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\S 1. Introduction

One of the authors has in a series of papers([20]-[34]) developed the
theory of KMO-Langevin equations describing the time evolution of sta-
tionary Gaussian processes with reflection positivity in the discrete as well
as continuous time case, and in [35] established the theory of KM_{2O} -

Langevin equations for general weakly stationary time series. His origi-
nal aim was tw0-fold:

1) Deeper understanding of the mathematical structure behind
significant Kubo’s fluctuation-dissipation theorem in non-equilibrium statis-
tical physics ([11]) ;

2) Applications of this theory to various fields of science through the
universal and versatile nature of pure mathematics.

The purpose of this paper is to refine the results of [35] and create
the more appropriate theory of KM_{2O}-Langevin equations for applications
to data analysis; in fact, we discuss multi-dimensional weakly stationary
time series whose time paramerter space is a finite interval of Z. Fur-
ther, we analyze a finite number of actual data representating such time
series and propose a Test(S) which is expected to be effective to verify
the weak stationarity for them.

Various phenomena that generate random changes with the passing of
time are observed and studied in natural science, engineering, economics,
medical science and the like. In such phenomena, we obtain a finite num-
ber of actual observations, and as an important subject of scientific
research, we wish to analyze them, to find a certain law behind them, to
study their internal structure, and to forecast and control their future
movements.

The theory of stochastic processes in pure mathematics provides us
mathematical models with a certain law governing random phenomena
and clarifies their universal structure. In the field of applied mathematics,
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on the other hand, almost all researchers in time series analysis use
simplified models such as autoregressive(AR) or autoregress\overline{l}ve and mov-
ing average(ARMA) models in the model fitting for random phenomena
([1]-[6], [12], [17], [39]-[42]) . From the viewpoint of the theory of st0-
chastic processes, AR(resp. ARMA) models can be characterized as time
series with time parameter space Z that have two qualitative characters
–the weak stationarity and the finite multiple Markovian property in the
narrow(resp. wide) sense.

It turns out that we cannot conclude, through the analysis of a finite
set of actual data observed in a random phenomenon with a discrete time
parameter, that the time series representing the phenomenon posseses the
weak stationarity as well as the finite multiple Markovian property;
indeed, we need an infinite set of data for checking such properties. For
this reason, the up-t0-date time series analysis based upon AR or ARMA
models has encountered a good deal of criticism saying “ just measurement
without theory ”. from econometricians who prefer traditional simultane-
ous equation models([38]).

Having in mind a true exchange between pure and applied sciences,
we should refrain from assuming, in the model fitting problem, conditions
beyond one’s ability to verify. We are convinced that it is important for
pure mathematicians to try to discover a certain ess.ential law behind ran-
dom phenomena and establish computer algorithms that are rooted in the
appropriate mathematical theory.

The outline of the present paper \overline{1}S as follows: As the first part, we
build \overline{1}n \S 2 a theory of KM_{2O}-Langevin equations associated with multi-
dimensional weakly stationary time series whose time parameter space is
a finite interval of Z. As an application of this theory to data analysis,
the second part is divided into five steps from \S 3 through \S 7. At first, we
introduce a sample forward KM_{2O}-Langevin equation(resp. data and
force) associated with a d-dimensional data in \S 3. Next in \S 4, by using
the KM_{2O}-Langevin force, we state a criterion that a d-dimensional data
is a realization of a local and weakly stationary time series. And one
more main thema in \S 4 \overline{1}S to introduce a Test(S) whose effectiveness is
proved by actual examples in \S 4-\S 5. We finish this paper in \S 6-\S 7 with a
predictor formula depending upon the theory of KM_{2O}-Langevin equations.

Now let us state the detailed contents of this paper. Let X=(X(n) ;
|n|\leq N) be a d-dimensional weakly stationary process with mean vector
zero and covariance function R :
(1. 1) R(n)=E(X(n){}^{t}X(0)) (|n|\leq N) ,
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where d and N are any fixed natural numbers. We call such a process X
a local and weakly stationary time series. In subsection [2. 1] of \S 2, we
extract two kinds of d-dimensional orthogonal time series \nu_{+}=(\nu_{+}(n) ; 0\leq

n\leq N) and \nu_{-}=(1/-(-n) ; 0\leq n\leq N) from the original data X, by taking
the innovation approach([13]). It is noted that either of condition (2. 5)

and (2. 6) holds for block Toeplitz matrices S_{n} composed of R.
Under the non-degenerate condition (2. 5), we introduce in subsection

[2. 2] a system \{\gamma_{+}(n, k), \gamma_{-}(n, k), \delta_{+}(m), \delta_{-}(m) ; 1\leq k<n\leq N, 1\leq m\leq N\}

of members in M(d;R) and establish the equations

(1. 2) \{\begin{array}{l}X(0)=\nu_{+}(0)X(n)=-\sum_{k=1}^{n-1}\gamma_{+}(n,k)X(k)-\delta_{+}(n)X(0)+\nu_{+}(n)\end{array}

(1. 3) \{

X(0) =\nu_{-}(0)

X(-n)=- \sum_{k=1}^{n-1}\gamma_{-}(n, k)X(-k)-\delta_{-}(n)X(0)+\nu_{-}(-n)

for any n\in\{1, \cdots, N\} . The time evolution of X is thus governed by the
forward(resp. backward) equation (1. 2) (resp. (1. 3)) with dissipative(or
deterministic) and fluctuating(or random) parts. The covariance matrix
V_{+}(n) (resp. V_{-}(n) ) of the random force 1/_{+}(n) (resp. \nu_{-}(-n) ) depends
upon n , because \nu_{+} (resp. \nu_{-} ) is not always a white noise. We prove rela-
tions that determine the system { \gamma_{+}(n, k) , \gamma_{-}(n, k) , V_{+}(m) , V_{-}(m) ; 1\leq

k<n\leq N, 1\leq m\leq N\} in terms of R(0) and \{\delta_{+}(n), \delta_{-}(n) : 1\leq n\leq N\} (TheO-

rem 2. 2). These can be regarded as a kind of the fluctuation-dissipation
theorem \overline{1}nvestigated in [20]-[35]. Furthermore, the latter quantities
\delta_{+}(n) and \delta_{-}(n) can be calculated inductively from the covariance func-
tion R of X(Theorem2_{-}3) . We designate equation (1. 2) (resp. (1. 3))

and the random force \nu_{+} (resp. \nu_{-} ) a forward (resp. backward) KM_{2O} -

Langevin equation and force associated with X , respectively. The sys-
tem \{\gamma_{+}(n, k) , \gamma_{-}(n, k) , \delta_{+}(m) , \delta_{-}(m) , V_{+}(l) , V_{-}(l)-, 1\leq k<n\leq N, 1\leq m\leq

N, 0\leq l\leq N\} is called a KM2O-Langevin data associated with R. We
note that \delta_{+}(m) and \delta_{-}(m)(1\leq m\leq N) correspond to the partial
autocorrelation coefficients used in the fitting of AR models([6], [12],
[40], [41] ) .

Conversely, suppose that we are given a system \{\gamma_{+}(n, k) , \gamma_{-}(n, k) ,
\delta_{+}(m) , \delta_{-}(m) , V_{+}(l) , V_{-}(l) : 1\leq k<n\leq N, 1\leq m\leq N, 0\leq l\leq N } of members
\overline{1}nM(d,\cdot R) satisfying the relations in Theorem 2. 2 and a d-dimensional
orthogonal time series \nu_{+}= (\nu_{+}(n) ; 0\leq n\leq N) such that E(1/+(n))=0 and
E(\nu_{+}(n){}^{t}\nu_{+}(n))=V_{+}(n) . Then the forward KM_{2O}-Langevin equation
(1. 2) has a unique solution, denoted by X_{+}=(X(n);0\leq n\leq N) . In sub-
section [2. 4], this X_{+} is proved to be weakly stationary(Theorem 2. 5).
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The problem of non-linearity for one-dimensional time series is discus-
sed in the final two subsections. We introduce in [2. 6] two kinds of
KM_{2O}- Langev\overline{1}n equations of non-linear type 2 and 3(Theorem2.9 and
Corollary 2. 1). The final subsection [2. 7] treats two examples of strictly
stationary time series \overline{1}nduced by the logistic and tent transformations in
chaotic dynamical systems([8], [15], [18]).

As the first step \overline{1}n data analysis, we define in subsection [3-1] a sam-
ple mean vector \mu^{\chi} and a sample covariance function R^{\chi} for a given
d- dimens\overline{l}onal data \mathscr{F}= (\mathscr{F}(n) ; 0\leq n\leq N) . Considering a standardized
data \mathscr{H}= (\mathscr{H}(n) ; 0\leq n\leq N) of \mathscr{F} . we introduce a sample forward
\bm{K}M_{2}O-Langevin equation(resP- data and force) associated with the origi-
nal data \mathscr{F} In subsection [3. 2], by taking the first difference data \tilde{\mathscr{F}}=

(\mathscr{F}(n)-\mathscr{F}(n-1) ; 0\leq n\leq N) of a given d-dimensional data \mathscr{F}=(\mathscr{F}(n) ;
-1\leq n\leq N) , we apply the result in [3. 1] to the data \mathscr{F} to form a sample
first difference forward KM_{2O}-Langevin (resp. data and force) assoc\overline{l}ated

with \mathscr{F} We note that \overline{1}t\overline{1}S useful in data analysis to take the first
d_{\overline{1}}fffference of the original data ([5]).

In subsection [3. 3] (resp. [3. 4]), we treat a one- dimens\overline{l}onal data \mathscr{U}=

(\mathscr{U}(n),\cdot 0\leq n\leq N) (resp. \mathscr{U}_{-1}=(\mathscr{U}(n) :-1\leq n\leq N) ) and apply the results
\overline{1}n[3.1] and [2. 6] (resp. [3. 1] and [3. 2]) to \mathscr{U} (resp. \mathscr{U}_{-1} ). Then, we
get two kinds of sample(resp. sample first difference) forward KM_{2O} -

Langevin equat\overline{l}ons of non-linear type 2 and 3 associated with \mathscr{U} (resp.
\mathscr{U}_{-1}) .

To compress the abnormal values of the orig_{\overline{1}}na1 data, we may con-
S\overline{l}der Arct tranformation. Actually, three kinds of transformations are
\dot{1}ntroduced in the final three subsections [ 3. 5]-[3.7] . For a d-dimensional
data \mathscr{F}^{=}(\mathscr{F}(n)-, \circ\leq n\leq N) such that all components \mathscr{F}_{j}(n) of \mathscr{F}(n)(1\leq j

\leq d) are positive, we put Log \mathscr{F}^{=} ( ( \log \mathscr{F}1(n), \cdots , log \mathscr{F}_{d}(n) ) ; 0\leq n\leq N )

in [3-5]- This transformation is often used in the analysis of economic
data. For a two- d\overline{l}mensional data \mathscr{F}^{=} (^{t}(\mathscr{F}_{1}(n), \mathscr{F}_{2}(n)) ; 0\leq n\leq N ), we
define in [3. 6] and [3. 7] \mathscr{H}_{w}=(^{t}(\mathscr{H}_{1}(n), \mathscr{H}_{2}(n)+w\xi_{u}(n))-,0\leq n\leq N) and
Arct \mathscr{H}= (^{t}(\arctan(\mathscr{H}_{1}(n)), \arctan(\mathscr{H}_{2} (n))) ; 0\leq n\leq N ), respectively.
Here (^{t}(\mathscr{H}_{1}(n), \mathscr{H}_{2}(n))-,0\leq n\leq N) (resp. (\xi_{u}(n) ; 0\leq n\leq N) ) is the stan-
dard\overline{l}zed data of the or\overline{l}ginal data \mathscr{F} (resp. the random uniform numbers in
(0, 1)) . The value w in \mathscr{H}_{w} is chosen from the unit interval (0, 1) and
called a weight. The po\overline{l}nt is that the weak stationarity for the transfor-
med data \mathscr{H}_{w} implies the same property for the orig_{\overline{1}}na1 data \mathscr{F} . This
procedure is necessary when condition (2. 5) does not hold. The second
transformation Arct \mathscr{H} has the advantage of compress\overline{l}ng abnormal values
in the orig_{\overline{1}}na1 data \mathscr{F} and reproducing the weak stationarity. This \overline{1}S
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useful in causal analysis, which will be studied as a development of the
present approach to data analys\overline{l}s([36]) .

The second step of our data analysis is discussed \overline{1}n \S 4. We first set
up a criterion to decide whether or not any given d-dimensional data \mathscr{F}

can be regarded as a realization of a local and weakly stat\overline{l}onary time
series that has the sample covariance function R^{\chi} as its covariance func-
t\overline{l}on , by making repeated experiments for strictly stationary time series in
the chaotic dynamical system argued in \S 2- As in subsection [3. 1], we
consider in subsection [4. 1] the sample forward KM_{2O}-Langevin data
\{\gamma_{+}(n, k), V_{+}(m) ; 0\leq k<n\leq N, 0\leq m\leq N\} associated with the given data
\mathscr{F}= (\mathscr{F}(n) ; 0\leq n\leq N) . But an experiance rule \overline{1}n data analysis([3]) tells
us that the number

(1. 4) M+1=[3\sqrt{N+1}/d]

is a maximum effective length of the sample covariance funct\overline{l}onR^{\mathscr{H}} of the
standardized data \mathscr{H} of \mathscr{F} . Therefore, we have to use only the subsystem
\{\gamma_{+}(n, k), V_{+}(m);0\leq k<n\leq M, 0\leq m\leq M\} as a reliable source in our data
analysis. Further, we need so many copies of the orig_{\overline{1}}na1 data that we
construct, for each i\in\{0, \cdots , N-M\} , the part \mathscr{H}_{i}=(\mathscr{H}(i+n)-,\circ\leq n\leq M)

with data number M+1 . By the method in [3. 1], we get thus d-
dimensional data \nu_{+i}=(\nu_{+i}(n);0\leq n\leq M) such that for any n\in\{1, \cdots M\} ,

(1. 5) \{

\mathscr{H}(i) =\nu_{+i}(0)

\mathscr{H}(i+n)=-\sum_{k=1}^{n-1}\gamma_{+}(n, k)\mathscr{H}(i+k)-\delta_{+}(n)\mathscr{H}(i)+\nu_{+i}(n) .

Now our problem is to decide which \mathscr{H}_{i} can be regarded as a realiza-
tion of a local and weakly stationary t\dot{l}me series with R^{\mathscr{H}} as \overline{1}tscovar\overline{l}an-

ce function, and it is reduced to the same problem for the standard\overline{l}zed

data \xi_{+i} of \nu_{+i-} Thus our test consists of three criteria given for \xi_{+i}j

(M)_{i} , ( V)_{i} and (O)_{i} for checking mean zero, var\overline{l}ance one and the orth-
ogonality, respectively. Having done repeated experiments for several
types of data obtained from random normal numbers, random uniform
numbers, logistic and tent transformations, we are \overline{1}n a pos\overline{l}tion to pr0-

pose the following Test(S): \overline{1}f the rates of i\in {0 ,\cdot-\cdot, N-M} such that each
of (M)_{i} , ( V)_{i} and (O)_{i} holds are over 80^{o}\nearrow\circ , 70^{o}\nearrow 0 and 80^{o}\nearrow 0 , respectively,
then we conclude that the local and weak stationarity is valid for the data
\mathscr{H} as well as for the original data \mathscr{F} . The same procedure works in each
situat\overline{l}on stated in subsections [ 3. 2]-[3.6] . In particular, Test(S) is
called Test(S)Log, Test(S)_{w} and Test(S)Arct, according as we perform it
for the transformed data Log \mathscr{F} , \mathscr{H}_{w} and Arct\mathscr{H}. We show in Tables 4.
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1-4.12 the results of these Test(S), Test(S)_{w} and Test(S)_{Arct} for the con-
crete data stated above.

