p. 112 ; see
also 4.5 a)]

inf [|w+ Pl = |V wllre
d(P)sk
and we conclude that (w;) is a Cauchy sequence with respect to thé norm
on the left ; here inf is taken over all polynomials P with degree d(P)<k.
Therefore, there are polynomials P; with d(P;)<k such that the sequence
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(w;+ P;) converges in space H**“"(K). Since d(Pj)§k§m+2-—Z—, we

obtain P,€ HF**"(R"). Therefore, (w;+ P;) is a Cauchy sequence in
HE**"(R") and converges to some wE HZ**"(R"). From Aw,;=f; and |w
—(w;+ P))|ameeriy >0 we obtain 0=lim| A w—(fi+A P)lery=lim| Aw—f
—APj|ry and lim |A(P— P)llcray=0. From this we conclude that there
is a polynomial P such that d(P)<%k and l.i_.m”(A(P_Pj)"L’(K)ZO. This

leads to Aw=f+AP and A(w—P)=7f which proves the surjectivity asser-
tion for A.

Let vEN™". For m-+-2——7f,<0 we obtain vELY(R") where ¢ is
defined by m+2——z=—%. Since v is harmonic, it follows v=0 and
therefore we get N™"={0}. For m+2——7:20 we define £ as above and

obtain *vEL"(R") for |B|=Fk+1, m+2—%=k+l—%- ‘Since 0%v is also

harmonic, it follows 0’v=0 for |8|=F£+1. Thus v is a harmonic
polynomial with d(v)<k. Conversely, such a harmonic polynomial is
contained in N™" ; this follows from Lemma 3. 4.

Since A : HF**"(R")-» H#"(R") is bounded and surjective, A :
HE*»"(R")/N™" - Hi"(R") is an isomorphism. Since N™7 is finite dimen-
sional, we can construct a bounded linear projection Q™" from
H#E**"(R™) onto N™". For all f€CF(R") we obtain

“f”K,m,r:”A(Fn*f)”K,m,r = Cng}fn'r”(Fn*f)+P”K,m+2.r
=cz inf |(I— Q" W(EH)+ Pllimse.r
26'1”(1" Qm’r)(Fn*f)”K,mH,r

and AJ—Q™")F,*f=AF.*f=f. The operator f>(I—Q™")F,*f can be
extended by continuity from CF(R") to HZ"(R"); we denote this exten-
sion by V™" and get the desired properties. This proves the lemma.

PROOF OF THEOREM 3.1. Consider the operator V™7 : HZF"(R")~
HZ**"(R") from the proof above. Then we set /™" f=VV™'f for all f€
H#"(R™). From 3.5 it follows immediately that /™" has the properties in
3.1 b); we have only to use A=divV. To prove 3.1 a) we consider the
space HZ:5(R") instead of H*"(R"). Using rotrot+A=V div we see that
rotrot v=—Av for all vEHEF5"(R®). The properties of rotrot are com-
pletely analogous to those of A in 3.5. We set M™ =rot V™" and get
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the properties in 3.1 a). This proves the theorem.

PROOF OF THEOREM 3.2. Let g€ H{¥(Q). Extending ¢ by zero we
get g€ H (R®). Using M™" from 3.1 a) we set 7=M™"g and obtain
rot 7=g=0 in R®\Q. Since the bounded domain R®\Q is simply con-
nected, there exists some pEH™ 2" (R?\Q) such that 7=Vp in R*\Q.
Now we take an open ball B with dQ< B and we solve the Dirichlet prob-
lem

Am+25:0, aa(p_§)|m=0’ aa5|9320, la|<m+1

on QNB in the weak sense using Simader’s theory [22]. We obtain a
solution pEH:"+2"(QﬂB) with 9%( ﬁjv‘b)'m =0 for |a|<m+1. Then we
set Sg=7—Vp and we obtain Sg= H"*"(Q)® and the estimate

IV *1Sgl, <[V 5[+ V™ (V o)l
<alV™gl-+ cal plam@ns = cs| V|,

using the properties of M™” in 3.1 a) and the well known trace theorem
for 0Q. This proves the theorem.

PROOF OF THEOREM 3.3. Consider open balls By, and B in R" with
0QS By and BoS B where B, is the closure of Bo. Let ¢ CP(R") be a
function with 0=¢<1, ¢=0 on B, and ¢=1 on Q\B. Let fEH""(Q).
Then we define R=RY" by Rf=R3ig(div(l—¢)J™"f)+¢J™"f with R% g
from 2.4 and /™" from 3.1 b). Here we suppress the operations of re-
stricting to a subdomain and of extending by zero. In particular we set
f=0 outside Q.

