Theorem of Busemann-Mayer on Finsler metrics

To Professor Noboru Tanaka on his sixtieth birthday

Shoshichi KOBAYASHI* (Received January 12, 1990)

1. Introduction

Let X be a manifold and TX its tangent bundle. A *pseudo-length* function on X is a real valued nonnegative function F on TX satisfying the condition

(1)
$$F(c\xi) = |c|F(\xi)$$
 for $\xi \in TX$, $c \in \mathbf{R}$.

If $F(\xi) > 0$ for every nonzero ξ , then F is called a *length function*.

If $\xi \in T_x X$, we write sometimes (x, ξ) for ξ although x is redundant. Similarly, we write occasionally $F(x, \xi)$ for $F(\xi)$. When we are working in a coordinate neighborhood U with a natural identification $TU \simeq U$ $\times \mathbf{R}^n$, the notation $F(x, \xi)$ is more convenient as well as traditional since ξ may be used to denote an element of \mathbf{R}^n as well as an element of TU.

We say that F is *convex* if it defines a pseudo-norm on each tangent space $T_xX, x \in X$, i.e., if

(2)
$$F(\xi + \xi') \le F(\xi) + F(\xi') \quad \text{for } \xi, \xi' \in T_x X.$$

A convex length function is usually called a Finsler metric.

Given a pseudo-length function F, its *indicatrix* Γ_x at $x \in X$ is defined to be

(3)
$$\Gamma_x = \{ \xi \in T_x X ; F(\xi) \le 1 \}.$$

Then Γ_x is (1) star shaped in the sense that if $\xi \in \Gamma_x$ then $c\xi \in \Gamma_x$ for $|c| \le 1$ and is (2) nontrivial in every direction in the sense that for every $\xi \in T_x X$ there is a nonzero c such that $c\xi \in \Gamma_x$.

Conversely, given a subset Γ_x in each tangent space T_xX satisfying the two conditions above, we can construct a pseudo-length function F by

(4)
$$F(\xi) = \inf\{c > 0; \frac{\xi}{c} \in \Gamma_x\}$$
 for $\xi \in T_x X$.

^{*} Partially supported by NSF Grant DMS-880131.

S. Kobayashi

Then a pseudo-length function F is convex if and only if its indicatrix Γ_x is a convex set for each $x \in X$. Given a (nonconvex) pseudo-length function F we can associate the largest convex pseudo-length function \hat{F} such that $\hat{F} \leq F$ by considering the pseudo-length function defined by the convex hull $\hat{\Gamma}_x$ of Γ_x . Thus, $\hat{\Gamma}_x$ is, by construction, the indicatrix of \hat{F} at x. It is also possible to define \hat{F} as the double dual of F, (see [2]); but this fact will not be used here.

Let c be a piecewise smooth curve represented by x(t), $a \le t \le b$. If a pseudo-length function F is upper semi-continuous, then the arc-length L(c) of c is defined by

(5)
$$L(c) = \int_{c} F = \int_{a}^{b} F(x'(t)) dt,$$

and the pseudo-distance d(p, q) between $p, q \in X$ is defined by

(6)
$$d(p,q) = \inf_{c} L(c),$$

where the infimum is taken over all piecewise smooth curves c from p to q.

As we shall see later, if F is upper semi-continuous, so is \hat{F} . Therefore, using \hat{F} we can similarly define the arc-length $\hat{L}(c)$ and the pseudodistance $\hat{d}(p,q)$:

(7) $\hat{L}(c) = \int_{c} \hat{F} = \int_{a}^{b} \hat{F}(x'(t)) dt,$

(8)
$$\hat{d}(p,q) = \inf_{c} \hat{L}(c).$$

Since $\hat{F} \leq F$, we have $\hat{d}(p, q) \leq d(p, q)$.

The purpose of this paper is to prove the following theorem.

THEOREM. Let X be a manifold with an upper semi-continuous pseudo-length function F. The pseudo-distance d defined by F coincides with the pseudo-distance \hat{d} defined by \hat{F} .

This theorem has been proved by Busemann and Mayer [1] under the assumption that F is continuous and strictly positive. The motivation for our technical generalization comes from complex analysis, namely the intrinsic infinitesimal pseudo-metric of a complex manifold which may be neither continuous nor strictly positive, (see [2], [4]).

2. Proof of the theorem.

The following lemma goes back to Carathéodory (see, for example,

[2], [5; p. 15]).

