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Introduction

In considering the problem of local isometric imbeddings of Rieman-
nian manifolds M into the Euclidean spaces, it is important whether a
given Riemannian manifold admits a solution of the Gauss equation in a
given codimension. The author and Kaneda treated this problem in
and proved the non-existence of local isometric immersions of the Rieman-
nian symmetric spaces, where the order of the codimension is about 1/2-
dim M. Later, the author improved these results for special classes of
Riemannian manifolds in the papers [3], [6], and gave some polynomial
relations on the curvature tensor of the Riemannian submanifolds in the
case of codimension 2 . But in higher codimensional cases, almost
nothing is known at present, except for some special cases, concerning the
solvability of the Gauss equation. This difficulty essentially originates in
the complicated structure of the polynomial ring of the space of
curvature-like tensors. (For example, compare with the simple results in
the case of matrices [1], [2], [11], and the character tables of curvature-
like tensors stated in [4, p.112, p.130].) In this paper, to improve these
results, we generalize the notion of the Gauss equation (the generalized
Gauss equation), and give new conditions on the curvature tensor in order
to admit a solution of the Gauss equation, by which we can prove the
non-existence of local isometric imbeddings of some Riemannian manifolds
that cannot be treated by previously known methods.

Roughly speaking, the generalized Gauss equation, which we call the
g-G-equation for simplicity, is the equation of polynomial valued 2-forms

(*) C=ar \Nfi+:+ar B,

where C is the curvature of M and a;, B: are some polynomial valued
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I-forms on the tangent space of M. (We consider {a;, 8:} as an unknown
quantity of the equation. For the precise definition, see §1.) Then we
can prove that if the original Gauss equation of the #-dimensional Rieman-
nian manifold admits a solution in codimension 7, the curvature C is ex-
pressed in the above form (*) (Theorem 1.3). Thus, we may say that
the above equation (*) is a generalization of the Gauss equation, and in
this new simple formulation, the solvability of the Gauss equation is
reduced to the determination of the “rank” of the polynomial valued 2-
form C. In the group theoretical viewpoint, this generalization corre-
sponds to the separation of the variables, or the group action of GL(%, R)
into the product of GL, which gives us a geometric perspective of the
structure of the Gauss equation. However, in contrast to the case of
scalar valued 2-form, (i.e., the case where a;, 8: are usual scalar valued
I-forms), this reformulated problem is still hard to solve in general,
though it is easier to treat than the original equation itself. Our first
main purpose of this paper is to give a necessary and (almost) sufficient
condition for the solvability of the g-G-equation in the case of » <#n—2, and
apply it to the problem of local isometric imbeddings of Riemannian mani-
folds. In addition, as we shall state in the latter half of this paper, the
g-G-equation also possesses many interesting algebraic concepts and prop-
erties that are described by the invariants of multi-tensor spaces, besides
actual applications in geometry. Our second main purpose is to clarify
such algebraic structure of the g-G-equation in some detail through these
invariants.

Now, we explain the contents of this paper. In the first part of this
paper (§ 1~§4), we study basic facts on the g-G-equation. In §1, after
introducing the notion of the g-G-equation, we state the relation between
this equation and the original Gauss equation (Theorem 1.3). Further-
more, to simplify later calculations, we introduce a special class of the
g-G-equation, called the partial Gauss equation (the p-G-equation). Next,
in §2, we state some conditions in order that the curvature C admits a
solution of the g-G-equation (or the p-G-equation) in codimension » <#n—2
(Theorems 2.4 and B.5). Namely, we prove that if the g-G-equation (or
the p-G-equation) admits a solution, then a certain linear map, which is
determined by the curvature, must possess a non-zero decomposable ker-
nel. In addition, we prove that this condition is (almost) sufficient for
the solvability of the equation. We remark that in the proof of the con-
verse part in [lheorem 2.4, “generalized Cartan’s lemma ” (the
polynomial version of classical Cartan’s lemma [7]) plays a fundamental
role. After these preliminaries, we apply in §3 and §4 these results to
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the problem of local isometric imbeddings of Riemannian manifolds.
First, in § 3, we treat the case of Riemannian symmetric spaces. In par-
ticular, for semi-simple Lie groups G, the condition stated in § 2 (Theo-
rem 2.5) is reformulated into the following simple form (Theorem 3.1D :
If G is locally isometrically immersed into R™*”, then there exists a non-
zero decomposable 7-form ®& A"g* such that ® A dw.=0 for all non-zero
roots a, where g is the Lie algebra of G and w. is the g.-component of the
canonical 1-form on G. (For the precise statement, see § 3.) As an appli-
cation of this theorem, we prove that SU(3) cannot be locally isometrical-
ly immersed into R'?, which improves the result in [8] By using the p-G-
equations, we also prove the non-existence of local isometric immersions
of the symmetric spaces SO(), SU@B)/SO@3) and P3*(C) into R™, R’
and R® respectively, some of which are already proved by different
methods in [3], [4] Next, in §4, we study the actual range of the
codimension » where our new condition on the curvature tensor
2.5) serves as a true condition. For example, as a general result, we can
show that generic #-dimensional manifolds cannot be locally isometrically
immersed into the Euclidean spaces of codimension at least of order
r~2/3+*n by explicit calculations on the curvature. (Note that the condi-
tion in is useful only in the range of order r~1/2+n.)

In the second part of this paper (§5, § 6 and Appendix), we study the
algebraic structure of the g-G-equation, apart from actual applications in
geometry. First, in § 5, we state some necessary conditions on the curva-
ture. Concerning the solvability of the g-G-equation, there exist many
different types of conditions besides the one stated in §2. As typical
examples, we show 5 types of conditions that are expressed as polynomial
relations of the curvature tensor (Propositions 5.1~5.4). These
polynomials are the invariants of certain multi-tensor spaces, and we may
say that these invariants express new concepts in the multi-tensor spaces,
just as determinants define the concept “rank ” of matrices. (But the sit-
uation for multi-tensor spaces is not so simple as the case of matrices.
For details, see Appendix.) Finally, in § 6, as an opposite case to § 5, we
study the case where the g-G-equations always admit solutions. As in the
case of the original Gauss equation, C always admits a solution if the
codimension 7 is sufficiently large. We give some estimates of such » for
general #». But minimum value of » changes complicatedly according as
the value of #» and the number of the variables. We state this phenome-
non by giving some examples. In Appendix, as an example of the compli-
cated structure of multi-tensor spaces, we explain the invariant of the
space R*®E®k* (k=R or C) appeared in §5 and §6, by giving 5
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different expressions. Besides the cases in §5 and § 6, we encounter this
invariant in many different situations where the 3-tensor space £*® k?Q® k2
is concerned. These 5 compound expressions have their own geometric
meaning respectively, and so it is surprising that they all just coincide in
spite of their different appearances.

§1. Generalized Gauss equations.

In this section, we first settle the notations and define the generalized
Gauss equation (the g-G-equation). And next, after reformulating the
equation in a matrix form, we state a relation between the g-G-equation
and the Gauss equation (Theorem 1.3).

1.1. Let A be a polynomial ring over the field £ of real numbers or
complex numbers with variables x1,..., %, y1,...,yn, i.e€., A=Fk[x1, ..., x,
..., ¥m] (B=R or C), and AZP’;ZOA""’ be the homogeneous decomposi-

tion of A, where A”? is the space of polynomials that are homogeneous of
degree p (resp. ¢) with respect to x: (resp. ;). (We consider A*°=%.)
We denote by V' the n-dimensional vector space £” and V* its dual space.
Then, elements a € V*® A, € A*® A® may be considered as
polynomial valued 1-forms on V. Since the ring A is commutative, the
exterior product a ABEA?V*® A™ is naturally defined as in the scalar
valued case.

DEFINITION 1.1. Let CEA’V*® A", a,.€ V*® A" and B:.€E V*®
A" (1<i<r). Then we call the equality

) C=aApt+--+ar\pBr

the generalized Gauss equation (the g-G-equation), and the number 7 its
codimension. We say that CEA’V*® A" admits a solution of the g-G-
equation in codimension 7 if there exist ;€ V*® A" and :€ V*® A™
(1<i<7) which satisfy (x). We often call C the curvature, and {a Bi}
the solution of the g-G-equation.

In the case of /=m=1, each A”? is isomorphic to £ and hence the
element CEA?V*® A" may be naturally considered as a usual scalar
valued 2-form. Thus, in the above formulation, the least number » where
C admits a solution may be considered as a polynomial version of the
“rank ” of the 2-form C.

1.2, Next, for later use, we reformulate the equation (*) in a
matrix form. Let {e, ..., ex} be a basis of V and we put C;=C(e; ¢) &
A"'. Then clearly, we have C;=—C;. We can naturally consider the
polynomial C;E A" as an (/, m)-matrix by regarding the coefficient of
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x%yq in Cy; as the (p, ¢)-component of the matrix. In the following, we
often use this identification.

LEMMA 1.2. A curvature CEN*V*QAY admits a solution of the
g-G-equation in codimension r if and only if there exist (I, r)-matrices
Xy, ..., Xn and (r, m)-matrices Y\, ..., Yn satisfying

(**) Ci=X.Y;— XY, for 1<i, j<m.

.

PROOF. Assume that C is equal to Z}lai/\ B:. We express a: (resp.
B:) as nga,-psxpes (resp. qZ;b,-qsyqes), and define matrices X;, Y: (1<i<n)
by

a1 " Qrii bllz'""blmz'

Qv Cri brli""bmi

Then we have immediately the equality (**+). The converse can be
checked in the same way. q.e.d.

Now, we state a relation between the g-G-equation and the Gauss
equation. For this purpose, we prepare several notations. In the rest of
this subsection 1.2, we assume that the ground field 2 is R, and the real
vector spaces V, R™ are endowed with the positive definite inner products,
which we denote by (, ) and < , >, respectively. Let K be the space
of curvature-like tensors on V :

K={Re /\ZV*®/\2V*|X§ZR(X, Y,Z W)=0},

and we define a quadratic map y-: S’V*® R™—K by

vila)(X, Y, Z W)=<a(X, 2), a(Y, W)>
—<a(X, W), a(Y, Z2)>,

for a€S?V*QR", X, Y, Z, W& V. Then the Gauss equation is expres-
sed in the form R=y,(a«) (REK), where we consider V as a tangent
space of an z-dimensional Riemannian manifold.

Next, by using the metric ( , ) of V, we regard REK as an element
of A2V*®@V*®V by

(RX, Y)Z W)=—RX, Y, ZW), for X, Y, Z WeV.
Under these notations, we define an (#, »)-matrix C;€EV*® V by

Cij:R(ei’ ej>) 1£i) jsn;
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where {e, ..., en} is a (not necessary orthonormal) basis of V. By put-
ting /=m=n=dim V, the set of matrices C=(C;) can be considered as
an element of A’V*® A" as stated before. Then, the concept of the g-G-
equation is clarified by the following theorem.

THEOREM 1.3. Assume that REK adwmits a solution of the Gauss
equation in codimension v, i.e., R EIm y,. Then the above C=(C;)€E
N2V *® A possesses a solution of the g-G-equation in codimension 7.

