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Introduction.

In this paper, we present various results concerning the geometry of
the complex quadric Q_{n} of dimension n\geq 3 which are needed in the study
of the infinitesimal rigidity of this space. We consider Q_{n} both as a com-
plex hypersurface of the complex projective space CP^{n+1} and as a symmet-
ric space.

Following [15], we introduce the real structure K_{\nu} of the quadric Q_{n} ,
corresponding to a unit normal vector 1/ of this hypersurface of CP^{n+1} at
x\in Q_{n} , which is an involution of the tangent space T_{x} of Q_{n} at x . This
involution K_{\nu} determines a decomposition

T_{x}=T_{\nu,x}^{+}\oplus T_{\overline{\nu},x}

into two n-dimensional components. We say that the real structures of
Q_{n} are oriented if, for all unit normals 1/ to Q_{n} at x\in Q_{n} , the subspaces
T_{\nu,x}^{+} admit orientations which are compatible with the action of the group
G=SO(n+2) of isometries of Q_{n} . We show that the real structures of Q_{n}

are orientable if and only if n is even. If n=4 , to such an orientation of
these real structures corresponds a *-0perator, which is an involution of a
sub-bundle of the bundle of symmetric 2-forms on Q_{4} : it is analogous to
the usual involution of exterior 2-forms on oriented Riemannian manifolds
of dimension 4. In \S 3, we use these real structures and this * -0perator to

decompose the bundle S^{2}T_{C}^{*} of complex-valued symmetric 2-forms on Q_{n}

into irreducible G-invariant sub-bundles.
A symmetric 2-form on a compact symmetric space (X, g) satisfies the

zer0-energy condition if all its integrals along the closed geodesies of X
vanish. The space (X, g) is infinitesimally rigid if the only symmetric
2-forms on X satisfying the zer0-energy condition are the Lie derivatives
of the metric g.

In order to study the infinitesimal rigidity of Q_{n} , with n\geq 4 , we first
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consider the family \mathscr{F} of totally geodesic surfaces of Q_{n} contained in
totally geodesic submanifolds of Q_{n} , which are already known to be
infinitesimally rigid. If n\geq 4 , according to Dieng [2], \mathscr{I}^{-} consists of the
totally geodesic submanifolds of Q_{n} , isometric either to a complex projec-
tive line of maximal curvature, to a flat torus of dimension 2 or to a real
projective plane. These complex projective lines and these real projective
planes are contained in totally geodesic complex projective planes. The
infinitesimal rigidity of flat tori and complex projective planes was proved
by Michel ([13], [14]) and Tsukamoto [17] (see also [5] and [6]). To
exploit the fact that these submanifolds of Q_{n} are infinitesimally rigid, we
introduce the bundle N of curvature-like tensors of type (0, 4) which van-
ish when restricted to the surfaces of the family \mathscr{F} The infinitesimal
orbit of the curvature \tilde{G} of Q_{n} , defined in [4] for any symmetric space, is
a sub-bundle of N. We require a description of N and, in particular, an
xplicit complement of \tilde{G} in N. This is possible if one is able to find a

suitable bound for the rank of the bundle N. One of the goals of this
paper is to present our computations announced and used in [6] leading to
such a bound, when n\geq 5 (Proposition 5. 2). This is a crucial step in our
proof of the infinitesimal rigidity of Q_{n} , with n\geq 5 , given these; it permits
us to avoid the use of the representation theory of the group G and har-
monic analysis on its homogeneous space Q_{n} .

When n=4 , this bound fails to hold and a complement of \tilde{G} in N has
additional components in this case. The methods used in [6] break down
and a new approach is necessary.

We propose a new method, inspired in part by Michel’s work [13],
combining certain aspects of the techniques of [6] with those of [5], which
we shall use in a future publication to analyze the infinitesimal rigidity
problem for Q_{4} and which we now briefly describe; we also po\overline{l}nt out the
relevant results which are proved here. The bundle N is still of para-
mount importance. Rather than a complete analysis of N, in this case we
only need a characterization of the bundle Tr N of symmetric 2-f0rms
which are traces of elements of N. Here, we determine the bundle Tr N
for Q_{4} in terms of the decomposition of S^{2}T_{C}^{*} into irreducible factors, and
show that its elements are traceless symmetric 2-forms (Proposition 5. 1).
This computation is substantially simpler than the one giving us the rank
of N when n\geq 5 .

On an irreducible symmetric space X, the resolution of the sheaf of
Killing vector field \overline{1}ntroduced in [4] is related to the complex of [3] on
the Einstein manifold X, in which the linearization of the Ricci operator
appears. We recall that this operator involves the Lichnerowicz La-
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placian \Delta acting on symmetric 2-forms, These facts, taken together with
the descriptions of Tr N and of the action of the operator \Delta on the space
C^{\infty}(S^{2}T_{C}^{*}) of complex-valued symmetric 2-forms on Q_{4} , play an essential
role in this approach to the infinitesimal rigidity question for Q_{4} . We also
require the representation theory of the group G of isometries of our
space, and the decomposition of C^{\infty}(S^{2}T_{C}^{*}) into irreducible G-modules,
just as we did in [5] for the complex projective spaces. The decomposi-
tion of the bundle S^{2}T_{C}^{*} into irreducible G-invariant sub-bundles and the
branching law of [18] then permit us to determine the multiplicities of the
isotypic components of C^{\infty}(S^{2}T_{C}^{*}) (Proposition 4. 2). According to [11], \Delta

is equal to a constant multiple of the Casimir operator of the G-module
C^{\infty}(S^{2}T_{C}^{*}) ; in \S 4 we use this fact to derive properties of these isotypic
components and of \Delta .

1. Hermitian manifolds.

Let X be a complex manifold of complex dimension n endowed with a
Hermitian metric g. We denote by J its complex structure, and by T and
T^{*} its tangent and cotangent bundles. By \otimes^{k}E , S^{l}E , \wedge^{j}E , we shall
mean the k-th tensor product, the l -th symmetric product and the j-th
exterior product of a vector bundle E over X, respectively. If E is a
vector bundle over X, we denote by E_{C}\overline{1}ts complexification, by \mathscr{C} the
sheaf of sections of E over X and by C^{\infty}(E) the space of global sections
of E over X. Let C^{\infty}(X) be the space of complex-valued functions on X.
If \alpha , \beta\in T_{C}^{*} , we identify the symmetric product \alpha\cdot\beta with the element
\alpha\otimes\beta+\beta\otimes\alpha of\otimes^{2}T_{C}^{*} .

Let G be the sub-bundle of \wedge^{2}T^{*}\otimes\wedge^{2}T^{*} consisting of those tensors
satisfying the first Bianchi identity considered in [4, \S 3]. We denote by G^{0}

and S_{0}^{2}T^{*} the sub-bundles of G and S^{2}T^{*} equal to the kernels of the trace
mappings

Tr: Garrow S^{2}T^{*} . Tr.\cdot S^{2}T^{*}arrow R ,

defined by

(Tr u) ( \xi, \eta)=\sum_{j=1}^{2n}u(t_{j}, \xi, t_{j}, \eta) , Tr h= \sum_{j=1}^{2n}h(t_{j}, t_{j}) ,

for u\in G_{x} , h\in S^{2}T_{x}^{*} , where x\in X and \{t_{1}, . ’ t_{2n}\} is an orthonormal basis
of T_{x} .

The complex structure J induces involutions

J :\wedge^{2}T^{*}arrow\wedge^{2}T^{*} , J:S^{2}T^{*}arrow S^{2}T^{*} ,
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defined by

\beta^{J}(\xi, \eta)=\beta(J\xi, J\eta) , h^{J}(\xi, \eta)=h(J\xi, J\eta) ,

for \beta\in\wedge^{2}T_{\tau}^{*}h\in S^{2}T^{*} and \xi , \eta\in T Then G is stable under the involu-
tion

J=J\otimes J:\wedge^{2}T^{*}\otimes\wedge^{2}T^{*}arrow\wedge^{2}T^{*}\otimes\wedge^{2}T^{*} .

We obtain the orthogonal decompositions

\wedge^{2}T^{*}=T_{R}^{1,1}\oplus(\wedge^{2}T^{*})^{-} S^{2}T^{*}=(S^{2}T^{*})^{+}\oplus(S^{2}T^{*})^{-} G=G^{+}\oplus G^{-}

into direct sums of the eigenbundles T_{R}^{1,1} , (\wedge^{2}T^{*})^{-}(S^{2}T^{*})^{+} . (S^{2}T^{*})^{-}G^{+}

and G^{-} corresponding to the eigenvalues +1 and -1, respectively, of the
involutions J. In fact, T_{R}^{1,1} is the bundle of real forms of type (1, 1) and
(S^{2}T^{*})^{+} is the bundle of Hermitian symmetric 2-forms. We denote by \pi_{+}

and \pi_{-} the orthogonal projections of S^{2}T^{*} onto (S^{2}T^{*})^{+} and (S^{2}T^{*})^{-}

respectively. It is easily verified that
Tr(G^{+})\subset(S^{2}T^{*})^{+} . Tr(G^{-})\subset(S^{2}T^{*})^{-}

If h is an element of S^{2}T^{*} . we consider the element \check{h} of \otimes^{2}T^{*}

defined by

\check{h}(\xi, \eta)=h(J\xi, \eta) ,

for all \xi , \eta\in T If h\in(S^{2}T^{*})^{+} . then \check{h} is an element of T_{R}^{1,1} ; on the other
hand, if h belongs to (S^{2}T^{*})^{-} so does \check{h} . We thus obtain a canonical
isomorphism

(1. 1) (S^{2}T^{*})^{+}arrow T_{R}^{1,1} .

sending h\in(S^{2}T^{*})^{+} into the form \check{h} of type (1, 1) , and an endomorphism

(1. 2) J : (S^{2}T^{*})^{-}arrow(S^{2}T^{*})^{-}

sending h\in(S^{2}T^{*})^{-} into the symmetric 2-form J(h)=\check{h} , which satisfies
J^{2}=-id . The image of g under the isomorphism (1.1) is equal to the
K\"ahler form \omega of X.

Let T^{p,q} be the bundle of complex differential forms of type (p, q) on
X. The eigenbundles corresponding to the eigenvalues +i and - i of the
endomorphism J of (S^{2}T^{*})_{\overline{c}} are the bundles S^{2}T^{1,0} and S^{2}T^{0,1} of symmet-
ric forms of type (2, 0) and (0, 2) , respectively. Thus we have

(T_{R}^{1,1})c=T^{1,1}- (S^{2}T^{*})_{C}^{-}=S^{2}T^{1,0}\oplus S^{2}T^{0,1} .
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Let \nabla be the Levi-Civita connection of the Riemannian manifold X.
Let

div:S^{2}\mathscr{T}^{*}arrow \mathscr{F}^{*}

be the first-0rder d_{\overline{1}}fffferentia1 operator defined by

(div h) ( \xi)=-\sum_{j=1}^{2n}(\nabla h)(t_{j}, t_{j}, \xi) ,

for h\in C^{\infty}(S^{2}T^{*}) , \xi\in T_{X} , where x\in X and \{t_{1}, . . t_{2n}\} is an orthonormal
basis of T_{\chi} . Then we see that

(1.3) (div h) (\xi)=(d^{*}\check{h})(J\xi) ,

for all h\in C^{\infty}((S^{2}T^{*})^{+}) , \xi\in T where d^{*} is the formal adjoint of the exte-
rior derivative d . Moreover, the follow\overline{l}ng lemma is easily verified.

LEMMA 1. 1. Suppose that g is a K\"ahler metric and let f\in C^{\infty}(X) .
If h is the section \pi_{+}Hessf of (S^{2}T^{*})_{c}^{+} , then we have

(1. 4) \check{h}=i\partial\overline{\partial}f .