LEMMA 1. Let V be a real vector space, and Γ a subset containing the origin $0 \in V$. Then an element $v \in V$ is in the convex hull $\hat{\Gamma}$ of Γ if and only if it is contained in a finite dimensional simplex having its vertices in Γ and having 0 as one of its vertices.

Using Lemma 1 we prove the following

LEMMA 2. Given $\eta \in \tilde{\Gamma}_x$ and $\varepsilon > 0$, there exist linearly independent ξ_1 , $\cdots, \xi_m \in \Gamma_x$ such that

$$\eta = \xi_1 + \cdots + \xi_m \text{ and } \hat{F}(\eta) + \varepsilon > F(\xi_1) + \cdots + F(\xi_m).$$

If $\hat{F}(\eta) > 0$, there exist linearly independent $\xi_1, \dots, \xi_m \in \Gamma_x$ such that

 $\eta = \xi_1 + \cdots + \xi_m$ and $\hat{F}(\eta) = F(\xi_1) + \cdots + F(\xi_m)$.

PROOF. For any positive real number s we set $s\Gamma_x = \{s\xi ; \xi \in \Gamma_x\}$ and $s\hat{\Gamma}_x = \{s\xi ; \xi \in \hat{\Gamma}_x\}$.

Let $r = \hat{F}(\eta)$. Then $\eta \in (r + \varepsilon)\hat{\Gamma}_x$ for any $\varepsilon > 0$. (If r > 0, then $\eta \in r\hat{\Gamma}_x$.) By Lemma 1, there exist linearly independent η_1, \dots, η_m in $(r + \varepsilon)\Gamma_x$ (in $r\Gamma_x$ if r > 0) such that

$$\eta = \sum t_i \eta_i$$
 with $t_i > 0$, $\sum t_i \le 1$.

Then

$$\sum F(t_i\eta_i) = \sum t_i F(\eta_i) < (r+\varepsilon) \sum t_i \le (r+\varepsilon).$$

By setting $\xi_i = t_i \eta_i$, we obtain the desired inequality.

If r > 0, then we can drop ε and obtain the inequality $\sum F(t_i \eta_i) \le r$. Hence,

 $\sum F(\xi_i) \leq \hat{F}(\eta).$

The reverse inequality follows from $\hat{F}(\xi_i) \leq F(\xi_i)$ and the triangular inequality satisfied by \hat{F} . Q. E. D.

The first application of Lemma 2 is the following

LEMMA 3. If F is upper semi-continuous, so is \hat{F} .

PROOF. Let $\eta_0 \in T_{x_0}X$, and $\varepsilon > 0$. Multiplying η_0 by a suitable nonzero constant, we may assume that $\hat{F}(\eta_0) \le 1$. By Lemma 2, given $\varepsilon > 0$ there exist $\xi_1, \dots, \xi_m \in T_{x_0}X$ with $F(\xi_i) \le 1$ such that

$$\eta_0 = \xi_1 + \cdots + \xi_m$$
 and $F(\eta_0) + \varepsilon > F(\xi_1) + \cdots + F(\xi_m)$.

S. Kobayashi

Let V_i be a neighborhood of ξ_i in TX such that

$$F(\xi_i) < F(\xi_i) + \frac{1}{m} \varepsilon$$
 for $\xi_i' \in V_i$.

Let W be the neighborhood of η_0 in TX defined by $W = V_1 + \dots + V_m$. Then for any $\eta' = \xi'_1 + \dots + \xi'_m \in W$ with $\xi'_i \in V_i$ we have

$$F(\eta_0) + 2\varepsilon > \sum (F(\xi_i) + \frac{1}{m}\varepsilon) > \sum F(\xi'_i) \ge \sum \hat{F}(\xi'_i) \ge F(\sum \xi'_i) = \hat{F}(\eta').$$

Q. E. D.

LEMMA 4. If F is an upper semi-continuous pseudo-length function on X, it is the limit of a monotone decreasing sequence of continuous length functions H_k . Furthermore, if \hat{H}_k denotes the continuous convex length function associated with H_k , then \hat{F} is the limit of a monotone decreasing sequence $\{\hat{H}_k\}$.

