Theorem of Busemann-Mayer on Finsler metrics

To Professor Noboru Tanaka on his sixtieth birthday

Shoshichi Kobayashi*
(Received January 12, 1990)

1. Introduction

Let X be a manifold and $T X$ its tangent bundle. A pseudo-length function on X is a real valued nonnegative function F on $T X$ satisfying the condition

$$
\begin{equation*}
F(c \xi)=|c| F(\xi) \quad \text { for } \quad \xi \in T X, c \in \mathbf{R} \tag{1}
\end{equation*}
$$

If $F(\xi)>0$ for every nonzero ξ, then F is called a length function.
If $\xi \in T_{x} X$, we write sometimes (x, ξ) for ξ although x is redundant. Similarly, we write occasionally $F(x, \xi)$ for $F(\xi)$. When we are working in a coordinate neighborhood U with a natural identification $T U \simeq U$ $\times \mathbf{R}^{n}$, the notation $F(x, \xi)$ is more convenient as well as traditional since ξ may be used to denote an element of \mathbf{R}^{n} as well as an element of $T U$.

We say that F is convex if it defines a pseudo-norm on each tangent space $T_{x} X, x \in X$, i e., if

$$
\begin{equation*}
F\left(\xi+\xi^{\prime}\right) \leq F(\xi)+F\left(\xi^{\prime}\right) \quad \text { for } \xi, \xi^{\prime} \in T_{x} X . \tag{2}
\end{equation*}
$$

A convex length function is usually called a Finsler metric.
Given a pseudo-length function F, its indicatrix Γ_{x} at $x \in X$ is defined to be

$$
\begin{equation*}
\Gamma_{x}=\left\{\xi \in T_{x} X ; F(\xi) \leq 1\right\} \tag{3}
\end{equation*}
$$

Then Γ_{x} is (1) star shaped in the sense that if $\xi \in \Gamma_{x}$ then $c \xi \in \Gamma_{x}$ for $|c| \leq$ 1 and is (2) nontrivial in every direction in the sense that for every $\xi \in$ $T_{x} X$ there is a nonzero c such that $c \xi \in \Gamma_{x}$.

Conversely, given a subset Γ_{x} in each tangent space $T_{x} X$ satisfying the two conditions above, we can construct a pseudo-length function F by

$$
\begin{equation*}
F(\xi)=\inf \left\{c>0 ; \frac{\xi}{c} \in \Gamma_{x}\right\} \quad \text { for } \xi \in T_{x} X . \tag{4}
\end{equation*}
$$

[^0]Then a pseudo-length function F is convex if and only if its indicatrix Γ_{x} is a convex set for each $x \in X$. Given a (nonconvex) pseudo-length function F we can associate the largest convex pseudo-length function \hat{F} such that $\hat{F} \leq F$ by considering the pseudo-length function defined by the convex hull $\hat{\Gamma}_{x}$ of Γ_{x}. Thus, $\hat{\Gamma}_{x}$ is, by construction, the indicatrix of \hat{F} at x. It is aslo possible to define \hat{F} as the double dual of F, (see [2]) ; but this fact will not be used here.

Let c be a piecewise smooth curve represented by $x(t), a \leq t \leq b$. If a pseudo-length function F is upper semi-continuous, then the arc-length $L(c)$ of c is defined by

$$
\begin{equation*}
L(c)=\int_{c} F=\int_{a}^{b} F\left(x^{\prime}(t)\right) d t \tag{5}
\end{equation*}
$$

and the pseudo-distance $d(p, q)$ between $p, q \in X$ is defined by

$$
\begin{equation*}
d(p, q)=\inf _{c} L(c), \tag{6}
\end{equation*}
$$

where the infimum is taken over all piecewise smooth curves c from p to q.