In particular, if the curvature C constructed from REK does not
admit a solution of the g-G-equation in codimension 7, then any #-
dimensional Riemannian manifold having R as a curvature at one point
cannot be isometrically immersed into R"*", because the Gauss equation
does not have a solution by this theorem.

To prove [Theorem 1.3, we must introduce several notations. Let
o(n+7) be the Lie algebra consisting of skew symmetric (n+7, n+7)-
matrices and o(n+7)=t®m be the canonical decomposition :

t=o0(n)®o(r»)

m= {[0‘5_ _Otg] \ & is an (7, »)-matrix }

We express the above element of m simply as & and consider it as a linear

map from V to R”. Next, we define a quadratic map y: V*®@m—
AN*V*®o(n) by

y(a) (X, Y)=—[a(X), a(Y)]n,

where a€V*®m, X, YEV, and [ , lun is the o(n)-component of [, ].
Explicitly, we have

y(a) (X, Y)="a(X)a(Y)—*a(Y)a(X).

Since m is isomorphic to V*®R", there is a natural inclusion S? V*®
R™— V*®m. In addition, using the metric ( , ) of V, there exists an
inclusion KCA?V*@A?V*=A2V*®0(xn). Under these notations, we
have the following lemma.

LEMMA 1.4.  The following diagram is commutative :

V*®m ANV *Qo(n)
U U
S*V*®R" K

Yr
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PROOF. For a€S’V*®R" and XE V, we define a(X)Em=V*Q R"
by a(X)(Y)=a(X, Y). Then

()X, YDZW)=—[a(X), a(Y)]umZ W)
=CaX)a(Y)Z~*a(Y)a(X)Z W)
=<a(YDZ, a(XOW>—<a(X)Z a(Y )W >
=<a(Y,Z2),a X, W)>—F<alX, 2), a(Y, W)>
==y ()XY, Z W)
=(yr(a)(X,Y)Z W),

and hence, we have y(a) (X, Y)=9,(a)(X, Y)E0(n). q.e.d.

Now, under these preliminaries, we prove [Theorem 1.3. If REIm vy,
then by Lemma 1.4, we have REIm v, i.e., there exists «€ V*®m such
that R=y(a). Hence, we have

Cij:R<ez‘, ej) = ta(e,-)a(ej) —ta(ej)a(ei)Eo(n) CV*eV.

Therefore, by putting X;=‘a(e;) and Yi=a(e;)) (1<i<n), it follows that
Ci;=X:Y;—X;Y:.. (Note that X; is an (#, )-matrix and Y; is an (7, n)-
matrix.) Thus, by Lemma 1.2, C admits a solution of the g-G-equation
in codimension 7. q.e.d.

We remark that after considering R as an element of A2V*®@ V*® V,
we do not use the metric of V any more, and therefore, we may treat
everything in the GL(V)-invariant category. In particular, the basis
{ey, ..., en} need not be orthonormal.

1.3. Finally, for later use, we introduce a special class of the g-G-
equation. In Definition 1.1, we call the equality (*) the partial Gauss
equation (the p-G-equation) if m=1. In this situation, we may drop the
variable y, and in the following, we often use the notations: A=4#[x, ..
xz]ngoAp, CE /\2V*®Al, a:< V*®Al and ,3:‘6 V* (13237’>

A

Now, we assume /=n=dim V, m=1 and 2=R. Using a curvature
REK and an element ZE€ V, we define a matrix C; by

Ci=R(e, e)Z, 1<i j<m.

Then we can consider the p-G-equation for C=(C;) because the size of
the matrix Cj is equal to (%,1). In this situation, we have the following
corollary, which is the p-G-equation of [Theorem 1. 3.

COROLLARY 1.5. If REK adwmits a solution of the Gauss equation in
codimension v, the above C=(C;)EN*V*®A' also admits a solution of
the p-G-equation in codimension r for any ZEV, i. e., there exist (n, v)-
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matrices X, ..., Xn and (v, 1)-matrices Yi,..., Yn such that Cy;=X,Y;—
X;Y.

PROOF. We have only to replace Y:=a(e;) in the proof of
1.3by Yi=a(e) Z q. e. d.

In actual applications in §3 and § 4, we use the p-G-equation instead
of the g-G-equation because the former is easier to calculate for concrete
examples. We remark that, in the group theoretical point of view, we
can study the g-G-equation (or the p-G-equation) in the GL(n, k) X GL(],
k)X GL(m, k)-(or GL(n, k) X GL(l, k)-) invariant category, although the
Gauss equation itself only in the GL(%, R)-invariant category (cf. [4].
This difference is implicitly essential in the following arguments.

§ 2. Main theorem.

2.1. In this section we state a necessary and (almost) sufficient con-
dition in order that CE A’V *® A" may admit a solution of the g-G-
equation (or the p-G-equation) in the case of »<n—2. To state the main
result, we must prepare several concepts on polynomial valued forms, and
for this purpose, we first review the results in concerning a generaliza-
tion of Cartan’s lemma on the Grassmann algebra. We use the same nota-
tions as in § 1.

PROPOSITION 2.1 (cf. [7]). Assume that n, I, », ¢>0, p=>0 and n=
p+r. Then there exists an open dense subset UCV*Q@ A QL™ (=k"Q k!
® k™) satisfying the following : If a={ay,...,ar}EU (a:€E V*® A™) and
B ..., BrENPV*® AT satisfy

a At tarABr=0E APV *Q AIH10
then theve exist y;=y;ENPTTV*Q AT (1<i, j<v) such that
Bi=ar ANyt FarNyn, 1<i<vy

(We consider A~V *={0} in the case of »p=0.)

For the detailed proof, see [7]. The case [=p=1 in this proposition
corresponds to classical Cartan’s lemma (for example, see ), and
hence this is a natural generalization of it to the polynomial valued case.
Note that the condition «€ U is indispensable, namely, the element «
must be “generic” to obtain the final expression. (Actually this open
dense subset U is a complement of an algebraic set of V*® A"®%", and
an explicit example is stated in Appendix of this paper.) In the fol-
lowing, for later use, we express the above subset U as Up.qr in order to
distinguish the value of p, ¢, ». Note that the subset Up,q,r actually exists
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only in the case p=0, ¢=1, »=1 and n=p+7.
Next, we state one more lemma. The proof is also given in
(Lemma 4 in § 4).

LEMMA 2.2. Assume that n=p+1, [=2 and p=1. Then there exists
an open dense subset W,C V*®@A"® kP such that the linear map V*—
APV *Q AP defined by

B——a A NapAB

is injective for a={a, ..., ap})EWp (a:EV*®A").
Now, we introduce the concept of “decomposability ” of polynomial
valued forms.

DEFINITION 2.3. (1) An element ® EA? V*® A?° is called
decomposable if there exist a, ..., apE V*® A" such that D=a A" Nap.

(2) Assume #n=p+2. We say DEA?V*® AP® is regularly
decomposable if there exist an,..., apE V*®A"" satisfying the following
conditions :

O=ar1 N Nap
a1E Upy1,p1
{ar, a2} E Up,p-1,2

------------------------

{an, ..., ap}E Us,p.
In the case of /=2, we impose the additional condition
{ay, ..., ap)E Wh.

We remark that the above subsets Up+i,pa~Us1,p actually exist
because n=p+2. It is clear from Proposition 2.1, Lemma 2.2 and the
definition that the set of regularly decomposable elements constitute an
open dense subset in the set of all decomposable elements, namely, we
may say that “ generic ” decomposable element is regularly decomposable.

2.2. Let CEA*V*®A™ and p be a positive integer. Using the cur-
vature C, we define a linear map

Co: NPV*Q@API— NP * @ AP

by C»(®)=®AC. Then we have the following theorem, which is the first
main result in this section.

THEOREM 2.4. Let CEN2V*® A" and assume that r<n—2. If C
admits a solution of the g-G-equation in codimension v, then there exists a
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non-zero decomposable kernel of the linear map C,: N"V*® AT'—
NTEV*@ AT Conversely, if the map C, admits a regularly decomposa-
ble kernel ax/\--- Nay, then there exist B, ..., BrEV*Q® A* such that C=a
ANt tar\Br, i.e.,, C admits a solution of the g-G-equation in
codimension v. In addition, if 1=2, such B: exist uniquely.

REMARK.  The converse part of this theorem does not hold in general
if we only assume that C, admits a non-zero decomposable kernel. (See
the example stated at the end of §3.) But this theorem gives a necessary
and almost sufficient condition for the solvability of the g-G-equation in
the case of »<#%—2 because “generic” decomposable element is regularly
decomposable, as stated above.

PROOF.  First, assume that C admits a solution of the g-G-equation
in codimension 7. Then C is expressed in the form e AGi+ -+ -+ ar A B
If ai/A-+-Aar#0, then this form is a desired non-zero decomposable ker-
nel of C,. In the case ai\ Nar=0, we may assume that ex A+ Nas+
0 and ex N\ - NasANa:=0 (s+1<i<7) after a suitable change of indices.
Then clearly, we have a1 A---AasAC=0. Thus, we have only to find
s, ..., a7 S V*®AY such that i A - AasAasai A Aar#+0. We show
that actually these forms exist. Let f(x,...,*)@a/A*** Aws; be a non-

zero term in ai/A--- Aas, where {w, ..., wn} is a basis of V*. By the
symmetry, we may assume that it is equal to fe1A--- Aws. Then, by put-
ting ast1=XM@s+1, ..., ar=Xwr, We have a1 A - AasAasaA - AasE0

because the coefficient of xA -+ Aw, in this form is fx{~$+0.
Next, we prove the converse. Assume that C, admits a regularly
decomposable kernel s A--- Aar. We express C in the form

C=nC+- - +yuCn, CENV*QAW,

Then, clearly, e A--*AarAC=0 if and only if @A AarAC,=0E
APV *QA™ for i=1,..., m. First, since ez A AarACGEANTTV*®
A" a1€ Ursr,rn and ar A(az A+ Aar ACi) =0, there exists P4EATV*®
A" such that a2 A+ ANar ACi=an A(—®y1), i. e,

aAN®iat+aA(asN\- - Nar ANC;) =0,

(the case (p,q,7)=(r+1,7,1) in Proposition 2.1). Next, since asA - -
NarNCENV*®A™ and {a, ae}E Ur,r_12, we have from the above
equality asNA- A a:ACi=ar1AN(—=® i) +a2A(—®3) for some @5, O iE
ATTTV*®A72° namely,

dl/\q)i2+a2/\q)z'3+a3/\<a4/\ MR /\ar/\Ci)ZO.
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(In this time, we use the case (p,q, v)=(r,r—1,2).) We repeat these
procedures  —1-times. Then, finally, it follows that

a ANVt FaraAViratar ANCi=0, VT;ENTV*QA.

Since {a, ..., ar}E Us,1,r, we may once more use Proposition 2.1. Then,
we have

Ci=arABat: - t+arABir, B;iEV?*.

Hence, by putting ,BjZle,Bijyi (1<j<7), we obtain the desired equality

C=ar B+ +ar\pr.

To prove the uniqueness of B: in the case of />2, we have only to
show that the condition aiABi+:----+arAB-=0 implies B:=0. But,
comparing the coefficient of y;, this fact follows immediately from Lemma
2.2 and the condition {a, ..., ar}E W; because we have ax A+ Aar AB:=0
from the above expression. qg.e.d.