PROOF. Let $SX \subset TX$ be the tangent unit sphere bundle defined by a Riemannian metric g of X. Since $F_{|SX}$ is an upper semi-continuous nonnegative function, it is a limit of a monotone decreasing sequence of continuous positive functions H_k on SX (see, for example [3; p. 43]). Since $F(-\xi) = F(\xi)$, we can choose H_k in such a way that $H_k(-\xi) = H_k(\xi)$. We extend H_k to TX by setting.

$$H_k(c\xi) = |c| H_k(\xi)$$
 for $\xi \in SX$, $c \in \mathbf{R}$.

Then $\{H_k\}$ is a monotone decreasing sequence of continuous length functions, and $F(\xi) = \lim H_k(\xi)$ for $\xi \in TX$. Since $F \leq H_{k+1} \leq H_k$, we have $\hat{F} \leq \hat{H}_{k+1} \leq \hat{H}_k$. Given a nonzero $\xi \in TX$, choose a convex length function G such that $G(\xi) = 1$. Since $\lim H_k(\xi) = F(\xi)$, given $\varepsilon > 0$ there is an integer k_0 such that

$$H_k(\xi) < F(\xi) + \varepsilon = F(\xi) + \varepsilon G(\xi) \quad \text{for } k > k_0.$$

Hence,

$$\hat{H}_k(\xi) < \hat{F}(\xi) + \varepsilon G(\xi) = \hat{F}(\xi) + \varepsilon$$
 for $k > k_0$.

Thus, $\lim \hat{H}_k(\xi) = \hat{F}(\xi)$. Q. E. D.

Let $p, q \in X$, and let c be a piecewise smooth curve from p to q reperesented by $x(t), a \le t \le b$. Since $\hat{F} \le F$, we have $\hat{L}(c) \le L(c)$. The problem is to show that given $\varepsilon > 0$ there is another curve \tilde{c} from p to q such that

208

(9)
$$L(\tilde{c}) < \hat{L}(c) + 3\varepsilon.$$

By subdiving c if necessary, we may assume that c is contained in a single coordinate neighborhood U. For the sake of convenience we fix an arbitrarily chosen Riemannian metric g on X. It is convenient to choose g in such a way that in U it is the Euclidean metric defined by the local coordinate system. Without loss of generality we may assume that the velocity x'(t) is of unit length with respect to g.

Let H_k be as in Lemma 4 and put

(10)
$$\hat{L}_{k}(c) = \int_{c} \hat{H}_{k}.$$

Then by the Lebesgue convergence theorem, given $\varepsilon > 0$ there is an integer k_0 such that

(11)
$$\hat{L}_k(c) < \hat{L}(c) + \varepsilon$$
 for $k > k_0$

Let $\pi = (a = t_0 < t_1 < \cdots < t_r = b)$ be a subdivision of the interval [a, b], and let $|\pi| = \max\{t_1 - t_0, \cdots, t_r - t_{r-1}\}$. We set

 $\Delta t_i = t_i - t_{i-1}.$

Using the local coordinate system in U, we define

 $\Delta x_i = x(t_i) - x(t_{i-1}) \in \mathbf{R}^n.$

Under the identification $T_{x(t_{i-1})} \simeq \mathbf{R}^n$ by the coordinate system, $\Delta x_i / \Delta t_i$ is approximately equal to $x'(t_{i-1})$ so that $|\Delta x_i / \Delta t_i|$ is approximately equal to 1.

For each π and k, we set

(12)
$$\hat{S}_{\boldsymbol{k},\boldsymbol{\pi}} = \sum_{i=1}^{r} \hat{H}_{\boldsymbol{k}}(\boldsymbol{x}(t_{i-1}), \Delta \boldsymbol{x}_{i}) = \sum_{i=1}^{r} \hat{H}_{\boldsymbol{k}}\left(\boldsymbol{x}(t_{i-1}), \frac{\Delta \boldsymbol{x}_{i}}{\Delta t_{i}}\right) \Delta t_{i}.$$

(As we explained in the preceding section, we write the base point $x(t_{i-1})$ in (12) explicitly since we are using the local coordinate system).

Then, given $\varepsilon > 0$ there is $\delta_1 > 0$ such that

(13)
$$\hat{S}_{k,\pi} < \hat{L}_k(c) + \epsilon$$
 if $|\pi| < \delta_1$.

For a fixed $k > k_0$, there is $\delta_2 > 0$ such that for every $t, a \le t \le b$,

(14)
$$H_{k}(y,\xi) < H_{k}(x(t),\xi) + \frac{\varepsilon|\xi|}{b-a} \quad \text{for } |y-x(t)| < \delta_{2}, \xi \in \mathbf{R}^{n},$$

where |y-x(t)| denotes the Euclidean distance from $x(t) \in c$ to $y \in X$ with respect to the local coordinate system.