As we shall see later, if F is upper semi-continuous, so is \hat{F}. Therefore, using \hat{F} we can similarly define the arc-length $\hat{L}(c)$ and the pseudodistance $\hat{d}(p, q)$:

$$
\begin{align*}
& \hat{L}(c)=\int_{c} \hat{F}=\int_{a}^{b} \hat{F}\left(x^{\prime}(t)\right) d t, \tag{7}\\
& \hat{d}(p, q)=\inf _{c} \hat{L}(c) . \tag{8}
\end{align*}
$$

Since $\hat{F} \leq F$, we have $\hat{d}(p, q) \leq d(p, q)$.
The purpose of this paper is to prove the following theorem.
Theorem. Let X be a manifold with an upper semi-continuous pseudo-length function F. The pseudo-distance d defined by F coincides with the pseudo-distance \hat{d} defined by \hat{F}.

This theorem has been proved by Busemann and Mayer [1] under the assumption that F is continuous and strictly positive. The motivation for our technical generalization comes from complex analysis, namely the intrinsic infinitesimal pseudo-metric of a complex manifold which may be neither continuous nor strictly positive, (see [2], [4]).

2. Proof of the theorem.

The following lemma goes back to Carathéodory (see, for example,
[2], [5; p. 15]).
Lemma 1. Let V be a real vector space, and Γ a subset containing the origin $0 \in V$. Then an element $v \in V$ is in the convex hull $\hat{\Gamma}$ of Γ if and only if it is contained in a finite dimensional simplex having its vertices in Γ and having 0 as one of its vertices.

Using Lemma 1 we prove the following
Lemma 2. Given $\eta \in \hat{\Gamma}_{x}$ and $\varepsilon>0$, there exist linearly independent ξ_{1}, $\cdots, \xi_{m} \in \Gamma_{x}$ such that

$$
\eta=\xi_{1}+\cdots+\xi_{m} \text { and } \hat{F}(\eta)+\varepsilon>F\left(\xi_{1}\right)+\cdots+F\left(\xi_{m}\right) .
$$

If $\hat{F}(\eta)>0$, there exist linearly independent $\xi_{1}, \cdots, \xi_{m} \in \Gamma_{x}$ such that

$$
\eta=\xi_{1}+\cdots+\xi_{m} \text { and } \hat{F}(\eta)=F\left(\xi_{1}\right)+\cdots+F\left(\xi_{m}\right) .
$$

Proof. For any positive real number s we set $s \Gamma_{x}=\left\{s \xi ; \xi \in \Gamma_{x}\right\}$ and $s \hat{\Gamma}_{x}=\left\{s \xi ; \xi \in \hat{\Gamma}_{x}\right\}$.

Let $r=\hat{F}(\eta)$. Then $\eta \in(r+\varepsilon) \hat{\Gamma}_{x}$ for any $\varepsilon>0$. (If $r>0$, then $\eta \in$ $r \hat{\Gamma}_{x}$.) By Lemma 1, there exist linearly independent $\eta_{1}, \cdots, \eta_{m}$ in $(r+\varepsilon) \Gamma_{x}$ (in $r \Gamma_{x}$ if $r>0$) such that

$$
\eta=\Sigma t_{i} \eta_{i} \quad \text { with } t_{i}>0, \Sigma t_{i} \leq 1 .
$$

Then

$$
\Sigma F\left(t_{i} \eta_{i}\right)=\Sigma t_{i} F\left(\eta_{i}\right)<(r+\varepsilon) \Sigma t_{i} \leq(r+\varepsilon) .
$$

By setting $\xi_{i}=t_{i} \eta_{i}$, we obtain the desired inequality.
If $r>0$, then we can drop ε and obtain the inequality $\Sigma F\left(t_{i} \eta_{i}\right) \leq r$. Hence,

$$
\Sigma F\left(\xi_{i}\right) \leq \hat{F}(\eta)
$$

The reverse inequality follows from $\hat{F}\left(\xi_{i}\right) \leq F\left(\xi_{i}\right)$ and the triangular inequality satisfied by \hat{F}. Q. E.D.