2. The complex quadric.

Let n be an integer \geq 2 . We endow C^{n+2} with its usual Hermitian
scalar product

\langle z, w\rangle=\sum_{j=0}^{n+1}z_{j}\overline{w}_{j} ,

for z=(z_{0}, z_{1}, \ldots, z_{n+1}) , w=(w_{0}, w_{1}, . w_{n+1})\in C^{n+2} , with the real scalar
product

(2. 1) \langle z, w\rangle_{R}={\rm Re}\langle z, w\rangle ,

and with the complex bilinear form

h(z, w)= \sum_{j=0}^{n+1}z_{j}w_{j} .

We consider the complex projective space CP^{n+1} of dimension n+1
endowed with the Fubini-Study metric \tilde{g} of constant holomorphic curva-
ture 4. If

\pi:C^{n+2}-\{0\}arrow CP^{n+1}

is the natural projection, and if S^{2n+3} is the unit sphere of C^{n+2} endowed
with the Riemannian metric induced by the real scalar product (2.1), then
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\pi:S^{2n+3}arrow CP^{n+1}

is a Riemannian submersion. In fact, the tangent space T_{z}(S^{2n+3}) of the
sphere S^{2n+3} at z\in S^{2n+3} is identified with the space

\{(z, u)|u\in C^{n+2}, \langle z, u\rangle_{R}=0\} .

We also consider its subspace

H_{z}(S^{2n+3})=\{(z, u)|u\in C^{n+2}. \langle z, u\rangle=0\} ;

if u\in C^{n+2} satisfies \langle z, u\rangle=0 , we shall sometimes write u for the element
(z, u) of H_{z}(S^{2n+3}) . If T_{\pi(z)}(CP^{n+1}) is the tangent space of CP^{n+1} at
\pi(z) , then

\pi_{*}: H_{z}(S^{2n+3})arrow T_{\pi(z)}(CP^{n+1})

is an isometry. Moreover, if u\in C^{n+2} satisfies \langle z, u\rangle=0 and \lambda is an ele-
ment of C , with |\lambda|=1 , then ( \lambda z , Au) belongs to H_{\lambda z}(S^{2n+3}) and

\pi_{*}(z, u)=\pi_{*}(\lambda z, \lambda u) .

We henceforth suppose that X is the complex quadric Q_{n} , which is the
complex hypersurface of complex projective space CP^{n+1} defined by the
homogeneous equation

\zeta_{0}^{2}+\zeta_{1}^{2}+\cdots+\zeta_{n+1}^{2}=0 ,

where \zeta_{0} , \zeta_{1} , . . \zeta_{n+1} are the standard complex coordinates of C^{n+2} . Let g

be the K\"ahler metric on X induced by the metric \tilde{g} of CP^{n+1} . In fact, we
have

Q_{n}=\{\pi(z)|z\in C^{n+2}-\{0\}, h(z, z)=0\} ,
=\{\pi(z)|z\in S^{2n+3}-\{0\}, h(z, z)=0\} .

If z\in S^{2n+3} satisfies h(z, z)=0, we consider the subspace

H_{\acute{z}}(S^{2n+3})=\{(z, u)|u\in C^{n+2}, \langle z, u\rangle=0, h(z, u)=0\}

of H_{z}(S^{2n+3}) ; then

\pi_{*}: H_{\acute{z}}(S^{2n+3})arrow T_{\pi(z)}

is an isometry (see [1], [10]).
Let \{e_{0}, e_{1}, , e_{n+1}\} be the standard basis of C^{n+2} . Let b be the point

(e_{0}+ie_{1})/\sqrt{2} of S^{2n+3} ; then h(b, b)=0 and a=\pi(b) is a point of Q_{n} . We
consider the vectors
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\tilde{\nu}=(ie_{0}+e_{1})/\sqrt{2}. \tilde{\downarrow/}^{\gamma}=(-e_{0}+ie_{1})/\sqrt{2}

of H_{b}(S^{2n+3}) ; clearly, we have \pi_{*}\tilde{\nu}’=J\pi_{*}\tilde{\nu} . Then
\{e_{2}, . , e_{n+1}, ie_{2}, . , ie_{n+1}\}

is an orthonormal basis of H_{b}’(S^{2n+3}) and \{ _{\tilde{1/}},\tilde{\nu}’\} is an orthonormal basis
for the orthogonal complement of H_{\acute{b}}(S^{2n+3}) in H_{b}(S^{2n+3}) .

The group SU(n+2) acts on C^{n+2} and CP^{n+1} by holomorphic
isometries; its subgroup SO(n+2) leaves the submanifold X of CP^{n+1}

invariant, and acts transitively on X by holomorphic isometries. The
isotropy group of the point a is equal to the subgroup H=SO(2)\cross SO(n)

of SO(n+2) consisting of the matrices

(\begin{array}{ll}A 00 B\end{array}) ,

where A\in SO(2) and B\in SO(n) . For \theta\in R , we denote by R(\theta) the ele-
ment

(\begin{array}{ll}cos\theta -sin\thetasin\theta cos\theta\end{array})

of SO(2) and by R’(\theta) the element

(\begin{array}{ll}R(\theta) 00 I\end{array})

of H, where I is the identity element of SO(n). Since
R’(\theta)b=e^{-i\theta}b , R’(\theta)_{*}(b, ie_{0}+e_{1})=(e^{-i\theta}b, e^{i\theta}(ie_{0}+e_{1})) ,

we see that

(2.2) R’(\theta)_{*}\pi_{*}\tilde{\nu}=\pi_{*}(e^{-i\theta}b, e^{i\theta}(ie_{0}+e_{1})/\sqrt{2})

=\pi_{*}(b, e^{i2\theta}(ie_{0}+e_{1})/\sqrt{2})

=\cos 2\theta\cdot\pi_{*}\tilde{\nu}+\sin 2\theta\cdot J\pi_{*}\tilde{\nu}

and

(2.3) R’(\theta)_{*}\pi_{*}e_{j}=\pi_{*}(e^{-i\theta}b, e_{j})=\pi_{*}(b, e^{i\theta}e_{j}) ,

for 2\leq j\leq n+1 .
Let \{e_{\acute{1}}, , e_{\acute{n}}\} be the standard basis of C^{n} and let

\psi:T_{a}arrow C^{n}

be the isomorphism of real vector spaces determined by
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\psi\pi_{*}e_{j}=e_{j-1}’ , \psi\pi_{*}ie_{j}=ie_{j-1}’ ,

for 2\leq j\leq n+1 . If we identify T_{a} with C^{n} by means of this isomorphism
\psi , since J\pi_{*}e_{j}=\pi_{*}ie_{j} , for 2\leq j\leq n+1 , the complex structure of T_{a} is the
one determined by the multiplication by i on C^{n} . and the K\"ahler metric g
at a is the one obtained from the standard Hermitian scalar product of
C^{n} Moreover, by (2.3) we see that the action of the element

(2.4) \phi=(\begin{array}{ll}R(\theta) 00 B\end{array})

of H, with B\in SO(n) , \theta\in R , on T_{a}=C^{n} is given by

(2.5) \phi_{*}\zeta=e^{i\theta}B\zeta ,

for \zeta\in C^{n} where SO(n) is considered as a subgroup of SU(n) . In part\dot{l}C-

ular, if \phi is the element R’(\theta) of H, we have

(2.6) R’(\theta)_{*}\zeta=\cos\theta\cdot\zeta+\sin\theta\cdot J\zeta ,

for \zeta\in T_{a} . Moreover, if \mu is a unit vector of T_{a}(CP^{n+1}) normal to X,

from (2.2) it follows that

(2. 7) R’(\theta)_{*}\mu=\cos 2\theta\cdot\mu+\sin 2\theta\cdot J\mu .

If j=R’(\pi/2) , the element s=j^{2} of SO(n+2) determines an involution \sigma of
SO(n+2) which sends \phi\in SO(n+2) into s\phi s^{-1} . Then H is equal to the
identity component of the set of fixed points of \sigma , and (G, H) is a Rieman-
nian symmetric pair. The corresponding Cartan decomposition of the Lie
algebra \mathfrak{g} of SO(n ) \overline{1}S

\mathfrak{g}=\mathfrak{h}\oplus \mathfrak{m} ,

where \mathfrak{h} is the Lie algebra of H and rn is the space of all matrices

(2.8) (\begin{array}{lll}0 0 -t\xi 0 0 -t\eta\xi \eta 0\end{array})

of \mathfrak{g} , where \xi , \eta are vectors of R^{n} considered as column vectors. We
identify rn with the tangent space of Y=SO(n+2)/H at the coset of the
identity element of SO(n+2), and the vector (\xi, \eta)\in R^{n}\oplus R^{n} with the
matrix (2.8) of \mathfrak{m} .

Since SO(n+2) acts transitively on X, we have a diffeomorphism \Psi :
Yarrow X, sending \phi\cdot H into \phi(a) , for \phi\in SO(n+2) . The restriction of Adj
to rn is a complex structure on \mathfrak{m} , and so gives rise to an SO(n+2)-
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invariant complex structure on Y. If B is the Killing form of \mathfrak{g} , let g_{0} be
the unique SO(n+2)-invariant metric on Y whose restriction to rn is equal
to - B. Endowed with this complex structure and the metric g_{0} , the mani-
fold Y is a Hermitian symmetric space. It is easily verified that the
isomorphism \Psi*:\mathfrak{m}arrow T_{a} sends (\xi, \eta)\in \mathfrak{m} , with \xi , \eta\in R^{n}\backslash into (\xi+i\eta)/\sqrt{2}

\in C^{n} Hence we see that \Psi_{*}\circ Adj=J\circ\Psi*and that g_{0}=4n\Psi^{*}g . Thus \Psi is
a holomorphic isometry from the Hermitian symmetric space Y. endowed
with the metric 1/4n\cdot g_{0} , to X,\cdot henceforth, we shall identify these two
K\"ahler manifolds by means of this isometry (see [10]). From Proposition
9.7, Chapter XI of [10], it follows that X is an Einstein manifold and that
its Ricci tensor Ric is given by

(2. 9) Ric=2ng.

We now recall some of the results of [15] (see also [7]). The second
fundamental form B of the complex hypersurface X of CP^{n+1} is a sym-
metric 2-form with values in the normal bundle of X in CP^{n+1} . We
denote by S the bundle of unit vectors of this normal bundle. Let x\in X

and \nu\in S_{x} . We consider the element h_{\nu} of S^{2}T_{x}^{*} defined by

h_{\nu}(\xi, \eta)=\tilde{g}(B(\xi, \eta), \nu) ,

for all \xi , \eta\in T_{\chi} . By means of the metric g , we identify the 2-form h_{y}

with a symmetric endomorphism K_{\nu} of T_{X} . If \mu is another element of S_{x} ,

we have

(2. 10) \mu=\cos 2\theta\cdot\nu+\sin 2\theta\cdot J\nu ,

with \theta\in R . Then it is easily verified that

(2. 11) K_{\mu}=\cos 2\theta\cdot K_{\nu}+\sin 2\theta\cdot JK_{\nu} .

In particular, we have

K_{J^{\mu}}=JK_{\nu} .

Since our manifolds are K\"ahler, we see that

(2. 12) JK_{\nu}=-K_{\nu}J ,

and, by (2.9), that K_{\nu} is an involution (see [15]). We call K_{\nu} the real
structure of the quadric associated to the unit normal \nu . From (2.12), it
follows that h_{\nu} belongs to (S^{2}T^{*})^{-} and that

(2. 13) \check{h}_{\nu}=-h_{J\iota J} .

We denote by T_{\nu,x}^{+} , T_{\nu,x}^{-} the eigenspaces of K_{\nu} , with eigenvalue
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equal to +1 and -1, respectively. We recall that J induces an isomor-
phism of T_{\nu,x}^{+} onto T_{\nu,x}^{-} and that

(2. 14) T_{x}=T_{\nu,x}^{+}\oplus T_{\nu,x}^{-}

is an orthogonal decomposition. If \mu is the unit normal given be (2.10),
then according to (2.11), we easily see that

(2. 15) T_{\mu,x}^{+}=\{\cos\theta\cdot\xi+\sin\theta\cdot J\xi|\xi\in T_{\nu,x}^{+}\} .