Let $\delta = \min\{\delta_1, \delta_2\}$, and fix a subdivision π of [a, b] such that $|\pi| < \delta$. Since $|\Delta x_i / \Delta t_i|$ is approximately equal to 1 and since $\Delta t_i < \delta$, we have $|\Delta x_i| < \delta$.

We fix *i* and $k > k_0$. Since $\hat{H}_k(\Delta x_i) > 0$, by Lemma 1 there exist linearly independent $\xi_1, \dots, \xi_m \in T_{x(t_{i-1})}X$ such that

(15)
$$\Delta x_i = \xi_1 + \dots + \xi_m$$

and

(16)
$$\hat{H}_{k}(x(t_{i-1}), \Delta x_{i}) = H_{k}(x(t_{i-1}), \xi_{1}) + \dots + H_{k}(x(t_{i-1}), \xi_{m}).$$

This says that the length of the line segment from the origin to Δx_i in $T_{x(t_{i-1})}X$ measured by the length function \hat{H}_k is equal to the length of the polygonal path from the origin to Δx_i via vertices $\xi_1, \xi_1 + \xi_2, \xi_1 + \xi_2 + \xi_3, \dots, \xi_1 + \xi_2 + \dots + \xi_{r-1}$ measured by the length function H_k .

Using the local coordinate system we identify a neighborhood of the origin in $T_{x(t_{i-1})}X$ with a neighborhood of $x(t_{i-1})$ in X. Let \tilde{c}_i be the polygonal path in X corresponding to the polygonal path in $T_{x(t_{i-1})}X$ described above. Then \tilde{c}_i goes from $x(t_{i-1})$ to $x(t_i)$. For each i, we replace the portion of c from $x(t_{i-1})$ to $x(t_i)$ by \tilde{c}_i . Let \tilde{c} be the resulting path from p=x(a) to q=x(b). We shall show that \tilde{c} has the desired property.

We estimate the length $L(\tilde{c}_i)$ of \tilde{c}_i measured by H_k . Since $|\Delta x_i| < \delta$ and since $\hat{H}_k(\xi_j) \leq H_k(\xi_j)$, it follows from (15) and (16) that \tilde{c}_i is contained in the δ -neighborhood of $x(t_{i-1})$. (By " δ -neighborhood" we mean the Euclidean neighborhood $\{y \in X; |y - x(t_{i-1})| < \delta\}$.) Therefore, by (14)

(17)
$$H_{k}(y,\xi) < H_{k}(x(t_{i-1}),\xi) + \frac{\varepsilon|\xi|}{b-a} \quad \text{for } \xi \in \mathbf{R}^{n}$$

at every point y of \tilde{c}_i . Integrating (17) along \tilde{c}_i and using (16), we obtain

(18)
$$\int_{\tilde{c}_i} H_k < \hat{H}_k(x(t_{i-1}), \Delta x_i) + \frac{\varepsilon |\Delta x_i|}{b-a}.$$

Since $\Sigma |\Delta x_i|$ is approximately equal to $\Sigma \Delta t_i = b - a$, summing over *i* we obtain

(19)
$$\int_{\tilde{c}} H_k < \hat{S}_{k,\pi} + \varepsilon.$$

Combining (11), (13) and (19) we obtain

(20)
$$\int_{\hat{c}} H_{k} < \hat{L}(c) + 3\varepsilon.$$

Since $\int_{\bar{c}} F \leq \int_{\bar{c}} H_k$, we obtain the desired inequality (9), thus completing the proof of the theorem.

Bibliography

- H. BUSEMANN and W. MAYER, On the foundation of calculus of variations, Trans. Amer. Math. Soc. 49 (1941), 173-198.
- [2] S. KOBAYASHI, A new invariantinfinitesimal metric, Intern'l Journ. Math. 1 (1990), 83 -90.
- [3] E. J. MCSHANE, Integration, Princeton Univ. Press, 1944.
- [4] H. L. ROYDEN, Remarks on the Kobayashi metrics, Springer-Verlag, Lecture Notes in Math. 185 (1971), 125-137.
- [5] F.A. VALENTINE, Convex Sets, R.E. Krieger Publ. Co., 1976.

Department of Mathematics University of California, Berkeley Berkeley, CA 94720 USA