As the third step, we take up in \S 5 three concrete data such as
Wolfer’s sunspot numbers, Lynx in MacKenz\overline{l}e River in Canada and NEC’s
stock prices \overline{1}n Japan and apply the procedure in S4 to dec\overline{l}de the validity
of the local and weak stationarity for them. The results are illustrated in
Tables 5.1-5.7. We then find that a tw0-dimensional time series composing
of Wolfer’s sunspot numbers and Lynx in MacKenzie River in Canada
over the per\overline{l}od of 114 years from 1821 to 1934 passes both Test(S) and
Test (S)_{Arct-}

The fourth step in \S 6 treats the data \mathscr{F}=(\mathscr{F}(n);0\leq n\leq N) that pas-
sed our stationary Test(S) as well as (M)_{N-M} , ( V)_{N-M} and (O)_{N-M} in
\S 4, and we construct a simulation \hat{\mathscr{F}}_{N-M}= (\hat{\mathscr{F}}(N-M+n) : 0\leq n\leq M) of
the part \mathscr{F}_{N-M}= (\mathscr{F}(N-M+n) ; 0\leq n\leq M) in each setting in subsections
of \S 3 and \S 4.

The final fifth step in \S 7 is to give some predict\overline{l}on formulae for the
values in finite-step future of the data in each setting of subsections from
\S 3 to \S 6. In particular, we consider the data of Wolfer’s sunspot num-
bers from 1880 to 1979. It does not pass Test(S), but its first d_{\overline{1}}fffference

data does. Thus we can get in subsection [7. 5] KM_{2O}-predictors for n\overline{l}ne

years from 1980 to 1988, based upon the first difference forward KM_{2O} -

Langevin equation, and compare them with the hidden actual observa-
tions, which are already known at present (1989). Further, by using the
data of Wolfer’s sunspot numbers from 1888 to 1988, we get KM_{2O} -

pred\overline{l}ctors of Wolfer’s sunspot numbers for n\overline{l}ne years from 1989 to 1997,
which are not yet known. The results are shown in Tables 7.1-7.4 and
Figures 7.1-7.2.

In a forthcoming paper([36]), we will study the s0-called causal rela-
tion between two given sets of data; our method is based upon the
proposed Test(S). We believe that this will convince you the
effectiveness of our approach to causal analysis.

The authors would like to thank the referees for their valuable and
constructive advices.

\S 2. KM_{2O} -Langevin equations

In order to perform a data analysis based upon the concept of local
and weak stationarity, we begin with describing a refinement of the theory
of KM_{2O}-Langevin equations developed in [35]. Let d and N be any
fixed natural numbers.

[2. 1] Let X=(X(n);|n|\leq N) be any d- dimens\overline{l}onal local and weak-
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ly stationary time series on a probabil\overline{l}ty space (\Omega, \mathscr{B}, P) with covariance
function R :
(2. 1) R(n)=E(X(n){}^{t}X(0)) (|n|\leq N) .

It is noted that

(2. 2) {}^{t}R(n)=R(-n) (|n|\leq N) .

For any n\in N , 1\leq n\leq N . we define a block Toeplitz matrix S_{n}\in M

(nd ; R) by

(2. 3) S_{n}=\{\begin{array}{ll}R(0)R(1)R(2) R(n-1){}^{t}R(1)R(0)R(1) .......\vdots\vdots...-.. \vdots\vdots -\vdots{}^{t} R(n-2) R(0)R(1){}^{t}R(n-1) {}^{t}R(1)R(0)\end{array}\}

In this section, we assume
(2. 4) R(0)\in GL(d,\cdot R) .

Then we can see that either of the following (2. 5) and (2. 6) holdS-.

(2. 5) S_{n}\in GL(nd: R) for any n\in\{1, \cdots-N\} .
(2. 6) There exists n\in\{1, \cdots , N-1\} such that \det(S_{n})=0 . In this case,

S_{n}\in GL(nd;R) for any n\in\{1, \cdots N_{0}\} ,
S_{n}\not\in GL(nd ; R) for any n\in\{N_{0}+1, \cdots, N\} ,

where N_{0}= \max { n\in\{1 , \cdots N-1\} ; det (S_{n})\neq 0}.
Let M, M_{0}^{+}(n) and M_{0}^{-}(n)(0\leq n\leq N) be the closed linear subspaces of

L^{2}(\Omega, \mathscr{B}, P) defined by

(2. 7) M=the closed linear hull of \{X_{j}(m) ; 1\leq j\leq d, |m|\leq N\}

(2. 8) M_{0}^{+}(n)=the closed linear hull of \{X_{j}(m);1\leq j\leq d, 0\leq m\leq n\}

(2. 9) M_{0}^{-}(n)=the closed linear hull of \{X_{j}(-m);1\leq j\leq d, 0\leq m\leq n\} ,

where X(m)={}^{t}(X_{1}(m), \cdots X_{d}(m))(|m|\leq N) . Then we introduce two
d-dimensional t\overline{l}me series \nu_{+}= (\nu_{+}(n) ; 0\leq n\leq N) and \nu_{-}=(\nu_{-}(-n)jO\leq n

\leq N) by

(2. 10) \nu_{+}(n)=X(n)-P_{M_{0}^{+}(n-1)}X(n)

(2. 11) \nu_{-}(-n)=X(-n)-P_{J\Gamma_{0}(n-1)}X(-n) ,

where M_{0}^{+} (-1)=M_{0}^{-} N-l}={0} and P_{M_{0}^{\vdash}(n-1)} (resp. P_{J\Gamma_{0}(n-1)} ) stands for the
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orthogonal projection on the space M_{0}^{\vdash}(n-1)(resp. M_{0}^{-}(n-1)) . It is
\overline{1}mmediate to see the follow\overline{l}ng-\cdot

(2. 12) \nu_{+}(0)=\nu_{-}(O)=X(0)

(2. 13) \nu_{+} and \nu_{-} are both orthogonal time series with mean vector zero
(2. 14) M_{0}^{+}(n)=the closed 1\overline{1}near hull of \{\nu_{+j}(m); 1\leq j\leq d, 0\leq m\leq n\}

(2. 15) M_{0}^{-}(n)=the closed linear hull of \{\nu_{-j}(-m); 1\leq j\leq d, 0\leq m\leq n\} ,

where \nu_{+}(m)={}^{t}(\nu_{+1}(m), \cdots \nu_{+d}(m)) and \nu_{-}(-m)={}^{t}(\nu_{-1}(-m), \cdots

\nu_{-d}(-m)) . We denote by V_{+}(n) (resp. V_{-}(n) ) the covariance matrix of
\nu_{+}(n) (resp. \nu_{-}(-n) ) (0\leq n\leq N) :
(2. 16) V_{+}(n)=E(\nu_{+}(n){}^{t}\nu_{+}(n))

(2. 17) V_{-}(n)=E(\nu_{-}(-n){}^{t}\nu_{-}(-n)) .
[2. 2] This subsection treats the case where condition (2. 5) holds.

Sim\overline{l}larly to (2. 16) and (2-17) in [35], we have

THEOREM 2. 1_{-} There exists a unique system \{\gamma_{+}(n, k) , \gamma_{-}(n, k) ,
\delta_{+}(m) , \delta_{-}(m) ; 1\leq k<n\leq N, 1\leq m\leq N } of members in M(d;R) such
that for any n\in\{1 , \cdots

-
N\} ,

(2. 18) X(n)=- \sum_{k=1}^{n-1}\gamma_{+}(n, k)X(k)-\delta_{+}(n)X(0)+\nu_{+}(n)

(2. 19) X(-n)=- \sum_{k=1}^{n-1}\gamma_{-}(n, k)X(-k)-\delta_{-}(n)X(0)+\nu_{-}(-n) .

We call equation (2. 18) (resp. (2. 19)) a forward (resp. backward)
KM_{2O} -Langevin equation for X_{-} Further, the random force \nu_{+} (resp. \nu_{-} )

is said to be a forward (resp. backward) \bm{K}M_{2}O -Langevin force associated
ed with X. Moreover, we designate the system \{\gamma_{+}(n, k) , \gamma_{-}(n, k) ,
\delta_{+}(m) , \delta_{-}(m) , V_{+}(l) , V_{-}(l) ; 1\leq k<n\leq N, 1\leq m\leq N, 0\leq l\leq N } a
KM_{2O}-Langevin data assoc\overline{l}atedw\overline{l}th the covariance function R of X_{-}

Since the proofs in Theorems 3.1 and 4.1 of [35] can be appl\dot{l}ed to our
local time ser\overline{l}esX , we obtain the fundamental recursive relations among
the KM_{2O}-Langevin data assoc\overline{l}ated with R.

THEOREM 2. 2_{-} For any n, k\in N, 1\leq k<n\leq N,

(2. 20) \gamma_{+}(n, k)=\gamma_{+}(n-1, k-1)+\delta_{+}(n)\gamma_{-} (n-1, n-k-l)
(2. 21) \gamma_{-}(n, k)=\gamma_{-}(n-1, k-1)+\delta_{-}(n)\gamma_{+} (n-1, n-k-l)
(2. 22) V_{+}(n)=(I-\delta_{+}(n)\delta_{-}(n))V_{+}(n-1)

(2. 23) V_{-}(n)=(I-\delta_{-}(n)\delta_{+}(n))V_{-}(n-1)

(2. 24) \delta_{-}(n)V_{+}(n-1)=V_{-}(n-1){}^{t}\delta_{+}(n)

(2. 25) \delta_{-}(n)V_{+}(n)=V_{-}(n){}^{t}\delta_{+}(n) ,
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where

(2. 26) \gamma_{+}(n, 0)=\delta_{+}(n) and \gamma_{-}(n, 0)=\delta_{-}(n) .

The relations (2. 20)-(2. 23) imply that \gamma_{+}(\cdot,*) , \gamma_{-}(\cdot,*) , V_{+}(\cdot) and
V_{-}(\cdot) can be determined by \delta_{+}(\cdot) , \delta_{-}(\cdot) and R(0) . In particular, we
note that the relations (2. 22) and (2. 23) correspond to the generalized
second fluctuation-dissipation theorem based upon the first KMO-
Langevin equation ([21], [27], [32], [33]).

By Lemma 4.1 (i) in [35],

(2. 27) det S_{n}= \prod_{k=0}^{n-1} det V_{+}(k) (1 \leq n\leq N) ,

hence it follows from condition (2. 5) that

(2.28) V_{+}(n)\in GL(d : R) (0\leq n\leq N-1) .

Similarly to Lemma 4_{-}2 in [35], we can get an algor\overline{l}thm for calculat-
\overline{1}ng the fundamental quantities \delta_{+}(\cdot) and \delta_{-}(\cdot) from the covariance func-
tion R.

THEOREM 2. 3. For any n\in N, 1\leq n\leq N,

(2. 29) \delta_{+}(n)=-(R(n)+\sum_{k=0}^{n-2}\gamma_{+}(n-1, k)R(k+1))V_{-}(n-1)^{-1}

(2. 30) \delta_{-}(n)=-(^{t}R(n)+\sum_{k=0}^{n-2}\gamma_{-}(n-1, k){}^{t}R(k+1))V_{+}(n-1)^{-1} .

REMARK 2. 1.

(2. 31) \delta_{+}(1)=-R(1)R(0)^{-1}

(2. 32) \delta_{-}(1)=-{}^{t}R(1)R(0)^{-1} .

REMARK 2. 2. It follows from (2. 24), (2. 22) and (2. 30) that

(2. 33) n-1 \sum\gamma_{+}(n, k)R(k+1)=\sum R(k+1){}^{t}\gamma_{-}(n, k)n-1 (1 \leq n\leq N) .
k=0 k=0

In fact, this relation (2. 33) can be proved similarly to Lemma 4.3 in [35],
which played an \overline{1}mportant role in the proof of (2. 24).

REMARK 2. 3. When d=1 , we can see that

(2. 34) \{

\delta_{+}(\cdot)=\delta_{-}(\cdot)

\gamma_{+}(\cdot,*)=\gamma_{-}(\cdot,*)

V_{+}(\cdot)=V_{-}(\cdot) .

[2. 3] This subsection treats any one-dimensional weakly stationary
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t\overline{l}me series X= (X(n) ; |n|\leq N) for which cond\overline{l}t\overline{l}on(2.6) holds. Then
we show

THEOREM 2. 4. There exists a unique system { \gamma(n, k) , \delta(m) ; 1\leq k<

n\leq N_{0},1\leq m\leq N_{0}\} of real numbers such that
(i) for any n\in\{1, \cdots-N_{0}-1\} ,

(2. 35) X(n)=- \sum_{k=1}^{n-1}\gamma(n, k)X(k)-\delta(n)X(0)+\nu_{+}(n)

(2. 36) X(-n)=- \sum_{k=1}^{n-1}\gamma(n, k)X(-k)-\delta(n)X(0)+\nu_{-}(-n)

(ii) for any n\in\{N_{0}, \cdot-\cdot. N\} ,

(2. 37) X(n)=- \sum_{k=1}^{n-1}\gamma(N_{0}, N_{0}-n+k)X(k)-\delta(N_{0})X(n-N_{0})

(2. 38) X(-n)=- \sum_{k=1}^{n-1}\gamma(N_{0}, N_{0}-n+k)X(-k)-\delta(N_{0})X(-n+N_{0})

(iii) for any n, k\in N, 1\leq k<n\leq N_{0} ,

(2. 39) \gamma(n, k)=\gamma(n-1, k-1)+\delta(n)\gamma (n-1, n-k-l)
(2. 40) V(n)=(1-\delta(n)^{2})V(n-1)

(2. 41) \delta(n)=-(R(n)+\sum_{k=0}^{n-2}\gamma(n-1, k)R(k+1))V(n-1)^{-1}

(2. 42) |\delta(n-1)|<1

(2. 43) |\delta(N_{0})|=1 ,

where V(n)=V_{+}(n)=V_{-}(n) and \gamma(n, O)=\delta(n) .

PROOF. Since we can apply the results in subsections [2. 1] and
[2. 2] up to time N_{0} , it is sufficient to prove

(2. 44) V(N_{0})=0 .
Suppose that V(N_{0})\neq 0 . We then claim that

(2. 45) \{X(n);0\leq n\leq N_{0}\}\overline{1}S linearly independent in M.

Let c_{n}\in R(0\leq n\leq N_{0}) such that \sum_{n=0}^{N_{0}}c_{n}X(n)=0 . Since

X(N_{0})=- \sum_{k=0}^{N_{0}-1}\gamma(N_{0}, k)X(k)+\nu_{+}(N_{0}) ,

we have

[mathring]_{\sum_{k=0}^{N-1}}(c_{k}-c_{N_{0}}\gamma(N_{0}, k))X(k)+c_{No}\nu_{+}(N_{0})=0 .
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Mu1t_{\overline{1}}p1ying both hand sides by \nu_{+}(N_{0}) and then taking the expectation
with respect to P , we see from (2. 13) and (2. 14) that c_{No}V_{+}(N_{0})=0 and
so c_{No}=0 . Similarly, c_{n}=0(0\leq n\leq N_{0}-1) . Thus, (2. 45) was proved.

S_{\overline{1}}nce

(2. 46) S_{No+1}=E((X(N_{0}), \cdots X(0)){}^{t}(X(N_{0}), \cdots. X(0)))’
’

\overline{1}t follows from (2. 45) that S_{No+1}\in GL(d(N_{0}+1) ; R) , which contradicts
condition (2. 6). Therefore, we have proved (2. 44). (Q. E. D.)

REMARK 2. 4. In the one-dimensional case, we find from Theorem 2_{-}4

that once \delta takes the value 1 or -1 at some time N_{0} , the time evolution
of X becomes deterministic after the time N_{0} .