Since an element \phi of SO(n+2) acts on CP^{n+1} and X by holomorphic
isometries, we have

B(\phi_{*}\xi, \phi_{*}\eta)=\phi_{*}B(\xi, \eta) ,

for all \xi , \eta\in T Thus, if \mu is the tangent vector \phi_{*}\nu belonging to S_{\phi(x)} ,
we see that

h_{\mu}(\phi_{*}\xi, \phi_{*}\eta)=h_{\nu}(\xi, \eta) ,

for all \xi , \eta\in T_{X} , and hence that
K_{\mu}\phi_{*}=\phi_{*}K_{\nu}

on T_{x} . Therefore \phi induces isomorphisms

\phi_{*}: T_{\nu,x}^{+}arrow T_{\mu,\phi(\chi)}^{+} , \phi_{*}: T_{\overline{\nu},x}arrow T_{\mu,\phi(x)}^{-} .

We say that the real structures of X are oriented if, for all x\in X and
\nu\in S_{x} , the subspace T_{\nu,x}^{+} of T_{x} is oriented in such a way that, for all \phi\in

SO(n+2), the isomorphism

\phi_{*}: T_{\nu,x}^{+}arrow T_{\phi_{*}\nu,\psi(\chi\rangle}^{+}

is orientation-preserving.
We shall require the following lemma in \S 5. Let q\geq 0 and 0\leq m_{1}\leq m_{2}

\leq\cdots\leq m_{2q}=m be integers, with m\geq 1 : we set m_{0}=0 .
LEMMA 2. 1. Let x\in X and u be an element of \otimes^{m}T_{x}^{*} . Suppose

that, for any element \nu of S_{x} and for any orthonormal set \{\xi_{1}, , \xi_{q}\} of
elements of T_{\nu,x}^{+} , we have

u(\eta_{1}, . . . \eta_{m})=0 ,

where

) (2.16)
\eta_{j}=\xi_{i} , for m_{i-1}+1\leq j\leq m_{i} , 1\leq i\leq q ,
\eta_{j}=J\xi_{i} , for m_{i+q-1}+1\leq j\leq m_{i+q} , 1\leq i\leq q .
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Then, for any element \nu of S_{x} and for any orthonormal set \{\xi_{1}, \ldots.\xi_{q}\}

of elements of T_{\nu,x}^{+} , we have
u(J\eta_{1}, , J\eta_{m})=0 ,

(2. 17)
u(\eta_{1}+sJ\eta_{1}, \ldots.\eta_{m}+sJ\eta_{m})=0 ,

for all s\in R, if \eta_{1} , , \eta_{m} are the vectors of T_{x} defined by (2.16).

PROOF: Let \nu be an element of S_{x} and \{\xi_{1} , . . \xi_{q}\} be an orthonor-
mal set of elements of T_{\nu,x}^{+} . Let \mu be the element (2.10) of S_{\chi} , with \theta\in

R ; then, by (2. 15)

\xi_{j}’=\cos\theta\cdot\xi_{j}+\sin\theta\cdot J\xi_{j}

belongs to T_{\mu,\chi}^{+} , for 1\leq j\leq q . By considering the orthonormal set \{\xi_{1}’ ,
\xi_{\acute{q}}\} of elements of T_{\mu,x}^{+} , from our hypothesis we deduce the equality

u ( \cos\theta\cdot\eta_{1}+\sin\theta\cdot J\eta_{1} , . ’ cos \theta\cdot\eta_{m}+\sin\theta\cdot J\eta_{m} ) =0 ,

where \eta_{1} , , \eta_{m} are the vectors of T_{x} defined by (2.16). If we take \theta=

\pi/2 in the above equality, we obtain the first of the desired relations. We
write f(\theta)=\tan\theta . If \theta\neq\pi/2 mod \pi , then (2. 17) holds with s=f(\theta) .
Since f’(0)\neq 0 , the relation (2.17) is valid for all s\in R in a neighborhood
of 0. However, the left-hand side of (2.17) is a polynomial in s of degree
m ; therefore it vanishes identically.

Let f be a complex-valued function on C^{n+2} , whose restriction to the
unit sphere S^{2n+3} is invariant under U(1) . The restriction of f to S^{2n+3}

induces by passage to the quotient a function on CP^{n+1} . whose restriction
to X we denote by \tilde{f} For r , s\geq 0 , we consider the U(1) invariant func-
tion

f_{r,s}(\zeta)=((\zeta_{0}+i\zeta_{1})(\overline{\zeta_{2}}+i\overline{\zeta_{3}})

-(\zeta_{2}+i\zeta_{3})(\overline{\zeta_{0}}+i\overline{\zeta_{1}}))^{s}(\zeta_{0}+i\zeta_{1})^{r}(\overline{\zeta_{0}}+i\overline{\zeta_{1}})^{r}

on C^{n+2} and the function \tilde{f}_{r,s} it induces on X. Consider the open subset
V=\pi(\{(\zeta_{0}, , \zeta_{n+1})\in C^{n+2}|\zeta_{0}\neq 0\})

of CP^{n+1} . We denote by z=(z_{1} , . . , z_{n+1}) the holomorphic coordinate on
V, where z_{j} is the function which satisfies \pi^{*}z_{j}=\zeta_{j}/\zeta_{0} on C^{*}\cross C^{n+1} . We
write

z_{j}=x_{j}+iy_{j} ,

for 1\leq j\leq n+1 , where x_{j} and yj are real-valued functions on V. Then we
have
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X \cap V=\{z\in V|1+\sum_{j=1}^{n+1}z_{j}^{2}=0\}

and the point a belongs to V We set

\xi_{1}=2(\frac{\partial}{\partial x_{1}})_{a} , \eta_{1}=2(\frac{\partial}{\partial y_{1}})_{a} ,

\xi_{j}=\sqrt{2}(\frac{\partial}{\partial x_{j}})_{a} , \eta_{j}=\sqrt{2}(\frac{\partial}{\partial y_{j}})_{a} ,

for 2\leq j\leq n+1 . Then the mapping \pi_{*}: H_{b}(S^{2n+3})- T_{a}(CP^{n+1}) is deter-
mod by

\pi_{*}\overline{\nu}=\xi_{1} , \pi_{*}\overline{\nu}’=\eta_{1} ,
(2. 18)

\pi_{*}e_{j}=\xi_{j} , \pi_{*}ie_{j}=\eta_{j} ,

for 2\leq j\leq n+1 . Thus \{\xi_{2}, \ldots : \xi_{n+1}, \eta_{2}, \ldots.\eta_{n+1}\} is an orthonormal basis of
T_{a} and the element \nu’=\eta_{1} of S_{a} satisfies J\nu’=-\xi_{1} . Since the complex
vector fields \partial/\partial z_{j}-z_{j}/z_{1}\partial/\partial z_{1} are tangent to X on a neighborhood of a for
2\leq j\leq n+1 , we easily verify that the second fundamental form B of X is
given at the point a by

B(\xi_{j}, \xi_{k})=\delta_{jk}\nu’=-B(\eta_{j}, \eta_{k}) ,
B(\xi_{j}, \eta_{k})=\delta_{jk}J\nu’ ,

for 2\leq j\leq n+1 . We thus obtain

K_{\nu’}\xi_{j}=\xi_{j} , K_{\nu’}\eta_{j}=-\eta_{j} ,

for 2\leq j\leq n+1 . Therefore \{\xi_{2}, , \xi_{n+1}\} is an orthonormal basis of T_{\nu’,a}^{+} ,

while \{\eta_{2}, . . \eta_{n+1}\} is an orthonormal basis of T_{\overline{\nu}^{r},a} .
By (2.7), we see that the element (2.4) of H, with \theta\in R , B\in SO(n) ,

satisfies \phi_{*}\nu’=\nu’ if and only if \theta=0 mod \pi . Let \{ \overline{e}_{1}, \ldots \overline{e}_{n}\} be the stan-
dard basis of R^{n}\sim We identify T_{\nu’,a}^{+} with R^{n} by means of the isomor-
phism R^{n}arrow T_{\nu’,a}^{+} sending \overline{e}_{j} into \xi_{j+1} , for 1\leq j\leq n . When \theta=0 mod \pi ,

by (2.5) and (2.18), the action of the element (2.4) of H on T_{\iota_{J’},a}^{+}=R^{n}

is given by

\phi_{*}u=\{
Bu , if \theta=0 mod 2\pi ,

-Bu , if \theta=\pi mod 2\pi ,

for u\in R^{n}\sim where B acts on R^{n} according to the natural representation of
SO(n). Therefore, if n is even, for \theta=0 mod \pi the action of \phi_{*} on T_{\nu’,a}^{+}

is always orientation-preserving.
According to (2.7), the action of H on S is transitive. Thus, if n is

even, we see that an orientation of the real vector space T_{\nu^{r},a}^{+} determines
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an orientation of all the real structures of X. We also remark that, if n
is odd, the real structures of X are not orientable.

We take this opportunity to point out that the definitions of the
vectors \xi_{j} , \eta j , \xi_{n+1} , \eta_{n+1} , with 1\leq j\leq n , of \S 6 of [7] should read as follows:

\xi_{j}=\sqrt{2}(\frac{\partial}{\partial x_{j}})_{a} , \eta_{j}=\sqrt{2}(\frac{\partial}{\partial yj})_{a} ,

\xi_{n+1}=2(\frac{\partial}{\partial x_{n+1}})_{a} , \eta_{n+1}=2(\frac{\partial}{\partial y_{n+1}})_{a} .

Moreover, with these definitions, if \xi=(\xi_{j}+\eta_{j})/\sqrt{2} , \eta=(\xi_{k}+\eta_{k})/\sqrt{2} for
1\leq j<k\leq n , we have

\xi+J\eta=v_{jk}(a) , \eta+J\xi=v_{k_{J}}(a) .

3. Symmetric 2-forms on the quadric.

Let x\in X and \nu be an element of S_{x} . For \beta\in T_{R,x}^{1,1} and h\in(S^{2}T^{*})_{x}^{+} ,

we define elements K_{\nu}(\beta) of \wedge^{2}T_{x}^{*} and K_{\nu}(h) of S^{2}T_{x}^{*} by

K_{\nu}(\beta)(\xi, \eta)=\beta(K_{\nu}\xi, K_{\nu}\eta) , K_{\nu}(h)(\xi, \eta)=h(K_{lJ}\xi, K_{\nu}\eta) ,

for all \xi , \eta\in T_{x} . Using (2.12), we see that K_{\nu}(\beta) and K_{\nu}(h) belong to T_{R}^{11}|

and (S^{2}T^{*})^{+} , respectively. By (2.11), we also observe that K_{\nu}(\beta) and
K_{\nu}(h) do not depend on the choice of the unit normal \nu . We thus obtain
canonical involutions of T_{R}^{11}| and (S^{2}T^{*})^{+} over all of X, which give us
decompositions

T_{R}^{1,1}=(T_{R}^{1,1})^{+}\oplus(T_{R}^{1,1})^{-}

(S^{2}T^{*})^{+}=(S^{2}T^{*})^{++}\oplus(S^{2}T^{*})^{+-}

into the direct sums of the eigenbundles ( T_{R}^{1,1})^{+} , ( T_{R}^{1,1})^{-}(S^{2}T^{*})^{++} and
(S^{2}T^{*})^{+-} corresponding to the eigenvalues +1 and -1, respectively, of
these involutions. By (2.12), we see that the mapping (1.1) induces by
restriction isomorphisms

(S^{2}T^{*})^{+-}arrow(T_{R}^{1,1})^{+}- (S^{2}T^{*})^{++}arrow(T_{R}^{1,1})^{-}

The metric g is a section of (S^{2}T^{*})^{++} and generates a line bundle \{g\} ,

whose orthogonal complement in (S^{2}T^{*})^{++} is the sub-bundle
(S^{2}T^{*})_{0}^{++}=(S_{0}^{2}T^{*})\cap(S^{2}T^{*})^{++}

of (S^{2}T^{*})^{++} consisting of the forms with zer0-trace.
We easily see that
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(3.1) ( T_{R}^{1,1})_{x}^{+}= { \beta\in T_{R,x}^{1,1}|\beta(\xi, J\eta)=0 for all \xi , \eta\in T_{\nu,x}^{+}},
(3.2) (S^{2}T^{*})_{x}^{+-}= { h\in(S^{2}T^{*})_{x}^{+}|h(\xi, \eta)=0 for all \xi , \eta\in T_{\nu,x}^{+}}.