R is well defined since div(l1—¢)J™ f=(1—¢)f— (Vo)™ f=H"(QN
B) ; this follows from fEH® (Q), (1—¢)fEHI (Q NB), J™'f<
Hz*™"(R™)" and (V@)J™ fEHM(Q NB)SH"(Q NB). Since div J™'f

=f=0 on R"\Q we conclude easily that _L‘ ﬂBdiv(l—ng)]”"’fa’x=0. Thus

we get div Rf=div(l—¢)J™"f+div ¢J™ f=div J™"f=f.

From 2.4 it follows R?{hrg(div(l—¢)]m”f)EHom“"(QﬂB)”Eﬁom“"(Q)"
and from 3.1 b) we conclude that J™"f€HZF*""(R")" and ¢J™ fE
HI*'7(Q)". Moreover we obtain

V™" Rf |- < ex(|IV™div(1 = @) T ™ fll- + IV (ST ™7 Ol )
= a(|IV*A =) fll- IV AT f -+ IV (@™ )
< cs(|l lam@nmy+T™ fllamr@nb)
IV T T k)
< IV Alr@+ 17" Al mr) S eVl .
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Here we used the estimates ||f|u@nm=c|flarw and [J™ fla.merr <
cill lk,mr < call fllaza which follow using the Poincaré inequality. This
proves [Theorem 3.3

4. Applications to the gradient V

Using duality arguments the properties of the operator div lead imme-
diately to results on the gradient V. We give these results in
4.2 and Corollary 4.5 Bogovski [2, p.38] considered the case of the
lowest regularity level m=0. Some of the estimates in 4.2 and 4.5 seem
to be new and some of them are well known or recently proved by com-
pletely different methods (see [9, p. 257] and [19]).

In what follows we use distributions in the sense of Schwartz [29].
Recall that <T, v> means the value of some distribution 7 at v. We
need the following density property which is due to Bogovski [2, Lemma 4
and Lemma 8]. He gave a proof by a contradiction argument ; we give
here a simpler proof which is based on our [Theorem 2.10.

LEMMA 4.1.  Let QSR" (n=2) be a bounded or an exterior Lip-
schitz domain.  Then for all m=1,2, - and 1<r<oo the set Cys(Q)={v
ECP(Q)" :div v=0} is a dense subspace of H{5 (Q)={vE H{"(Q)": div v=
0} with respect to the norm V™0,

PROOF. Let u€H{(Q) and let u; € C(Q)" be a sequence such that

IV™(2—u;)l; >0 as j—oo. If Q is bounded we get from 2.10, 2.4 ¢) that

o " div u;,€CH(Q)" and vi=w;— R 27V div w,€C 85(Q) for j=1,2, - .
Using div «#=0 it follows

IV (2 — o)l IV — w;)|- + V" REZ 7 div s,
<|V™(u— ;) + |V div(u; — )|,
= cZIIV’”(u — uj)||r -0

as j— oo,

Now we consider an exterior domain. Then the last argument does
not work since Ry "’div #; need not have a compact support. However,
using the construction of R3” for 3.3 and the properties of RZ’5 (Theo-
rem 2.4 ¢)) we see that Ry '’"div #,€C~(Q)" and that these functions
vanish in a neighbourhood of 0Q.

Let G;={x€R":;<|x|<2j}, B,j={xER":|x|<2j} and let ¢; be
defined as in the proof of 3.4. Then we get G,={jx:x€G}. We put

vi=u;— ¢ RV div u;+ RE Y (Ve,) R V7div u,.
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Then it follows v;€Css(Q) for sufficiently large ;. Now we apply
Theorem 2.10 to the domains G; and obtain

IV"RZ (V) Ry 7div u)l- = ci| V' (V) Rg ™" 7div uyl»,
IV (e — vl |V (u — )l + V" :RE 7 div w5l zn0
+ ||V U (V) Ry V7 div ws)lsno).

Then we use |0°¢;|<c ;" and the estimate

10° 2R ™""div willrsne=c 7®0°RE ™ "div wslsna

which follows from the Poincaré inequality since RZ "’div #,=0 near 0Q.
For |e|=m we obtain

IV¢,R2 " 7div willrmnay S 1Zvsms IV YRy 1 7div w;l| 8,00
< || V™RZ V7 div wyl» £ csl| V™ div wyll-= ¢l V™ div(e — us)|| 7
<l V™(u—u;)l.

Similarly we get |[V* Y(V¢;) R g " div ulrrsn o= c|V™(u—u;)l.
Thus it follows |[V™(u—v)|-<c|V™(—u;)|—0 as j—oo. This proves
the lemma.

