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1. Introduction

Let X be a manifold and TX its tangent bundle. A pseudO-length

function on X is a real valued nonnegative function F on TX satisfying
the condition

(1) F(c\xi)=|c|F(\xi) for \xi\in TX , c\in R .

If F(\xi)>0 for every nonzero \xi , then F is called a length function.
If \xi\in T_{x}X , we write sometimes (x, \xi) for \xi although x is redundant.

Similarly, we write occasionally F(x, \xi) for F(\xi) . When we are work-
ing in a coordinate neighborhood U with a natural identification TU\simeq U

\cross R^{n} . the notation F(x, \xi) is more convenient as well as traditional since
\xi may be used to denote an element of R^{n} as well as an element of TU.

We say that F is convex if it defines a pseud0-norm on each tangent
space T_{x}X , x\in X , ie. , if

(2) F(\xi+\xi’)\leq F(\xi)+F(\xi’) for \xi , \xi’\in T_{x}X .

A convex length function is usually called a Finsler metric.
Given a pseud0-length function F, its indicatrix \Gamma_{x} at x\in X is defined

to be

(3) \Gamma_{X}=\{\xi\in T_{x}X;F(\xi)\leq 1\} .

Then \Gamma_{X} is (1) star shaped in the sense that if \xi\in\Gamma_{X} then c\xi\in\Gamma_{X} for |c|\leq

1 and is (2) nontrivial in every direction in the sense that for every \xi\in

T_{x}X there is a nonzero c such that c\xi\in\Gamma_{X} .
Conversely, given a subset \Gamma_{x} in each tangent space T_{x}X satisfying

the two conditions above, we can construct a pseud0-length function F by

(4) F( \xi)=\inf\{c>0;\frac{\xi}{c}\in\Gamma_{X}\} for \xi\in T_{x}X .
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Then a pseud0-length function F is convex if and only if its indicatrix
\Gamma_{x} is a convex set for each x\in X . Given a (nonconvex) pseud0-length
function F we can associate the largest convex pseud0-length function \hat{F}

such that \hat{F}\leq F by considering the pseud0-length function defined by the
convex hull \hat{\Gamma}_{x} of \Gamma_{x} . Thus, \hat{\Gamma}_{x} is, by construction, the indicatrix of \hat{F} at
x . It is aslo possible to define \hat{F} as the double dual of F, (see [2]) ; but
this fact will not be used here.

Let c be a piecewise smooth curve represented by x(t) , a\leq t\leq b . If a
pseud0-length function F is upper semi-continuous, then the arc-length
L(c) of c is defined by

(5) L(c)= \int_{c}F=\int_{a}^{b}F(x’(t))dt ,

and the pseud0-distance d(p, q) between p, q\in X is defined by

(6) d(p, q)= \inf_{c}L(c) ,

where the infimum is taken over all piecewise smooth curves c from p to
q .

As we shall see later, if F is upper semi-continuous, so is \hat{F} . There-
fore, using \hat{F} we can similarly define the arc-length \hat{L}(c) and the pseud0-
distance \hat{d}(p, q) :

(7) \hat{L}(c)=\int_{c}\hat{F}=\int_{a}^{b}\hat{F}(x’(t))dt ,

(8) \hat{d}(p, q)=\inf_{c}\hat{L}(c) .

Since \hat{F}\leq F , we have \hat{d}(p, q)\leq d(p, q) .
The purpose of this paper is to prove the following theorem.

THEOREM. Let X be a manifold with an upper semi-continuous
pseudO-length function F. The pseudO-distance d defined by F coincides
with the pseudO-distance \hat{d} defined by \hat{F}.

This theorem has been proved by Busemann and Mayer [1] under the
assumption that F is continuous and strictly positive. The motivation for
our technical generalization comes from complex analysis, namely the
intrinsic infinitesimal pseud0-metric of a complex manifold which may be
neither continuous nor strictly positive, (see [2], [4]).

2. Proof of the theorem.

The following lemma goes back to Carath\’eodory (see, for example,



Theorem of Busemann-Mayer on Finsler met\dot{n}cs 207

[2], [5; p. 15] ) .