[2. 4] Conversely to subsection [2. 1], assume that we are g_{\overline{1}}ven any
system \{ V, \delta_{+}(n);1\leq n\leq N\} of members \overline{1}nM(d;R) such that V is sym-
metric and positive definite. Then we can construct a triple ( V_{+}(1), \delta_{-}(1) ,
V_{-}(1)) by

(2. 47) \{

V_{+}(1)=V-\delta_{+}(1)V{}^{t}\delta_{+}(1)

\delta_{-}(1)=V{}^{t}\delta_{+}(1)V^{-1}V_{-}(1)=V-\delta_{-}(1)V{}^{t}\delta_{-}(1)

.

In order to continue the follow\overline{l}ng construction of ( V_{+}(n), \delta_{-}(n) , V_{-}(n))

from ( V_{+}(n-1), \delta_{-}(n-1) , V_{-}(n-1))(2\leq n\leq N) :

(2. 48) \{

V_{+}(n)=V_{+}(n-1)-\delta_{+}(n)V_{-}(n-1){}^{t}\delta_{+}(n)

\delta_{-}(n)V_{+}(n-1)=V_{-}(n-1){}^{t}\delta_{+}(n)V_{-}(n)=V_{-}(n-1)-\delta_{-}(n)V_{+}(n-1){}^{t}\delta_{-}(n)

,

we suppose that

(2. 49) V_{+}(n-1)\in GL(d-, R) (1 \leq n\leq N) ,

where V_{+}(0)=V. Furthermore, we assume that

(2. 50) V_{+}(n) are non-negative defifin\overline{l}te (1\leq n\leq N) .

REMARK 2. 5. When d=1 , we can start with a system \{ V, \delta(n);1\leq

n\leq N\} such that

(2. 51) V>0
(2. 52) \delta(n)\in[-1,1] (1\leq n\leq N) .

Then we define V(n) by

(2. 53) V(n)= \{\prod_{k=1}^{n}(1-\delta(k)^{2})\}V (1 \leq n\leq N) ,
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which satisfies conditions (2-49) and (2. 50) if |\delta(n)|<1(1\leq n\leq N-1) .
Next we construct a system \{\gamma_{+}(m, n), \gamma_{-}(m, n) ; 0\leq n<m\leq N\} of

members in M(djR) according to the algorithm (2. 20) and (2. 21) with
(2. 26).

Finally, for any d- dimens\overline{l}onal time series \nu_{+}=(\nu_{+}(n);0\leq n\leq N) on a
probability space (\Omega, \mathscr{B}, P) such that for any m, n\in N^{*} , 0\leq m, n\leq N,

(2. 54) E(\nu_{+}(n))=0

(2-55) E(\nu_{+}(m){}^{t}\nu_{+}(n))=\delta_{mn}V_{+}(n) ,

we construct a d-dimensional time series X_{+}= (X(n) ; 0\leq n\leq N) by the
following recursive relation:
(2. 56) X(0)=\nu_{+}(0)

(2. 57) X(n)=- \sum_{k=1}^{n-1}\gamma_{+}(n, k)X(k)-\delta_{+}(n)X(0)+\nu_{+}(n) (1\leq n\leq N) .

Then, similarly to Theorem 6.1 in [35], we have

THEOREM 2_{-}5 . X_{+} is a weakly stationary time series with a given
KM_{2}O-Langevin data.

[2. 5] In this subsect\overline{l}on we obtain a prediction formula based upon
the forward KM_{2O}-Langevin equation (2. 57).

THEOREM 2. 6. For any m, n\in N^{*} , 0\leq n<m\leq N,

(2. 58) P_{M_{0}(n)} \vdash X(m)=\sum_{k=0}^{n}Q_{+}(m, n;k)X(k) ,

where the coefficienl matrices Q_{+}(m, n;k) are given by the following recur-
sive relation (0\leq n<n+1<m\leq N) :

(2. 59) \{

Q_{+}(n+1, n;k)=-\gamma_{+}(n+1, k)

Q_{+}(m, n;k)= \sum_{l=n+1}^{m-1}\gamma_{+}(m, l)Q_{+}(l, n;k)-\gamma_{+}(m, k) .
PROOF. It is noted from (2. 56) and (2. 57) that (2. 14) holds.

Hence, we see from (2-55) that (2-58) holds for m=n+1 . Next, by
mathematical induction, we assume that (2. 58) holds for any m\in\{n+1 ,
\ldots

m_{0} }. Then by (2. 57)

P_{M_{0}(n)} \vdash X(m+1)=-\sum_{k=0}^{n}\gamma_{+}(m_{0}+1, k)X(k)

- [mathring]_{\sum_{l=n+1}^{m}}\gamma_{+}(m_{0}+1, l)P_{M_{0}^{\vdash}(n)}X(l)

= \sum_{k=0}^{n}(\sum_{l=n+1}^{mo}\gamma_{+}(m_{0}+1, l)Q_{+}(l, n;k)

-\gamma_{+}(m_{0}+1, k)))X(k) ,
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which implies that (2. 58) holds also for m=m_{0}+1 . Thus, we complete

the proof of Theorem 2.6. (Q. E. D.)

Then, for any m, n\in N^{*} , 0\leq n<m\leq N, we define a prediction error
matrix e_{+}(m, n) by

(2. 60) e_{+}(m, n)=E((X(m)-P_{M_{0}^{\vdash}(n)}X(m)){}^{t}(X(m)-P_{M_{0}^{\vdash}(n)}X(m))) .

S\overline{l}milarly to Theorem 5.1 (iii) in [35], we have

THEOREM 2. 7. For any m, n\in N^{*} , 0\leq n<m\leq N,

(2. 61) e_{+}(m, n)= \sum_{k=n+1}^{m}P_{+}(m, k){}^{t}P_{+}(m, k) ,

where matrices P_{+}(m, k)(1\leq k<m\leq N) are given by the following recur-
sive relation :

(2. 62) \{

P_{+}(k, k)=V_{+}(k)^{1/2}

P_{+}(m, k)=- \sum_{l=k}^{m-1}\gamma_{+}(m, l)P_{+}(l, k) .

As a consequence of (2. 48) and (2. 61), it is easy to get

THEOREM 2. 8. For any n\in\{0, \cdots N-1\} ,

e_{+}(n+1, n)=(I-\delta_{+}(n+1)\delta_{-}(n+1))\cdots(I-\delta_{+}(1)\delta_{-}(1))R(0) .

[2. 6] This subsection aims to \overline{1}ntroduce a class of non-linear Lan-
gevin equations. For any one-dimensional stochastic process Y=(Y(n) :
0\leq n\leq N) on a probability space (\Omega, \mathscr{B}, P) such that

(2. 63) Y(n)\in L^{6}(\Omega, \mathscr{B}, P) (0\leq n\leq N) ,

we define a one- dimens\overline{l}onal time series X^{(1)}=(X^{(1)}(n)jO\leq n\leq N) and
one-dimensional time series X^{(p)}= (X^{(p)}(n); 0\leq n\leq N)(2\leq p\leq 3) by

(2. 64) X^{(1)}(n)=Y(n)-E(Y(n))

(2._{65})_{p} X^{(p)}(n)=(\begin{array}{l}Y(n)-E(Y(n))Y(n)^{p}-E(Y(n)^{p})\end{array}\}

THEOREM 2_{-}9 . If X^{(p)}(1\leq p\leq 3) are all weakly stationary time series
with condition (2. 5), then there exist uniquely three kinds of systems
\{\oint_{+}^{1\rangle}(n, k)-, 0\leq k<n\leq N\} and \{\gamma_{+i}^{(p)}(n, k) ; 1\leq i\leq 2,0\leq k<n\leq N\}(2\leq p\leq 3)

consisting of real numbers and three kinds of one- dimens\overline{\iota}onal time series
d_{+}^{p)}=(d_{+}^{p)}(n)\cdot, 0\leq n\leq N)(1\leq p\leq 3) such that

(i) for any n\in\{1, \cdots N\} ,
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(2. 66) \{

Y(0)-E( Y(0))=\iota_{+}^{(1)}(0)

Y(n)-E(Y(n))=-\sum_{k=0}^{n-1}\sqrt{}^{1)}+(n, k)(Y(k)-E(Y(k)))+d_{+}^{1)}(n)

(2. 67) d_{+}^{1\rangle} is an orthogonal time series with mean zero
(2. 68) E ( Y(m)d_{+}^{1)}(n))=0 (0\leq m\leq n-1)

(2. 69) the closed linear hull of \{ Y(m)-E ( Y(m)) ; 0\leq m\leq n\}

=the closed linear hull of \{d_{+}^{1\rangle}(m) ; 0\leq m\leq n\}

(\overline{1}i) for each p\in\{2,3\} and any n\in\{1, \cdots. N\} ,

(2. 70)_{p} \{

Y(0)-E ( Y(0))=d_{+}^{p)}(0)

Y(n)-E ( _{Y(n))=-\sum_{k=0}^{n-1}\gamma_{+}^{(p}1(n} ( _{Y(k)-E _{( _{Y(k)))}}}

- \sum_{k=0}^{n-1}\gamma_{+}^{(p}4(n, k) ( _{Y(k)^{p}-E _{( _{Y(k)^{p}))+d_{+}^{p)}(n)}}}

(2.71) d_{+}^{p)} is an orthogonal time series with mean zero
(2. 72) E(Y(m)d_{+}^{p)}(n))=E(Y(m)^{p}d_{+}^{p)}(n))=0 (0\leq m\leq n-1)

(2-73) \sigma(Y(m)-,0\leq m\leq n)=\sigma(d_{+}^{p)}(m) ; 0\leq m\leq n) .
PROOF. We first note from (2. 6) in [35] that the condition (2. 5)

for X^{(p)} is equivalent to
(2. 74) \{Y(m)-E(Y(m)), Y(m)^{p}-E(Y(m)^{p}) : 0\leq m\leq N-1\} is

linearly independent \overline{1}nL^{2}(\Omega, \mathscr{B}, P) .

Hence, the proof of ( i) \overline{1}S immediate.
For the proof of ( ii) , let us fix any p\in\{2,3\} . Concerning the exis-

tence, Theorem 2.1 assures us that there exist a system { \oint_{+}^{p)}(n, k) ; 0\leq k<n
\leq N\} of members in M(2;R) and a tw0-dimensional orthogonal time
series (^{t}(\nu_{+}^{(p}1(n), \nu_{+}^{(p}\}(n));0\leq n\leq N) such that for any n\in\{1, \cdot-\cdot-N\} ,

(2. 75) \{

X^{(p)}(0)={}^{t}(\nu_{+}^{(p}i(0), \nu_{+}^{(p}4(0))

X^{(p)}(n)=- \sum_{k=0}^{n-1}\oint_{+}^{p)}(n, k)X^{(p)}(k)+{}^{t}(\nu_{+}^{(p}1(n), \nu_{+}^{(p}\}(n)) .

We set

\gamma_{+}^{(p}i(n, k)=\gamma_{+}^{(p}1_{1}(n, k) , \gamma_{+}^{(p}4(n, k)=\gamma_{+}^{(p}1_{2}(n, k) and \iota l_{+}^{p)}(n)=\nu_{+}^{(p}\{(n) .
Taking the first component of both hand sides in (2. 75), we see that the
system \{\gamma_{+i}^{(p)}(n, k);1\leq\iota^{-}\leq 2,0\leq k<n\leq N\} and the t\overline{l}me series d_{+}^{p)}=(d_{+}^{p)}(n) ;
0\leq n\leq N) satisfy (2. 70)_{p} and (2-71)

S\overline{l}nce(2.72) can be shown from (2. 13), (2. 14) and (2. 65)_{p} , we turn
to the proof of (2. 73). It is clear to see from (2. 70)_{p} that the right hand
side of (2. 73) is contained in the left hand side of (2. 73). Since Y(0)=
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E(Y(0))+\nu_{+}^{(p)}(0) , it holds that Y(0) and Y(0)^{p} are \sigma(\nu_{+}^{(1)}(0)) -

measurable. Hence, we see from (2. 70)_{p} that Y(1) is \sigma(d_{+}^{1)}(0), d_{+}^{1)}

(1)) -measurable and Y(1)^{2} is so. In this way, a repeated use of (2-70)_{p}

impl\overline{l}es that F(n)\overline{1}S \sigma(d_{+}^{1)}(m);0\leq m\leq n) -measurable for any n\in\{0 , \cdots

N\} . Thus we have (2. 73).

Concerning the uniqueness, let \{\tilde{\gamma}_{+i}^{(p)}(n, k) ; 1\leq i\leq 2,0\leq k<n\leq N\} and
\tilde{\nu}_{+}^{(p)}= (\tilde{\nu}_{+}^{(p\rangle}(n) ; 0\leq n\leq N) be another objects satisfy_{\overline{1}}ng(2.70)_{p}-(2.73) .

By taking the second component of (2. 75),

Y(n)^{p}-E(Y(n)^{p})=-\sum_{k=0}^{n-1}\gamma_{+}^{(p}\}_{1}(n, k)(Y(k)-E(Y(k)))

- \sum_{k=0}^{n-1}\gamma_{+}^{(p}4_{2}(n, k) ( ^{Y(k)^{p}-E ^{( ^{Y(k)^{p}))+\nu_{+}^{(p}\}(n)}}} .

We set

\tilde{\gamma}_{+}^{(p)}(n, k)= \{\begin{array}{llll}\tilde{\gamma}_{+}^{(p}1(n, k) \tilde{\gamma}_{+}^{(p}4(n, k)\gamma_{+}^{(p}\}_{1}(n_{\prime} k) \gamma_{+}^{(p}\}_{2}(n,k) \end{array}) and \mu_{+}^{tp)}(n)={}^{t}(\tilde{d}_{+}^{p\rangle}(n), \nu_{+}^{(p}\}(n))-

Then it can be seen that for any n\in\{1, \cdots. N\} ,

(2. 76) \{

X^{(p)}(0)=\mu_{+}^{(p)}(0)

X^{(p)}(n)=- \sum_{k=0}^{n-1}\tilde{f}_{+}^{p)}(n, k)X^{(p\rangle}(k)+\mu_{+}^{(p)}(n) .

Since for any m, n\in\{0, \cdots. N\} , 0\leq m<n\leq N, E(X^{(p)}(m){}^{t}\mu_{+}^{(p)}(n))=0 , it
follows from (2. 76) that for any n\in\{1, \cdots. N\} ,

(2. 77) \mu_{+}^{(p\rangle}(n)=X^{(p)}(n)-P_{M_{0}^{(p)}(n-1)}X^{(p)}(n) ,

where

(2. 78) M_{0}^{+(p)}(n-1)=the closed linear hull of
\{Y(m)-E ( Y(m)), Y(m)^{p}-E ( Y(m)^{p})j0\leq m\leq n-1\} .

Hence, by (2. 10) and (2. 77), we find that

(2. 79) \mu_{+}^{(p)}(n)=d_{+}^{p)}(n) (0\leq n\leq N) .

Furthermore, it follows from (2. 75), (2. 76) and (2. 79) that

\sum_{k=0}^{n-1}\oint_{+}^{p)}(n, k)X^{(p)}(k)=\sum_{k=0}^{n-1}\tilde{\oint}_{+}^{p)}(n, k)X^{(p)}(k) (1\leq n\leq N)

and so by (2. 74)

\oint_{+}^{p)}(n, k)=\tilde{\oint}_{+}^{p)}(n, k) (0\leq k<n\leq N) ,

which implies that \gamma_{+i}^{(p)}(n, k)=\tilde{\gamma}_{+i}^{(p)}(n, k) (1\leq i\leq 2,0\leq k<n\leq N) .
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Thus we have completed the proof of Theorem 2. 9. (Q. E. D.)