THEOREM 4.2 Let m=0,1, 2, -+, 1<r<oo, and n=2.
a) Suppose QS R" is a bounded Lipschitz domain and TEH ™" (Q)"
is a distribution such that <T, v>=0 for all vEC(Q)" with div v=0.
Then there exists a p=H ™" (Q) determined up to a constant C such that
T=Vp and

(4.3) itgf”p'i' Cla = c|Vplla-=qy

where c=c(Q, m, r)>0 is a constant. If p is an arbitrary distribution on
Q with Vp€H ™17 (Q)" then it holds pH ™" (Q) and the estimate
(4.3).

b) Suppose QS R" is an exterior Lipschitz domain and TEH ™ 7(Q)"
is a distribution such that <T, v>=0 for all v& C(Q)" with div v=0.
Then there exists a uniqgue pEH ™"(Q) such that T=Vp and

4.4  |pla==cl|Vla=+ayr

where c=c(Q, m, 7:)>0 is a constant. If p is an arbitrarvy distribution on
Q such that VY€ H ™V7(Q)", then there is a constant C(p) with p+ C(p)
eH ™ (Q) and (4.4) is true with p+ C(p) instead of p.

COROLLARY 4.5. Suppose 1<y <o,
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a) Let QSR" (n=2) be a bounded Lipschitz domain and mEN,. Then
infl+ Q1< V™4l

for all pE H™ " (Q) where c=c(Q, m, v)>0 is a constant and inf is taken
over all polynomials Q of degree d(Q)<=m ‘
b) Let QS R" (n=2) be an exterior Lipschitz domain. Then

15 2@ = |Vl gy

for all pEL™(Q). For every distribution p such that VpEH17(Q)", there
exists a constant C(p) with p+C(P)EL™(Q) and this estimate is true with
p+ C(p) instead of p.

c) Let Qbeasin b)), r>uln—1)", and v with —};-F%ziy. Then

15 @ = ¢Vl oy

for all p€L7(Q) with VpL'(Q)". For every distribution p such that Vp
EL(Q)" there exists a constant C(p) with p+C(H)EL™(Q) and this esti-
mate is true with p+ C(p) instead of D; heve c=c(Q, »)>0 does not
depend on p.

Bogovski [2, p.38] proved a partial assertion of 4.2 a) and b) in the
special case m=0. The estimate in 4.5 a) is well known and proved in
by another method. The estimate 4.5 b) has been proved in [6] for
the special case »=2. 4.5 ¢) has been proved recently in [9, p. 257] and
in by completely different methods.

From 4.5 ¢) we get for exterior domains the estimate

1.1
ol = clVplrm, 1<y<n —=1t1,

for all (restrictions to Q of) p€Cy(R"). Usually this estimate is known
only for all p€C&(Q) [7].

PrROOF OF 4.2 AND 4.5. Let 7’ be such that ir+ 71,=1.

a) LetQbeasin4.2 a). From 2.4 we get in particular that the opera-
tor div: H"'7(Q)"-> Hi"'(Q) has a closed range R(div). From the
closed range theorem we conclude that the transposed operator —V:
H™™"(Q)-»H "™ ""(Q)" has also a closed range R(—V). The null space
N(=V)={veH™"(Q):Vv=0} is the space of constants. It follows the
validity of (4.3) for all p€ H ™"(Q). Let T be given as in 4.2 a).
Using the density property in 4.1 we see that <7, v>=0 holds even for all
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veN(div)={ve H " "(Q)" :div v=0}. Then the closed range theorem
yields that T€R(—V) and T =Vp with some p€H ™"(Q) and that
(4.3) is true. If p is a distribution with VpH """(Q)", then we get
Vp, vy=—<p,div v>=0 for all vE C5(Q)" with div v=0. Thus we obtain
some mEH " ™"(Q) with Vp=Vp,. It follows pi=p+ C with a constant C
and therefore p H~™"(Q). This proves 4.2 a). The estimate 4.5 a) fol-
lows from (4.3). To see this we consider first the case m=0, and using
the elementary inequality |Vpla—r=c|Vp|, for bounded domains, we
obtain from (4.3) the estimate inf lp+ Cl-=c|Vpl,. Then we get 4.5 a)

when we apply this estimate repeatedly.

b) Let Q beasin4.2 b). In this case the argument is similar as for 4.2
a). We have only to replace the spaces H{"*“"(Q)", H"'(Q), and
H™7(Q)" by HIV7(Q)", H(Q), and H " 7(Q)", respectively. Then
we have to apply [Theorem 3.3 instead of [Theorem 2.4, and we have to
use that N(—V)={0} for exterior domains. Then the assertion 4.2 b) fol-
lows as above. 4.5 b) is the special case m=0 in 4.2 b). 4.5 ¢) fol-
lows from 4.5 b) when we use the embedding L7(Q)*<S H "“"(Q)"* which is
a consequence of Sobolev’s embedding theorem [7, p. 24].

References

[1] BoGovski, M. E., Solution of the first boundary value problem for the equation of con-
tinuity of an incompressible medium, Soviet Math. Dokl. 20, 1094-1098 (1979).