2.3. In the rest of this section, we assume that m=1 and state the
p-G-version of [Theorem 2.4, which is the second main result of this sec-
tion. In this case, we use the notations stated in § 1. 3 because m=1.

We first define a linear map

Co: NPV*— APV *@ A!

by Cp(®)=®AC, analogously as Cp. But, we remark that in this case ®
is a scalar valued p-form and CEA?V*Q A"

THEOREM 2.5. Assume r<n—2. Then CEN*V*®A" admits a solu-
tion of the p-G-equation in codimension v if and only if the map C, has a
non-zero decomposable element as a kernel. In addition, if C, admits a
non-zero kernel BN\ -+ N\Br, then the curvaturve C is expressed in the form
ar AP+t ar\Br, using the same B: as a solution.

REMARK. In this case, the above condition is completely “ necessary
and sufficient ” to insure the existence of the solution of the p-G-equation
in the case of »<#—2. On the other hand, as we shall see later, the p-G-
equation always admits a solution if »=#n—1 (Proposition 6.1). There-
fore, this theorem gives a complete answer to the solvability of the p-G-
equation. Moreover, we remark that the condition of the decomposability
of ®=A"V* can be checked by Pliicker’s relation that are quadratic
polynomials of the coefficients of ®. (For example, see [10])

PROOF. Assume BiA--ABANC=0 (B1A-+-AB+#0). Then, since
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B, ..., Br are linearly independent, there exist vi,..., v, V such that
B:(v;)=d;. Now we calculate the left hand side of the following equality

vl JorJ(BA - ABANC) =0,

where | means the interior product. Then, after easy calculations, it is
reduced to the form

+tC+Bp/ At -+ Nar=0,

for some ;€ V*®A', and hence C admits a solution of the p-G-equation.
The proof of the converse is similar to that of [Theorem 2.4 and we omit
it. q.e.d.

In addition to the results stated in this section, there exist many other
types of conditions on the curvature C to admit a solution of the g2-G-
equation (or the p-G-equation). For these examples, see § 5.

$3. Applications to Riemannian symmetric spaces.

In this and next sections, we apply the results in §1 and § 2 to the
problem of isometric imbeddings. In particular, by using the p-G-equation
(Theorem 2.5), we prove in this section the non-existence of local
isometric imbeddings of some low dimensional Riemannian symmetric
spaces. First, we treat the case where M is locally isometric to a com-
pact semi-simple Lie group, and next we consider general cases.

3.1.  Assume that M is locally isometric to a compact semi-simple
Lie group G with the bi-invariant Riemannian metric. We first refor-
mulate [Theorem 2.5 to the form which is easy to calculate in this situa-
tion. For this purpose, we prepare several notations. Let g be the
complexified Lie algebra of G, and we fix a Cartan subalgebra b of g.
Then, as is well known, g is decomposed in the form

g=bh+ 2 ga,

acsA

where A is the set of non-zero roots of g and g. is the root subspace corre-
sponding to a€A (see [18D. Let X. («aSA) be a basis of the 1
dimensional vector space g. and w« be a dual of X, i.e., we is an element
of g* such that w.(Xs)=0dus and w.(H)=0 for H<h. We may consider
we as a complex valued left invariant 1-form on the Lie group G. Under
these notations, we reformulate [Theorem 2. 5 to the following form.

THEOREM 3.1.  Assume M is locally isometric to an n-dimensional
compact semi-simple Lie group G. Then, if M is locally isometrically im-
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mersed into R™7, there exists a non-zero decomposable element ®E N"g*
such that ® Ndw.=0 for all a €A, where dwe is the exterior derivative of
the 1-form we.

PROOF. We assume that M is locally isometrically immersed into
R™7". Then by (Corollary 1.5, the p-G-equation admits a solution in
codimension » for any tangent vector Z of M. In the following discus-
sions, we complexify all the vector spaces, the maps and the curvature in
a natural manner. Then, as is easy to see, the complexified p-G-equation
also admits a solution in codimension ». We take an element H €Y which
satisfies a(H)#0 for all a<A, and as in § 1.3, using this element H as
the above Z, we define CE A%*®g by

CX Y)=R(X, Y)H X Ye&g,

where R is the (complexified) curvature of M. We remark that since /=
n, the space A' is isomorphic to g and hence we may consider A2V *® A'
~ A%*®g. Then, by Theorem 2.5, the linear map C,: A"g*— A""%g*®
g possesses a non-zero decomposable kernel ®E A"g*. Using the Killing
form B of g and X g, we define a scalar valued 2-form B(C, X) on g by

B(C X)(Y, Z)=B(C(Y, Z2), X)e(C, Y, Z<g.

Then, it is easy to see that the condition C,(®)=0 holds if and only if
O®AB(C, X)=0< A"*?g* for any X €g. Now, we calculate the 2-form
B(C, X) explicitly. As is well known, the curvature R of M is given by

R(X Y)Z= ——}1—[[)(, Y], Z1,

for X, Y, Z<g (cf. [14D. Hence, we have
B(C(Y, Z2), X)=B(R(Y, Z2)H, X)
= -1 B(lY, 2], H], X

=—+B(Y, Z), [H XD.

From this equality, it follows that C,(®)=0 if and only if ®AB(C, X.)=0
for any a <A because 9 is abelian. Therefore, to prove [Theorem 3. 1, we
have only to show that (up a non-zero constant) the 2-form B(C, X_.) is
equal to dw.. To prove this fact, we put [Xe, Xs]=NasXoss (a, B, at+B
€A), and B(X,, X-o)=c« (#0). (Note that [ge, 85]Cga+s, and if a+B+
0, then B (gq, gs) =0, where we consider go=6. See [18]) We fix a basis
{H:} of b and let {we, w:} be the dual basis of {X,, H;}. Then, we have
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B(C X-)= 3 B(C(Xs X)), X-* Ay
+ 2 B(C (X, H), X-o) /o

=~ 3 BAX X, [H XD osh oy
+ﬂ§AB([Xﬁ, I{i], [H X—a])'&)ﬂ/\ @:)

:—211_(‘3% Nova (HDB (Xa, X+ s A oy

B+r=a

+ 3 BH) a(H)B Xy, X-0)*ap A )

=~ e(— 3 Nows Ao+ T alH)woA o).
Bir=a i
(Note that [H, X.]=a(H)X, for HEh and «=A.) Hence, up to a non-
zero constant, the 2-form B(C, X_.) is equal to

- 2 Nﬂy&)ﬁ/\ &)7+2d’<&)@d/\@i,
B, 7EA [

Btr=a

which just coincides the 2-form dw., and therefore, the theorem follows.
q.e.d.
In this proof, we use the element H <Y satisfying a (H)#0 («€A) to
define the curvature C. But, after the above modification of the 2-form
B(C, X-o), the final expression dw. does not depend on the choice of H ,
J.e., it becomes an intrinsic quantity associated to g itself.

3.2.  Next, as applications of [Theorem 3.1, we prove the non-
existence of local isometric imbeddings of some semi-simple Lie groups.
First, we prove the following theorem.

THEOREM 3.2. The 8-dimensional Lie group SU3) with the bi-
invariant Riemannian wmetric cannot be isometrically immersed into R™
even locally.

REMARK. This theorem improves the result in [8], where the non-
existence of the immersion into R" is proved. But, at present, we do not
know the least dimensional Euclidean space into which SU(3) can be
locally isometrically immersed. (It is already known that SU(3) is
globally isometrically imbedded in R"™ and the Gauss equation admits a
solution in codimension 9 [13].)

To prove this theorem, we prepare the following lemma.
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LEMMA 3.3. Let @, w2, ws, s« be linearly independent 1-forms.
Then a p-form @ satisfies PN (an N ant s N o) =0 if and only if

&=0 (mod an Nen— s/ \ws, N3, A, /\ws, 2/\ws).

PROOF. We assume ®A (anAw2+wsAw)=0. Then, from this equal-
ity, we have clearly ® Aan A @2\ @s=0, which is equivalent to

3.1 = Apt+ @ A\pt+w/p.

Next, we substitute (3.1) into the equality ® A A w2/ we=0, which is
also obtained from the assumption. Then we have

i NN\ s\ s\ ps=0,
and hence ps=0 (mod @, @2, a3, ). Combining with (3.1), we have
(3.2) @ZGJ1/\p4+&72/\/.75+&)3/\&)4/\p6.

Next, after substituting (3.2) into the equalities @A @1 A s N\ @s=P N @\
wsAw=0, we repeat the same procedures as above. Then, finally, we
obtain

(3.3 D= N Nt ANas ANt o ANas N+ \asN\ 1
+ N\ ws/N\ 15+ @s/\ @i /\ 6.

But, since ®A (i At @A w) = A AasNasA(nt ) =0, we have
n=—nto ATt ntow/\nt oo

Therefore, combining with (3.3), we obtain the desired expression. The
converse part is trivial. g.e.d.

PROOF OF THEOREM 3.2. Since the complexified Lie algebra of
3u(3) is isomorphic to 8I(3, C), we use the Lie algebra 3((3, C) to prove
this theorem. We define a basis of 3((3, C) by

2 1 010
XI:—%[ 1 ,Xzz% 1 },ng[o 0 0},
1 9 00 0
000 0] 00 1 0 0 0
X4=100,X5=000,X62000},
10 0 0 0 0 0 10 0
000 0] 000 0]
X=|0 0 1|, X%=|0 0 0],
10 0 0. 0 1 0]
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and let {w, ..., ws} be the dual basis of {X;}. We define a Cartan subalge-
bra of 81(3, C) by h=<X;, Xo>. It is easy to see that <X;> (3<i<8)
corresponds to the root subspace g«, and by easy calculations, we have
immediately

-

den=— N\ ws— s/ s

den=an N\ s+ ex /N 7

) dws= — (w1t @2) N s — s/ @7
dax= (@1t @2) N @+ w1 A ws
den=— e\ wr— e/ ws

[ dan= 2\ w8+ a3\ ws.

Now, assume ®& APg* satisfies DA das=""+-=®Adws=0. Then, ap-
plying to the equality ®A(—dws) =P A (anAws+ wsAan) =0,
we have in particular

(3.4) ®=0 (mod @13, @15, @18, G5, B8, GX8),

where we express w:/\ w; as wy for simplicity. Next, from the equality
ONden=PAN (1 A ws+ s/ wr) =0, we have

(3.5) O=0 (mod w4, wie, W17, Gus, @47, @e7).
Combining (3.4) and (3.5), we have

(3.6) O®=0 (mod @iz, wizs, @137, @iss, @148, @156, @157, @Wies,
@178, 3456, @3457, GI3468, (3478, G567, GI3678,
4568, G578, G5678),

where the form wiss means w1 AwsAws, etc. Note that we have only to
consider 6 X6=36 combinations of 2-forms in (3.4) and (3.5) to obtain
the above expression (3.6). For example, if ®=0 (mod ;) and ®=0
(mod @s), we have ®=0 (mod wwass). In addition, from the condition
®=0 (mod w3) and ®=0 (mod ws), we have ®=0 (mod wiss). But we
may omit this term because the 3-form w4 is already contained in the
right hand side of (3.6).