COROLLARY 2_{-}1- For each p\in\{1.2,3\} ,

d_{+}^{p)}(n)=Y(n)-P_{ff_{0}}l^{(p)}(n-1)Y(n) (1\leq n\leq N) ,

where M_{0}^{+(p)}(n-1) is defined by (2. 78).

REMARK 2. 6. For each p\in\{2,3\} , the coefficients 4_{+}^{1)}(n, k) (resp. \gamma_{+i}^{(p)}

(n, k) , 1\leq i\leq 2)(0\leq k<n\leq N) in equation (2. 66) (resp. (2-70)_{p}) can be
calculated inductively from the covariance function of X^{(1)} (resp. X^{(p)}),
accord_{\overline{1}}ng to the algorithm in Theorems 2.2 and 2_{-}3 .

The equation (2. 66) (resp. \{\oint_{+}^{1)} ( n, k) -,\circ\leq k<n\leq N\} and \mathcal{U}_{+}^{1)} ) is noth-
\overline{1}ng but the forward KM_{2O} Langevin equat\overline{l}on (1resp . data and force) as-
sociated with X^{(1)} . For each p\in\{2,3\} , equation (2. 70)_{p}(resp . \{\gamma_{+i}^{(p)}(n, k):1

\leq i\leq 2,0\leq k<n\leq N\} and d_{+}^{p)} ) is called a forward \bm{KM}_{2}O Langevin equa-
tion (resp. data and force) of non-linear type p associated with X^{(1)} .

REMARK 2. 7. In the same situation as \overline{1}n Theorem 2.9, we define
three k_{\overline{1}}nds of pred_{\overline{1}}ction errors d_{+}^{p)}(m, n)(0\leq n\leq m\leq N, 1\leq p\leq 3) by
(2. 80) d_{+}^{p)}(m, n)=E(|Y(m)-P_{M_{0}^{\vdash(p)}(n)}Y(m)|^{2}) .
Then we have

(2. 81) d_{+}^{2)}(m, n)\leq d_{+}^{1)}(m, n) and d_{+}^{3)}(m, n)\leq d_{+}^{1)}(m, n) .
It would be a serious task to get a relation between d_{+}^{2)}(m, n) and d_{+}^{3)}(m,
n) , unless we assume a further structure for the time series Y

REMARK 2. 8. By treating the non- 1\overline{1}near type other than (2. 65)_{p} , we
can derive several kinds of non-linear Langevin equations different from
(2. 70)_{p} , associated with X^{(1)} , wh\overline{l}chw\overline{1}11 be used in [36].

[2. 7] Among various one- d\overline{l}mensional strictly stationary t\overline{l}me series
\overline{1}nduced by transformations in chaotic dynam\overline{l}cal systems([15], [18]), we
cons\overline{l}der the following two special cases:

EXAMPLE 2. 1_{-} Let \varphi_{t} be the logistic transformation on [0, 1] , i_{-}e .,

(2. 82) \varphi_{t}(x)=4x(1-x) .

It is known([18]) that \varphi_{t} is a Kolmogorov transformation with the unique
invariant probability measure P_{t} given by

(2. 83) P_{l}(dx)= \frac{1}{\pi\sqrt{x(1-x)}}dx.
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This transformation \varphi_{l} has been studied as a difference model of some
ecological system.

We define a strictly stationary time ser\overline{l}esY_{t}= (Y_{t}(n) ; 0\leq n<\infty) on
the probability space ([0, 1], \mathscr{B}[0,1], P_{t}) by

nt_{\overline{1}}mes

–
(2. 84) Y_{t}(n)(x)=(_{\varphi_{t^{O\cdots 0}}\varphi_{l}})(x) .

Then we know([18]) that

(2. 85) R_{l}(n)\equiv E((Y_{l}(n)-E(Y_{t}(n)))(Y_{t}(0)-E(Y_{t}(0))))

=8^{-1}\delta_{0,n} ,

which \overline{1}mplies that ( Y_{t}(n)-E ( Y_{t}(n))-, 0\leq n<\infty) is a white noise.

EXAMPLE 2_{-}2 . By changing the roundish shape of the curve \varphi_{l} into
the tented curve and then sh_{\overline{1}}fting the posit\overline{l}on of the peak from 1/2 to
some p\in(0,1) , we define a mapping \varphi_{t.p} on [0, 1] by

(2. 86) \varphi_{t,p}(x)=\{

p^{-1}x if x\in[0, p]

(1-p)^{-1}(1-x) if x\in[p, 1] .

It is known([18]) that \varphi_{t,p} is mixing and the unique invariant probability
measure co\overline{l}nc\overline{l}des with the Lebesgue measure. This \varphi_{t,p} is called a tent
transformation.

On the analogy of (2. 84), we can define a strictly stationary time
series Y_{t,p}= (Y_{t,p}(n) ; 0\leq n<\infty) on the probability space ( [0, 1] , \mathscr{B}([0 ,

1]), dx), which possesses the covariance function

(2. 87) R_{t,p}(n)\equiv E((Y_{t,p}(n)-E(Y_{t,p}(n)))(Y_{t.p}(0)-E(Y_{t,p}(0))))

=\{12^{-1}\delta_{0,n}12^{-1}|2p-1|^{n}(-1)^{n}12^{-1}|2p-1|^{n}

for p\in(0,1/2)

for p=1/2
for p\in(1/2,1)

([18]). This implies that ( Y_{t,p}(n)-E ( Y_{t,p}(n)) ; 0\leq n<\infty) is a white
noise or a simple Markov process, according as p=1/2 or p\neq 1/2 .

\S 3. Stationary analysis

Let d and N be any fixed natural numbers.

[3. 1] For any given N+1 vectors \mathscr{F}(n) in R^{d}(0\leq n\leq N) , we denote
by \mu^{\chi} and R^{\chi}=(R_{jk}^{j\gamma})_{1\leq j,k\leq d} the sample mean vector and the sample covar-
iance function of the data \mathscr{F}^{=} (\mathscr{F}(n) ; 0\leq n\leq N) , respectively:
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(3. 1) \mu^{\chi}\equiv\frac{1}{N+1}\sum_{n=0}^{N}\mathscr{F}(n)

(3. 2) \{

1 N-n
R_{jk}^{\chi}(n) \equiv\sum_{m=0}(\mathscr{F}_{j}(n+m)-\mu_{j}^{\chi}\overline{N+1})(\mathscr{F}_{k}(m)-\mu_{k}^{\chi})

R_{jk}^{\chi}(-n)\equiv R_{kj}^{\chi}(n) ,

where \mu^{\chi}={}^{t}(\mu_{1}^{\chi}. \cdots\backslash \mu_{d}^{\chi}) and \mathscr{F}(n)={}^{t}(\mathscr{F}_{1}(n), \cdots , _{\mathscr{F}_{d}}(n))(0\leq n\leq N) . Set

(3. 3) \mathscr{H}(n)=[0\sqrt{R_{11}^{\chi}(0)^{-1}}...\sqrt{R_{dd}^{\chi}(0)^{-1}}0](\mathscr{F}(n)-\mu^{\chi}) .

We call this procedure a standardization of \mathscr{F} Let R^{\mathscr{H}} be the sample
covariance function of the standardized data \mathscr{H}^{=}(\mathscr{H}(n);0\leq n\leq N) . It is
noted that

(3. 4) R_{jk}^{\mathscr{H}}( \cdot)=\frac{R_{jk}^{\chi}(\cdot)}{\sqrt{R_{jj}^{\chi}(0)R_{kk}^{\chi}(0)}} (1\leq_{J}-, k\leq d) .

According to the algorithm (2. 20)-(2. 23), (2. 23), (2. 29) and (2. 30)
with R in (2. 29)-(2. 30) replaced by R^{\mathscr{H}} in (3. 4), we can construct a sys-
tem \{\gamma_{+}(n, k) , \gamma_{-}(n, k) , \delta_{+}(m) , \delta_{-}(m) , V_{+}(l) , V_{-}(l)-,1\leq k<n\leq N, 1\leq

m\leq N, 0\leq l\leq N\} of members in M(d;R) , under the assumpt\overline{l}on

(3. 5) V_{+}(n)\in GL(d ; R) (0\leq n\leq N-1) .

REMARK 3_{-}1 . When d=1 , it follows from (2. 52) and (2. 53) in
Remark 2_{-}5 that condition (3. 5) is equivalent to
(3. 6) |\delta(n)|<1 (1\leq n\leq N-1) .

Now we define N+1 vectors \nu_{+}(n) in R^{d}(0\leq n\leq N) by

(3. 7) \{

\nu_{+}(0)=\mathscr{H}(0)

\nu_{+}(n)=\mathscr{H}(n)+\sum_{k=0}^{n-1}\gamma_{+}(n, k)\mathscr{H}(k) (1\leq n\leq N) ,

where \gamma_{+}(n, 0)=\delta_{+}(n)(1\leq n\leq N) . It is convenient to write the equivalent
form of (3. 7)-\cdot

\{

\mathscr{H}(0)=\nu_{+}(0)

\mathscr{H}(n)=-\sum_{k=1}^{n-1}\gamma_{+}(n, k)\mathscr{H}(k)-\delta_{+}(n)\mathscr{H}(0)+\nu_{+}(n)
(1\leq n\leq N) .

Furthermore it can be seen that
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(3. 8) \{

\mathscr{F}(0)-\mu^{\chi}=[^{\sqrt{R_{11}^{\chi}(0)}0}0^{\cdot}..\sqrt{R_{dd}^{\chi}(0)}]\nu_{+}(0)

\mathscr{F}(n)-\mu^{\chi}=-\sum_{k=0}^{n-1}[^{\sqrt{R_{11}^{\chi}(0)}0}0^{\cdot}..\sqrt{R_{dd}^{\chi}(0)}]\gamma_{+}(n, k) .

o[^{\sqrt{R_{11}^{X}(0)^{-1}}0}0^{\cdot}..\sqrt{R_{dd}^{\chi}(0)^{-1}}](\mathscr{F}(k)-\mu^{\chi})

+[0\sqrt{R_{11}^{\chi}(0)}...0]\sqrt{R_{dd}^{\chi}(0)}\nu_{+}(n) (1\leq n\leq N) .

DEFINITION 3. 1. We call equat\overline{l}on(3-8) resp. \{\gamma_{+}(n, k)j0\leq k<n\leq

N\} and \nu_{+}= (\nu_{+}(n) ; 0\leq n\leq N)) a sample forward KM_{2O} -Langevin equa-
tion(resp. data and force) associated with the orig\overline{l}nal data \mathscr{F}^{=}(\mathscr{F}(n) ; 0
\leq n\leq N) .

[3. 2] For any given N+2 vectors \mathscr{F}(n) in R^{d}(-1\leq n\leq N) , we
define, as a new data, the first difference \tilde{\mathscr{F}}(n) of \mathscr{F}(n) by

(3. 9) \tilde{\mathscr{F}}(n)=\mathscr{F}(n)-\mathscr{F}(n-1) (0\leq n\leq N) ,

which is often used in the analysis of economic data([5]). Let \mu^{\tilde{\chi}} and R^{\tilde{\chi}}

be the sample mean vector and the sample covariance function of the data
\tilde{\mathscr{F}}= (\tilde{\mathscr{F}}(n) ; 0\leq n\leq N) , respectively.

The procedure in [3. 1] applied to this data \tilde{\mathscr{F}\sim} gives us the sample
forward KM_{2O}-Langevin equation associated with \mathscr{F} :

(3. 10) \{

\tilde{\mathscr{F}}(0)-\mu^{\tilde{\chi}}=[^{\sqrt{R_{11}^{\tilde{\chi}}(0)}}-\cdot\cdot]\sqrt{R_{dd}^{\tilde{\chi}}(0)}\tilde{\nu}_{+}(0)00

\tilde{\mathscr{F}}(n)-\mu^{\tilde{\chi}}=-\sum_{k=0}^{n-1}[\sqrt{R_{11}^{\tilde{\chi}}(0)}...0]\sqrt{R_{dd}^{\tilde{\chi}}(0)}\tilde{\gamma}_{+}(n, k)0^{\cdot}

. [^{\sqrt{R_{11}^{\tilde{\chi}}(0)^{-1}}}\cdot.-\sqrt{R_{dd}^{\tilde{\chi}}(0)^{-1}}](\tilde{\mathscr{F}}(k)-\mu^{\tilde{\chi}})00

+ \tilde{\nu}_{+}(n) (1 \leq n\leq N) ,
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where \{\tilde{\gamma}_{+}(n, k) ; 0\leq k<n\leq N\} (resp. \tilde{\nu}_{+}=(\tilde{\nu}_{+}(n) ; 0\leq n\leq N )) is the sam-
ple forward KM_{2O}-Langevin (resp. force) associated with \tilde{\mathscr{F}} in the
sense of Definition 3_{-}1 . Taking account of (3. 9), we give

DEFINITION 3. 2. We des\overline{l}gnate equation (3. 10) (resp. { \tilde{\gamma}_{+}(n, k) ; 0\leq

k<n\leq N\} and \tilde{\nu}_{+} ) a sample first difference forward KM_{2O} -Langevin
equation(resp. data and force) associated with the original data \mathscr{F}=

(\mathscr{F}(n);-1\leq n\leq N) .

REMARK 3. 2. The standardized data \tilde{\mathscr{F}}= (\tilde{\mathscr{F}}(n) ; 0\leq n\leq N) of \tilde{\mathscr{F}} is
defined by

(3-11) \mathscr{H}(n)=\simeq[^{\sqrt{R_{11}^{\tilde{\chi}}(0)^{-1}}}0^{\cdot}..\sqrt{R_{dd}^{\tilde{\chi}}(0)^{-1}}0](\tilde{\mathscr{F}}(n)-\mu^{\tilde{\chi}}) .

[3. 3] For any given one-dimensional data \mathscr{U}(n)(0\leq n\leq N) , we con-
struct tw0-dimensional data \mathscr{F}^{(p)}= (\mathscr{F}^{(p)}(n) ; 0\leq n\leq N)(2\leq p\leq 3) by

(3. 12)_{p} \mathscr{F}^{(p)}(n)={}^{t}(\mathscr{U}(n), \mathscr{U}(n)^{p}) .

Applying the procedure in [3. 1] to these \mathscr{F}^{(p)}(2\leq p\leq 3) and then using
the idea in Theorem 2.9, we have

(3. 13)_{p} \{

\mathscr{U}(0)-\mu_{1}=\alpha_{1}d_{+}^{p)}(0)

\mathscr{U}(n)-\mu_{1}=-\sum_{k=0}^{n-1}\gamma_{+}^{(p}1(n, k)(\mathscr{U}(k)-\mu_{1})

- \sum_{k=0}^{n-1}(\alpha_{1}/\alpha_{p})\gamma_{+}^{(p}\}(n, k)(\mathscr{U}(k)^{p}-\mu_{p})+\alpha_{1}d_{+}^{p)}(n) (1\leq n\leq N) ,

where

(3. 14) \mu_{q}=\frac{1}{N+1}\sum_{n=0}^{N}\mathscr{U}(n)^{q}

(3. 15) \alpha_{q}=(\frac{1}{N+1}\sum_{n=0}^{N}(\mathscr{U}(n)^{q}-\mu_{q})^{2})^{1/2} (1 \leq q\leq 3) .