We thus obtain an isomorphism

\rho_{\nu} : (T_{R}^{1,1})_{x}^{+}arrow\wedge^{2}T_{\nu,x}^{+*} ,

sending an element of ( T_{R}^{1,1})_{x}^{+} into its restriction to \wedge^{2}T_{\nu,x}^{+} .
The sub-bundle E of (S^{2}T^{*})^{-} of rank 2, whose fiber at x\in X is the

subspace of (S^{2}T^{*})_{\overline{x}} generated by h_{\nu} and h_{J\nu} , where \nu is an element of
S_{x} , is well-defined. If we denote by (S^{2}T^{*})^{-\perp} the orthogonal complement
of E in (S^{2}T^{*})^{-} we obtain the orthogonal decomposition

(3.3) S^{2}T^{*}=E\oplus(S^{2}T^{*})^{-\perp}\oplus\{g\}\oplus(S^{2}T^{*})_{0}^{++}\oplus(S^{2}T^{*})^{+-}

By (2.13), we see that E is stable under the endomorphism (1.2) of
(S^{2}T^{*})^{-}: since J : Tarrow T is an isometry, the orthogonal complement
(S^{2}T^{*})^{-\perp} of E is also stable under this endomorphism. We denote by E’.

E’ . (S^{2}T^{1,0})^{\perp} . (S^{2}T^{0,1})^{\perp} the eigenbundles corresponding to the eigenvalues
+i and - i of the endomorphisms J of E_{C} and (S^{2}T^{*})_{\overline{c}^{\perp}} . respectively. In
fact, by (2.13) we infer that h_{\nu}+ih_{J\nu} generates E_{\acute{x}} and that h_{\nu}-ih_{J\nu} is a
generator of E_{\acute{\acute{x}}} . Clearly, we have

E’=\overline{E’} (S^{2}T^{0,1})^{\perp}=\overline{(S^{2}T^{1,0})^{\perp}} .

We obtain the orthogonal decompositions

S^{2}T^{1,0}=E’\oplus(S^{2}T^{1,0})^{\perp} , S^{2}T^{0,1}=E’\oplus(S^{2}T^{0,1})^{\perp} ,
(3.4) S^{2}T_{C}^{*}=E’\oplus E^{rr}\oplus(S^{2}T^{1,0})^{\perp}\oplus(S^{2}T^{0,1})^{\perp}

\oplus\{g\}_{C}\oplus(S^{2}T^{*})_{0C}^{++}\oplus(S^{2}T^{*})_{C}^{+-}

We consider the holomorphic coordinate z=(z_{1}, . . . z_{n+1}) of \S 2 on the
open subset V of CP^{n+1} . and the holomorphic coordinate w=(w_{1}, . ’ w_{n})

on a neighborhood of a in X, where w_{j} is the restriction of the function
z_{j+1} to X\cap V . for 1\leq j\leq n . If \nu’ is the unit normal \pi_{*}\overline{\nu}’\in S_{a} of \S 2, it is
easily verified that

h_{\nu^{r}}+ih_{J\nu^{r}}= \frac{1}{4}\sum_{j=1}^{n}(dw_{j}\cdot dw_{j})(a) , g(a)= \frac{1}{4}\sum_{j=1}^{n}(dw_{j}\cdot d\overline{w}_{j})(a)

and that

(S^{2}T^{1,0})_{a}^{\perp}= \{\sum_{j,k=1}^{n}c_{jk}(dw_{j}\cdot dw_{k})(a)|c_{jk}=c_{kg}\in C,\sum_{j=1}^{n}c_{jj}=0\} ,
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(S^{2}T^{*})_{0C,a}^{++}= \{\sum_{j,k=1}^{n}c_{jk}(dw_{j}\cdot d\overline{w}_{k})(a)|c_{jk}=c_{k_{J}}\in C,\sum_{j=1}^{n}c_{jj}=0\} ,

(S^{2}T^{*})_{C,a}^{+-}= \{\sum_{j,k=1}^{n}c_{jk}(dw_{j}\cdot d\overline{w}_{k})(a)|c_{jk}=-c_{kj}\in C\} .

We now suppose that X is the quadric Q_{4} of complex dimension 4.
We choose an orientation of the real structures of X. We define an
involution

*:(T_{R}^{1,1})^{+}arrow(T_{R}^{1,1})^{+}

as follows. Let x\in X and \nu be an element of S_{x} . We have an involution
*of\wedge^{2}T_{\nu,x}^{+*} defined in terms of the orientation of the 4-dimensional space
T_{\nu,x}^{+} and its metric. Then the involution

(3.5) *:(T_{R}^{1,1})_{x}^{+}arrow(T_{R}^{1,1})_{x}^{+}

is the unique mapping which makes the diagram

(T_{R}^{1,1})_{x}^{+}\underline{*}(T_{R}^{1,1})_{x}^{+}

\downarrow\rho_{\nu} \downarrow\rho_{\nu}

\wedge^{2}T_{\nu,x}^{+*}\wedge^{2}T_{\nu,x}^{+*}\underline{*}

commutative. We now show that the mapping (3.5) is independent of the
choice of the unit normal \nu at x . Since the group SO{n acts on the
spaces T_{\nu,x}^{+} by orientation-preserving isometries, it suffices to verify this
fact when x=a. In this case, if \nu , \mu are elements of S_{a} related by (2.10),
with \theta\in R , then, because of (2. 6) and (3. 1), the diagram

(T_{\dot{R}}^{11})_{a}^{+}\underline{\rho_{\nu}}\wedge^{2}T_{\nu,a}^{+*}

| id |R’(\theta)^{*}

(T_{R}^{1,1})_{a}^{+}\wedge^{2}T_{\mu,a}^{+*}\underline{\rho_{\mu}}

is easily seen to commute. Thus, since R’(\theta)_{*}: T_{\nu,a}^{+}arrow T_{\mu,a}^{+} is an
isometry, which preserves the orientations, the two mappings (3.5)

defined in terms of \nu and \mu are equal.
From this involution of ( T_{R}^{1,1})^{+} . by means of the isomorphism (1.1),

we obtain an involution of (S^{2}T^{*})^{+-} which we also denote by * and
which is easily seen to be an isometry. If h\in(S^{2}T^{*})_{x}^{+-} and \{\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\}

is an oriented orthonormal basis of T_{\nu,x}^{+} , then



294 J. Gasqui and H. Goldschmidt

(3.6) (*h)(\zeta_{1}, J\zeta_{2})=h(\zeta_{3}, J\zeta_{4}) .

If F^{+} . F^{-} are the eigenbundles corresponding to the eigenvalues +1
and -1, respectively, of this involution of (S^{2}T^{*})^{+-}- we obtain the orthog-
onal decompositions

(3.7) S^{2}T^{*}=E\oplus(S^{2}T^{*})^{-\perp}\oplus\{g\}\oplus(S^{2}T^{*})_{0}^{++}\oplus F^{+}\oplus F^{-}

(3.8) S^{2}T_{C}^{*}=E’\oplus E’\oplus(S^{2}T^{1,0})^{\perp}\oplus(S^{2}T^{0,1})^{\perp}

\oplus\{g\}_{C}\oplus(S^{2}T^{*})_{0C}^{++}\oplus F_{C}^{+}\oplus F_{C} .

The orthogonal projections p_{+} and p_{-} of (S^{2}T^{*})^{+-} onto F^{+} and F^{-} are

equal to \frac{1}{2}(id+*) and \frac{1}{2}(id-*) , respectively. We remark that, if we
change the orientation of the real structures of X=Q_{4} , the bundles F^{+} and
F^{-} are simply interchanged.

If \nu’ is the element of S_{a} considered in \S 2, and if we choose the orien-
tation of the real structures of X=Q_{4} for which the elements \{\xi_{2}, \xi_{3}, \xi_{4}, \xi_{5}\}

of T_{\nu’,a}^{+} defined in \S 2 form an oriented orthonormal basis of T_{\nu’,a}^{+} , then it
is easily verified that F_{C,a}^{+} is generated by the elements

(dw_{1}+idw_{2})\cdot (d\overline{w}_{1}-id\overline{w}_{2})-(dw_{1}-idw_{2})\cdot (d\overline{w}_{1}+id\overline{w}_{2})

+(dw_{3}+idw_{4})\cdot (d\overline{w}_{3}-id\overline{w}_{4})-(dw_{3}-idw_{4})\cdot (d\overline{w}_{3}+id\overline{w}_{4}) ,
(dw_{1}+idw_{2})\cdot (d\overline{w}_{3}+id\overline{w}_{4})-(d\overline{w}_{1}+id\overline{w}_{2})\cdot (dw_{3}+idw_{4}) ,
(dw_{1}-idw_{2})\cdot (d\overline{w}_{3}-id\overline{w}_{4})-(d\overline{w}_{1}-id\overline{w}_{2})\cdot (dw_{3}-idw_{4})

of (S^{2}T^{*})_{C,a}^{+-} , while F_{C.a} is generated by the elements

(dw_{1}+idw_{2})\cdot (d\overline{w}_{1}-id\overline{w}_{2})-(dw_{1}-idw_{2})\cdot (d\overline{w}_{1}+id\overline{w}_{2})

-(dw_{3}+idw_{4})\cdot (d\overline{w}_{3}-id\overline{w}_{4})+(dw_{3}-idw_{4})\cdot (d\overline{w}_{3}+id\overline{w}_{4}) ,
(dw_{1}+idw_{2})\cdot (d\overline{w}_{3}-id\overline{w}_{4})-(d\overline{w}_{1}+id\overline{w}_{2})\cdot (dw_{3}-idw_{4}) ,
(dw_{1}-idw_{2})\cdot (d\overline{w}_{3}+id\overline{w}_{4})-(d\overline{w}_{1}-id\overline{w}_{2})\cdot (dw_{3}+idw_{4})

of (S^{2}T^{*})_{C,a}^{+-} .