Next, using the equalities ® A\ (— dar) =® A das=0, we repeat the same
procedure as above. Then finally, we have

(3.7 O=0 (mod wr3s, wrss, w237, s, @248, @156, G258, G267,
@278, @)3456, 3458, 3467, (3478, (3567, GII578,
@4568, (4678, (0.3678)-

(Actually, in order to obtain this expression, we have only to exchange
suitable letters 1~8 in (3.6) on account of the symmetric property.)
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Now, we assume ®< A“g* (p=4). Then, combining two expressions
(3.6) and (3.7) in the same way as above, we have easily

=0 (mod @1234, @1237, @1248, @1256, @1278, (J3456, (3478,
@3567, @4568, w5678>.

We express @ as a linear combination of these ten 4-forms, and substitute
it to the original equalities ® A\ dw:;=0 (3<:<8). Then, after some calcu-
lations, it follows that ®=0. Therefore, by Theorem 3.1, the group
SU (3) cannot be locally isometrically immersed into the Euclidean space
of codimension 4. g.e.d.

We may say that the result in [[heorem 3.2 is the best estimate con-
cerning SU (3) which can be obtained by using the p-G-equation. In fact,
we can easily check that the decomposable 5-form ®= a1 A s/ w6 /\ w7 /\ an
satisfies ® A dw:;=0 (3<7<8), or more strongly, we can prove that the
map Cs: A°V*——A"V*®A! (V=R® admits a non-zero decomposable
kernel in the real category.

Next, we consider the Lie groups SO(#). In the cases =3 and 4,
the best results are already known. (cf. [3, p.713]). But, by using Theo-
rem 3.1, we can also easily prove the non-existence of local isometric
immersions of SO(4) into R”. The best estimate for the group SO() is
also already determined in [3]. In the following, we give another proof of
this result in our new formulation. For this purpose, we first prepare the
following lemma.

LEMMA 3.4. Let ..., ws be linearly independent 1-forms. Then a
p-form ® satisfies DN\ (an Nt e At esNes) =0 if and only if

O=0 (mod @135, @136, @145, @146, @235, @236, @245, (246,
an N Cwse— wxe), @2/\(@sa— wse), @i/ (12— ass),
N\ (12— ase), s (12— @31), we/\ (12— wsa)),

where wnss implies an Nan/N\as, etc. In particular, from the above condi-
tion, it follows that ®=0 (mod wix) (1<1, 7, £<6).

The proof of this lemma is similar to that of and we left
it to the readers. Using this lemma, we prove the following proposition.

PROPOSITION 3.5 (cf. [3]). The 10-dimensional Lie group SO(5)
with the bi-invariant Riemannian metric cannot be isometrically immersed
into R even locally.

PROOF. We fix a basis of the complex Lie algebra o(5, C) by
XIZEIZ_EZI, X2:E13_E31, X3:E14_E41,
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X4:E15_E51, stEzs_Esz, X6:E24_E42,
X7:E25_E52, Xs:E34_E4s, X9:E35_E53,
X10:E45_E54;

where E;; is the matrix whose entry at (7, 7) is 1 and other entries are all
zero, and let {w:} be the dual basis of {X;}. We fix a Cartan subalgebra
h=<Xi, Xs>. Then, it is easy to see that the following 2-forms span the
same subspace of A%* as {dwa).

(der=—1 N\ s+ w3/\ ws+ @i/ ax
dws=— 1N\ ws— @2 /\ s+ @i /\ wio
dos=— 1N\ @r— 2/\ @— w3 /\ wo
das= 1 N\ a2t A\ st an /A wo
dws= @1 N\ @3— ws A\ @+ @7 /\ o
d&h:wl/\&)«;_ws/\we—@s/\wm
dwe= a2 N\ @i+ ws A\ wr— ws A\ wio

(| d@ro= @3\ @+ ws N\ @7+ e /\ wo.

For &= A%*, we apply to the equality ® Adw»=0. Then we
have

d=( (mod @134, @135, @138, @139, @145, @148, @149, @158, @159,
@189, @345, (@348, @349, @358, @359, @389, (458, (459,
@189, @s89).

And next, we repeat the same procedures stated in the proof of
3.2 until ®Adwiw=0. (But, in this case, we cannot calculate by hand
because there appear too many combinations of forms in each step, and
hence we use the computer to complete these calculations.) Then, finally,
we obtain the following simple expression

O=( (mod (14789, @14780, @14790, (J14890, (I17890, &J47890),

where 0 implies 10. (For example, so=wi A - AasAwn.) By sub-
stituting the linear combination of these six 5-forms into ®Adw;=0, we
have easily ®=0, which completes the proof of the proposition. q.e.d.

We remark that as stated in [3], the group SO(5) can be locally
isometrically imbedded into R', which implies that the best estimate on
SO(5) can be obtained by using the p-G-equation. But, as the above
examples show, actual calculations in [Theorem 3.1 become hard as the
dimension of the Lie groups increase. Hence, it is desirable to refor-
mulate the method in [Theorem 3.1 to the form which is easier to calcu-
late.
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3.3.  Next, by using Theorem 2.5 directly, we show some non-
existence of local isometric imbeddings of low dimensional symmetric
spaces that are not Lie groups.

PROPOSITION 3.6. (1) The 5-dimensional Riemannian symmetric
space SU(3)/SO(3) cannot be isometrically immersed into R’ even locally.

(2)  The complex projective space P*(C) of real dimension 6 cannot
be locally isometrically immersed into R®.

REMARK. The result (1) is already proved in by using a
different method, and in , the non-existence of local isometric immer-
sion of P°(C) into R® is proved. As for the general complex projective

spaces P"(C), see [6]

PROOF. (1) The curvature of SU(3)/SO(3) is stated in [4, p.129].
Using the same notations, we define CEA2V*®A' (V=m=R®, A=
Rlx, ..., %]) by

CX,Y)=R(X, Y)X, X YeV.
Then, as is easily seen, we have

C=x(aNwstvV3 At oiAws)+ 1l Ao+ 2w A ws)
+ %A ws— V3 A wst s ws).

Therefore, ®E AV * satisfies ® A C=0 if and only if

PA (@ Nzt V3wt ws)=0
ONCLin At wsNws)=0
DA (@ NAws— V3 st wsAw)=0.

If ®= A2V * then direct calculations show that ®=0, and hence by Theo-
rem 2.5, SU(3)/SO(3) cannot be locally isometrically immersed into R’.
(Note that in the case ®E AV *, there exists a decomposable kernel of
Cs. For example, ®=an A ws A ws.)

(2) The curvature of P*(C) is described in [6, p.504]. We use
these notations. Let {wy, ..., a2a} be the dual basis of {Xi, Vi, ..., X, Yy}
and we define CEA?V*®A' (V=R?, A=Rl[x, ..., %x]) by

CX,Y)=R(X,Y)X, for X, YEV.
Then, after some calculations, we have finally,

C= Zgl {i-1(an A enio1+ @2 A w2i)

+20: (@1 A @2:— @2 A @2i-1) + 2% 621 A @2:).
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(Actually, in this expression the variable xm does not appear.) Hence,
dE NPV * satisfies A C =0 if and only if

DA (an A ari-1+ @2 A wr:) =0
DN (an N\ ari— a2/ ari-1) =0

DA (2&21/\wz+}§2 G)Zk—l/\CeJZk>:O,

for 2<i<un. Now, we assume »n=3. Then it is easy to see that ®&
AV * satisfies the above conditions if and only if

® = a (w135 — w146 — @236 — Gras) T b (wnse + wras T @235 — @nas,) .

Since ® is decomposable, we have from Pliicker’s relation

Dr3aprse — DrssPrae+ Pr3epras =0,

where pix is the coefficient of wix=w:AwjAwe in ®. Substituting the
above expression, we have immediately &*+ 6*=0, which implies that ®=0.
Therefore, P°(C) cannot be locally isometrically immersed into R®. q.e.d.

As for the general complex projective spaces P"(C), the map C»
admits a decomposable kernel for p=#n+1. (For example, ®= w1 A w2/ o
Aws/\* " Aars.) In particular, the p-G-equation always admits a solution
in codimension n#+1 and hence, for large =, this method is not so strong
as to improve the results in [6].

Finally, we state a remark on the solvability of the g-G-equation in
[heorem 2.4, by using the space SU(3)/SO(3) as an example. The cur-
vature of SUB)/SO(3) stated in [4,p.129] is reformulated in the
polynomial valued 2-form CE A2V *® A" as follows :

C=pilan N+ V3 @At oA es)+ @2 Awit @A ws)
+@g(anNas—+v3 aAwstasAw),

where ;€ A" are defined by

=1y~ X+ 3 2y — v 3 xs3pt x5 — %)
@2 =22 — 2X1 + X3Y5 — X5)3
¢3=x1ys—x5y1—\/7xzys+ ﬁaa:,yz+x3y4—x4ya.

In particular, from these expressions, the 3-form ®= (nwi) A (hws) A (Gws)
EN*V*® A satisfies PAC=0, i.e.,, ® is a non-zero decomposable kernel
of the linear map GCs: A*V*®A*—— ASV*®A*!. But it is clear that C
cannot be expressed in the form C=xai ABi+xnsAB+xnwosA\B (B:EV*
® A®") because the polynomials ¢: contain the variables x»~x. Hence,
by [Theorem 2.4, the above decomposable 3-form @® is not “regularly
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decomposable ” (Definitin 2.3 (2)). In other words, this example shows
that in the converse part of [Theorem 2. 4, we cannot drop the condition of
the “regularity ” of the decomposable kernel of C, This is quite
different from the case of the p-G-equation, where the solvability of the
equation is completely characterized by the map C, only (Theorem 2.5).

$§4. The range where the p-G-equations are useful.

In this section, we study the range of the codimension » where the
p-G-equations serve as actual obstructions to the existence of local
isometric imbeddings. In particular, we investigate the range of » where
the map Cr: A"V*—— A"V *®A! is injective for generic Riemannian
manifolds. Clearly, in this case, the map C. does not admit a non-zero
decomposable kernel, and hence, we can show the non-existence of local
isometric imbeddings of generic #-dimensional Riemannian manifolds into
R™" by explicit calculations on the curvature. But in general, it is very
difficult to determine the exact range of such » explicitly. In this section,
we first give some estimates of such » for general cases, and next, deter-
mine the maximum value of » for each small #, by giving concrete exam-
ples. From these results, the nonsexistence of local isometric imbeddings
can be proved by the p-G-equation for a wide class of manifolds, which
cannot be treated by previously known methods.

First, as a general result, we show that our new method serves as a
true condition at least of order »~2/3-n. Precisely, we prove the follow-
ing proposition.

PROPOSITION 4.1.  Assume that n=3k+1 and r=2k—1. Then C, is
injective for gemevic REK.

To prove this proposition, we prepare the following lemma.

LEMMA 4.2. Assume that there exist 1-forms s, ..., yn, &, ..., 6x Satis-
fving the following two conditions :

Ci) 9o ..., yn arve linearly independent.

(ii) If ®ENTV* satisfies PApNAG=""+=OAy2A62=0, then ®=0.

Then the map Cr: N"V*—— AT V*® A" is injective for generic RE
K.