Here we note that for each p\in\{2,3\} the coefficients \gamma_{+}^{(p}i(\cdot,*) and \gamma_{+}^{(p}} (\cdot,*)

(resp. the random force d_{+}^{p)} ) in the equat\overline{l}on(3.13)_{p} are the (1, 1) and (1,
2)-components resP- the first component) of the sample forward KM_{2O}-

Langevin (resp. force) associated with \mathscr{F}^{(p)} in the sense of Defifinit\overline{l}on

3.1 .
Following the nomenclature of equation (2. 70)_{p} , we give

DEFINITION 3. 3. For each p\in\{2,3\} we call equation (3-13)_{p} (resp.
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\{\gamma_{+\dot{z}}^{(p)}(n,k) ;1\leq i\leq 2,0\leq k<n\leq N\} and d_{+}^{p)}=(d_{+}^{p\rangle}(n);0\leq n\leq N)) a sample
forward KM_{2O} -Langevin equation(resp. data and force) of non-linear
type p associated with the original data \mathscr{U}=(\mathscr{U}(n);0\leq n\leq N) .

[3. 4] In this subsection, we define for any g\overline{l}venN+2 values \mathscr{U}(n)

in R^{1} (-1\leq n\leq N) its first difference \tilde{\mathscr{U}}(n) by

(3. 16) \tilde{\mathscr{U}}(n)=\mathscr{U}(n)-\mathscr{U}(n-1) (0\leq n\leq N) .

By applying the procedure in [3. 3] to this data \tilde{\mathscr{U}}= (\tilde{\mathscr{U}}(n) ; _{0\leq n}\leq N) ,

we have, for each p\in\{2,3\} ,

(3. 17)_{p} \{

\tilde{\mathscr{U}}(0)-\tilde{\mu}_{1}=\tilde{\alpha}_{1}\tilde{d}_{+}^{p)}(0)

\tilde{\mathscr{U}}(n)-\tilde{\mu}_{1}=-\sum_{k=0}^{n-1}\tilde{\gamma}_{+}^{(p}1(n, k)(\tilde{\mathscr{U}}(k)-\tilde{\mu}_{1})

- \sum_{k=0}^{n-1}(\tilde{\alpha}_{1}/\tilde{\alpha}_{p})\tilde{\gamma}_{+}^{(p}4(n, k)(\tilde{\mathscr{U}}(k)^{p}-\tilde{\mu}_{p})+\tilde{\alpha}_{1}\tilde{d}_{+}^{p)}(n) (1\leq n\leq N) ,

where

(3. 18) \tilde{\mu}_{q}=\frac{1}{N+1}\sum_{n=0}^{N}\tilde{\mathscr{U}}(n)^{q}

(3. 19) \tilde{\alpha}_{q}=(\frac{1}{N+1}\sum_{n=0}^{N}(\tilde{\mathscr{U}}(n)^{q}-\tilde{\mu}_{q})^{2})^{1/2} (1\leq q\leq 3) .

As in Definitions 3_{-}2 and 3.3, we g_{\overline{1}}ve a name to equation (3. 17)_{p} .
DEFINITION 3_{-}4 . For each p\in\{2,3\} , we designate equation (3. 17)_{p}

(resp. \{\tilde{\gamma}_{+i}^{(p)} ( n, k) -,
1\leq i\leq 2,0\leq k<n\leq N\} and \tilde{\nu}_{+}^{(p)}=(\tilde{\nu}_{+}^{(p)}(n)-, 0\leq n\leq N) ) a

sample first difference forward \bm{K}M_{2}O -Langevin equation(resp. data and
force) of non-linear type p associated with the or\overline{l}ginal data \mathscr{U}-

REMARK 3. 3. For each p\in\{2,3\} , the standardized data \tilde{\mathscr{H}}^{(p)}=(\tilde{\mathscr{H}}^{(p)}

(n);0\leq n\leq N) of \mathscr{F}\sim(p)=(^{t}\tilde{\mathscr{U}}(n), (\tilde{\mathscr{U}}(n))^{p});0\leq n\leq N) is given by

(3. 20) \tilde{\mathscr{H}}^{(p)}(n)=[^{\sqrt{R_{11}^{\tilde{X}}(0)^{-1}}}0 \sqrt{R_{22}^{\tilde{\chi}}(0)^{-1}}0](\tilde{\mathscr{F}}^{(p)}(n)-\mu^{\tilde{\chi}})(p) .

[3. 5] For a d-dimensional data \mathscr{F}=(^{t}(\mathscr{F}_{1}(n),-\cdot\cdot \mathscr{F}_{d}(n)) ; 0\leq n\leq

N) such that

(3. 21) \mathscr{F}_{j}(n)>0 (1 \leq j\leq d) ,

we define a d-dimensional data Log \mathscr{F}= (({\rm Log} \mathscr{F})(n) ; 0\leq n\leq N) by

(3. 22) ({\rm Log} \mathscr{F})_{j}(n)=\log(\mathscr{F}_{j}(n)) (1 \leq j\leq d)-

Similarly to the first difference in (3.9), this transformation (3. 22) \overline{1}S



66 Y. Okabe and Y_{-} Nakano

often used in the analysis of the economic data.

[3. 6] We return to subsection [3. 1] for d=2. Choosing a posit\overline{l}ve

number w\in(0,1) and a standard\overline{l}zed random uniform numbers \xi_{u}=(\xi_{u}

(n) ; 0\leq n\leq N ), we define a two- dimens\overline{l}onal data \mathscr{H}_{w^{=}}(\mathscr{H}_{w}(n) ; 0\leq n\leq

N) by

(3. 23) \mathscr{H}_{w}(n)={}^{t}(\mathscr{H}_{1}(n), \mathscr{H}_{2}(n)+w\xi_{u}(n))-

It deserves mention that the independence of \xi_{u} and \mathscr{H} guarantees the
cond_{\overline{1}}tion(2.5) for this new data \mathscr{H}_{w} and that the local and weak
stationarity for \mathscr{H}_{w} implies the same property for \mathscr{F}

[3.7] Under the same situation as i\grave{n}[3.6] , we \overline{1}ntroduce another
tw0-dimensional data Arct \mathscr{H}= ((Arct\mathscr{H})(n) ; 0\leq n\leq N) by

(3. 24) (Arct\mathscr{H}) (n)= ( \arctan(\mathscr{H}_{1}(n)) , arctan (\mathscr{H}_{2}(n)) ).

This transformation is effective in compressing abnormal values in the
original data \mathscr{F} and reproducing the local and weak stationarity, as will
be seen \overline{1}n[4.4] of \S 4.

\S 4. Test (S) for local and weak stationarity

[4. 1] Let us return to the same sett\overline{l}ng as in [3-1]. For any given
data \mathscr{F}=(\mathscr{F}(n)-, 0\leq n\leq N)\overline{1}nR^{d} , we constructed the sample forward
KM_{2O}-Langevin data \{\gamma_{+}(n, k) ; 0\leq k<n\leq N\}(resp . force \nu_{+}=(\nu_{+}(n) : 0\leq

n\leq N))assoc\overline{l}ated with \mathscr{F}

By taking lower triangular matrices W_{+}(n) in GL(d;R) such that
(4. 1) V_{+}(n)=W_{+}(n){}^{t}W_{+}(n) (0\leq n\leq N) ,

we define a d-dimensional data \xi_{+}=(\xi_{+}(n);0\leq n\leq N) by

(4. 2) \xi_{+}(n)=W_{+}(n)^{-1}\nu_{+}(n) .

The results \overline{1}n subsections [ 2. 1]-[2.4] assure us that
(4. 3) \mathscr{H} is a realization of a local and weakly stationary time series

with R^{\mathscr{H}} in (3. 4) as its covariance function
if and only if

(4. 4) \xi_{+}real\iota^{-}zes a d-dimensional standardized white noise.

Further, letting \xi_{+}(n)={}^{t}(\xi_{+1}(n), \cdots. \xi_{+d}(n)) , we construct a one-
dimensional data \xi= (\xi(n) ; 0\leq n\leq d(N+1)-1) by

(4. 5) \xi(n)=\xi_{+p}(m) , n=dm+p-1(1\leq p\leq d, 0\leq m\leq N) .
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We then note that (4. 4) is equivalent to

(4. 6) \xi realizes a one-dimensional standardized white noise.

An exper\overline{l}ance rule \overline{1}n data analysis([3]), however, tells us that we
should not use the whole ser\overline{l}es\{R^{\mathscr{H}}(n) ; 0\leq n\leq N\} , because an effective
number of the sample covariance function R^{\mathscr{H}} is rather smaller than N
and considered to be between [2\sqrt{N+1}/d] and [3\sqrt{N+1}/d]- Here we
choose the maximum value

(4. 7) M=[3\sqrt{N+1}/d]-1 .

Thus, in what follows, we are going to make use of the system \{\gamma_{+}(n, k)-,
0\leq k<n\leq M\} , the sample forward KM_{2O}-Langevin data associated with
the reliable part \{R^{\mathscr{H}}(n) ; 0\leq n\leq M\} of R^{\mathscr{H}}.

In order to analyze the internal structure of \mathscr{H}, we consider for each \iota^{-}

\in\{0,-\cdot. , N-M\} the shifted data \mathscr{H}_{i} with its \overline{1}nitial point \mathscr{H}(i) :
(4. 8) \mathscr{H}_{i}=(\mathscr{H}(i+n),\cdot 0\leq n\leq M) .

Similarly to (3-7), we define \nu_{+i}=(\nu_{+i}(n)-,\circ\leq n\leq M) by

(4. 9) \{

\nu_{+i}(0)=\mathscr{H}(i)

\nu_{+i}(n)=\mathscr{H}(i+n)+\sum_{k=0}^{n-1}\gamma_{+}(n, k)\mathscr{H}(i+k) (1 \leq n\leq M) ,

which can be rewr\overline{l}tten into

\{

\mathscr{H}(i)=\nu_{+i}(0)

\mathscr{H}(i+n)=-\sum_{k=1}^{n-1}\gamma_{+}(n, k)\mathscr{H}(i+k)-\delta_{+}(n)\mathscr{H}(i)+\nu_{+i}(n)

(1\leq n\leq M) .

This is the sample forward KM_{2O}- Langev\overline{1}n equation assoc\overline{l}ated with \mathscr{H}_{i-}

Noting (4-2) and (4. 5), we define a d- d\overline{l}mensional data \xi_{+i}=(\xi_{+i}(n);0\leq

n\leq M)=(^{t}(\xi+i1(n), \cdots \xi_{+id}(n)) ; 0\leq n\leq M) and a one-dimensional data
\xi_{i}=(\xi_{i}(n)-,\circ\leq n\leq d(M+1)-1) by

(4. 10) \xi_{+i}(n)=W_{+}(n)^{-1}\nu_{+i}(n)

(4. 11) \xi_{i}(n)=\xi_{+ij}(m) , n=dm+j-1(1\leq j\leq d, 0\leq m\leq M) .

For the same reason as in the assertion of equivalence among (4. 3),
(4- 4) and (4. 6), the following assertions are equivalent-. for each i\in\{0 ,
...

\eta N-M },

(4. 12)_{i} \mathscr{H}_{i} realizes a d-dimensional local and weakly slal\iota^{-}ona\eta time series
with R^{\mathscr{H}} in (3. 4) as its covariance function.
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(4. 13)_{i} \xi_{+i} realizes a d-dimensional standardized white noise.
(4. 14)_{i} \xi_{i}real\overline{l}zes a one- d\overline{l}mens\overline{l}onal standardized white noise.

We then define the sample mean \mu^{\xi_{\iota}} , the sample variance v^{\xi_{\iota}} and the
sample covariance function R^{\xi}\cdot(n, m) of \xi_{i}(1\leq n\leq L, 0\leq m\leq L-n) by

(4. 15) \mu^{\xi_{\iota}}=\frac{1}{d(M+1)}\sum_{k=0}^{d(M+1)-1}\xi_{i}(k)

(4. 16) v^{\xi_{1}}=\Sigma\xi_{i}(k)^{2}\underline{1}d(M+1)-1

d(M+1) k=0

(4. 17) R^{\xi},(n, m)= \frac{1}{d(M+1)}\sum_{k=m}^{d(M+1)-1-n}\xi_{i}(k)\xi_{i}(n+k) ,

where the effective length L of R^{\xi},, in this case, is taken to be the m\overline{l}ni-

mum one, i . e. ,

(4. 18) L=[2\sqrt{d(M+1)}]-1 .
In order to check condition (4. 14)_{i} based upon suitable statistical

properties of white noise, we need stat\overline{l}sticalest\overline{l}mates which assert that
\mu^{\xi_{\iota}} , v^{\xi_{1}}-1 and R^{\xi_{\iota}}(n, m) are all sufficiently close to zero for every m, n, 1
\leq n\leq L, 0\leq m\leq L-n . For that purpose, for each i\in\{0, \cdot-\cdot. N-M\} , we
rewr\overline{l}te(4-15)-(4.17) into

(4. 19) \mu^{\xi_{l}}=\frac{1}{\sqrt{d(M+1)}}(\frac{1}{\sqrt{d(M+1)}}\sum_{k=0}^{d(M+1)-1}\xi_{i}(k))

(4. 20) v^{\xi_{i}}-1= \frac{1}{d(M+1)}\sum_{k=0}^{d(M+1)-1}(\xi_{i}(k)^{2}-1)

(4. 21) R^{\xi_{\iota}}(n, m)= \overline{\sum_{=J1}^{2}}\frac{(L_{n^{J)}m}^{t})^{1/2}}{d(M+1)}((L_{nm}^{(g)})^{-1/2}R_{j}^{\xi_{1}}(n, m)) .

Here the decomposition of R^{\xi_{1}} into two parts R_{1}^{\xi} ’ and R_{2}^{\xi_{e}} in (4. 21) is
defined as follows: For any fixed m, n, 1\leq n\leq L, 0\leq m\leq L-n, we devide
d(M+1) and m by 2n and n, respectively-,

(4. 22) d(M+1)=q(2n)+r (0\leq r\leq 2n-1)

(4. 23) m=sn+t (0\leq t\leq n-1) .

And if r\in\{0, \cdots. n\} , then

(4. 24) R_{1}^{\xi_{\iota}}(n, m)=

(s is even)

+ q-1\Sigma (\Sigma\xi_{i}(2jn+k)\xi_{i}((2j+1)n+k))n-1

j=(s+2)/2k=0

\backslash \sum_{j=(s+1)/2}^{q-1}(\sum_{k=0}^{n-1}\xi_{i}(2jn+k)\xi_{i}((2j+1)n+k)) (s is odd)
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(4. 25) R_{2}^{\xi_{I}}(n, m)=\{\begin{array}{l}\sum_{j=s/2}(\sum_{k=0}\xi_{i}((2_{J}^{-}+1)n+k)\xi_{i}(2(j+1)n+k))(siseven)+\sum_{k=0}^{r-1}\xi_{i}((2q-l)n+k)\xi_{i}(2qn+k)\sum_{k=0}^{n-t-1}\xi_{i}(m+k)\xi_{i}(m+n+k) (s\overline{1}SOdd)\dagger\sum_{j=(s+1),2}^{q-2}(\sum_{k=0}^{n-1}\xi_{i}((2_{J}^{-}+1)n+k)\xi_{i}(2(j+l)n+k))+\sum_{k=0}^{r-1}\xi_{i}((2q-1)n+k)\xi_{i}(2qn+k)\end{array}q-2n-1

and if r\in\{n+1, \cdots. 2n-1\} , then

(4. 26) R_{1}^{\xi}.(n, m)=\{

\sum_{k=0}^{n-t-1}\xi_{i}(m+k)\xi_{i}(m+n+k) (s is even)

+ \sum_{j=(s+2)/2}^{q-1}(\sum_{k=0}^{n-1}\xi_{i}(2jn+k)\xi_{l}-((2j+1)n+k))

+ \sum_{k=0}^{r-n-1}\xi_{i}(2qn+k)\xi_{i}((2q+1)n+k)

\sum_{j=(s+1)/2}^{q-1}(\sum_{k=0}^{n-1}\xi_{i}(2jn+k)\xi_{i}((2j+1)n+k)) (s is odd)

+ \sum_{k=0}^{r-n-1}\xi_{i}(2qn+k)\xi_{i}((2q+1)n+k)

(4. 27) R_{2}^{\xi}\cdot(n, m)=\{

\sum_{j=s/2}^{q-1}(\sum_{k=0}^{n-1}\xi_{i}((2j+1)n+k)\xi_{i}(2(j+1)n+k))

( s\overline{1}S even)

\sum_{k=0}^{n-t-1}\xi_{i}(m+k)\xi_{i}(m+n+k) (s is odd)

+ \sum_{j=(s+1)/2}^{q-1}(\sum_{k=0}^{n-1}\xi_{i}((2_{J}^{-}+1)n+k)\xi_{i}(2(_{J}^{-}+1)n+k)) .