LEMMA 1. Let V be a real vector space, and \Gamma a subset containing
the origin O\in V. Then an element v\in V is in the convex hull \hat{\Gamma} of \Gamma if
and only if it is contained in a finite dimensional simplex having its ver-
lices in \Gamma and having 0 as one of its vertices.

Using Lemma 1 we prove the following

LEMMA 2. Given \eta\in\hat{\Gamma}_{x} and \epsilon>0 , there exist linearly independent \xi_{1} ,
\ldots , \xi_{m}\in\Gamma_{x} such that

\eta=\xi_{1}+\cdots+\xi_{m} and \hat{F}(\eta)+\epsilon>F(\xi_{1})+\cdots+F(\xi_{m}) .

If \hat{F}(\eta)>0 , there exist linearly independent \xi_{1} , \cdots , \xi_{m}\in\Gamma_{x} such that

\eta=\xi_{1}+\cdots+\xi_{m} and \hat{F}(\eta)=F(\xi_{1})+\cdots+F(\xi_{m}) .

PROOF. For any positive real number s we set s\Gamma_{x}=\{s\xi;\xi\in\Gamma_{x}\} and
s\hat{\Gamma}_{X}=\{s\xi;\xi\in\hat{\Gamma}_{X}\} .

Let r=\hat{F}(\eta) . Then \eta\in(r+\epsilon)\hat{\Gamma}_{X} for any \epsilon>0 . (If r>0 , then \eta\in

r\hat{\Gamma}_{x}.) By Lemma 1, there exist linearly independent \eta_{1},\cdots , \eta_{m} in (r+\epsilon)\Gamma_{X}

(in r\Gamma_{X} if r>0) such that
\eta=\Sigma t_{i}\eta_{i} with t_{i}>0 , \Sigma t_{i}\leq 1 .

Then

\Sigma F(t_{i}\eta_{i})=\Sigma t_{i}F(\eta_{i})<(r+\epsilon)\Sigma t_{i}\leq(r+\epsilon) .

By setting \xi_{i}=t_{i}\eta_{i} , we obtain the desired inequality.
If r>0 , then we can drop \epsilon and obtain the inequality \sum F(t_{i}\eta_{i})\leq r .

Hence,

\Sigma F(\xi_{i})\leq\hat{F}(\eta) .

The reverse inequality follows from \hat{F}(\xi_{i})\leq F(\xi_{i}) and the triangular in-
equality satisfied by \hat{F} . Q. E. D.

The first application of Lemma 2 is the following

LEMMA 3. If F is upper semi-continuous, so is \hat{F}.

PROOF. Let \eta_{0}\in T_{xo}X , and \epsilon>0 . Multiplying \eta_{0} by a suitable nonzer-
o constant, we may assume that \hat{F}(\eta_{0})\leq 1 . By Lemma 2, given \epsilon>0 there
exist \xi_{1},\cdots,\xi_{m}\in T_{x_{0}}X with F(\xi_{i})\leq 1 such that

\eta_{0}=\xi_{1}+\cdots+\xi_{m} and \hat{F}(\eta_{0})+\epsilon>F(\xi_{1})+\cdots+F(\xi_{m}) .
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Let V_{i} be a neighborhood of \xi_{i} in TX such that

F( \xi_{i})<F(\xi_{i})+\frac{1}{m}\epsilon for \xi_{i}’\in V_{i} .

Let W be the neighborhood of \eta_{0} in TX defined by W=V_{1}+\cdots+V_{m} .
Then for any \eta’=\xi_{\acute{1}}+\cdots+\xi_{\acute{m}}\in W with \xi_{\acute{i}}\in V_{i} we have

F( \eta_{0})+2\epsilon>\Sigma(F(\xi_{i})+\frac{1}{m}\epsilon)>\Sigma F(\xi_{\acute{i}})\geq

\Sigma\hat{F}(\xi_{i}’)\geq F(\Sigma\xi_{\acute{i}})=\hat{F}(\eta’) .