The first application of Lemma 2 is the following
Lemma 3. If F is upper semi-continuous, so is \hat{F}.
Proof. Let $\eta_{0} \in T_{x_{0}} X$, and $\varepsilon>0$. Multiplying η_{0} by a suitable nonzero constant, we may assume that $\hat{F}\left(\eta_{0}\right) \leq 1$. By Lemma 2, given $\varepsilon>0$ there exist $\xi_{1}, \cdots, \xi_{m} \in \mathrm{~T}_{x_{0}} X$ with $F\left(\xi_{i}\right) \leq 1$ such that

$$
\eta_{0}=\xi_{1}+\cdots+\xi_{m} \text { and } \hat{F}\left(\eta_{0}\right)+\varepsilon>F\left(\xi_{1}\right)+\cdots+F\left(\xi_{m}\right) .
$$

Let V_{i} be a neighborhood of ξ_{i} in $T X$ such that

$$
F\left(\xi_{i}^{\prime}\right)<F\left(\xi_{i}\right)+\frac{1}{m} \varepsilon \quad \text { for } \quad \xi_{i}^{\prime} \in V_{i} .
$$

Let W be the neighborhood of η_{0} in $T X$ defined by $W=V_{1}+\cdots+V_{m}$. Then for any $\eta^{\prime}=\xi_{1}^{\prime}+\cdots+\xi_{m}^{\prime} \in W$ with $\xi_{i}^{\prime} \in V_{i}$ we have

$$
\begin{aligned}
& F\left(\eta_{0}\right)+2 \varepsilon> \Sigma\left(F\left(\xi_{i}\right)+\frac{1}{m} \varepsilon\right)>\Sigma F\left(\xi_{i}^{\prime}\right) \geq \\
& \Sigma \hat{F}\left(\xi_{i}^{\prime}\right) \geq F\left(\Sigma \xi_{i}^{\prime}\right)=\hat{F}\left(\eta^{\prime}\right) .
\end{aligned}
$$

Q. E. D.

Lemma 4. If F is an upper semi-continuous pseudo-length function on X, it is the limit of a monotone decreasing sequence of continuous length functions H_{k}. Furthermore, if \hat{H}_{k} denotes the continuous convex length function associated with H_{k}, then \hat{F} is the limit of a monotone decreasing sequence $\left\{\hat{H}_{k}\right\}$.

Proof. Let $S X \subset T X$ be the tangent unit sphere bundle defined by a Riemannian metric g of X. Since $F_{\mid S X}$ is an upper semi-continuous nonnegative function, it is a limit of a monotone decreasing sequence of continuous positive functions H_{k} on $S X$ (see, for example [$3 ;$ p. 43]). Since $F(-\xi)=F(\xi)$, we can choose H_{k} in such a way that $H_{k}(-\xi)=H_{k}(\xi)$. We extend H_{k} to $T X$ by setting.

$$
H_{k}(c \xi)=|c| H_{k}(\xi) \quad \text { for } \xi \in S X, c \in \mathbf{R} .
$$

Then $\left\{H_{k}\right\}$ is a monotone decreasing sequence of continuous length functions, and $F(\xi)=\lim H_{k}(\xi)$ for $\xi \in T X$. Since $F \leq H_{k+1} \leq H_{k}$, we have \hat{F} $\leq \hat{H}_{k+1} \leq \hat{H}_{k}$. Given a nonzero $\xi \in T X$, choose a convex length function G such that $G(\xi)=1$. Since $\lim H_{k}(\xi)=F(\xi)$, given $\varepsilon>0$ there is an integer k_{0} such that

$$
H_{k}(\xi)<F(\xi)+\varepsilon=F(\xi)+\varepsilon G(\xi) \quad \text { for } k>k_{0} .
$$

Hence,

$$
\hat{H}_{k}(\xi)<\hat{F}(\xi)+\varepsilon G(\xi)=\hat{F}(\xi)+\varepsilon \quad \text { for } k>k_{0} .
$$

Thus, $\lim \hat{H}_{k}(\xi)=\hat{F}(\xi)$. Q. E. D.
Let $p, q \in X$, and let c be a piecewise smooth curve from p to q reperesented by $x(t), a \leq t \leq b$. Since $\hat{F} \leq F$, we have $\hat{L}(c) \leq L(c)$. The problem is to show that given $\varepsilon>0$ there is another curve \tilde{c} from p to q such that

$$
\begin{equation*}
L(\tilde{c})<\hat{L}(c)+3 \varepsilon . \tag{9}
\end{equation*}
$$

By subdiving c if necessary, we may assume that c is contained in a single coordinate neighborhood U. For the sake of convenience we fix an arbitrarily chosen Riemannian metric g on X. It is convenient to choose g in such a way that in U it is the Euclidean metric defined by the local coordinate system. Without loss of generality we may assume that the velocity $x^{\prime}(t)$ is of unit length with respect to g.