[2] BOGOVSKI, M.E., Solution of some vector analysis problems connected with operators
div and grad (in Russian), Trudy Seminar N.L. Sobolev, No.1, 80, Akademia
Nauk SSSR, Sibirskoe Otdelenie Matematiki, Nowosibirsk, 5-40 (1980).

[3] BOOTHBY, W.M.,, An introduction to differentiable manifolds and Riemannian geome-
try, Academic Press, New York-San Francisco-London, 1975.

[4] BORCHERS, W., and H. SOHR, On the semigroup of the Stokes operator for exterior
domains in L%spaces, Math. Z. 196, 415-425 (1987).

[5] CALDERON, A.P., and A. ZYGMUND, On singular integrals, Am. J. Math. 78, 289 (1956).

[6] DENY, J, and J.L. LIONS, Les espaces du type de Beppo Levi, Inst. Fourier Grenoble
5, 305-370 (1955).

[7] FRIEDMANN, A, Partial differential equations, Holt, Rinehart and Winston, Inc. 1969.

[8] FUJIWARA, D, and H. MORIMOTO, An L,-theorem of the Helmholtz decomposition of
vector fields, J. Fac. Sci. Tokyo, I A Math. 24 685-700 (1977).

[9] GALDI, G., and P. MAREMONTI, Monotonic decreasing and asymptotic behavior of the
kinetic energy for weak solutions of the Navier-Stokes equations in exterior
domains, Arch. Rat. Mech. Anal. 94, 253-266 (1986).

[10] GIGA, Y., and H. SOHR, On the Stokes operator in exterior domains, J. Fac. Sci.
Univ. Tokyo, Sec. IA, 36, 103-130 (1989)

[11] GRENZ, S., Zerlegungssitze fiir Vektorfelder, Zerlegung von Hg*? beziiglich der Rota-
tion, Diplomarbeit, Universitit Bayreuth 1987.

[12] GRIESINGER, R., The Dirichlet problem for the operator rot in bounded domains, pre-



[20]

[21]
[22]

[23]

[24]

On the equations rot v=g and div u=f with zero boundary conditions 87

print, Bayreuth 1988.

HEYWOOD, J.G., The Navier-Stokes equations, on the existence, regularity and decay
of solutions, Indiana Math. J. 29, 639-681 (1980).

LADYZENSKAJA, O. A., The mathematical theory of viscous incompressible flow, Gor-
don and Breach 1969.

LADYZENSKAJA, O. A, and V. A. SOLONNIKOV, Some problems of vector analysis and
generalized formulations of boundary value problems for the Navier-Stokes
equations, J. Soviet Mathematics 10, 257-286 (1978).

MARTENSEN, E.,, Potentialtheorie, Stuttgart, Teubner 1968.

MAZJA, V.G., Sobolev spaces, Berlin-Heidelberg-New York, Springer 1980.

MIYAKAWA, T., On nonstationary solutions of the Navier-Stokes equations in exterior
domains, Hiroshima Math. J. 12, 115-140 (1982).

MIYAKAWA, T., and H. SOHR, On energy inequality, smoothness and large time behav-
ior in L, for weak solutions of the Navier-Stokes equations, Math. Z. 199, 455
-478 (1988).

NECAS, ]., Les méthodes directes en théorie des équations elliptiques, Masson, Paris
1967.

NERI, U.,, Singular integrals, Lecture Notes in Mathematics 200, Springer 1973.

SIMADER, C.G., On Dirichlet’s boundary value problem, Lecture Notes in Mathematics
268, Springer 1972.

SOLONNIKOV, V. A., Estimates for the solutions of nonstationary Navier-Stokes equa-
tions, J. Soviet Math. 8, 467-529 (1977).

SOLONNIKOV, V. A., and V.E. SCADILOV, On boundary value problem for a stationary
system of Navier-Stokes equations, Trudy Mat. Inst. Steklov 125, 186-199
(1973).

STILLWILL, J., Classical topology and combinatorical group theory, Graduate texts in
mathematics 72, New York-Heidelbery-Berlin, Springer 1980.

TEMAM, R., Navier-Stokes equations, North-Holland, Amsterdam-Now York-Oxford
1977.

WAHL, W. von, Vorlesungsausarbeitung, Bayreuth 1987, published in: Sonderforschun-
gsbereich 256, Bonn 1989, Rudolf-Lipschitz-Vorlesung.

YOSIDA, K., Functional analysis, Grundlehren 123, Springer 1965.

Fachbereich Mathematik der
Universitit-Gesamthochschule
D-4790 Poderborn
West-Germany



	1. Introduction
	2. Bounded domains
	THEOREM 2. ...
	THEOREM 2. ...
	THEOREM 2. ...
	THEOREM 3. ...
	THEOREM 3. ...
	THEOREM 3. ...
	THEOREM 4. ...

	References