Q. E. D.

LEMMA 4. If F is an upper semi-continuous pseudO-length function
on X, it is the limit of a monotone decreasing sequence of continuous
length functions H_{k} . Furthermore, if \hat{H}_{k} denotes the continuous convex
length function associated with H_{k} , then \hat{F} is the limit of a monotone
decreasing sequence \{\hat{H}_{k}\} .

PROOF. Let SX\subset TX be the tangent unit sphere bundle defined by a
Riemannian metric g of X. Since F_{|SX} is an upper semi-continuous non-
negative function, it is a limit of a monotone decreasing sequence of con-
tinuous positive functions H_{k} on SX (see, for example [3; p. 43]). Since
F(-\xi)=F(\xi) , we can choose H_{k} in such a way that H_{k}(-\xi)=H_{k}(\xi) .
We extend H_{k} to TX by setting.

H_{k}(c\xi)=|c|H_{k}(\xi) for \xi\in SX , c\in R .

Then \{H_{k}\} is a monotone decreasing sequence of continuous length func-
tions, and F( \xi)=\lim H_{k}(\xi) for \xi\in TX . Since F\leq H_{k+1}\leq H_{k} , we have \hat{F}

\leq\hat{H}_{k+1}\leq\hat{H}_{k} . Given a nonzero \xi\in TX , choose a convex length function G

such that G(\xi)=1 . Since lim H_{k}(\xi)=F(\xi) , given \epsilon>0 there is an inte-
ger k_{0} such that

H_{k}(\xi)<F(\xi)+\epsilon=F(\xi)+\epsilon G(\xi) for k>k_{0} .

Hence,

\hat{H}_{k}(\xi)<\hat{F}(\xi)+\epsilon G(\xi)=\hat{F}(\xi)+\epsilon for k>k_{0} .

Thus, lim \hat{H}_{k}(\xi)=\hat{F}(\xi) . Q. E. D.
Let p, q\in X , and let c be a piecewise smooth curve from p to q reper-

esented by x(t) , a\leq t\leq b . Since \hat{F}\leq F , we have \hat{L}(c)\leq L(c) . The prob-
lem is to show that given \epsilon>0 there is another curve \tilde{c} from p to q such
that
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(9) L(\tilde{c})<\hat{L}(c)+3\epsilon .

By subdiving c if necessary, we may assume that c is contained in a sin-
gle coordinate neighborhood U. For the sake of convenience we fix an
arbitrarily chosen Riemannian metric g on X. It is convenient to choose
g in such a way that in U it is the Euclidean metric defined by the local
coordinate system. Without loss of generality we may assume that the
velocity x’(t) is of unit length with respect to g.

Let H_{k} be as in Lemma 4 and put

(10) \hat{L}_{k}(c)=\int_{c}\hat{H}_{k} .

Then by the Lebesgue convergence theorem, given \epsilon>0 there is an integer
k_{0} such that

(11) L\wedge k(c)<\hat{L}(c)+\epsilon for k>k_{0} .

Let \pi=(a=t_{0}<t_{1}<\cdots<t_{r}=b) be a subdivision of the interval [a, b] ,
and let | \pi|=\max\{t_{1}-t_{0},\cdots , t_{r}-t_{r-1}\} . We set

\Delta t_{i}=t_{i}-t_{i-1} .

Using the local coordinate system in U, we define
\Delta x_{i}=x(t_{i})-x(t_{i-1})\in R^{n} .

Under the identification Tx(t_{t-1}) \simeq R^{n} by the coordinate system, \Delta x_{i}/\Delta t_{i} is
approximately equal to x’(t_{i-1}) so that |\Delta x_{i}/\Delta t_{i}| is approximately equal to
1.

For each \pi and k, we set

(12) \hat{S}_{k,\pi}=\sum_{i=1}^{r}\hat{H}_{k}(x(t_{i-1}), \Delta x_{i})=\sum_{i=1}^{r}\hat{H}_{k}(x(t_{i-1}), \frac{\Delta x_{i}}{\Delta t_{i}})\Delta t_{i} .

(As we explained in the preceding section, we write the base point x(t_{i-1})

in (12) explicitly since we are using the local coordinate system).
Then, given \epsilon>0 there is \delta_{1}>0 such that

(13) \hat{S}_{k,\pi}<\hat{L}_{k}(c)+\epsilon if |\pi|<\delta_{1} .