PROOF.  Under the above situations, we have only to construct a cur-
vature such that C; is injective. Then it is clear that C; is injective for
generic case.

We take a 1-form y such that {y, ..., y»} forms a basis of V*, and let
{e, ..., en} be the dual basis of {y:}. We introduce a metric on V such
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that {e;} becomes an orthonormal basis. For 2<i<#u, we express the
form J; as

n
0i=—amn +j§2 bij’}’j,

and by using the coefficients {a;, b}, we define a curvature R € K by
Rm,:a,-, Rijli:bij fOI' ZSZ', jén (Zi]) and other Rijkl:(). Then, it 1is
clear that R satisfies Bianchi’s identity. Next, we define CEA?2V*® A’
by

CX, Y)=R(X, Y)a, for X, YEV,

as before. Then, we have easily

n n
= l=21 axi*n/N\y:i+ iJZ=2 bijxi* yi N\ v,

and
gc =a: 1/\'}/z+2 sz')’z/\'y_n
a C T — . n .o o — .. .
E™ e:]C)= ezJ e a,yl-i-gz bijy;i — biiy:

=d:— bii'}’i,

for 2<7<#, where | means the interior product. Now, assume that ®&
ATV * satisfies ®AC=0. Then for 2<:<#x, we have

0=e:J(®AC)
=(e]JPINCH(—D"®A(e; ]C).

Differentiating this equality by x:;, we have

0= A2+ (—D"oA-2- (O

= (61_]@) A (di’ ’}’1/\ 'yi+j§2 bij' ’}’z‘/\ ’yj) + (_qu)/\ (61_ biz")’i).

We product the 1-form y: to the above equality. Then we have immedi-
ately ®Ay:Ad;=0 for 2<i<#n, and hence, by the assumption (ii), it fol-
lows that ®=0. This implies that C- is injective. q.e.d.

PROOF OF PROPOSITION 4.1. We assume that 1l-forms ay,..., @s:E
V* are linearly independent, and the form ®€ A#*'V* (V=R", n=3k+
1) satisfies ®Aw;Aw;=0 for 3%k decomposable 2-forms w;Aw: listed
below :
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NN\ @er1 @r+1/\@2e+1 @2r+1/\ @1
2\ ez @ri2/\ @2ri2 @2ri2/\ @2

(x%%)

@r/\ ek @2k /\ @3k @3 /\ @k.

In the following, by using these conditions, we show that ®=0. Then, by
Lemma 4.2, the map C:x-1 is injective for generic REK.

Now, we first show that for each decomposable 2k—1-form ¥=w; A
AN @i (1K 60< - <dpp1< m), there exists some 2-form w;A @ in
(**x) such that YA w;Aw:+0. In fact, if we assume ¥ A w; A w;=0 for all
wjAw: in (**x), then from the first condition WA @A wr+1=0, it follows
that the set {7, ..., 2s-1} must contain 1 or £+1. We repeat the same pro-
cedure to the 2-forms in the first column of (**+). Then after changing
suitable indices if necessary, the numbers 1, 2,--, p, k+p+1,---, 2k are
contained in {d, ..., 2e-1} (0<p<k), and the remaining conditions are

VA @r+1/\ @2e+1=0, UA@2eips1/\ @p+1=0,

WA @r+p/\ @ersp=0, YA ese N\ @r=0.

But the 2k 1-forms wp+1,"**, @k, @r+1,""", @r+p, Grr+1,"*°, wsx appeared
above are linearly independent, and hence {4, ..., %s-1} must contain % of
{p+1,...,k+p,2k+1,...,3k}. On the other hand, as stated above, it also
contains the set {1,...,p,k+p+1,...,2k}, and hence i, ..., iu_1} =2k,
which is a contradiction. Therefore, there exists some w;A @ in (**%)
such that A w; A @, #*0.

Now, we express ®= A?*" 'V * in the form

o= 2 q)il--~izh-1wi1/\'”/\wl'u—l-

1< <i2p-1

We fix the index (D=C(4, ..., hs-1) Q<4< -<ipa<#un). Then as we
showed above, there exists @; A w; in (***) such that

Cc)il/\ e /\GDizk—l/\CzJj/\(nJliO.

Hence the form ® A w; A w: contains the term @i A+ A @i, Aw; Awi, and

it is easy to see that the coefficient of this term is just equal to ®g).

Therefore, from the condition ® A w; A w:=0, it follows that ®.;,=0, which

implies ®=0. q.e.d.
The condition on the curvature tensor

rank R(X, Y)<2», X, YeEV,
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which we used in [8], serves as a true obstruction only in the range »<
1/2+(n—2). Hence, comparing the order of 7 in Proposition 4.1, our new
condition ((Cheorem 2.5) is more useful for a wide class of manifolds than
the above known one. But, at present, we do not know the exact upper
bound of 7 such that the map C; is injective. (By [Proposition 6.1 in § 6,
it is at most »—2. Perhaps, the order »~2/3+% in [Proposition 4. 1 is not
best possible. It is also interesting but difficult to determine the order of
r such that the conditions (i), (ii) in Lemma 4.2 hold.) However, for
small value of #, we can prove the following proposition.

PROPOSITION 4.3.  Assume that (n,7) is one of the following cases :
(n, )=, D, 5,2), (6,3, (7,4). Then C, is injective for generic REK.
In addition, for 4<n<7, these cases give the maximum value of r such
that Cr is injective.

PROOF. The case (n,7)=(4,1) is already proved in
4.1. We first consider the case (n, 7)=(5,2). In this case, using a basis
{w:} of V* we put

=@, BTz, B=a3, Y=t s,
R2=@2, B=w, &= &=k

Then, by an easy calculation, we can check that these forms vi, O: satisfy
the conditions (i) and (ii) in Lemma 4.2, and hence C; is injective for
generic REK. (Of course, the symmetric space SU(3)/SO(3) also gives
such an example. cf. Proposition 3.6 (1).)

Next, in the case of (u, )=(6, 3), we put

2T W@, VBT @3, Y4a— @4, Ps— Gk, Ye— s,
=62, B=o1tw, =t es, G=ertws, &=uzt+ ws.

Then the same results also hold as above.

As for the case (n, »)=(7,4), we directly construct RE K such that
Ca is injective. For this purpose, we put

R1213 = Riauu= R1226 = Rizzr= Risss= Rissr= Riws= Rz
= Rius= Risis= Riss6= Risie= Riess= Ri7i7=Rizs=1

and other R;»=0. (Note that Bianchi’s identity is automatically
satisfied.) Then, the curvature CE A’V *® A! defined by

CX, Y)=R(X, Y)a, X YEV,

is equal to
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C=x(ei+ wiet wt wz7) +x3<&)12+ a5+ &Js7>
+x4(w12+ @2t &J34+&J45> +X5(&)15+ &)56)
+ 26 Cane+ awus) + 27 Canr + wsr),

where wi;=w: /A w;, as before. In this situation, we assume that @€ A*V*
satisfies the condition ® AC=0. Then, by using the algebraic program-
ming system REDUCE3S, we can directly show ®=0, which implies that C.
is injective for generic REK. (In this case, it is hard to calculate by
hand.)

Finally, we show that these results are best possible. In the case
(n, r)=(4,2), we have dimA?*V*=6, dimA*V*® A'=4, and therefore, the
map C2: A2 V*—A*V*® A' cannot be injective. The other cases
(n,r)=0,3), (6,4), (7,5) can be treated in the same way, and we omit
the details. q.e.d.

For the case (n, r)=(8,4), we can also show that C; is injective for
generic REK. In fact, if we put

V2= @1, V3= @M, Ya— @B, Y5— Ws, 76:w1+GJ3, )’7:&}2+GJ4,
=2, B=w, O0—ws OG—w, O6—wta, &=zt ws

(v and & may be arbitrary), then the same results hold as above. But,
we do not know at present whether C; is injective for generic REK in
the case (n, 7)=(8,5).

For the cases (n,7)=(4,1) and (5,2), we have already obtained the
polynomial relations of the curvature tensor of submanifolds in R™*" ([8],
[4]). But other cases (n, r)=(6,3), (7,4), (8,4) treated above are out of
this range, and hence, (Theorem 2.5 serves as a new obstruction to local
isometric imbeddings for these cases.

Finally, we remark that the estimates in [Proposition 4.3 do not give
the upper bound of the codimension » where is useful.
Namely, there exist some other cases where the non-existence of the im-
beddings can be proved by using the p-G-equation. As an easy example,
we consider the case (n,7)=(4,2). Let M be a 4-dimensional Rieman-
nian manifold, whose curvature at one point is given by

Riiz=Ruuu=—1, Riziz=R1324=2, Riz3a=Riw23s=1 and other Riw=0.
Then, by putting C(X, Y)=R(X, Y)e, it is easy to see that the 2-form
®=3py @i Nw;E A2V * is contained in the kernel of C; if and only if p.=
s, P1s=—pee and pu=pes. Hence, by Pliicker’s relation, we have immedi-
ately ®=0, which implies that the above M cannot be locally isometrical-
ly immersed into R®.
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§ 5. Typical necessary conditions.

In the rest of this paper, we study the algebraic structure of the g-G-
equations defined in § 1 for general (u, [, m), apart from the applications
in geometry. First, in this section, we study the conditions on the curva-
ture CEN*V*®A" in order to admit a solution of the g-G-equation.
Especially, we describe conditions on C that can be expressed as
polynomial relations of the components of C. According as the value of
(m, I, m, v), there appear many types of polynomials as obstructions to the
solvability, and as typical examples, we show 5 different types of rela-
tions, which are the invariants of the space A?V*® A" with respect to
the action of the group GL(n, ) X GL(I, k) X GL(m, k).

5.1.  We first show that, for each codimension 7, there exist 2 typi-
cal series of polynomial relations. For this purpose, we prepare several

notations. Using linear maps Ay, ..., Ap: k™——k', we define a linear map
Ajor-0Ap: SP(E™M—>SP(EY by

(Are-+ o Ap)(mro- - +ovp) :#d 3 (Aiwsw)eos o (Apvo), v:ER™,
. 0€E6p
where vio--°v,€S?(k™) implies the symmetric tensor product of v:;, and
S, is the symmertric group of degree p (cf. [5]). We denote by (—1)°
the signature of the permutation ¢€&,. In addition, we consider C (v,
w)EA" as a linear map from £™ to £, as in § 1. Then we have the fol-

lowing proposition.

PROPOSITION 5.1.  Assume that CEN*V*® A" admits a solution of

the g-G-equation in codimension v. Then the following two conditions on
C hold :

(1) rank C(u, ) <27
(2) deé (—DGC (va(l), Uo‘(Z))° ce °C<Uo'(2r+1), Uo‘(2r+2)> =0

. Sr+1(km>___)sr+l(kl)’
for v;EV.

REMARK. (1) The condition (1) is non-trivial only in the range
n=2 and [, m=2r+1. The condition (2) resembles Amitsur-Levitzki’s
identity, or its tensor version (see [5]). This becomes a true condition
only in the case #>27+2 because the left hand side of (2) is skew sym-
metric with respect to the indices {1, 2,...,2r+2}. Hence, in actual appli-
cations to isometric imbeddings, both conditions become true relations of
the curvature tensor only in the range »~1/2-n because /=m=un. The
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condition (1) is nothing but the one which we used in to prove the
non-existence of local isometric imbeddings of Riemannian symmetric
spaces.