Furthermore, L_{nm}^{(j)} stand for the number of terms in R_{j}^{\epsilon:}(n, m)(1\leq J\leq-2):\overline{1}f

r\in\{0, \cdots. n\} , then

(4. 28)
L_{nm}^{(1)}=\{

n(q+(s/2))-m (S\overline{1}S even)
n(q-(s+1)/2) (s is odd)

L_{\eta m}^{(2\rangle}=\{
n(q-1-s/2)+r (s is even)
n(q-1+(s+1)/2)+r-m (s\overline{1}S odd)

and if r\in\{n+1, \cdots. 2n-1\} , then

(4. 29)
L_{nm}^{(1)}=\{

n(q-1+(s/2))+r-m
n(q-1-(s+1)/2)+r

L_{nm}^{(2)}=\{
n(q-s/2)
n(q+(s+1)/2)-m

(s is even)
( s\overline{1}S odd)
(s is even)
(s is odd).
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We note that

(4-30) d(M+1)-n-m=L_{\eta m}^{(1)}+L_{nm}^{(2)} .

We are now in a position to g_{\overline{1}}ve a criterion for condition (4. 14)_{i} . If
we substitute, for the usual orthogonality of white noise, the stronger
property of independence, we find that for each i\in\{0, \cdots , N-M\} and j\in

\{1,2\} , \mu^{\xi_{1}} and R_{j}^{\xi}’(n, m) consist of sums of d(M+1) and L_{rtm}^{(g)} independent
random variables with mean zero and variance one, respectively. Hence,
we can infer from the central limit theorem that for each (j, m, n) , 1\leq j\leq

2 , 1\leq n\leq L, 0\leq m\leq L-n,

| \frac{1}{\sqrt{d(M+1)}}\sum_{k=0}^{d(M+1)-1}\xi_{i}(k)|<1-96 with probability 0.95
(L_{nm}^{(J)})^{-1/2}|R_{j}^{\xi}\cdot(n, m)|<1.96 with probability 0.95

and so by (4-35), (4. 19) and (4. 21),

(4. 31)_{i} \sqrt{d(M+1)}|\mu^{\xi_{l}}|<1.96 with probability 0.95
(4. 32)_{i} d(M+1)( \sum_{j=1}^{2}(L_{nm}^{(r)})^{1/2})^{-1}|R^{\xi}l(n, m)|<1.96 with probab\overline{l}1\overline{1}ty0.90 .

Moreover, we want to der\overline{l}ve a similar rate at which the quant_{\overline{1}}ty

v^{\xi}‘-1 in (4. 20) is sufficiently close to zero. Since we cannot get any use-
ful information about the fourth moment of the white noise \xi_{i} without
extra assumptions in addition to the local and weak stat\overline{l}onarity of \mathscr{H}, we
replace the quantity v^{\xi_{l}}-1 by the following:

(4. 33)_{i} (v^{\xi}|-1)=( \sum_{k=0}^{d(M+1)-1}(\xi_{i}(k)^{2}-1))(\sum_{k=0}^{d(M+1)-1}(\xi_{i}(k)^{2}-1)^{2})^{-1/2}\sim-

Applying both the central limit theorem and the law of large numbers, we
can use the Student- l- d\overline{l}stribution and come to the conc1ud_{\overline{1}}on : for each i
\in\{0, \cdots N-M\} ,

(4. 34)_{i} |(v^{\xi_{1}}-1)^{\sim}|<2-2414 with probability 0_{-}975

(see Remarks 4.1 and 4.2).

Thus, for each i\in\{0, \cdots N-M\} , we have obtained the follow\overline{l}ng

criter\overline{l}a(M)_{i} , ( V)_{i} and (O)_{i} in order to check (4. 14)_{i} ;

(4. 35)_{i} \{

(M) i : the inequality (4. 31)_{i} holds.
(V) i : the inequality (4-34)_{i} holds.
(O) i : the inequality (4. 32)_{i} holds.

Concerning the main problem of testing the local and weak stationarity of
the original data \mathscr{F}_{:} we would like to propose:
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Test(S) : the rate of i\in\{0, \cdots N-M\} for which (M) i (resp. ( V)_{i}

and (O) i) holds is over 80%(resp. 70^{o}\nearrow\circ and 80%).

The tests applied to the transformed data Log \mathscr{F} in [3. 5], \mathscr{H}_{w}\overline{1}n[3.6]

and Arct \mathscr{H} in [3. 7] are called Test (S)_{{\rm Log}} , Test (S)_{w} and Test (S)_{Arct} ,

respectively.

[4. 2] To reach the final form of Test(S) above, we made repeated
experiments and observed the validity of Test(S) for var\overline{l}ous concrete
data such as random normal numbers, random uniform numbers, tent
transformation (p =1/2,2/3) and the logistic transformation as well as for
the transformed data obtained by taking the first difference, by multiply-
ing or adding the above data \mathscr{F}(n) by the scalar n (this is expected to
destroy the stationarity), and by taking the square or cube. Our results
of one hundred experiments are \overline{1}1lustrated in Table 4_{-}1wh_{\overline{1}}ch shows the
rate of the numbers of data pass\overline{l}ng Test(S). In these experiments, we
used random normal numbers(resp. random uniform numbers) with 100
pr\overline{l}me seed numbers from 2 to 541, tent transformations (p=1/2,2/3) with
100 in\overline{l}tial values (100 \cdot m)/(2\cdot 13799) , 1\leq m\leq 100 , and the logistic transfor-
mation wlich 100 initial values 0.005 \cdot m , 1\leq m\leq 100 , where the two init\overline{l}al

values 0_{-}250 and 0.500 are, in particular, replaced by 0.249 and 0_{-}499 ,

respectively.
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The first row in Table 4.1 indicates the results for the original data \mathscr{F}(n)

(0\leq n\leq 100) and the jth row(l \leq j\leq 14) for the transformed data \mathscr{F}_{j}=(\mathscr{F}_{j}

(n) ; 0\leq n\leq 99) given by

(4. 36)

’

\mathscr{F}_{1}(n)=\mathscr{F}(n) , \mathscr{F}_{2}(n)=\mathscr{F}(n)^{2} , \mathscr{F}_{3}(n)=\mathscr{F}(n)^{3} ,
\mathscr{F}_{4}(n)=n\mathscr{F}(n) , \mathscr{F}_{5}(n)=\mathscr{F}(n)+n, \mathscr{F}_{6}(n)=\mathscr{F}(n)-\mathscr{F}(n-1) ,
\mathscr{F}_{7}(n)=(\mathscr{F}(n)-\mathscr{F}(n-1))^{2} , \mathscr{F}_{8}(n)=(\mathscr{F}(n)-\mathscr{F}(n-1))^{3}

\mathscr{F}_{9}(n)=n(\mathscr{F}(n)-\mathscr{F}(n-1)) , \mathscr{F}_{10}(n)=\mathscr{F}(n)-\mathscr{F}(n-1)+n,
\mathscr{K}_{11}(n)={}^{t}(\mathscr{F}_{1}(n), \mathscr{F}_{2}(n)) , \mathscr{F}_{12}(n)={}^{t}(\mathscr{F}_{1}(n), \mathscr{F}_{3}(n)) ,
\mathscr{K}_{13}(n)={}^{t}(\mathscr{F}_{6}(n), \mathscr{F}_{7}(n)) , \mathscr{F}_{14}(n)={}^{t}(\mathscr{F}_{6}(n), \mathscr{F}_{8}(n)) .

[4. 3] Let us \overline{1}1lustrate in the following Tables 4.2-4.6 the details of
our experiments for each type of data in Table 4.1:

J- (M) (V) (O) (S)

1 0.930 0.944 1.000 S

2 0.958 0.915 1.000 S

3 0.887 0.915 1.000 S

4 0.887 0_{-}690 0.958 NS
5 1.000 0.000 1.000 NS
6 1.000 0.958 1.000 S

7 0.930 0.803 0.930 S

8 0.972 0.859 0.803 S

9 1.000 0.690 0.859 NS
10 1_{-}000 0.000 1.000 NS
11 0.965 0.824 0.942 S

12 0.895 0.791 0.919 S

13 0.977 0.860 0.965 S

14 0_{-}953 0. 779 0.826 S

J- (M) (V) (O) (S)

1 0.972 1.000 1.000 S

2 0_{-}944 1_{-}000 1.000 S

3 0.944 1.000 1.000 S

4 1_{-}000 0_{-}507 0.901 NS
5 1_{-}000 0.000 1.000 NS
6 0.958 1.000 1.000 S

7 0.958 1.000 1.000 S

8 1.000 1_{-}000 0.972 S

9 0_{-}972 0.606 0.831 NS
10 1_{-}000 0.000 1_{-}000 NS
11 0.953 0.977 0.977 S

12 0.965 0.965 1_{-}000 S

13 0.965 0.965 0.965 S

14 0.953 0.953 1.000 S

Table 4. 2 Random normal num-
bers with seed number
353

Table 4. 3 Random uniform num-
bers with seed number
131
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J- (M) (V) (O) (S)

1 1.000 1.000 1_{-}000 S

2 1.000 1.000 1_{-}000 S

3 0.986 1.000 1.000 S

4 1.000 0.592 0.986 NS
5 1.000 0.000 1.000 NS
6 1.000 1.000 1.000 S

7 0_{-}986 1.000 0.986 S

8 0.986 1.000 1_{-}000 S

9 1.000 0.606 1.000 NS
10 1.000 0.000 1.000 NS
11 0_{-}953 0.965 0.860 S

12 0.977 0.872 1.000 S

13 0.977 1.000 0.953 S

14 0.977 1.000 0.942 S

Table 4_{-}5 Tent (p =2/3) with ini-
tial value 0.076093 tial value 0.326111

j (M) (V) (O) (S)

1 0.958 1. 000 1.000 S

2 0_{-}958 1.000 1.000 S

3 0.986 1_{-}000 1.000 S

4 1.000 0.620 0.958 NS
5 1.000 0.000 1.000 NS
6 1.000 0.930 1.000 S

7 1.000 1_{-}000 0.930 S

8 1.000 1.000 0.972 S

9 1.000 0.648 1.000 NS
10 1.000 0.000 1.000 NS
11 1_{-}000 0. 256 0.988 NS
12 0.988 0. 721 1.000 S

13 0.965 1.000 0.965 S

14 0.988 1.000 1.000 S

Table 4. 6 Logistic with initial
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Tables 4.2-4.6 denote the rate of i such that each of (M)_{i} , ( V)_{i} and (O)_{i}

holds for random normal numbers with seed number 353, random uniform
numbers with seed number 131, tent transformation(p =1/2) with \overline{1}nitial

value 0.076093, tent transformation (p =2/3) with initial value 0.326111 and
the logistic transformation with initial value 0.02. Here \langle

\prime s”and ” NS”

stand for stat\overline{l}onarity and non-stationarity, respectively.

[4.4] We can say from [4.2] and [4.3] that the experimental
results of the above tables are \overline{1}n agreement with the expected ones from
the theory in all rows except for j=11,12,14 ; but we cannot for j=11 ,
12, 14. It seems that the disagreement \overline{1}n the 14th row in Tables 4.1-4.2
comes from the occurrence of abnormal values in random normal numbers.
On the other hand, for j=11,12\overline{1}n Tables 4_{-}1,4.4 and 4.6, it lies in the
strong dependence between components of the tw0-dimensional data. In
order to overcome these difficulties, we adopted the mod_{\overline{1}}fifiedTest(S)_{Arct} in
the case of the 14th row in Table 4_{-}2:Test(S)_{0.07} with we\overline{l}ght0.07\overline{1}n the
case of the 11-12th rows \overline{1}n Tables 4.4-4.6. The results are ilustrated in
Tables 4.7-4.12, respectively; Good accordance with the theory.

j
Random
normal
numbers

11
12

0.99
0.97

14 0.99
Table 4_{-}7 Tent (S)_{Arct}

Tables 4.7-4.8 denote the results based on Test(S)_{Arct} and Test(S)_{0.07} for
the same data as in Table 4_{-}1-

Table 4_{-}9 Tent (S)_{Arct} for random
normal numbers with
seed number 353

transformation (p=
1/2) with initial value
ue 0.076093
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Table 4. 12 Test (S)_{0.07} for \log\overline{1}st\overline{l}C

transformat\overline{l}on (p= transformation with
2/3) with initial value

in\overline{l}tial value 0.02
ue 0.326111

Table 4.9(resp. 4.10-4.12) denotes the results based on Test(S)_{Arct} (resp.
Test(S)_{0.07}) for the same data as in Table 4_{-}2 (resp. 4.4-4.6)-

[4. 5] We g\overline{l}ve two remarks concern\overline{l}ng the criterion ( V)_{i-}

REMARK 4. 1. In place of ( V)_{i} , we made lots of experiments for the
following criterion ( \tilde{V})_{i} based upon the Student- l- d\overline{l}stribut\overline{l}on :
(\tilde{V})_{i} |(v^{\xi_{\iota}}-1)^{\approx}|<l_{M}(0.025) with probability 0.95,

where

(4. 35)_{i} (v^{\xi_{t}}-1)^{\approx}= \{\sum_{k=0}^{d(M+1)-1}(\xi_{i}(k)^{2}-1)\} .
\circ\{\sum_{k=0}^{d(M+1)-1}(\xi_{i}(k)^{2}-\frac{1}{d(M+1)}\sum_{m=0}^{d(M+1)-1}\xi_{i}(m)^{2})^{2}\}-1/2 .

The differernce between ( V)_{i} and ( \tilde{V})_{i} lies in that we replace, in ( V)_{i} ,

the value (1/d(M+1)) \sum_{m=0}^{d(M+1)-1}\xi_{i}(m)^{2} and l_{M}(0.025) by 1 and t_{\infty}(0.025)=2-

2414, respectively, from the law of large numbers. However we could not
find any marked difference among them in our repeated experiments.
Hence we adopted ( V)_{i} , because it is simpler and we would not 1\overline{1}ke to
put the further assumptions to the fourth moments of \xi_{i}(n) .

REMARK 4. 2. Concerning the ( V)_{i} part, we required that the rate
of \iota^{-}\in\{0, \cdots. N-M\} for wh_{\overline{1}}ch ( V)_{i} holds is over 70%, wh\overline{l}ch is rather
low compared with 80^{o}\nearrow 0 for (M)_{i} and (O)_{i} . The reason of this
difference comes from the fact that we adopted a lenient standard in the
inquality (4. 34)_{i} , different from the one in inqualities (4. 31)_{i} and (4. 32)_{i} ,

because the accuracy rate of approximations in ( V)_{i} is far worse than the
one in (M) i and (O) i .
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\S 5. Wolfer’s sunspot numbers, Lynx in Canada and
NEC’s stock prices in Japan

There ex\overline{l}st two fundamental works by W. S. Jevons([10]) and by C.
G_{-} Mata and F. I_{-} Schaffner([14]) about the theory of sunspots from the
economic point of view. On the other hand, from the viewpoint of mathe-
matical statistics, G. U. Yule([42]) stud\overline{l}ed the problem of periodic\overline{l}ty of
sunspots by using the AR(2) -model. The same problem for Canadian
Lynx cycle was invest\overline{l}gated by P. A. P_{-} Moran ([17]) where the AR(2)-
model was fitted to the new data obtained by taking the logar\overline{l}thmic trans-
formation-

We can find many statistical studies looking into an outstanding obser-
vat\overline{l}on that both time series of Wolfer’s sunspot numbers and of Lynx in
Canada would have period\overline{l}city of about 11 years([16], [37]). However,
we do not know any researches try_{\overline{1}}ng to answer this serious question: Do
these two time series have the local and weak stationarity ? Indeed, such
stationarity has often been assumed explic\overline{l}tly or implicitly.