Let H_{k} be as in Lemma 4 and put

$$
\begin{equation*}
\hat{L}_{k}(c)=\int_{c} \hat{H}_{k} \tag{10}
\end{equation*}
$$

Then by the Lebesgue convergence theorem, given $\varepsilon>0$ there is an integer k_{0} such that

$$
\begin{equation*}
\hat{L}_{k}(c)<\hat{L}(c)+\varepsilon \quad \text { for } k>k_{0} . \tag{11}
\end{equation*}
$$

Let $\pi=\left(a=t_{0}<t_{1}<\cdots<t_{r}=b\right)$ be a subdivision of the interval [a, b], and let $|\pi|=\max \left\{t_{1}-t_{0}, \cdots, t_{r}-t_{r-1}\right\}$. We set

$$
\Delta t_{i}=t_{i}-t_{i-1} .
$$

Using the local coordinate system in U, we define

$$
\Delta x_{i}=x\left(t_{i}\right)-x\left(t_{i-1}\right) \in \mathbf{R}^{n} .
$$

Under the identification $T_{x\left(t_{i-1}\right)} \simeq \mathbf{R}^{n}$ by the coordinate system, $\Delta x_{i} / \Delta t_{i}$ is approximately equal to $x^{\prime}\left(t_{i-1}\right)$ so that $\left|\Delta x_{i} / \Delta t_{i}\right|$ is approximately equal to 1.

For each π and k, we set

$$
\begin{equation*}
\hat{S}_{k, \pi}=\sum_{i=1}^{r} \hat{H}_{k}\left(x\left(t_{i-1}\right), \Delta x_{i}\right)=\sum_{i=1}^{r} \hat{H}_{k}\left(x\left(t_{i-1}\right), \frac{\Delta x_{i}}{\Delta t_{i}}\right) \Delta t_{i} \tag{12}
\end{equation*}
$$

(As we explained in the preceding section, we write the base point $x\left(t_{i-1}\right)$ in (12) explicitly since we are using the local coordinate system).

Then, given $\varepsilon>0$ there is $\delta_{1}>0$ such that

$$
\begin{equation*}
\hat{S}_{k, \pi}<\hat{L}_{k}(c)+\varepsilon \quad \text { if }|\pi|<\delta_{1} . \tag{13}
\end{equation*}
$$

For a fixed $k>k_{0}$, there is $\delta_{2}>0$ such that for every $t, a \leq t \leq b$,

$$
\begin{equation*}
H_{k}(y, \xi)<H_{k}(x(t), \xi)+\frac{\varepsilon|\xi|}{b-a} \quad \text { for }|y-x(t)|<\delta_{2}, \xi \in \mathbf{R}^{n} \tag{14}
\end{equation*}
$$

where $|y-x(t)|$ denotes the Euclidean distance from $x(t) \in c$ to $y \in X$ with respect to the local coordinate system.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, and fix a subdivision π of $[a, b]$ such that $|\pi|<\delta$. Since $\left|\Delta x_{i} / \Delta t_{i}\right|$ is approximately equal to 1 and since $\Delta t_{i}<\delta$, we have $\left|\Delta x_{i}\right|$ $<\delta$.