(2) If we express the conditions (1), (2) as polynomials of the com-
ponents of C, then its degrees are 2r+1 and »+1, respectively. In the
case (n, [, m)=(2,2r+1,2r+1), the condition (1) is equivalent to the
vanishing of the determinant of (2r+1,2»+1)-matrix C (v, ), which is
the invariant of the space A" with respect to the action of GL(27 +1, k) X
GLQ2r+1, k). As for the condition (2), if #=27+2 and /=m=1, it is
reformulated to the vanishing of the »+1-th Pfaffian of the skew symmet-
ric (n, n)-matrix (C(vs, v;))1<:,;<n, Which is also the invariant of A?V*
with respect to the action of GL(#n, k).

PROOF. The condition (1) is easily obtained if we use the matrix
form of the g-G-equation (Lemma 1.2). We prove only (2).

Since (2) is skew symmetric with respect to »: as remarked above,
we have only to consider the case where v, ..., t2r+2 are linearly indepen-
dent. Considering these vectors as a part of a basis of V, we assume that
Ci;=C(v;, v;) is expressed as X;Y,;,— X;Y: where X; and Y: are certain
(Il ) and (7, m)-matrices, respectively (Lemma 1.2). First, we prove the
following identity :

0‘,16267+1(—1)6<_1>T<X6(1) YeaD e o(Xoran Yer+n) =0
. STH(R™M)—— ST (ED.
For this purpose, we put
Xi= ..., vD) (v?is an (»,1)-matrix),
and
&
Y;=| - | (& isa (1, m)-matrix).
&;
Then, for u€k™, we have
Eiu
X;Yu=Ct, ..., oD | -
Eiu
=2 (&5u)- v,
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Hence we have

~r+1-~
0‘21 <_1>6(_DT<X6<1) Yr(l)>°' e °(Xd(r+1) Yr(r+1)) (uo- - °u)

:o‘zr (—1)6(—1>T(X0_(1) YT(ID%O Tt O(‘XYO'(7‘+1) Yr(r+l)>u
:0.2‘0 (=D7(=D"(&2tyu) - - - (&8 1u) - vy« - - o 0By,

In this expression, we fix ¢E€6,,, p=(, ..., pr+1), and next, add with
respect to 7&&,,1.  Then the coefficient of v5iyo- - -ovbisL,, is

(‘Dd; (=D (&2mu)--- (E8inu).

But, since the index p; runs through from 1 to 7, there exist distinct in-
dices a and b satisfying p.=p,. Then we have

Z (=D (&2myu)- -+ (E8%au) - (E2%wyu) - - - (Efrinu)
:Z (=D (&2yu) -+ - (E2myu) - - - (E2ayu) -+ - (&2 hu)
= _ZT} (=D CEfmu) -+ - (E2yu) - - - (ELtoyu) - - (E2F 1),

and hence this is equal to zero. By adding with respect to ¢ and p, we
have

(g <_1>6<—1>T<X6(1) Yr(l)) O¢-ro0 (Xo'(rﬂ) Yr(r+l)) (u° te °u) :0,

and thus we obtain the desired identity. (Note that the elements of the
form uc---°yu span the space S™*'(£™).)

Now, we return to the identity (2). Since Cj is expressed in the
form X;Y;,— X;Y:, we have

o
; (“D Ca(1)a(2)° ce °Co‘(2r+1)o‘(2r+2)
OEG2r+2

:2”1; (— 1)6<X0‘(1) Yo‘(z)) O0evso0 (Xo'(2r+1) Yo‘(27+2)> .

.. ) 2 ...
We divide the elements of ©,,.» into < ::f) disjoint groups, each of them

consists of 0€&;,+. having {¢(1), ¢(3), ..., ¢(27»+1)} as the same subset
of {1,2,...,27+2}. Then, from the above identity, the sum in each group
is zero, and hence the total sum is also zero, which completes the proof of
the condition (2). g.e.d.

5.2. Next, we state the rest of 3 types of polynomial relations on
the curvature C. These polynomials serve as obstructions in the case 7=
1 or 2, and the degrees are 3,6 and 10, respectively. The first one is the
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following.

PROPOSITION 5.2. Assume n, [=3, m=1 and CEN*V*Q A" admits
a solution of the p-G-equation in codimension r=1. Then the polynomials
C(w, 1), C(n, 1), C(we, 1) are linearly dependent in A' for any n, vs,
ne V.

PROOF. Assume that there exist a€ V*®A' and g€ V* such that
C=aANpB. Then, substituting u, v, 1€V to the equality SAC=0, we
have

ﬂ1C23 _,32C13 +ﬂaC1z = 0,

where 8;=8(v:) and C;=C (v, v;). Hence, if certain 8:#0, this equality
implies that G2, Cis, Gs are linearly dependent. In the case fi=8=8=0,
we have clearly C;=0, and the same result also holds. q.e. d.

This condition is equivalent to the vanishing of the (3,3)-minors of
the matrix (Ci2, Cis, C2s), and hence, in the special case (%, [)=(3,3), this
becomes the invariant of the space A2V *® A'! with respect to the action of
GL(3, k) X GL(3, k). It should be also remarked that even if m>2, there
exist similar polynomial relations on C by considering each coefficient of
y; (1<i<m) as an element of A’V*®A".

To state the next polynomial relation, we must introduce some nota-
tions. Assume that =3 and /, m=2. We fix two distinct variables x;, x;
(1<, 7<), and for v, ©, €V, we put Cpe=C(vp, v,). We consider
the derivative of the polynomial

9Crq 0,1
“on €A

as a (1, m)-matrix, and next, define two (3, m)-matrices Ch, and C%q by

0Cp 0
oxi 9Cpq
Che=| 3Cpq |, Che=| ox: |,
o%; 0Ceg.
0 axj

for 1<p, ¢<3.

PROPOSITION 5.3. Assume n=3 and |, m=2. Then under the above
notations, if CEN*V*®AY™ admits a solution of the g-G-equation in
codimension r=1, the 6 matrices Cls, C%, Cls, Ci, Cis, Cis are linearly
dependent in the space of (3, m)-matrices.
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PROOF. Assume C is expressed as a¢AB, where a€V*® A" and
BEV*®A*. Then from the condition @ AC =0, we have

a1Cos— a2 Cis+ a3 Cro=0€ A%,
where a:=a(v:;). By putting

p_ Oap

a aa’p
-7

and af= o
i

Sk,

the coefficients of x%, xa;, x3 in the above polynomial are given by

( dl' 8C23 2 8C13 + 3 aCIZ

' axi l a 1 a l O’

!4 aCZS e oCis 3 oCi2 1 8C23 e oCis 3 oCi2
Cor, Py WGy, Ty, Taig Ta5 =0,
1 0Cs 2 oCi3 3 oC;

S o, Yoy T% gy, 0,

respectively. Using the matrices Cj, and C%q, we can express these con-
ditions in the following single matrix form :

a}C§3+a}C%s—a?C%3 3‘*‘03(:124‘623 %220

Therefore, if certain coefficient is not zero, we obtain the desired result.
In the case a?=a?=0 for 1<p<3, we have clearly

anq — anq
OoX; ax,-

=0

because Cpo=apfs—aqfp. In particular, Chs=C%,=0, and hence the prop-
osition also holds in this case. q.e.d.

We remark that this proposition serves as a true condition only in the
case =3, [, m=2. In particular, in the least case (n, [, m)=(3,2,2), it
is related to [Theorem 2.4 as follows. If C admits a solution in codimen-
sion 7=1, then by [Theorem 2.4, the map Ci: V*QAW— S N3V *@ 421
admits a non-zero kernel. Since dim V*®A=dim A*V*® A*'=6, this
condition is equivalent to the vanishing of the determinant of the (6,6)-
matrix, which is a polynomial relation of C with degree 6. Then, by
using a suitable basis, it is easy to see that [Proposition 5.3 is a natural
generalization of this relation to the case >3, [, m=2. In addition,
from the construction, this determinant is clearly the invariant of the
space N2V*® A ~Fk3® k2® k*? with respect to the action of GL(3, k) X
GL(2,k)XGL(2,k). As we shall explain in Appendix, this invariant
appears in several different situations where the 3-tensor space £3® kZ2® k2
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is concerned. (See also Remark (2) after the proof of Proposition 6. 2.)
The third polynomial relation is of degree 10 and serves as a true
condition in the case n=>4, /=5, m=1 and »=2. First, for CEAZV*® A"
and v, ..., uEV, we put
~ 82<C/\C)<Z)1, ceey 1)4)

CPQ N axp axq < k’

and define a symmetric (/ [)-matrix C by C =(Cro).

PROPOSITION 5.4. Assume n=4, [=5 m=1, and CEN*V*Q A"
admits a solution of the p-G-equation in codimension 2. Then the rank of
the matrix C is smaller than or equal to 4.

PROOF. Assume C admits a solution in codimension 2 :
C=aiNfitaAf, aSV*QA! BEV*

Then we have CAC=—-2ai A ABAB. In the case (BAR)(v;, v;)=0,
we have clearly C =0 and the proposition holds. Thus, we may assume
that (1A B) (v;, v;) #0 for some 7, j, and in addition, wi, ..., v are linearly
independent. Then there exist vectors u, ..., & V such that

{(C/\C)(vl,...,v4)=a(C/\C)(u1,...,u4) (a+E0ER)
Bi(u) =061, BeCus) = s,

and hence, up to a non-zero constant, we have

oo 3 (an N\ a) Cus, 1)
ba axpaxq )

By expressing a:(#;)EA' in the form
() =amxa+ - +mo
() =ann+ -+ +a

ax(us) = sy + -+ - + baux
(1’2(%4) =buxi+ -+ b

(a;;, b;;E k), we have easily

2

épq:m(m(us)m(m)—m(m)a@(Ms))
baq
=(asp aup bsp bup) :bsq
Qaq

A3q
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Therefore, the matrix C is expressed as

a1 an bs by b“I bu
5_[ } —ba = by,
B o —arl
asi Qi bsi bay .
as asz;
which implies that rank C <4. g.e.d.

Since the components of the matrix C are quadratic polynomials of
C, this condition is expressed as a vanishing of the polynomials of degree
10. In particular, we consider the case (n, [)=(4,5). We express the
curvature C in the form:

c=3

,J=1

5
kz?l CijkkanJi AN ®@j.

Then, by using a similar method stated in Proposition 2.1 of [4, p.115],
we can show that the following polynomial (#) is the invariant of the
space N’V*®@A'>~AN’k*®Fk° with respect to the action of GL(4, k) X
GL (5, k), if it is non-trivial.