4. SO(n+2)-modules and symmetric 2-forms.

Let \Gamma and \hat{H} be the sets of equivalence classes of irreducible
SO(n+2)-modules and irreducible H-modules (over C), respectively. If
F is a homogeneous unitary Hermitian vector bundle over X=Q_{n} , with n
\geq 3 , we denote by C_{\gamma}^{\infty}(F) the isotypic component of the SO(n+2)-module
C^{\infty}(F) corresponding to \gamma\in\Gamma . Let V_{\gamma} be an irreducible SO(n+2)-module

which is a representative of \gamma . Then the SO(n+2)-module C_{\gamma}^{\infty}(F) is
isomorphic to k copies of V_{7} ; this integer k , the multiplicity of C_{7}^{\infty}(F) ,

denoted by Mult C_{7}^{\infty}(F) , is equal to dim Hom_{H}(V_{\gamma}, F_{a}) . If F is the trivial
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complex line bundle over X, we identify C^{\infty}(F) with C^{\infty}(X) and C_{\gamma}^{\infty}(F)

with a submodule C_{\gamma}^{\infty}(X) of C^{\infty}(X) . We endow C^{\infty}(F) with the Her-
mitian scalar product obtained from the scalar product of F and the
SO(n+2)-invariant volume form \omega^{n}/n ! of X. For \gamma , \gamma’\in\Gamma , with \gamma\neq\gamma_{r}’.
the submodules C_{\gamma}^{\infty}(F) and C_{\gamma’}^{\infty}(F) of C^{\infty}(F) are orthogonal. If F_{1} , F_{2}

are two homogeneous unitary Hermitian vector bundles over X, and if P :
\mathscr{F}_{1}arrow \mathscr{F}_{2} is a homogeneous differential operator, then we have

P(C_{7}^{\infty}(F_{1}))\subset C_{\gamma}^{\infty}(F_{2}) ,

for all \gamma=\Gamma (see [19, \S 5.3], [5, \S 2]).
The vector bundle \otimes^{k}T_{C}^{*} is homogeneous and unitary and the Lich-

nerowicz Laplacian

\Delta=\Delta_{g} :\otimes^{k}\mathscr{F}_{C}^{*}arrow\otimes^{k}\mathscr{T}_{C}^{*}

defined in [12] is a homogeneous differential operator of order 2; for an
intrinsic definition of \Delta , see [8, \S 4]. We recall that the Laplacian \Delta act-
ing on exterior differential forms is equal to the usual de Rham Laplacian
of (X, g) . The Lichnerowicz Laplacian \Delta_{g0} corresponding to the metric g_{0}

=4ng is related to \Delta_{g} by

(4. 1) \Delta_{g}=4n\Delta_{go} .

We shall need the following two facts proved in [11, \S 5] which hold on
any symmetric space of compact type.

PROPOSITION 4. 1. ( i) If F is a homogeneous sub-bundle of \otimes^{k}T_{C}^{*} ,

then
\nabla \mathscr{F}\subset \mathscr{T}^{*}\otimes \mathscr{F}.

(ii) The Lichnerowicz Laplacian

\Delta_{g0} : C^{\infty}(\otimes^{k}T_{C}^{*})arrow C^{\infty}(\otimes^{k}T_{C}^{*})

is equal to the Casimir operator of the SO(n+2)-module C^{\infty}(\otimes^{k}T_{C}^{*}) .

The vector bundles appearing in the decomposition (3.4), or in the
decomposition (3.8) when n=4 , are all homogeneous sub-bundles of
\otimes^{2}T_{C}^{*} . Therefore, by Proposition 4.1, ( i ) , all these bundles are invar-
iant under \nabla . Hence, when n=4 , we have

p_{+}\nabla_{\xi}h=\nabla_{\xi}p_{+}h ,
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for all h\in(S^{2}\mathscr{F}^{*})^{+-} and \xi\in \mathscr{T} ; from the explicit expression for p_{+} , it fol-
lows that

(4.2) *\nabla_{\xi}h=\nabla_{\xi}*h ,

for all h\in(S^{2}\mathscr{T})^{+-} and \xi\in \mathscr{T}

Lemma 4. 1. Assume that n=4 and that the real structures of X are
oriented. Let x\in X and \nu\in S_{x} . Let \{\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\} be an oriented orthO-
normal basis of T_{\nu,x}^{+} . Then, for h\in C^{\infty}((S^{2}T^{*})^{+-}) we have

(div*h)(J\zeta_{1})=-(d\check{h})(\zeta_{2}, \zeta_{3}, \zeta_{4}) .

PROOF: Since (S^{2}T^{*})^{+-} is stable under \nabla , by (3.2), (4.2) and
(3.6) we have

-(div*h)(J\zeta_{1})=(\nabla*h)(\zeta_{2}, \zeta_{2}, J\zeta_{1})+(\nabla*h)(\zeta_{3}, \zeta_{3}, J\zeta_{1})

+(\nabla*h)(\zeta_{4}, \zeta_{4}, J\zeta_{1})

=(*\nabla_{\zeta_{2}}h)(\zeta_{2}, J\zeta_{1})+(*\nabla_{\zeta_{3}}h)(\zeta_{3}, J\zeta_{1})

+(*\nabla_{\zeta_{4}}h)(\zeta_{4}, J\zeta_{1})

=(\nabla\check{h})(\zeta_{2}, \zeta_{3}, \zeta_{4})+(\nabla\check{h})(\zeta_{3}, \zeta_{4}, \zeta_{2})+(\nabla\check{h})(\zeta_{4}, \zeta_{2}, \zeta_{3})

=(d\check{h})(\zeta_{2}, \zeta_{3}, \zeta_{4}) .

We now suppose that the integer n is even and we write n=2l . Let
\mathfrak{g}_{C} and \mathfrak{h}_{C} denote the complexifications of the Lie algebras \mathfrak{g} and \mathfrak{h} , respec-
tively. The subgroup T of SO(n+2), which consists of the matrices

(\begin{array}{llll}R(\theta_{0}) 0 00 R(\theta_{1}) 0\vdots \vdots \ddots \vdots 0 0 R(\theta_{l})\end{array}) ,

with \theta_{0} , \ldots :
\theta_{l}\in R , is a maximal torus of SO(n+2). The complexification

t_{C} of the Lie algebra t of T is a Cartan subalgebra of \mathfrak{g}_{C}=\mathfrak{s}o(n+2, C) and
of \mathfrak{h}_{C} . For \mu\in C , we set

L(\mu)=(\begin{array}{ll}0 -i\mu i\mu 0\end{array}) .

For 0\leq j\leq l , let \lambda_{j} be the linear form on t_{C} which sends
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(\begin{array}{llll}L(\mu_{0}) 0 00 L(\mu_{1}) 0\vdots \vdots \ddots \vdots 0 0 L(\mu_{l})\end{array}) ,

with \mu_{0} , \ldots . \mu_{l}\in C , into \mu j . We write \alpha_{j}=\lambda_{j}-\lambda_{j+1} , for 0\leq j\leq l-1 , and \alpha_{l}

=\lambda_{l-1}+\lambda_{l} . We choose a Weyl chamber of (\mathfrak{g}_{C}, t_{C}) for which the system
\Delta^{+} of positive roots is equal to

\{\lambda_{j}-\lambda_{k}|0\leq j<k\leq l\}\cup\{\lambda_{j}+\lambda_{k}|0\leq j<k\leq l\} .

Then \{\alpha_{0}, \alpha_{1}, \ldots \alpha_{l}\} is a system of simple roots of \mathfrak{g}_{C} . We choose a Weyl
chamber of (\mathfrak{h}c, t_{C}) such that \{\alpha_{1}, . _{-}\alpha_{l}\} is a system of simple roots of \mathfrak{h}_{C} .
This system of simple roots of \mathfrak{g}c induces a partial ordering on t_{C}^{*} : ele-
roots \lambda , \lambda’\in t_{C}^{*} satisfy \lambda’\succ\lambda if and only if \lambda’-\lambda=\Sigma_{j=0}^{l}m_{j}\alpha_{j} , where m_{0} ,

m_{l} are integers \geq 0 , with m_{0}+\cdots+m_{l}>0 .
The highest weight of an irreducible SO(n+2)-module (resp. H-

module) is a linear form \Lambda=\Sigma_{j=0}^{l}h_{j}\lambda_{j} on t_{C} , where h_{0} , h_{1} , . . h_{l} are into
gers satisfying

h_{0}\geq h_{1}\geq\cdots\geq h_{l-1}\geq|h_{l}| (resp. h_{1}\geq\cdots\geq h_{l-1}\geq|h_{l}| ).

The equivalence class of such an SO(n+2)-module (resp. H-module) is
determined by this weight. We identify \Gamma (resp. \hat{H} ) with the set of all
such linear forms on tc .

We suppose throughout the remainder of this section that n=4 . The
fibers at a of the vector bundles appearing in the decomposition (3.8) of
S^{2}T_{C}^{*} are irreducible H-modules (see [18]). We consider the unit normal
\nu’\in S_{a} of \S 2 and we choose the orientation of the real structures of X=Q_{4}

for which the elements \{\xi_{2}, \xi_{3}, \xi_{4}, \xi_{5}\} of T_{\nu^{r},a}^{+} defined in \S 2 form an ori-
ented orthonormal basis of T_{\nu’,a}^{+} . Using the description of these H-
modules given in \S 3, we see that the highest weights of these irreducible
H-modules are given by the following table:

H-module Highest weight H-module Highest weight

E_{\acute{a}} 2\mathcal{A}_{0} E_{\acute{\acute{a}}} -2\lambda_{0}

(S^{2} T^{1,0})_{a}^{\perp} 2\lambda_{0}+2\mathcal{A}_{1} (S^{2} T^{0,1})_{a}^{\perp} -2\lambda_{0}+2\mathcal{A}_{1}

\{g\}_{C}
, a 0 (S^{2} T^{*})_{0C}^{++}

, a
2\lambda_{1}

F_{C}^{+}
, a

\lambda_{1}+\lambda_{2} F_{C}
, a

\lambda_{1}-\lambda_{2}
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For \gamma\in\Gamma . we denote by e_{\gamma} the eigenvalue of the Casimir operator of the
irreducible SO(6)-module V_{\gamma} . From (4. 1) and Proposition 4.1, ( ii) , we
infer that, if F is a homogeneous complex sub-bundle of \otimes^{k}T_{C}^{*} and \gamma\in\Gamma .
then C_{\gamma}^{\infty}(F) is an eigenspace of \Delta=\Delta_{g} with eigenvalue 16e_{\gamma} . Let \Gamma’ be
the set of elements

\gamma_{r,s}=(2r+s)\lambda_{0}+s\lambda_{1} ,
\gamma_{\acute{r},s}=(2r+s+2)\lambda_{0}+(s+1)\lambda_{1}+\lambda_{2} ,
\gamma_{\acute{\acute{r}},s}=(2r+s+2)\lambda_{0}+(s+1)\lambda_{1}-\lambda_{2} ,
\mu_{\acute{r},s}=(2r+s+2)\lambda_{0}+(s+2)\lambda_{1}+2\lambda_{2} ,
\mu_{\acute{\acute{r}},s}=(2r+s+2)\lambda_{0}+(s+2)\lambda_{1}-2\lambda_{2}

of \Gamma , with r , s\geq 0 . Using Freudenthal’s formula, we obtain

(4.3) e_{\gamma 0,1}=1 .

If \gamma\in\Gamma’ is not equal to 0 or \gamma_{0,1} , then we easily verify that
\gamma\succ\gamma_{0,1} ,

and hence by Lemma 13. 4C of [9], we have

(4.4) e_{\gamma}>e_{\gamma 01}=1 .

From the branching law for 50(6) and H described in Theorem 1. 1 of
[18], using the table of highest weights of irreducible H-modules given
above, we obtain (see also [18, \S 4]):

PROPOSITION 4. 2. If n=4 , for \gamma\in\Gamma . the non-zero multiplicities of
C_{\gamma}^{\infty}(F) , where F is a homogeneous vector bundle over X , equal to one of
the vector bundles appearing in the decomposition (3.8) of S^{2}T_{C}^{*} , are
given by Table 1.

From Proposition 4. 2, (4.4) and the previous discussion, we obtain:

PROPOSITION 4. 3. Let \gamma be an element of \Gamma- Then C_{\gamma}^{\infty}(S^{2}T_{C}^{*})\neq 0 if
and only if \gamma\in\Gamma’ If \gamma\in\Gamma’ is not equal to 0 or \gamma_{0,1} , then C_{\gamma}^{\infty}(S^{2}T_{C}^{*}) is
an eigenspace of \Delta with eigenvalue >16 . Moreover C_{\gamma 0.1}^{\infty}(S^{2}T_{C}^{*}) is the
eigenspace of \Delta with eigenvalue 16.