This section aims to investigate this problem of local and weak
stationarity for Wolfer’s sunspot numbers, Lynx in Canada and NEC’s
stock prices in Japan, based upon our theory developed in \S 2-\S 4-

[5. 1] We illustrate the results of Test(S) for Wolfer’s sunspot num-
bers in Tables 5.1-5.2.

year J- (M) (V) (O) (S)

1 1.000 0.819 1.000 S

2 1.000 0.819 0.880 S

3 1.000 0_{-}602 0.843 NS
4 0.988 0.819 1_{-}000 S

5 1.000 0. 771 1.000 S

6 1.000 0.554 1.000 NS
1821-1934 7 1.000 1.000 1.000 S

8 1.000 1.000 1.000 S

9 1.000 0.843 1.000 S

10 0.988 0.964 1.000 S

11 0.880 0.952 1.000 S

12 0.952 0.843 0.928 S

13 0.986 1.000 1.000 S

Table 5_{-}1 Wolfer’s sunspot numbers
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Here the data \mathscr{F}\{^{j)}=(\mathscr{F}\{^{j)}(n);0\leq n\leq 113) in the jth row in Table 5.1 (1\leq J-

\leq 13) are defined by

(5. 1) \mathscr{F}_{1}^{(j)}(n)=

(\mathscr{F}\{^{1)}(n))^{\dot{\gamma}} (1\leq j\leq 3)

(\mathscr{F}_{1}^{(1)}(n+1)-\mathscr{F}_{1}^{(1\rangle}(n))^{j-3} (4\leq_{J}-\leq 6)

\arctan(\mathscr{F}f^{j-6)}(n)) (7\leq j\leq 12)

-\log(\mathscr{F}\{^{1)}(n)) (j=13) ,

where \mathscr{F}\{^{1\rangle} denotes the observed data of Wolfer’s sunspot numbers for 114
years from 1821 to 1934. It seems that the original data \mathscr{F}\{^{1)} and its first
difference \mathscr{F}_{1}^{(4\rangle} as well as their squares \mathscr{F}\{^{2)} and \mathscr{F}\{^{5)} have all the local and
weak stationarity. In addition, it brings us a better result to operate the
arctangent transform and/or the logarithmic one.

Following the same notat\overline{l}on as \overline{1}n Table 5_{-}1 , we show in Table 5.2 the
results of Test(S) for Wolfer’s sunspot numbers \mathscr{F}\xi^{1)} for 100 years from
1880 to 1979. We note that the or\overline{1}g_{\overline{1}}na1 data \mathscr{F}@^{1)} , its square \mathscr{F}\xi^{2)} and cube
\mathscr{F}@^{3)} do not pass Test(S), but its first difference \mathscr{F}\xi^{4)} does. As in Table 5.
1, we have a good result if we operate the arctangent and logarithmic

transformations.
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[5. 2] Table 5.3 states for the results of Test(S) for a time ser\overline{l}es

\mathscr{F}\S^{1)} denoting the amount of capture of Lynx in MacKenzie River in
Canada whose data is known only for 114 years from 1821 to 1934 ([7]).

year j (M) (V) (O) (S)

1 0.940 0.938 1.000 S

2 0.976 0.867 0.928 S

3 1.000 0.855 0.687 NS
4 0.952 0.867 1.000 S

5 0.964 0_{-}831 0_{-}928 S

6 0.976 0.831 0_{-}976 S

1821-1934 7 0.964 0.988 1.000 S

8 1.000 0.928 0.952 S

9 0.976 0.940 0.952 S

10 0.976 0.940 1.000 S

11 0.940 0.952 0.928 S

12 0.976 0.855 0.916 S

13 0.958 0.986 1_{-}000 S

Table 5_{-}3 Lynx in MacKenzie River in Canada

It seems that the orig_{\overline{1}}na1 data \mathscr{F}\S^{1)},\overline{1}ts square \mathscr{F}b^{2)} and the first d_{\overline{1}}fffference

data \mathscr{F}b^{4)} , its square \mathscr{F}b^{5)} and cube \mathscr{F}\S^{6)} have the local and weak stationar-
ity: in addition, the arctangent and logarithmic transforms bring us the
high-level stationarity.

[5. 3] We \overline{1}1lustrate in Table 5.4 the results of Test(S) for a time
series \mathscr{F}_{4}^{(1)}consist\overline{l}ng of the data of length 108 of NEC’s stock prices in
Japan from Apr\overline{l}11 , 1987 to August 31, 1987.
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year J- (M) (V) (O) (S)

1 1.000 0. 734 1.000 S

2 1.000 0.670 1.000 NS
3 1.000 0.671 0.975 NS
4 0.987 0.974 0.962 S

1987.4. 1
|

5 0.974 0.821 0. 769 NS
6 0.949 0.821 0.769 NS

|

1987.8. 31
7 1.000 0.911 0.962 S

8 1.000 0.911 0.886 S

9 1.000 0.835 0.822 S

10 0. 962 1.000 1.000 S

11 1_{-}000 1.000 1.000 S

12 0.987 0.821 0.962 S

Table 5_{-}4 NEC’s stock prices in Japan

It seems that the original data \mathscr{F}_{4}^{(1)} and its first d_{\overline{1}}fffference\mathscr{F}_{4}^{(4\rangle}\overline{1}n the above
period have the local and weak stationarity. The arctangent transfom
brings us the high-level stationarity.

On the other hand, Table 5.5 \overline{1}ndicates the results for Test(S) for a
time series \mathscr{F}\xi^{1)} consisting of the data of length 119 of NEC’s stock pr\overline{l}ces

in Japan in the period from August 31, 1987 to February 10, 1988 which
contains the s0-called “ black Monday {October 19, 1987)” With respect
to the stationarity, this is far worse than any other data we discuss here.

year j (M) (V) (O) (S)

1 1.000 0. 787 0.686 NS
2 0.955 0. 753 0.663 NS
3 0.966 0. 730 0.640 NS
4 1.000 0. 136 0.989 NS

1987.8.31
|

5 0.977 0_{-}375 0.989 NS
6 1.000 0. 136 1.000 NS

|

1988.2. 10
7 0.933 0.697 0.640 NS
8 0.944 0.697 0.652 NS
9 0.944 0.685 0.663 NS

10 0.989 0.966 0.841 S

11 0.989 0. 818 0. 716 NS
12 0.898 0. 716 0.864 S

m_{-}\tau_{-}1 \ulcorner\ulcorner RT\cap.\cap’--L_{\wedge\wedge}1-\wedgearrow:\wedge\wedge\sim:_{\wedge}T_{\wedge-\wedge r}
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[5. 4] Table 5.6 shows the results of Test(S) for five tw0-dimensional
data \mathscr{F}8^{j\gamma}= (\mathscr{F}\S^{j)}(n) ; 0\leq n\leq 113)(1\leq j\leq 5) consisting of Wolfer’s sunspot
numbers and Lynx \overline{1}n MacKenzie River in Canada from 1821 to 1934.
Here we define

(5. 2) \mathscr{F}\S^{j)}(n)=

-t(\mathscr{F}\{^{1)}(n), \mathscr{F}\S^{1)}(n)) (j=1)
{}^{t}(\mathscr{F}_{1}^{(4)}(n), \mathscr{F}\S^{4)}(n)) (j=2)
t (\arctan(\mathscr{F}\{^{1)}(n)) , arctan (\mathscr{F}\S^{1)}(n)) ) (j=3)
t (\arctan(\mathscr{F}\{^{4)}(n)) , arctan (\mathscr{F}b^{4)}(n)) ) (j=4)

-t ( \log(\mathscr{F}_{1}^{(1)}(n)) , log (\mathscr{F}\S^{1)}(n)) ) (j=5) .

It seems that the two- dimens\overline{l}onal data t (Wolfer’s sunspot numbers, Lynx
in MacKenzie R_{\overline{1}}ver\overline{1}n Canada) as well as its first difference data passes
three kinds of tests, Test(S), Test(S)_{Arct} and Test(S)_{{\rm Log}-}

year j (M) (V) (O) (S)

1 0.980 0.949 0.919 S

2 0.949 0.939 0.919 S

1821-1934 3 0.980 0.939 0.990 S

4 0.970 0.939 0_{-}939 S

5 0.960 0.929 1.000 S

Table 5_{-}6 t (Wolfer’s sunspot numbers, Lynx in Canada)

[5. 5] Finally, Table 5.7 ind_{\overline{1}}cates the results of Test(S)_{Arct} for NEC’s
stock prices in Japan, based upon the sample first difference forward
KM_{2O}-Langevin equations of non-linear type p, 2\leq p\leq 3 , treated in the
subsection [3. 4].
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Here the data \mathscr{F}\}^{j)}= (\mathscr{F}\}^{j)}(n) ; 0\leq n\leq 107)(1\leq J\leq-2) and \mathscr{F}\}^{j)}=(\mathscr{F}t^{j)}(n) ; 0\leq

n\leq 118)(3\leq J\leq-4) in the jth row in Table 5.7 are defined by

(5. 3) \mathscr{F}\}^{J)}(n)=

-t (arct (\mathscr{F}_{4}^{(4)}(n)) , arct (\mathscr{F}_{4}^{(5)}(n)) ) (j=1)
t (arct (\mathscr{F}_{4}^{(4)}(n)) , arct (\mathscr{F}_{4}^{(6)}(n)) ) (j=2)
t (arct (\mathscr{F}\xi^{4)}(n)) , arct (\mathscr{F}\xi^{5)}(n)) ) (j=3)

-t (arct (\mathscr{F}\xi^{4)}(n)) , arct (\mathscr{F}\xi^{6)}(n)) ) (j=4) .

We can say that the two- d\overline{l}mensional data which contains that “ black
Monday ” does not have the local and weak stationarity even if we take
the first difference and then the arctangent transform. Note that the one-
dimensional data obtained by the same transformation passed Test(S) as
shown in Table 5_{-}5 .

REMARK 5. 1_{-} We will in [36] develop the present stat\overline{l}onary Test(S)

by studying \overline{1}n more details non-linear KM_{2O}- Langev\overline{1}n equations of h_{\overline{1}}gher

order. Furthermore, we will investigate the problem of causal relation
among Wolfer’s sunspot numbers and some meteorological data.

\S 6. Simulation

[6. 1] Returning to the same setting as in [3. 1] and [4-1], we treat
any d- dimens\overline{l}onal data \mathscr{F}= (\mathscr{F}(n) ; 0\leq n\leq N) that passed Test(S)

together with (M)N-M, ( V)_{N-M} and (O) N-M
\overline{1}n \S 4. Hence the data

\mathscr{F}_{N-M}= (\mathscr{F}(N-M+n) ; 0\leq n\leq M) in (4. 8) can be regarded as a real\overline{l}za-

tion of the weakly stationary time series X_{N-M}= (X_{N-M}(n) ; 0\leq n\leq M) .
By applying the predict\overline{l}on formula of one-step future in Theorem 2.6

to X_{N-M} , we see from (3. 8) that it would be reasonable to define a simu-
lat\overline{l}on\hat{\mathscr{F}}_{N-M}=(\hat{\mathscr{F}}_{N-M}(n)-,0\leq n\leq M) of \mathscr{F}_{N-M}=(\mathscr{F}(N-M+n),\cdot\circ\leq n\leq M)

by

(6. 1) \{\wedge

\mathscr{F}_{N-M}(0)=\mathscr{F}(N-M)

\hat{\mathscr{F}}_{N-M}(n)=\mu^{\chi}-\sum_{k=0}^{n-1}[0\sqrt{R_{11}^{\chi}(0)}...\sqrt{R_{dd}^{\chi}(0)}0]\gamma_{+}(n, k) .

c [o\sqrt{R_{11}^{\chi}(0)^{-1}}..-]0\sqrt{R_{dd}^{\chi}(0)^{-1}}(\mathscr{F}(N-M+k)-\mu^{\chi}) ,

for every n\in\{1, \cdots , M\} .

[6. 2] For the original data \mathscr{F}^{=}(\mathscr{F}(n);-1\leq n\leq N) treated in [3. 2]

and [4. 3], similarly to [6. 1], we cons\overline{l}der the case where the data \tilde{\mathscr{H}}

passes Test(S) together with (M)_{N-M} , ( V)_{N-M} and (O)_{N-M} in \S 4.
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Taking the same considerat\overline{l}on as in [6. 1] and noting (3-10), we
define a simulation \tilde{\mathscr{F}}_{N-M}=\wedge(\tilde{\mathscr{F}}_{N-M}(n)-\circ\leq n\leq M)\wedge,of \mathscr{F}_{N-M}=(\mathscr{F}(N-M+

n) ; 0\leq n\leq M ) by

(6. 2) \{\tilde{\mathscr{F}}_{N-M}(n)=\mathscr{F}(N-M+n-1)+\mu^{\tilde{X}}\mathscr{F}_{N-M}(0)=\mathscr{F}(N-M)\wedge\sim\wedge

- \sum_{k=0}^{n-1}[\sqrt{R_{11}^{\tilde{\chi}}(0)}0^{\cdot}..\sqrt{R_{dd}^{\tilde{\chi}}(0)}0]\tilde{\gamma}_{+}(n, k) .

o[_{0}^{\sqrt{R_{11}^{\tilde{2}’}(0)^{-1}}}-..\sqrt{R_{dd}^{\tilde{\chi}}(0)^{-1}}0](\tilde{\mathscr{F}}(N-M+k)-\mu^{\tilde{\chi}})

for every n\in\{1, \cdots-M\} .

[6. 3] On the analogy of [6- 1] and [6- 2], we consider the original
data \mathscr{U}= (\mathscr{U}(n) ; 0\leq n\leq N) treated in [3. 3] and [4. 3] such that for each
p\in\{2,3\} the standardized data \mathscr{H}^{(p)} passes Test(S) together with
(M)_{N-Mp} , ( V)_{N-Mp} and (O)_{N-Mp}(2\leq p\leq 3) , where M_{p}(2\leq p\leq 3) are given by

(6-3) M_{2}=M_{3}=[3\sqrt{N+1}/2]-1 .
Taking the same consideration as \overline{1}n[6.1] and then not\overline{l}ng(3.13)_{p}(2

\leq p\leq 3) , we define two kinds of S\overline{l}mulations\hat{\mathscr{U}}_{N-Mp}=(\hat{\mathscr{U}}k_{-Mp}^{p)}(n) ; 0\leq n\leq

M_{p}) of \mathscr{U}_{N-Mp}=(\mathscr{U}(N-M_{p}+n) ; 0\leq n\leq M_{p}) by

(6. 4)_{p}
\{\begin{array}{l}\hat{\mathscr{U}}k_{-Mp}^{p)}(0)=\mathscr{U}(N-M_{p})\hat{\mathscr{U}}\wp_{-Mp})(n)=\mu_{1}-\sum_{k=0}^{n-1}\gamma_{+}^{(p}i(n,k)(\mathscr{U}(N-M_{p}+k)-\mu_{1})\end{array}

- \sum_{k=0}^{n-1}(\alpha_{1}/\alpha_{p})\gamma_{+}^{(p}\}(n, k)(\mathscr{U}(N-M_{p}+k)^{p}-\mu_{p})

for every p\in\{2,3\} and n\in\{1, \cdots-M_{p}\} .
[6. 4] F_{\overline{1}}na11y , for the orig_{\overline{1}}na1 data \mathscr{U}_{-1}= (\mathscr{U}(n) ;-1 \leq n\leq N) ar-

gued in [3. 4] and [4. 3], we consider the case where Test(S) holds
together with (M)_{N-Mp} , ( V)_{N-M_{P}} and (O)_{N-Mp} in \S 4 for the standardized
data \tilde{\mathscr{H}}^{(p)}\overline{1}n(3.20) .