@® mzé (=D(=D (= D*Csitysi:)Cor@ o1y * * * *

€6,
7,065

C0'5(1)0’5(2)T(5) C0'5(3)65(4)P(5)

(Note that the character of this invariant is given by Sisss(es) *Saoee(us),
where & and u: are the eigenvalues of the element of GL(4, k) and
GL(5, k), respectively, and S: is the Schur function corresponding to the
partition A. For the definition of Schur functions, see [12], .) Since
the quadratic polynomial

o
2 (=D %Counyouzyr () Coudyonarotsy
0:€ES,

is equal to Criee up to a non-zero constant, the above polynomial (#) is
essentially equal to

2 (—1D*Croay - Csoes),

PECH

which implies that det C is the invariant of the space N2V*® AL

We can extend the result in Proposition 5. 4 to general codimension »
in a natural way. Namely, we can prove that in the case of #>2» and
m=1, the rank of the symmetric 7-tensor C =(Ch,...»,,) €S" (k") defined by
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f_rﬁ

& 0 (CA AL
b1---Dr axpl. . axpr

(2)1, ceey UZT)

(b€ V,1<p, ..., pr<[) is smaller than or equal to ()% if C admits a
solution of the p-G-equation in codimension ». (For the definition of the
“rank ” of the multi-tensor space, see for example [17].) But actually, in
the case » =3, we do not know an effective method to determine the rank
of the multi-tensor C €S” (k") at present.

Finally, we remark that the polynomials that appeared in this section
are all non-trivial. In fact, we can easily construct C such that the value
of these polynomials does not vanish. For example, we put

C=xmyian N\ et 0y N s+ e+ 23) w2/ ws,
((n, I, m)=(3,2,2)) and
C'=nanNantrwAastm(ar A\t A )+ o+ Bas /A ws,

((n, [, m)=(4,5,1)). Then, as for the first curvature C, the 6 matrices in
IProposition 5. 3 are given by

1 0 0 0 0 0 0 0 0 1 0 0
0 0,1 Of, (0 1|,{0 Of,|1 O, [0 1]|¢,
0 0 0 0 0 0 0 1 0 0 10

and clearly, these are linearly independent. In addition, it is easy to see
that the rank of the (5,5)-matrix C’ in [Proposition 5. 4 is equal to 5, and
hence the above C and C’ do not admit a solution of the g-G-equation in
codimension 1 and 2, respectively.

§6. The case where the g-G-equations always admit solutions.

In this last section, we study the range of (%, [, m, ») where the g-G-
equations always admit solutions, or in other words, the case where the

,
map {a;, ﬁj}'—*zlae/\ B: is surjective. Our final purpose is to determine

the least » for each triple of integers (#, /, m) such that the above map is
surjective. But, as we shall see later, such r changes complicatedly
according as the value of (», /, m). The estimates stated in this section
give a partial answer to this problem. (We note that, by considering the
dimension of the vector spaces V*®AY V*®A" and A2V*®AY the
above map cannot be surjective if »r([4+m)<1/2-lm(n—1).)

6.1 First, as a general result, we prove the following proposition.
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PROPOSITION 6.1. (1) If [=m=1, then the g-G-equation always pos-
sesses a solution in codimension r=[n/2].

(2) For general (n, I, m), the g-G-equation admits a solution in
codimension r=(n—min {/, m}. In particular, the p-G-equation always
possesses a solution in codimension r =n—1.

PROOF. In the case of /=m =1, the problem is essentially reduced to
the usual scalar 2-forms as stated in § 1, and we prove only (2). Assume
that />m, and we express the curvature C as

C:le1+' "'+ymCm, CZE /\2V*®A1'0.
Using a basis {wy, ..., @z} of V*, each 2-form C; is expressed in the form
C=ailNant - tal ' ANwn, alEV*®AY,

Hence, by putting gi=y:w;,€ V*® A", we have
m n—-1 .
C= 21 21 ail\ B,
i=1 j=

i.e., C admits a solution in codimension m(#—1). The case m >/ can be

treated in the same way. g.e.d.
In the case of [, m>2, it seems that the above estimate is not best

possible. In fact, we can improve it for small % in the following way.

PROPOSITION 6.2. Assume I, m=2. Then the g-G-equation admits a
solution in codimension r=[1/2-(n—Dmin {], m}1 if n<4, where x]
denotes the least integer greater than or equal to x.

PROOF. We divide the proof according as the value of . We prove

the existence of solutions, by using the matrix form of the g-G-equation in
emma 1. 2.

(i) The case n=2. In this case, by Lemma 1.2, it is easy to see
that C admits a solution in codimension » if and only if rank Ci;<27.
Therefore, if 2» >min {/, m}, it always possesses a solution. (In particu-
lar, the estimate »=[1/2-min {/, m}1 is best possible in this case.)

(ii) The case z=3. By the symmetry, we have only to construct a
solution in the case »=/ Since r>2, there exist (7, »)-matrices Xi, Xz,
X3 such that X; and X2 X1'X3—X;X1'X, are non-singular. (For example,
we put Xi=1, and
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O =
(el SV
_— O
(=)

-

X2:‘ , X3: . )

N ~

Then, by putting

Yi= (XzXl_lXa—Xle_le)_l(Czs—'XzXf1C13+X3X1_1C12>
Yo=X1'(Ciz+ X2 Y1)
Y;:XTI<C13+X3 Yl),

we have easily C;=X.Y;—X;Y: (1<4,7<3), which implies that C admits
a solution in codimension » =1

(iii) The case n=4. First, we prove that if /=2p, C admits a solu-
tion in codimension »=3p for arbitrary m. For this purpose, we express
(2p, m)-matrices C; (1<17,j<4) as

e[ &),

where C% are (p, m)-matrices, and define (2p, 3p)-matrices X: and (3p,
m)-matrices Y; by

‘L 0 0 (0 b 0
=1 I o]’ X=o ¢ 1,,]’
(0 0 I (L 0 0
XS—_kIp 0 o}’ X=10 0 0]’
([ C4—Cis ) ( C3,—Cia
Y1= C%‘r—C%z_C%‘t , Yz: C%z—C%a‘FC%r‘C%ﬂ ,
L C&%—Clh—Cli ) [ C—Cli— Cls+Ch
[ Ciu—Ciu ) ([ Ci
Y;= C%s“C{4+C§4 R Y= %4}.
L CL+C%—Ch ) L C%

Then, we have directly C;=X:Y;— XY i.e, the above X, Y, are the
solution of the g-G-equation.
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Next, in the case [=2p+1, we construct a solution in codimension
r=I13/2-Qp+1)1=3p+2. As above, we express (2p+1, m)-matrices Ci

in the form
Ch
Cij:{ C %j },
&ij

where C% are (p, m)-matrices and e; are (1, m)-matrices. We define
(2p+1,3p+2)-matrices X; and (3p+2, m)-matrices Y: by

(I, 0 0 0 0 0 L 0 0 0)
Xi={0 I, 00 0}, XZZ[O 0 I, 0 0],
L0 0 01 0 0o 0 0 0 1.
(0 0 L 0 0 (L, 0 0 0 0)
Xs={L 0 0 v 0}, Xe=| 0 0 0 0 0],
L0 0 0 0 0 L0 & 0 0 1.
[ _Ci4+cg4+vt‘;"K1—1}6147 f %4—654 )
- K Ct.— K
Yi= —K; , Y.= Kz_Cés_Uchz—veu y
— &K1+ Ko) +e1u— e 12
L 0 ) L 0 )
[ C%4—C:§4 ) g C%4+U§Kl_vel4 )
K,— Z)chz — Vé€34 %4
Ys= C%4+C%3—C%4+U€12 y Y= C%4 )
&13 — &K1+ e
< €23 s L f(C%z_K3>+£24 s

where & is a (1, p)-matrix and v is a (p, 1)-matrix such that & =1 and

1:Ci2_ %4+C%4,
K,=Ch—Cli+ Ci,,
3:Ci3—C%4+C%4.

Then, by direct calculations, we can easily check that the equalities C;=
X:Y;— X;Y,; hold. g. e.d.

REMARK. (1) We conjecture that the estimate »=[1/2+-(#»—1)min
{{, m}1 in this proposition always holds without the assumption “ n<4".
But it seems very difficult to find the matrices X:, Y; in the above proof
for general n.

(2) In the case of n=3, the g-G-equation C;=X:Y;—X;Y: is expres-
sed in the following single matrix form:
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Ciz 0 Xi — X Ys
- C13 = —Xi 0 Xs Y, |.
Cas X: —Xs 0 Ve

If Xi is an invertible (7, )-matrix, then it is easy to see that the determi-
nant of the above (37, 37)-matrix is equal to

| XX X T X s~ X X1 X,

and hence the existence of a solution can be also proved in this formula-
tion. (Note that if »=1, the above determinant is 0 because it is skew
symmetric, and hence the condition “#»=17[>2” is indispensable.) The
matrix X>X7'Xs—XsX1'X. often appears in the papers concerning the
3-tensor space. (For example, see Strassen [17, p.673, p.679], Barth [9,
p.64].) This implies that the above (37, 37)-matrix (or its determinant)
is related to the fundamental concept of the 3-tensor space E*®k"®Fk".
(In our situation, the set of matrices {Xi, Xz, X3} may be naturally consid-
ered as an element of A*°® k" ® k" since /=7.) In Appendix, we give sev-
eral explicit expressions of the above determinant in the case of »=2.

6.2. The estimate “»=»n—1" in Proposition 6.1 for the p-G-
equation is not also best possible in general. In fact, as an example, we
can prove the following proposition.

PROPOSITION 6.3. In the case of (m, [, m)=@3,2,1) and (5,2, 1),
the p-G-equation always admits a solution in codimension r=1 and 2,
respectively. In addition, if the ground field k is C, the p-G-equation for
the case (n, [, m)=(4,4,1) also possesses a solution in codimension r=2.

(Note that the above 3 cases all satisfy the inequality “ »<n—1".)

PROOF. We first treat the case (u, [, m)=(3,2,1). In this case,
since [=2, the polynomials C, Cs, C3sEA' are linearly dependent, and
hence there exists (a1, a2, a3) #0Sk® such that @Ci—aCis+aiCos=0.
Then, by putting a=ame+@&e:+ aws, this equality is equivalent to aA
C=0, and hence, by Theorem 2.5, the p-G-equation admits a solution in
codimension » =1.

Next, we assume that 2= C and consider the case (n, [, m)=(_4,4,1).
Since dim A2V *=6 and dim A*V*® A'=4, we have clearly dim Ker C;>2
for any CEA?V*®A'. We fix linearly independent elements 3} piw: A w;,
> giw: A w; of Ker C.. Then the element

a2 Diiwi \Nwj+b 2 i@ N\ @; N2V *

is decomposable if and only if it satisfies Pliicker’s relation :
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Capra+ bqr2) Capas+ bgas) — Caprs+ bqus) (apos+ bgos)
+ (apra~+ bqra) Capes+ bges) = 0.

Since this is a homogeneous quadratic equation of (g, b), it has a non-
trivial solution (a, b)€ C?. Therefore, by [Theorem 2.5 C admits a solu-
tion in codimension 2.

Finally, we treat the case (», [, m)=(5,2,1). To prove the existence
of a solution in codimension 2, we have only to show the following state-
ment : “ For arbitrary 2-forms an, a» on V =Fk° there exists a non-zero
decomposable 2-form B such that aex\NB=a:\NBF=0." Then, it is easy to see
that the map Ci: AN2V*——A*V*®A' (A=k[x, %]) always admits a
non-zero decomposable kernel. In the following, we divide the proof into
several cases.