For r , s\geq 0 , according to [16], the function \tilde{f}_{r,s} on X defined in \S 2 is
the highest weight vector of the irreducible SO(6)-module \mathscr{H}_{r,s}=C_{\gamma r,s}^{\infty}(X) .
It follows that \mathscr{H}_{r,s} is the eigenspace of the Laplacian with eigenvalue
16e_{\gamma r.s} . Moreover, C^{\infty}, (X)=0, when \gamma\in\Gamma is not of the form \gamma_{r,s} , for some
r , s\geq 0 .
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Table 1

5. Totally geodesic surfaces and curvature-like forms.

Let x\in X and let \nu be a fixed element of S_{x} . We write T_{x}^{+}=T_{\nu.x}^{+} ,
T_{x}^{-}=T_{\nu,x}^{-} . We henceforth suppose that the dimension n of X=Q_{n} is \geq 4 .

We now recall certain results of [2] concerning the totally geodesic
surfaces of X passing through x .

1) The closed totally geodesic surfaces of X containing x , which
have constant curvature equal to 4 and which are isometric to CP^{1} . are
the submanifolds Exp_{x}F , where F is the subspace of T_{x} determined by an
orthonormal set \{\xi, \eta\} of elements of T_{x}^{+} and spanned by the family

\{\xi+J\eta, J\xi-\eta\} .
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2) The closed totally geodesic surfaces of X containing x , which are
isometric to a flat torus, are the submanifolds Exp_{x}F_{r} where F is the sub-
space of T_{x} determined by an orthonormal set \{\xi, \eta\} of elements of T_{x}^{+}

and spanned by one of the following families:

(a) \{\xi, J\eta\} ;

(b) \{\xi-sJ\xi , \eta+\frac{1}{s}J\eta\} , where s\in R^{*};

(c) \{\xi+J\eta, \eta+J\xi\} .

3) The closed totally geodesic surfaces of X containing x , which
have constant curvature equal to 1 and which are isometric to the real
projective plane RP^{2}- are the submanifolds Exp_{x}F , where F is the sub-
space of T_{x} determined by an orthonormal set \{\xi, \eta, \zeta, \lambda\} of elements of

T_{x}^{+} and spanned by the family

\{\xi+J\zeta, \eta+J\lambda\} .

Let N be the sub-bundle of G consisting of the elements of G which
vanish when restricted to the closed totally geodesic surfaces isometric to
one of the following:

(i) CP^{1} with its metric of constant curvature 4;
(ii) a flat torus ,\cdot

(iii) RP^{2} with its metric of constant curvature 1.

According to the description of these surfaces given above, an element
\theta of G_{x} belongs to N if and only if:

(5. 1) \theta(\xi+J\eta, J\xi-\eta, \xi+J\eta, J\xi-\eta)=0 ,
(5.2) \theta(\xi, J\eta, \xi, J\eta)=0 ,

(5. 3) \theta(\xi-sJ\xi, \eta+\frac{1}{s}J\eta , \xi-sJ\xi , \eta+\frac{1}{s}J\eta)=0 ,

(5.4) \theta(\xi+J\eta, \eta+J\xi, \xi+J\eta, \eta+J\xi)=0 ,

for all orthonormal sets \{\xi, \eta\} of elements of T_{x}^{+} and all s\in R^{*} , and if

(5.5) \theta(\xi+J\zeta, \eta+J\lambda, \xi+J\zeta, \eta+J\lambda)=0 ,

for all orthonormal sets \{\xi, \eta, \zeta, \lambda\} of elements of T_{x}^{+} Clearly, N is sta-
ble by J and we therefore obtain the decomposition

(5. 6) N=(N\cap G^{+})\oplus(N\cap G^{-}) .

Throughout the remainder of this paper, we consider an element \theta of
N_{x} and an arbitrary orthonormal set \{\xi, \eta, \zeta, \lambda\} of elements of T_{\chi_{r}}^{+}
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For all t\in R , the vectors \xi+t\eta and \eta-t\xi are orthogonal. From
(5.2), it follows that the function

f(t)=\theta(\xi+t\eta, J\eta-tJ\xi, \xi+t\eta, J\eta-tJ\xi)

vanishes identically. The equality f’(0)=0 gives us the relation
(5.7) \theta(\xi, J\xi, \xi, J\eta)=\theta(\eta, J\eta, \xi, J\eta) .
The function u(s) of s\in R^{*} , whose value at s is equal to the left-hand
side of (5.3), vanishes identically. The vanishing of the constant term

and of the coefficient of \frac{1}{s} in the expansion of u(s) gives us the equalities

(5.8) \theta(\xi, \eta, \xi, \eta)+\theta(J\xi, J\eta, J\xi, J\eta)=2(\theta(\xi, \eta, J\xi, J\eta)+\theta(\xi, J\eta, J\xi, \eta)) ,
(5.9) \theta(\xi, \eta, \xi, J\eta)=\theta(\xi, J\eta, J\xi, J\eta) ,

respectively. If A(\xi, \eta) , B(\xi, \eta) are the left-hand sides of (5.1) and
(5.4) respectively, the equalities

A(\xi, \eta)+A(\xi, -\eta)+B(\xi, \eta)+B(\xi, -\eta)=0 ,
A(\xi, \eta)-A(\xi, -\eta)+B(\xi, \eta)-B(\xi, -\eta)=0 ,
A(\xi, \eta)+A(\xi, -\eta)-B(\xi, \eta)-B(\xi, -\eta)=0

imply that

(5. 10) \theta(\xi, \eta, \xi, \eta)+\theta(J\xi, J\eta, J\xi, J\eta)+\theta(\xi, J\xi, \xi, J\xi)+\theta(\eta, J\eta, \eta, J\eta)=0 ,
(5.11) \theta(\xi, \eta, J\eta, \eta)+\theta(\xi, J\xi, J\eta, J\xi)=0 ,
(5. 12) \theta(\xi, \eta, J\xi, J\eta)+\theta(\xi, J\xi, \eta, J\eta)=0 ,

respectively.

LEMMA 5. 1. We have

(5. 13) \theta(\xi, J\zeta, \eta, J\zeta)=\theta(J\xi, \zeta, J\eta, \zeta)=0 .

PROOF: By (5.2), we have the equalities

\theta(\xi+\eta, J\zeta, \xi+\eta, J\zeta)=\theta(\zeta, J\xi+J\eta, \zeta, J\xi+J\eta)=0 ,

from which we deduce (5.13).

LEMMA 5. 2. We have

(5. 14) \theta(\xi, \eta, \xi, \eta)+\theta(J\zeta, J\lambda, J\zeta, J\lambda)=0 ,
(5. 15) \theta(\xi, \eta, J\zeta, \eta)+\theta(\xi, J\lambda, J\zeta, J\lambda)=0 ,
(5. 16) \theta(\xi, J\eta, \zeta, J\lambda)=\theta(\xi, \eta, J\zeta, J\lambda)=0 .

PROOF: The left-hand side A(\xi, \eta) of (5.5) vanishes. We write
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A(\xi, \eta)+A(\xi, -\eta)+A(-\xi, \eta)+A(-\xi, -\eta)=0 ,
A(\xi, \eta)+A(\xi, -\eta)-A(-\xi, \eta)-A(-\xi, -\eta)=0 ,
A(\xi, \eta)-A(\xi, -\eta)-A(-\xi, \eta)+A(-\xi, -\eta)=0 ,\cdot

from these relations, by (5.2), we obtain the equalities (5.14), (5.15)

and

(5. 17) \theta(\xi, \eta, J\zeta, J\lambda)+\theta(\xi, J\lambda, J\zeta, \eta)=0 ,

respectively. By Lemma 5. 1, we see that
\theta(\xi+\eta, J\zeta, \xi+\eta, J\lambda)=0 ,
\theta(\xi, J\zeta, \eta, J\lambda)+\theta(\eta, J\zeta, \xi, J\lambda)=0 .

The first Bianchi identity tells us that
\theta(\xi, \eta, J\zeta, J\lambda)+\theta(\eta, J\zeta, \xi, J\lambda)-\theta(\xi, J\zeta, \eta, J\lambda)=0

and so, by (5. 17), we have
\theta(\xi, J\lambda, J\zeta, \eta)=\theta(\xi, \eta, J\zeta, J\lambda)=0 .

LEMMA 5. 3. If \theta\in G^{-} then we have

(5. 18) \theta(\xi, \eta, \xi, \eta)=\theta(\zeta, \lambda, \zeta, \lambda) ,
(5. 19) \theta(\xi, \eta, \xi, \zeta)=-\theta(\lambda, \eta, \lambda, \zeta) .

PROOF: The relation (5.18) follows from (5.14). Since \eta+\zeta and
\eta-\zeta are orthogonal, (5.18) yields the equality

\theta(\xi, \eta+\zeta, \xi, \eta+\zeta)=\theta(\eta-\zeta, \lambda, \eta-\zeta, \lambda) ;

by (5.18), we now obtain (5.19).

LEMMA 5. 4. If n\geq 5 , we have

(5.20) \theta(\xi, \eta, \xi, \zeta)=\theta(\xi, \eta, \zeta, \lambda)=0 ,
(5.21) \theta(\xi, \eta, \xi, \eta)=\theta(\xi, \zeta, \xi, \zeta) .

If moreover \theta belongs to G^{+} , then we have

(5. 22) \theta(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4})=0 ,

for all \xi_{1} , \xi_{2} , \xi_{3} , \xi_{4}\in T_{x}^{+} .

PROOF By (5.14), if \mu is a unit vector of T_{x}^{+} orthogonal to \xi , \eta , \zeta

and \lambda , we have the equalities

\theta(\xi, \eta+\zeta, \xi, \eta+\zeta)=-2\theta(J\lambda, J\mu, J\lambda, J\mu)=\theta(\xi, \eta-\zeta, \xi, \eta-\zeta) ,
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which imply that
\theta(\xi, \eta, \xi, \zeta)=0 .

Hence we obtain

\theta(\xi+\lambda, \eta, \xi+\lambda, \zeta)=0 ,

and so we have
\theta(\xi, \eta, \lambda, \zeta)+\theta(\lambda, \eta, \xi, \zeta)=0 .

By the first Bianchi identity, we see that
\theta(\xi, \eta, \zeta, \lambda)=0 .

Since the vectors \eta+\zeta and \eta-\zeta are orthogonal, from (5.20) we infer
that

\theta(\xi, \eta+\zeta, \xi, \eta-\zeta)=0 ,

and thus obtain (5.21). From this relation, we deduce the equality
\theta(\xi, \eta, \xi, \eta)=\theta(\zeta, \lambda, \zeta, \lambda) .

If \theta belongs to G^{+} , by (5.14) we see that
\theta(\xi, \eta, \xi, \eta)=-\theta(\zeta, \lambda, \zeta, \lambda)

and hence that
\theta(\xi, \eta, \xi, \eta)=0 .

This last relation and (5.20) give us (5.22).

Lemma 5. 5. ( i) If n\geq 5 or if \theta\in G^{-} we have
(5.23) \theta(\xi, J\xi, \xi, J\xi)=0 ,
(5.24) \theta(\xi, \eta, J\xi, J\eta)=\theta(\xi, J\xi, \eta, J\eta)=\theta(\xi, J\eta, \eta, J\xi)=0 ,
(5.25) \theta(\xi, J\xi, \xi, J\eta)=\theta(\eta, J\eta, \xi, J\eta)=-\theta(\xi, J\xi, \eta, J\xi) .