By taking account of (3. 17)_{p}(2\leq p\leq 3) , the same procedure allows us
to define two kinds of simulat\overline{l}ons \tilde{\mathscr{U}}^{(p)}N-M_{P}=\wedge(\tilde{\mathscr{U}}_{N-Mp}^{(p)}(n);0\leq n\leq M_{p})\wedge of
\mathscr{U}_{N-Mp}=(\mathscr{U}(N-M_{p}+n)-,0\leq n\leq M_{p}) by
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(6. 5)_{p} \{\tilde{\mathscr{U}}k_{-Mp}^{p)}(n)=\mathscr{U}(N-M_{p}+n-1)+\tilde{\mu}_{1}\wedge\sim t_{-Mp}^{p)}(0)=\mathscr{U}(N-M_{p})

- \sum_{k=0}^{n-1}\tilde{\gamma}_{+}^{(p}1(n, k)(\tilde{\mathscr{U}}(N-M_{p}+k)-\tilde{\mu}_{1})

- \sum_{k=0}^{n-1}(\tilde{\alpha}_{1}/\tilde{\alpha}_{p})\tilde{\gamma}_{+}^{(p}4(n, k)(\tilde{\mathscr{U}}(N-M_{p}+k)^{p}-\tilde{\mu}_{p}) ,

for every p\in\{2,3\} and n\in\{1, \cdot\cdot-,M_{p}\wedge\} .

\S 7. Prediction

The simulations obtained in \S 6 are based upon the s0-called backward
prediction formulae. In this section we give forward prediction formulae
for finite-step future \hat{\mathscr{F}}(N+m)(1\leq m\leq M-1) of the data \mathscr{F}=(\mathscr{F}(n) ; 0\leq

n\leq N) that passed Test(S) together with (M) N-M, ( V)_{N-M} and (O) N-M

1ni \S 4.

[7. 1] We consider the same situation as in [6. 1]. Since \mathscr{H}_{N-M}=(\mathscr{H}

(N-M+n) ; 0\leq n\leq M ) in (4. 8) can be regarded as a realization of the
weakly stationary time series X_{N-M}= (X_{N-M}(n) ; 0\leq n\leq M) , the system
\{\gamma_{+}(n, k) ; 0\leq k<n\leq M\} can be regarded as a candidate for the forward
KM_{2O}- Langev\overline{1}n data associated with Xn-m. Therefore, it follows from
(3. 8) that it would be reasonable to give a prediction formula for one-step
future \hat{\mathscr{F}}(N+1) of the data \mathscr{F} by

(7. 1) \hat{\mathscr{F}}(N+1)=\mu^{\chi}-\sum_{k=0}^{M-1}[0\sqrt{R_{11}^{\chi}(0)}...0]\sqrt{R_{dd}^{\chi}(0)}\gamma_{+}(M, k) .

o [0\sqrt{R_{11}^{\chi}(0)^{-1}}.-.]0(\mathscr{F}(N-M+1+k)-\mu^{\chi})\sqrt{R_{dd}^{\chi}(0)^{-1}} .

In fact, if there exists an R^{d}Unvalued random variable X_{N-M}(M+1) such
that the extended time series (X_{N-M}(n);0\leq n\leq M+1) is still weakly sta-
tionary, then the forward KM_{2O}-Langevin data assoc\overline{l}ated with it must be
equal to the one associated with Xn-m. Hence, (7. 1) comes from (6-1).

Furthemore, if the predict\overline{l}on formulae for finite step-future \hat{\mathscr{F}}(N+m)

(1\leq m\leq m_{0}) until some time m_{0}\in\{1, \cdots M-2\} are obtained, then a pre-
dict\overline{l}on formula for m+1 -step future \hat{\mathscr{F}}(N+m_{0}+1) of \mathscr{F} is given by
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(7. 2) \hat{\mathscr{F}}(N+m_{0}+1)

= \mu^{\chi}-\sum_{k=0}^{M-mo-1}[0\sqrt{R_{11}^{\chi}(0)}...0]\sqrt{R_{dd}^{\chi}(0)}\gamma_{+}(M, k) .

o [^{\sqrt{R_{11}^{\chi}(0)^{-1}}0}0^{\cdot}..\sqrt{R_{dd}^{\chi}(0)^{-1}}](\mathscr{F}(N-M+m_{0}+1+k)-\mu^{\chi})

- [mathring]_{\sum_{m=0}^{m}}[0\sqrt{R_{11}^{\chi}(0)}...0]\sqrt{R_{dd}^{\chi}(0)}\gamma_{+}(M, M-m_{0}-1+m) .

Q [^{\sqrt{R_{11}^{\chi}(0)^{-1}}}0^{\cdot}..\sqrt{R_{dd}^{\chi}(0)^{-1}}0](\hat{\mathscr{F}}(N+m)-\mu^{\chi}) .

DEFINITION 7. 1. We call (7. 2) with (7. 1) \bm{K}M_{2}O -predictors.

[7. 2] For the data \mathscr{F}= (\mathscr{F}(n) ;-1 \leq n\leq N) treated in [6. 2], the
KM_{2O}-predictors for m-step future \tilde{\mathscr{F}}(N\wedge+m) of \mathscr{F}(1\leq m\leq M-1) are
given inductively by

(7. 3) \tilde{\mathscr{F}}(N+1)=\mathscr{F}(N)+\mu^{\chi}\wedge

- \sum_{k=0}^{M-1}[\sqrt{R_{11}^{\tilde{\chi}}(0)}...0]\sqrt{R_{dd}^{\tilde{\chi}}(0)}\tilde{\gamma}_{+}(M0’ k) .

o [\sqrt{R_{11}^{\grave{\chi}}(0)^{-1}}...0]0\sqrt{R_{dd}^{\tilde{\chi}}(0)^{-1}}(\tilde{\mathscr{F}}(N-M+k+1)-\mu^{\tilde{\chi}})

and

(7. 4) \tilde{\mathscr{F}}(N+m_{0}+1)=\tilde{\mathscr{F}}(N+m_{0})+\mu^{\tilde{\chi}}\wedge\wedge

- \sum_{k=0}^{M-mo-1}[\sqrt{R_{11}^{\tilde{\chi}}(0)}...0]\sqrt{R_{dd}^{\tilde{\chi}}(0)}\tilde{\gamma}_{+}(M, k)0^{\cdot}

\circ[\sqrt{R_{11}^{\tilde{\chi}}(0)^{-1}}...0]\sqrt{R_{dd}^{\tilde{\chi}}(0)^{-1}}\simeq 0(\tilde{\mathscr{F}}(N-M_{0}+m_{0}+k+1)-\mu^{r})
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-[\sqrt{R_{11}^{\tilde{\chi}}(0)}...0]\sqrt{R_{dd}^{\tilde{\chi}}(0)}\tilde{\gamma}_{+}(M, M-m_{0})0^{\cdot}

\circ[\sqrt{R_{11}^{\tilde{\chi}}(0)^{-1}}...0]\sqrt{R_{dd}^{\tilde{\chi}}(0)^{-1}}(\tilde{\mathscr{F}}(N+1)-\mathscr{F}(n)-\mu^{\tilde{\chi}})0\wedge

- [mathring]_{\sum_{m=2}^{m}}[\sqrt{R_{11}^{\tilde{\chi}}(0)}...0]\sqrt{R_{dd}^{\tilde{\chi}}(0)}\tilde{\gamma}_{+}(M, M-m_{0}-1+m)0^{\cdot}

\circ[\sqrt{R_{11}^{\tilde{\chi}}(0)^{-1}}0^{\cdot}..\sqrt{R_{dd}^{\tilde{\chi}}(0)^{-1}}0](\tilde{\mathscr{F}}(N+m)-\tilde{\mathscr{F}}(N+m-1)-\mu^{\tilde{\chi}})\wedge\wedge .

[7. 3] For the data \mathscr{U}= (\mathscr{U}(n) ; 0\leq n\leq N) treated \overline{1}n[6.3] , we can
give two kinds of KM_{2O}-predictors for finite-step future \hat{\mathscr{U}}^{(p)}(N+m) of 9’
(2\leq p\leq 3,1\leq m\leq M_{p}-1) as follows:

(7. 5)_{p} \hat{\mathscr{U}}^{(p)}(N+1)=\mu_{1}-\sum_{k=0}^{Mp-1}\gamma_{+}^{(p}1(M_{p}, k)(\mathscr{U}(n-M_{p}+1+k)-\mu_{1})

- \sum_{k=0}^{Mp-1}(\alpha_{1}/\alpha_{p})\gamma_{+}^{(p}\}(M_{p}, k)(2’(N-M_{p}+1+k)^{p}-\mu_{p})

and

(7. 6)_{p} \hat{\mathscr{U}}^{(p)}(N+m_{0}+1)=\mu_{1}-\sum_{k=0}^{Mp-1}\gamma_{+}^{(p}i(M_{p}, k) (p(N-M_{p}+1+k)-\mu_{1})

- [mathring]_{\sum_{m=1}^{m}}\gamma_{+}^{(p}} (M_{p}, M_{p}-1-m_{0}+m)(\hat{\mathscr{U}}^{(p)}(N+m)-\mu_{p})

- \sum_{k=0}^{Mp-mo-1}(\alpha_{1}/\alpha_{p})\gamma_{+}^{(p}\}(M_{p}, k)(g’(n-M_{p}+m_{0}+1+k)^{p}-\mu_{p})

-(\alpha_{1}/\alpha_{p})\gamma_{+}^{(p}4(M_{p}, M_{p}-m)(\hat{\mathscr{U}}^{(p)}(N+1)^{p}-\mu_{p})

- [mathring]_{\sum_{m=2}^{m}}\gamma_{+}^{(p}3(M_{p}, M_{p}-m_{0}-1+m)(\hat{\mathscr{U}}^{(p)}(N+m)^{p}-\mu_{p}) ,

where m_{0}\in\{1, \cdots , M_{p}-2\} and \mu_{q} and \alpha_{q}(1\leq q\leq 3) are given in (3. 14) and
(3-15), respectively.

[7. 4] Finally, also for the data \mathscr{U}_{-1}=(p(n);-1\leq n\leq N) treated in
[6. 4], we can give two kinds of KM_{2O}-predictors for finite-step future \hat{\tilde{\mathscr{U}}}^{(p)}

(N+m) of \mathscr{U}_{-1}(2\leq p\leq 3,1\leq m\leq M_{p}-1) as follows-.
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(7. 7)_{p} \tilde{\mathscr{U}}^{(p)}(N+1)=\mathscr{U}(N)+\tilde{\mu}_{1}-\sum_{k=0}^{Mp-1}\tilde{\gamma}_{+}^{(p}1(M_{p}, k)(\tilde{\mathscr{U}}(N-M_{p}+1+k)-\tilde{\mu}_{1})\wedge

- \sum_{k=0}^{Mp-1}(\tilde{\alpha}_{1}/\tilde{\alpha}_{p})\tilde{\gamma}_{+}^{(p}\}(M_{p}, k)(\tilde{\mathscr{U}}(N-M_{p}+1+k)^{p}-\tilde{\mu}_{p})

and

(7. 8)_{p} \hat{\tilde{\mathscr{U}}}^{(p)}(N+m_{0}+1)=\tilde{\mathscr{U}}^{(p)}(N+m_{0})+\tilde{\mu}_{1}\wedge

- \sum_{k=0}^{Mp-mo-1}\tilde{\gamma}_{+}^{(p}i(M_{p}, k)(\tilde{\mathscr{U}}^{(p)}(N-M_{p}+m+1+k)-\tilde{\mu}_{1})\wedge

-\tilde{\gamma}_{+}^{(p}i(M_{p}, M_{p}-m)(\tilde{\mathscr{U}}^{(p)}(N+1)-\mathscr{U}(N)-\tilde{\mu}_{1})\wedge

- [mathring]_{\sum_{m=2}^{m}}\tilde{\gamma}_{+}^{(p}1(M_{p}, M_{p}-m_{0}-1+m)(\tilde{\mathscr{U}}^{(p)}(N+m)-\tilde{\mathscr{U}}^{(p)}(N+m-1)-\tilde{\mu}_{1})\wedge\wedge

- \sum_{k=0}^{Mp-mo-1}(\tilde{\alpha}_{1}/\tilde{\alpha}_{p})\tilde{\gamma}_{+}^{(p}4(M_{p}, k)(\tilde{\mathscr{U}}(N-M_{p}+m+1+k)^{p}-\tilde{\mu}_{p})

-(\tilde{\alpha}_{1}/\tilde{\alpha}_{p})\tilde{\gamma}_{+}^{(p}\}(M_{p}, M_{p}-m_{0})((\mathscr{U}^{(p\rangle}(N+1)-\mathscr{U}(N))^{p}-\tilde{\mu}_{p})\simeq\wedge

- [mathring]_{\sum_{m=2}^{m}}(\tilde{\alpha}_{1}/\tilde{\alpha}_{p})\tilde{\gamma}_{+}^{(p}\}(M_{p}, M_{p}-m_{0}-1+m)((\tilde{\mathscr{U}}^{(p)}(N+m)\wedge

-\tilde{\mathscr{U}}^{(p)}(N+m-1))^{p}-\tilde{\mu}_{p})\wedge ,

where m\in\{1, \cdots. M_{p}-2\} and \tilde{\mu}_{q} and \tilde{\alpha}_{q}(1\leq q\leq 3) are g_{\overline{1}}ven by (3. 18) and
(3. 19), respectively.

[7. 5] Table 7.1(resp. Table 7.2) shows the results of Test(S) for
Wolfer’s sunspot numbers for 100 years from 1880 to 1979(resp. from 1889
to 1988). We find that the orig_{\overline{1}}na1 data do not have the local and weak
stationarity, but their first differences do have.
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Therefore, by virtue of formulae (7. 3) and (7. 4), we get the results \overline{1}n

Table 7.3 and Figure 7.1 (resp. Table 7_{-}4 and Figure 7.2), by applying the
sample first difference forward KM_{2O}-Langevin equation in [3. 2] to the
data from 1879 to (resp. from 1888 to 1988).

KM_{2O}-predictor for Wolfer’s sunspot numbers

1980 154.6 163.9
1981 140.9 154-1
1982 115.9 133. 1

1983 66.6 107.5
yearl984l985l986l988l987obse_{179}rvation100.245.929.213.4-KM_{2}O- predictor110.287.073-069.373.6 {?} yearKM_{2O}- pr- 199464ed_{\overline{1C}tor1989142.61990162.51991153.11992124.9199390.32199554.5199637.8199750.3

Table 7_{-}3 (1980-1988) Table 7. 4 (1989-1997)

year observation KM_{2O}-predictor

1980 154. 6 163-9
1981 140. 9 154-1
1982 115. 9 133. 1

1983 66. 6 107. 5
1984 45. 9 87. 0
1985 17-9 73-0
1986 13. 4 69. 3
1987 29. 2 73. 6
1988 100. 2 110. 2

Figure 7_{-}1 Pred_{\overline{1}C}tion for Wolfer’s sunspot numbers
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Figure 7. 2 Prediction for Wolfer’s sunspot numbers
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