We fix i and $k>k_{0}$. Since $\hat{H}_{k}\left(\Delta x_{i}\right)>0$, by Lemma 1 there exist linearly independent $\xi_{1}, \cdots, \xi_{m} \in T_{x\left(t_{i-1}\right)} X$ such that

$$
\begin{equation*}
\Delta x_{i}=\xi_{1}+\cdots+\xi_{m} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{H}_{k}\left(x\left(t_{i-1}\right), \Delta x_{i}\right)=H_{k}\left(x\left(t_{i-1}\right), \xi_{1}\right)+\cdots+H_{k}\left(x\left(t_{i-1}\right), \xi_{m}\right) . \tag{16}
\end{equation*}
$$

This says that the length of the line segment from the origin to Δx_{i} in $T_{x\left(t_{i-1}\right)} X$ measured by the length function \hat{H}_{k} is equal to the length of the polygonal path from the origin to Δx_{i} via vertices $\xi_{1}, \xi_{1}+\xi_{2}, \xi_{1}+\xi_{2}+\xi_{3}, \cdots$, $\xi_{1}+\xi_{2}+\cdots+\xi_{r-1}$ measured by the length function H_{k}.

Using the local coordinate system we identify a neighborhood of the origin in $T_{x\left(t_{i-1}\right)} X$ with a neighborhood of $x\left(t_{i-1}\right)$ in X. Let \tilde{c}_{i} be the polygonal path in X corresponding to the polygonal path in $T_{x\left(t_{i-1}\right)} X$ described above. Then \tilde{c}_{i} goes from $x\left(t_{i-1}\right)$ to $x\left(t_{i}\right)$. For each i, we replace the portion of c from $x\left(t_{i-1}\right)$ to $x\left(t_{i}\right)$ by \tilde{c}_{i}. Let \tilde{c} be the resulting path from $p=x(a)$ to $q=x(b)$. We shall show that \tilde{c} has the desired property.

We estimate the length $L\left(\tilde{c}_{i}\right)$ of \tilde{c}_{i} measured by H_{k}. Since $\left|\Delta \mathrm{x}_{i}\right|<\delta$ and since $\hat{H}_{k}\left(\xi_{j}\right) \leq H_{k}\left(\xi_{j}\right)$, it follows from (15) and (16) that \tilde{c}_{i} is contained in the δ-neighborhood of $x\left(t_{i-1}\right)$. (By " δ-neighborhood" we mean the Euclidean neighborhood $\left\{y \in X ;\left|y-x\left(t_{i-1}\right)\right|<\delta\right\}$.) Therefore, by (14)

$$
\begin{equation*}
H_{k}(y, \xi)<H_{k}\left(x\left(t_{i-1}\right), \xi\right)+\frac{\varepsilon|\xi|}{b-a} \quad \text { for } \xi \in \mathbf{R}^{n} \tag{17}
\end{equation*}
$$

at every point y of \tilde{c}_{i}. Integrating (17) along \tilde{c}_{i} and using (16), we obtain

$$
\begin{equation*}
\int_{\hat{c}_{i}} H_{k}<\hat{H}_{k}\left(x\left(t_{i-1}\right), \Delta x_{i}\right)+\frac{\varepsilon\left|\Delta x_{i}\right|}{b-a} \tag{18}
\end{equation*}
$$

Since $\sum\left|\Delta x_{i}\right|$ is approximately equal to $\Sigma \Delta t_{i}=b-a$, summing over i we obtain

$$
\begin{equation*}
\int_{\hat{c}} H_{k}<\hat{S}_{k, \pi}+\varepsilon . \tag{19}
\end{equation*}
$$

Combining (11), (13) and (19) we obtain

$$
\begin{equation*}
\int_{\hat{c}} H_{k}<\hat{L}(c)+3 \varepsilon . \tag{20}
\end{equation*}
$$

Since $\int_{\bar{c}} F \leq \int_{\bar{c}} H_{k}$, we obtain the desired inequality (9), thus completing the proof of the theorem.

Bibliography

[1] H. Busemann and W. Mayer, On the foundation of calculus of variations, Trans. Amer. Math. Soc. 49 (1941), 173-198.
[2] S. Kobayashi, A new invariantinfinitesimal metric, Intern'l Journ. Math. 1 (1990), 83 -90.
[3] E. J. McShane, Integration, Princeton Univ. Press, 1944.
[4] H. L. Royden, Remarks on the Kobayashi metrics, Springer-Verlag, Lecture Notes in Math. 185 (1971), 125-137.
[5] F. A. Valentine, Convex Sets, R. E. Krieger Publ. Co., 1976.

[^0]: * Partially supported by NSF Grant DMS-880131.