(ii) Whenever \theta\in G^{+} . we have
(5.26) \theta(\xi, \eta, \xi, J\eta)=-\theta(\eta, \xi, \eta, J\xi) ,
(5.27) \theta(\xi, \eta, \xi, J\xi)=\theta(\eta, \xi, \eta, J\eta) ;

if moreover n\geq 5 , the expressions in the equalities (5.25) all vanish.
(iii) Whenever \theta\in G^{-} we have

(5.28) \theta(\xi, \eta, \xi, J\eta)=\theta(\eta, \xi, \eta, J\xi) ,
(5.29) \theta(\xi, \eta, \xi, J\xi)=-\theta(\eta, \xi, \eta, J\eta) .
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PROOF: Whenever \theta\in G^{-} or whenever \theta\in G^{+} and n\geq 5 , according
to the equality (5.22) of Lemma 5. 4, the relations (5.8) and (5.10) tell
us that

(5.30) \theta(\xi, \eta, J\xi, J\eta)=\theta(\xi, J\eta, \eta, J\xi) ,
\theta(\xi, J\xi, \xi, J\xi)=-\theta(\eta, J\eta, \eta, J\eta) ,

respectively. Thus we have
\theta(\xi, J\xi, \xi, J\xi)=-\theta(\zeta, J\zeta, \zeta, J\zeta)=\theta(\eta, J\eta, \eta, J\eta) ,

and so (5.23) holds. By (5.30), (5.12) and the first Bianchi identity, we
obtain (5.24). On the other hand, the relation (5.23) tells us that

f(t)=\theta(\xi+t\eta, J\xi+tJ\eta, \xi+t\eta, J\xi+tJ\eta)=0 ,

for all t\in R . We write f’(0)=0 and see that

\theta(\xi, J\xi, \xi, J\eta)+\theta(\xi, J\xi, \eta, J\xi)=0 ;

this equality and (5.7) give us (5.25). If \theta\in G^{+}- we have

\theta(\xi, J\xi, \eta, J\xi)=\theta(\xi, J\xi, \xi, J\eta) ,

. and hence all the expressions of (5.25) vanish when n\geq 5 . The equalities
(5.26) and (5.28) are consequences of (5.9) ; on the other hand, (5.11)

implies (5.27) and (5.29).

PROPOSITION 5. 1. If n=4, we have

(5.31) Tr(N\cap G^{+})\subset(S^{2}T^{*})^{+-} Tr(N\cap G^{-})\subset E ,
(5.32) Tr . Tr N=\{0\} .

PROOF : Since \{J\xi, J\eta, J\zeta, J\lambda\} is an orthonormal basis of T_{x}^{-} . by
(5.2) we have

(5.33) (Tr \theta ) (\xi, \xi)=\theta(\xi, J\xi, \xi, J\xi)+\theta(\xi, \eta, \xi, \eta)

+\theta(\xi, \zeta, \xi, \zeta)+\theta(\xi, \lambda, \xi, \lambda) ,

and so
(5.34) (Tr \theta ) (\xi, \xi)+(Tr\theta)(\eta, \eta)=\theta(\xi, J\xi, \xi, J\xi)+\theta(\eta, J\eta, \eta, J\eta)

+2 \theta(\xi, \eta, \xi, \eta)+\theta(\xi, \zeta, \xi, \zeta)

+\theta(\xi, \lambda, \xi, \lambda)+\theta(\eta, \zeta, \eta, \zeta)

+\theta(\eta, \lambda, \eta, \lambda) .

Moreover, by (5.13) we have
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(5.35) (Tr \theta ) (\xi, \eta)=\theta(\xi, J\xi, \eta, J\xi)+\theta(\xi, J\eta, \eta, J\eta)

+\theta(\xi, \zeta, \eta, \zeta)+\theta(\xi, \lambda, \eta, \lambda) .

We now prove the first relation of (5.31). If \theta\in G^{+} . according to (5.10),
the sum of the first three terms of the right-hand side of (5.34) vanishes.
Then by (5.14), we obtain the equality

(Tr \theta ) (\xi, \xi)+(Tr\theta)(\eta, \eta)=0 .

Therefore we have

(Tr \theta ) (\xi, \xi)=- (Tr \theta ) (\eta, \eta)=(Tr\theta)(\zeta, \zeta)=- (Tr \theta ) (\xi, \xi) ,

and so (Tr \theta ) (\xi, \xi)=0 . Since \xi can be an arbitrary unit vector of T_{x}^{+} , by
polarization we see that

(Tr \theta ) (\eta_{1}, \eta_{2})=0 ,

for all \eta_{1} , \eta_{2}\in T_{x}^{+} . According to (3.2), Tr \theta belongs to (S^{2}T^{*})^{+-} We
next verify the second relation of (5.31). If \theta\in G^{-} according to (5.25)

the sum of the first two terms of the right-hand side of (5.35) vanishes.
Thus by (5. 19) we obtain

(5.36) (Tr \theta ) (\xi, \eta)=0 .

According to (5.33), (5.23) and (5. 18), we have

(5.37) (Tr \theta ) (\xi, \xi)=\theta(\xi, \eta, \xi, \eta)+\theta(\xi, \zeta, \xi, \zeta)+\theta(\xi, \lambda, \xi, \lambda)

=\theta(\eta, \xi, \eta, \xi)+\theta(\eta, \lambda, \eta, \lambda)+\theta(\eta, \zeta, \eta, \zeta)

=(Tr\theta)(\eta, \eta) .

By Lemma 2. 1, from (5.36) and the equality

(Tr \theta ) (\xi, \xi)g(\eta, \eta)- (Tr \theta ) (\eta, \eta)g(\xi, \xi)=0 ,

we deduce that

(Tr \theta ) (\xi+sJ\xi, \eta+sJ\eta)=0 ,
(Tr \theta ) (\xi+sJ\xi, \xi+sJ\xi)=(Tr\theta)(\eta+sJ\eta, \eta+sJ\eta) ,

for all s\in R . Since Tr \theta belongs to (S^{2}T^{*})^{-} we obtain the equalities

(5.38) (Tr \theta ) (\xi, J\eta)=0 , (Tr \theta ) (\xi, J\xi)=(Tr\theta)(\eta, J\eta) .

We set

a=(Tr\theta)(\xi, \xi) , b=(Tr\theta)(\xi, J\xi) .

By (5.36), (5.37) and (5.38), it is easily seen that Tr \theta is equal to the
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element ah_{\nu}+bh_{J\nu} of E_{\chi} . Finally, the equality (5.32) is a direct conse-
quence of (5.31) and the orthogonal decomposition (3.3).

Lemma 5. 6. If n\geq 5 and \theta\in G^{+} , we have

(5.39) \theta(\zeta, J\zeta, \xi, J\eta)=\theta(\zeta, \xi, J\eta, J\zeta)=\theta(\zeta, J\eta, \xi, J\zeta)=0 .

PROOF: Since \theta belongs to G^{+} . we see that

(5.40)
\theta(\zeta, J\zeta, \xi, J\eta)=\theta(J\zeta, \zeta, J\xi, \eta)=\theta(\zeta, J\zeta, \eta, J\xi) ,
\theta(\zeta, \xi, J\eta, J\zeta)=\theta(J\zeta, J\xi, \eta, \zeta)=\theta(\zeta, \eta, J\xi, J\zeta) .

By (5.24), we have

\theta(\zeta, J\zeta, \xi+\eta, J\xi+J\eta)=\theta(\zeta, \xi+\eta, J\zeta, J\xi+J\eta)=0 ,

and so, by (5.24) and the equalities (5.40), we see that the two first
expressions of (5.39) vanish. The vanishing of the last expression of
(5.39) now follows from the first Bianchi identity.

LEMMA 5. 7. If n\geq 5 and \theta\in G^{+} . we have

(5.41) \theta(\xi, \eta, \xi, J\xi)=2\theta(\zeta, \xi, \zeta, J\eta)=2\theta(\zeta, \xi, \eta, J\zeta) ,
(5.42) \theta(\xi, \eta, \zeta, J\zeta)=0 ,
(5.43) \theta(\eta, \xi, \eta, J\xi)=\theta(\eta, \zeta, \eta, J\zeta)-\theta(\xi, \zeta, \xi, J\zeta) .

PROOF: Let \mu be a unit vector of T_{x}^{+} orthogonal to \xi , \eta , \zeta and \lambda .
By (5. 15), since \theta belongs to G^{+} . we have

(5.44) \theta(\xi, \eta, J\zeta, \eta)=\theta(J\xi, \lambda, \zeta, \lambda)=\theta(J\zeta, \mu, \xi, \mu)=\theta(J\xi, \eta, \zeta, \eta) .

On the other hand, if we consider the orthonormal set \{\xi, (\eta+\zeta)/\sqrt{2}\} of
vectors of T_{x}^{+} . according to (5.27), we see that

A(\eta)=2\theta(\xi, \eta+\zeta, \xi, J\xi)-\theta(\eta+\zeta, \xi, \eta+\zeta, J\eta+J\zeta)=0 .

We write A(\eta)-A(-\eta)=0 and then, by (5.27), we find that

(5.45) \theta(\xi, \eta, \xi, J\xi)=\theta(\zeta, \xi, \zeta, J\eta)+\theta(\eta, \xi, \zeta, J\zeta)+\theta(\zeta, \xi, \eta, J\zeta) .

According to (5.26), we know that

\theta(\xi+\eta, \zeta, \xi+\eta, J\zeta)=-\theta(\zeta, \xi+\eta, \zeta, J\xi+J\eta) ,

and so, by (5.26) and (5.44), we have
\theta(\zeta, \xi, \eta, J\zeta)+\theta(\zeta, \eta, \xi, J\zeta)=2\theta(\zeta, \xi, \zeta, J\eta) .

The first Bianchi identity tells us that
\theta(\zeta, \xi, \eta, J\zeta)-\theta(\zeta, \eta, \xi, J\zeta)=\theta(\eta, \xi, \zeta, J\zeta) ,
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and hence we have

(5.46) 2 \theta(\zeta, \xi, \eta, J\zeta)=2\theta(\zeta, \xi, \zeta, J\eta)+\theta(\eta, \xi, \zeta, J\zeta) .

By (5.45) and (5.46), we obtain

(5.47) 2 \theta(\xi, \eta, \xi, J\xi)=4\theta(\zeta, \xi, \zeta, J\eta)+3\theta(\eta, \xi, \zeta, J\zeta) .

By (5.27) and (5.44), the expressions \theta(\xi, \eta, \xi, J\xi) and \theta(\zeta, \xi, \zeta, J\eta) are
symmetric in \xi and \eta . As \theta(\eta, \xi, \zeta, J\zeta) is skew-symmetric in \xi and \eta , the
relation (5.47) is equivalent to the first equality of (5.41) and (5.42).

The second equality of (5.41) now follows from (5.46). Since

\{(\xi+\eta)/\sqrt{2}, (\xi-\eta)/\sqrt{2}\}

is an orthonormal set of vectors of T_{x}^{+} . according to (5.41), we have

B(\eta)=\theta(\xi+\eta, \xi-\eta, \xi+\eta, J\xi+J\eta)-4\theta(\zeta, \xi+\eta, \xi-\eta, J\zeta)=0 .

We write B(\eta)+B(-\eta)=0 , and then, by (5.26), we obtain the relation
(5.43).

Lemma 5. 8. If n\geq 5 and \theta\in G^{-} we have

(5.48) \theta(\xi, \eta, \xi, J\eta)=\theta(\xi, \zeta, \xi, J\zeta) .

PROOF : By (5. 21), we have
\theta(\xi, \eta, \xi, \eta)g(\zeta, \zeta)-\theta(\xi, \zeta, \xi, \zeta)g(\eta, \eta)=0 ;

Lemma 2. 1 tells us that the function f, whose value at s\in R is
\theta(\xi+sJ\xi, \eta+sJ\eta, \xi+sJ\xi, \eta+sJ\eta)-\theta(\xi+sJ\xi, \zeta+sJ\zeta, \xi+sJ\xi, \zeta+sJ\zeta) ,

vanishes identically. The equality f’(0)=0 and (5.28) give us (5.48).