First, assume that rank a1=4. In this case, we may put a1= @2t @ss
(wi=w: N\ w;), and express a» in the form

= 2 piwit (et et @t o) A ws.

1<i<j<4

If ¢2+0, we change the forms @ and w2 by —w2 and @i+ q/ ¢ a2, respec-
tively. Then the term @2 A ws in a2 vanishes and the form a: is unchanged.
In the same way, we may put ¢=0. In addition, we may assume that g,
¢=1 or 0 by replacing «» and w: by their suitable multiples if necessary.
Under these preliminaries, in the case i=¢=1, we put

B=(ant ) A (e — Grant aws),

where (a1, az) #0< k? is the pair of numbers satisfying ai1(piz+piatpas—
pa) +aps=0. Then it is easy to see that the decomposable 2-form g
satisfies the desired equalities eiANg=a2AB=0. For the remaining 3 cases
(g, ¢s)=(1,0), (0,1), (0,0), we can also easily construct g in a similar
way.

Next, assume that rank en=rank a»=2. In this case, we express a: in
the form

a=ynN\y, a=ypAyu (pEV*).

If y,...,y are linearly independent, we have only to put S=yA. In
the case dim <y, ..., 4> =3, after a change of basis, the 2-forms a and a.
are expressed as 1Ay and yAys, respectively. Then the form g=pA
ys satisfies the desired properties. Finally, if dim<w,..., y»> =2, the 2-
forms a1 and a» are parallel, and hence the form g=a itself satisfies
a’i/\ﬂ:O.
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The proof for the remaining cases is easy, and we left it to the
readers. q.e.d.

REMARK. (1) The solvability of the g-G-equation depend on the
choice of the ground field 2. In fact, it does not admit a solution for the
case (m, [, m, r)=(4,4,1,2) in general if k=R, although there exists a
solution in the case 2= C, as stated in this proposition. For example, in
the case of 2=R, we consider the curvature

C=n(anNa— A w) +xn(a At A o)+ 5o A wi— e w).
Then it is easy to see that any element of Ker C: is expressed as
alanNentsNAw) bl A=A w)+ (At w2 o),

and this element is decomposable if and only if a®+ b2+ c¢*=0. Hence, Ker
C; does not contain a non-zero decomposable element if 2=R, and the
above C does not have a solution in codimension 2. This example actu-
ally implies that even in the case (%, [, m, r)=(4, 3,1, 2), the p-G-equation
is not in general solvable if 2=R.

(2) In spite of the examples in this proposition, the estimate “ » =
n—1" for the p-G-equation is best possible in a sense. In fact, in the
case of m=1, there exist / and CEA2V*® A! such that C does not have
a solution in codimension »=%#—2. As an example, we consider the case

12<§) and the coefficients of w:Aw,; in C are linearly independent in A'.

Then it is easy to see that the map C.-: is injective, and hence by Theo-
rem 2.5, C does not admit a solution in codimension » =#n—2.

(3) We conjecture that the examples in this proposition are extended
to the following forms: (i) The p-G-equation always admits a solution
in codimension 7 if (n, [)=Q27r+1,2). (ii) In the case of 2=C, the p-G-
equation for the case (n, [D=(r+2,27) also possesses a solution in
codimension 7. Or more generally, if 2= C, we conjecture that the p-G-
equation is always solvable if and only if the integers #, /, » satisfy the
inequality »=/(»n—1)/(/+2) (or equivalently, »r=n—1—27/1).

6.3. Finally, in the case of =1, combining the results in §5 and
§ 6, we can completely divide the triple of integers (#, [, m) into two clas-
ses according as the solvability of the g-G-equation: The first one is the
case where the curvature C always admits a solution, and the second one
is the case where there exist some polynomial relations on C in order to
admit a solution. We summarize these results in the following form.
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THEOREM 6.4. (1) Assume that (n, [, m) is one of the following

cases :

(i) n=2, I<2 or n=2, m<2

(ii) =n=3, Im<L2.
Then the curvature CE N*V*Q® AY always admits a solution of the g-G-
equation in codimension 1.

(2) Assume (n, |, m) satisfies neither of the above conditions, 1. e., it

i1s one of the following cases :

(i) »=2, I, m=3

(v) =n=3, [ m=2

(v) n=3, [=3 o0r n=3, m=3

(vi) mn=4.
Then, if C adwmits a solution of the g-G-equation in codimension 1, C
satisfies some polynomial relations stated in Propositions 5.1~5. 3.

It should be remarked that in the second case of this theorem, the
curvature C must satisfy different types of polynomial relations simultane-
ously. For example, if (n, [, m)=(4,3,3), C satisfies all the conditions in
Propositions 5.1 (1), (2), 5.2 and 5.3. (The degrees of these polynomials
are 3, 2, 3 and 6, respectively.) This shows a considerable difference
from the case of scalar valued 2-forms, where the decomposability condi-
tion of A2V * is completely characterized only by Pliicker’s quadratic rela-
tion (cf. [10D. In our polynomial valued case, on the contrary, we must
consider the above compound conditions. Onr next problem is to decide
whether these conditions are sufficient to insure the existence of solutions
of the g-G-equation.

The corresponding result for the case » =2 is not fully known yet. In
this case, as stated before, the result depends on the choice of the ground
field £, and hence if =R, we must consider not only polynomial relations
but also “reality conditions” on the curvature C.

Appendix : The invariant of k*® k*® k* with degree 6.

In this appendix, we state 5 different expressions of the invariant of
the space £*® E2® k? with respect to the action of GL(3, k) X GL(2, k) X
GL(2, k) that appeared in §5 and §6. As we shall explain below, this
invariant appears in many different situations where the 3-tensor space
B ®k*®Fk* is concerned. In the following, we express the element of
EBoR®k* as a=(aiyx) (1<i<3,1<j, k<2) and the invariant as k. (We
remark that by calculating the character of £*® k*® k?, the invariant with
degree 6 uniquely exists up to a non-zero constant.)

First, we define (2,2)-matrices A; (1<i<3) by
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Ai:[ ain Q2 ] .
Aiz1  Ai22

Then, the invariant [ is expressed as

0 A —A
Ia: _Al 0 A3 .
A —As 0

As stated in Remark (2) after Proposition 6.2, Strassen [17, p.679] ex-
presses this quantity in the form |Ai|*|A241'As— A3Ai'A:|. (See also
Barth [9, p.64].) This expression is further reformulated in the following
way. We put

— W2ij aij 0
A= —asi; 0 a; | (4,7=1,2).

0 —Wij  @ij
Then, by exchanging suitable rows and columns in the above L, we have

I: All AIZ
T An  Aw

This expression is already appeared in §7 of [7], where this invariant
serves as the defining equation of “singular elements” of £*® £*® k?, con-
sidered from the viewpoint of generalized Cartan’s lemma.

Next, we consider the map Ci: V*®AY—— A3V *®A*', defined
in §2 in the case of (n, [ m)=(3,2,2). As stated in §5 (after Proposi-
tion 5.3), I is the determinant of this map C.. Using a basis of V* we
express CEN*V*® A as

3 2 2
C=2 2 2 aimxyelds,
i=1 j=1 k=1
where Q1= w2 A w3, Q2=— w1 Aws and Q3= Aw2. Then the determinant of
C: is equal to

Din Va1 0 e w2 0
Ik= ,
0 U U 0 Uiz V22

where we put

aij
Vii=| Qeij (i, J=1, 2).
azij
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We consider a=k°®%*®k* as a linear map A*®Ek*——Fk%. If q is
sufficiently generic, then the kernel of this map is 1-dimensional. The
generator of this subspace is decomposable in £*°®%? if and only if its
determinant is zero, where we consider k*®%® as the space of (2,2)-
matrices, and this quantity just coincides with our invariant k. Explicit-
ly, using the (3, 1)-matrices v;; defined above, we have

L= If}uvlzl)zzl |Z)110121)21|
“ozvmves  |onvmeml|”

We put A=k[x, x2]. Then the pair (ai, az) of A'-valued 1-forms
on the 3-dimensional vector space V may be considered as an element of
k*® B ® k? by putting

a'z:Z AriiXi@r (izl, 2)
We define a linear map f: V*—A*V*® A% by
fB)=aNa:\B, for pEV*

(cf. Lemma 2.2). Then the invariant % is equal to the determinant of the
(3,3)-matrix £ By putting

_|@&n  Gn _ | &G ain aii2 Q12
dijl—‘ , dijz—’ +' ,
ai21 G521 a2z Q522 ai21 Q21
a1z Qj12 ..
di13=’ (1<4,7<3),
a:;22  QAj22

it is expressed as

diar dis1  dea
L=\ diz sz dbs2 |.
dizs  diss  dbss

The character of GL(3, k) X GL(2, k) X GL(2, k) corresponding to
the 1-dimensional space <> is equal to Sp2(e) Ses(u) + Ss(v), where e =
(e, €2, &3), u= (1, w2) and v={(m, 1») are the eigenvalues of the elements
of GL(3, k), GL(2, k), GL(2, k), respectively, and S; is the Schur function
corresponding to the partition A (cf. , ). Thus, using a similar
principle as in [4, p.115], the invariant k is equal to

aéc:g (=D %(=D"(= D *as,0ys10)0:1) 012y z21yp2(1) X
TJ,zkE%z

Ao1(3)73(1)p3(1) A02(1) 71(2)01(2) B02(2) 72(2) 02(2) A62(3) 13(2) 03(2),

up to.a non-zero constant. (See also the remark after the proof of Propo-
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sition 5.4.) Hence, by putting

e;i= 2 (=D (—D’arpm@Gir@ee

7,0EC,
a:in  aiz ain 412 ..
Q21 Qj22 Ai21  Ai22
we have
€11 €612 €63

1
16—7 €21 €22 €3/,

€31 €32 €33

We can express this symmetric (3,3)-matrix (e;) in another form.
We define a complex (4, 3)-matrix X by

iz — 21 212 — (221 312 — 321

X = amn+ tize 2111 G222 3111 Qa22
i(dlzz—a111) i (a2 — a11) i Caz22— as11)
iCane+ aiz1) i(@2t @) (a2t az21)

Then by direct calculations, we have (e;)=1/2-*XX. (Note that ‘XX
becomes a real matrix though X itself is a complex matrix.) In particu-
lar, we have
F= XX,
16

In the case of £=0C, it is known that the space C"® C™ is a pre-
homogeneous vector space with respect to the action of SO(n, C) X GL (m,
C). (See [16, p.110].) In this situation, we put =4, m=3, and replace
the action of SO, C) on C* by that of GL(2, C)XGL(2, C) on C?*® C?,
by using a suitable local Lie group homomorphism that induces an algebra
isomorphism o0(4, C)—8!l(2, C)®3((2, C). Then it follows that the 3-
tensor space C®® C*® C? is a (non-reduced) prehomogeneous vector space
with respect to the action of GL(3, C)XGL(2, C)XGL(2, C). In this set-
ting, the expression 1/16:|’XX| is a reformulation of the invariant stated
at the bottom of [16, p. 109].

We can check that these different 5 expressions represent the same
polynomial of a:;x by using the algebraic programming system REDUCES.
Explicitly, it is expressed as a sum of 72 monomials. But unfortunately,
we do not know the reason why these polynomials just coincide although
they have completely different appearances.
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