For a fixed k>k_{0} , there is \delta_{2}>0 such that for every t,a\leq t \leq b ,

(14) H_{k}(y, \xi)<H_{k}(x(t), \xi)+\frac{\epsilon|\xi|}{b-a} for |y-x(t)|<\delta_{2} , \xi\in R^{n}-

where |y-x(t)| denotes the Euclidean distance from x(t)\in c to y\in X

with respect to the local coordinate system.
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Let \delta=\min\{\delta_{1}, \delta_{2}\} , and fix a subdivision \pi of [a, b] such that |\pi|<\delta .
Since |\Delta x_{i}/\Delta t_{i}| is approximately equal to 1 and since \Delta t_{i}<\delta , we have |\Delta x_{i}|

<\delta .
We fix i and k>k_{0} . Since \hat{H}_{k}(\Delta x_{i})>0 , by Lemma 1 there exist

linearly independent \xi_{1},\cdots,\xi_{m}\in T_{x(t_{i-1})}X such that

(15) \Delta x_{i}=\xi_{1}+\cdots+\xi_{m}

and

(16) \hat{H}_{k}(x(t_{i-1}), \Delta x_{i})=H_{k}(x(t_{i-1}), \xi_{1})+\cdots+H_{k}(x(t_{i-1}), \xi_{m}) .

This says that the length of the line segment from the origin to \Delta x_{i} in
T_{x(t_{i-1})}X measured by the length function \hat{H}_{k} is equal to the length of the
polygonal path from the origin to \Delta x_{i} via vertices \xi_{1} , \xi_{1}+\xi_{2} , \xi_{1}+\xi_{2}+\xi_{3},\cdots ,
\xi_{1}+\xi_{2}+\cdots+\xi_{r-1} measured by the length function H_{k} .

Using the local coordinate system we identify a neighborhood of the
origin in T_{x(t_{i}}-1)X with a neighborhood of x(t_{i-1}) in X. Let \overline{c}_{i} be the
polygonal path in X corresponding to the polygonal path in T_{x(t_{i}}-1)X de-
scribed above. Then \tilde{c}_{i} goes from x(t_{i-1}) to x(t_{i}) . For each i, we
replace the portion of c from x(t_{i-1}) to x(t_{i}) by \tilde{c}_{i} . Let \tilde{c} be the result-
ing path from p=x(a) to q=x(b) . We shall show that \tilde{c} has the desired
property.

We estimate the length L(\tilde{c}_{i}) of \tilde{c}_{i} measured by H_{k} . Since |\Delta x_{i}|<\delta

and since \hat{H}_{k}(\xi_{j})\leq H_{k}(\xi_{j}) , it follows from (15) and (16) that \tilde{c}_{i} is
contained in the \delta-neighborhood of x(t_{i-1}) . (By ”

\delta-neighborhood we
mean the Euclidean neighborhood \{y\in X:|y-x(t_{i-1})|<\delta\}.) Therefore, by
(14)

(17) H_{k}(y, \xi)<H_{k}(x(t_{i-1}), \xi)+\frac{\epsilon|\xi|}{b-a} for \xi\in R^{n}

at every point y of \tilde{c}_{i} . Integrating (17) along \tilde{c}_{i} and using (16), we
obtain

(18) \int_{\overline{c}_{1}}H_{k}<\hat{H}_{k}(x(t_{i-1}), \Delta x_{i})+\frac{\epsilon|\Delta x_{i}|}{b-a} .

Since \sum|\Delta x_{i}| is approximately equal to \sum\Delta t_{i}=b-a , summing over i we
obtain

(19) \int_{\overline{c}}H_{k}<\hat{S}_{k,\pi}+\epsilon .

Combining (11), (13) and (19) we obtain
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(20) \int_{\overline{c}}H_{k}<\hat{L}(c)+3\epsilon .

Since \int_{\overline{c}}F\leq\int_{\overline{c}}H_{k} , we obtain the desired inequality (9), thus completing the
proof of the theorem.
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