Let u be an element of \otimes^{2}T_{x}^{*} and V be a subspace of T_{x} . Then the
following assertions are equivalent:

(i) u(\zeta_{1}, \zeta_{1})=u(\zeta_{2}, \zeta_{2}) , for any orthonormal set \{\zeta_{1}, \zeta_{2}\} of vectors of
V ;

(ii) u(\zeta_{1}, \zeta_{1}) is independent of the unit vector \zeta_{1} of V\tau

In fact, if \{\zeta_{1}, \zeta_{2}\} is an orthonormal set of vectors of V_{-} condition ( i)

tells us that
u(\zeta_{1}+\zeta_{2}, \zeta_{1}+\zeta_{2})=u(\zeta_{1}-\zeta_{2}, \zeta_{1}-\zeta_{2}) ,

and hence that
u(\zeta_{1}, \zeta_{2})+u(\zeta_{2}, \zeta_{1})=0 .
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Thus assertion ( i) implies that

u ( \cos t\cdot\zeta_{1}+\sin t\cdot\zeta_{2} , cos t\cdot \zeta_{1}+\sin t\cdot\zeta_{2}) =u(\zeta_{1}, \zeta_{1}) ,

and so ( ii) holds. We shall use this criterion in the course of the proof
of the following lemma.

LEMMA 5. 9. Suppose that n\geq 5 and that \theta\in G^{-} Then we have

(5.49) \theta(\zeta, \xi, \eta, J\zeta)=-\theta(\zeta, \eta, \xi, J\zeta) ,
(5.50) \theta(\zeta, J\xi, \eta, J\zeta)=-\theta(\zeta, J\eta, \xi, J\zeta) ,
(5.51) \theta(\xi, \eta, \zeta, J\zeta)=-2\theta(\zeta, \xi, \eta, J\zeta) ,
(5.52) \theta(\zeta, \xi, \zeta, J\eta)=-3\theta(\zeta, \xi, \eta, J\zeta)-\theta(\xi, \eta, \xi, J\xi) ,
(5.53) \theta(\zeta, J\zeta, \xi, J\eta)=\theta(\zeta, \int\xi, \eta, J\zeta)+\theta(\xi, J\xi, \xi, J\eta) ,
(5.54) \theta(\zeta, \xi, J\eta, J\zeta)=-2\theta(\zeta, J\xi, \eta, J\zeta)-\theta(\xi, J\xi, \xi, J\eta) ,

and the left-hand sides of all these equalities are independent of the choice
of the unit vector \zeta of T_{x}^{+} orthogonal to \xi and \eta .

PROOF: According to Lemmas 2. 1, 5. 1 and 5. 4, we have

f_{i}(s)=\theta(J\zeta-s\zeta, \xi+sJ\xi, J\zeta-s\zeta, \eta+sJ\eta)=0 ,
f_{2}(s)=\theta(\zeta+sJ\zeta, \xi+sJ\xi, \zeta+sJ\zeta, \eta+sJ\eta)=0 ,

for all s\in R . We write f_{1}’(0)=0 and f_{\acute{2}}(0)=0 , and then obtain

(5.55) \theta(J\zeta, J\xi, J\zeta, \eta)+\theta(J\zeta, \xi, J\zeta, J\eta)-\theta(\zeta, \xi, J\zeta, \eta)

-\theta(J\zeta, \xi, \zeta, \eta)=0 ,
(5.56) \theta(\zeta, \xi, \zeta, J\eta)+\theta(\zeta, J\xi, \zeta, \eta)+\theta(\zeta, \xi, J\zeta, \eta)+\theta(J\zeta, \xi, \zeta, \eta)=0 ,

respectively. Since \theta\in G^{-} equation (5.55) gives us

(5.57) \theta(\zeta, \xi, \zeta, J\eta)+\theta(\zeta, J\xi, \zeta, \eta)-\theta(\zeta, \xi, J\zeta, \eta)-\theta(J\zeta, \xi, \zeta, \eta)=0 .

Taking the difference of equations (5.56) and (5.57), we obtain the rela-
tion (5.49). From the first Bianchi identity and (5.49), we deduce
(5.51). The equation (5.50) follows directly from the fact that \theta belongs
to G^{-} Since \{\xi, (\eta+\zeta)/\sqrt{2}\} is a orthonormal set of elements of T_{x}^{+} . by
(5.29) we have

A(\eta)=2\theta(\xi, \eta+\zeta, \xi, J\xi)+\theta(\eta+\zeta, \xi, \eta+\zeta, J\eta+J\zeta)=0 ;

we consider the equality A(\eta)-A(-\eta)=0 and by (5.29) find that

\theta(\zeta, \xi, \zeta, J\eta)=\theta(\xi, \eta, \zeta, J\zeta)-\theta(\zeta, \xi, \eta, J\zeta)-\theta(\xi, \eta, \xi, J\xi) .

The relation (5.52) is a direct consequence of the preceding equality and
of (5.51). By the first equality of (5.25), we see that
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B(\eta)=2\theta(\xi, J\xi, \xi, J\eta+J\zeta)-\theta(\eta+\zeta, J\eta+J\zeta, \xi, J\eta+J\zeta)=0 .

We write B(\eta)-B(-\eta)=0 ; by Lemma 5. 1, (5.25) and (5.50), we obtain
(5.53). The equation (5.54) now follows from the first Bianchi identity,
from (5.53) and (5.50). Since \theta\in G^{-} the equality (5.15) tells us that

\theta(\zeta, \xi, \zeta, J\eta)=-\theta(\lambda, \eta, \lambda, J\xi) :

by (5.52), (5.49) and (5.29), we have
\theta(\lambda, \eta, \lambda, J\xi)=-\theta(\lambda, \xi, \lambda, J\eta) .

Therefore we obtain

(5.58) \theta(\zeta, \xi, \zeta, J\eta)=\theta(\lambda, \xi, \lambda, J\eta) .

By (5.52) and (5.58), we see that

(5.59) \theta(\zeta, \xi, \eta, J\zeta)=\theta(\lambda, \xi, \eta, J\lambda) .

Thus we have
\theta(\zeta, \xi, \eta, J\zeta)g(\lambda, \lambda)-\theta(\lambda, \xi, \eta, J\lambda)g(\zeta, \zeta)=0 ,

and so Lemma 2. 1 tells us that the function f, whose value at s\in R is
\theta(\zeta+sJ\zeta, \xi+sJ\xi, \eta+sJ\eta, J\zeta-s\zeta)-\theta(\lambda+sJ\lambda, \xi+sJ\xi, \eta+sJ\eta, J\lambda-s\lambda) ,

vanishes identically. According to Lemma 5. 1 and (5.20), the equality
f’(0)=0 gives us

\theta(\zeta, J\xi, \eta, J\zeta)+\theta(\zeta, \xi, J\eta, J\zeta)=\theta(\lambda, J\xi, \eta, J\lambda)+\theta(\lambda, \xi, J\eta, J\lambda)’.

thus, by (5. 54), we find that

(5.60) \theta(\zeta, J\xi, \eta, J\zeta)=\theta(\lambda, J\xi, \eta, J\lambda) .

According to the remark preceding the lemma, the last assertion of the
lemma follows from the equalities (5.58), (5.59) and (5.60).

Lemma 5. 10. If n\geq 5 , we have

(5.61) \theta(\xi, \eta, \zeta, J\lambda)=0 .

PROOF: According to (5.41) or to the last assertion of Lemma 5. 9,
depending on whether \theta belongs to G^{+} or to G^{-} and by (5.6), we obtain

\theta(\zeta+\lambda, \xi, \eta, J\zeta+J\lambda)=\theta(\zeta-\lambda, \xi, \eta, J\zeta-J\lambda) :

hence we have
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(5.62) \theta(\zeta, \xi, \eta, J\lambda)+\theta(\lambda, \xi, \eta, J\zeta)=0 .

By (5.20) and Lemma 2. 1, we see that
f(s)=\theta(\xi+sJ\xi, \eta+sJ\eta, \zeta+sJ\zeta, \lambda+sJ\lambda)=0 ,

for all s\in R . We write f’(0)=0 and obtain the equality

\theta(J\xi, \eta, \zeta, \lambda)+\theta(\xi, J\eta, \zeta, \lambda)+\theta(\xi, \eta, J\zeta, \lambda)+\theta(\xi, \eta, \zeta, J\lambda)=0 .

The first Bianchi identity tells us that
\theta(\xi, \eta, J\zeta, \lambda)=\theta(J\zeta, \eta, \xi, \lambda)-\theta(J\zeta, \xi, \eta, \lambda)

and thus we have

\theta(J\xi, \eta, \zeta, \lambda)-\theta(J\eta, \xi, \zeta, \lambda)+\theta(J\zeta, \eta, \xi, \lambda)

-\theta(J\zeta, \xi, \eta, \lambda)+\theta(\xi, \eta, \zeta, J\lambda)=0 .

By (5.62), we see that

\theta(J\xi, \eta, \zeta, \lambda)=-\theta(J\lambda, \eta, \zeta, \xi)=\theta(J\lambda, \eta, \xi, \zeta)=-\theta(J\zeta, \eta, \xi, \lambda) ;

the desired result now follows from these relations and the preceding
equality.

Let \{\xi_{1}, . ’ \xi_{n}\} be an orthonormal basis of T_{x}^{+} . If n\geq 5 , by (5.2),
Lemmas 5. 1, 5. 2 and 5. 4 to 5. 10, we see that an element \theta’ of N\cap G^{+}

vanishes if and only if

\theta’(\xi_{i}, \xi_{n}, \xi_{i}, J\xi_{n})=0 ,

for i=1 , \ldots ,. n-1 , and
\theta’(\xi_{i}, \xi_{j}, \xi_{i}, J\xi_{i})=0 ,

for all 1\leq i<j\leq n , and that an element \theta’ of N\cap G^{-} vanishes if and only
if, for all 1\leq i<j\leq n , we have

\theta^{rr}(\xi_{i}, J\xi_{i}, \xi_{i}, J\xi_{j})=\theta’(\xi_{i}, \xi_{j}, \xi_{i}, J\xi_{i})=0 ,
\theta’(\xi_{l}, \xi_{j}, \xi_{i}, J\xi_{l})=\theta^{rr}(\xi_{l}, J\xi_{i}, \xi_{j}, J\xi_{l})=0 ,

where 1\leq l\leq n is an arbitrary integer different from i and j , and if
\theta^{rr}(\xi_{1}, \xi_{2}, \xi_{1}, \xi_{2})=\theta’(\xi_{1}, \xi_{2}, \xi_{1}, J\xi_{2})=0 .

From this result, we deduce the

PROPOSITION 5. 2. If n\geq 5 , we have
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rank (N \cap G^{+})\leq\frac{1}{2}(n+2)(n-1) ,

rank (N\cap G^{-})\leq 2n(n-1)+2 .

According to [6, \S 5], the image of E under the morphism of vector
bundles

\hat{\tau}:S^{2}T^{*}arrow G

defined by

\overline{\tau}(h)(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4})=\frac{1}{2}\{h(\xi_{1}, \xi_{3})g(\xi_{2}, \xi_{4})+h(\xi_{2}, \xi_{4})g(\xi_{1}, \xi_{3})

-h(\xi_{1}, \xi_{4})g(\xi_{2}, \xi_{3})-h(\xi_{2}, \xi_{3})g(\xi_{1}, \xi_{4})\} ,

for all h\in S^{2}T^{*} . \xi_{1} , \xi_{2} , \xi_{3} , \xi_{4}\in T- is contained in N\cap G^{-} Since

Tr \hat{\tau}(h)=\frac{1}{2}Tr h\cdot g+(n-1)h,

for h\in S^{2}T^{*} and Tr E=0, we see that
E\subset Tr(N\cap G^{-}) .

Therefore when n=4 , by Proposition 5. 1, we obtain the equality

(5.63) Tr(N\cap G^{-})=E .

On the other hand, when n\geq 5 , Proposition 5. 2 enables us to determine an
explicit complement to the infinitesimal orbit of the curvature in N, which
contains \hat{\tau}(E) (see [6], Proposition 5. 2). Moreover, using this descrip-
tion of N, it is easily seen that

Tr(N\cap G^{+})=0

and that (5.63) also holds when n\geq 5 .
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