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Introduction

In considering the problem of local isometric imbeddings of Rieman-
nian manifolds M into the Euclidean spaces, it is important whether a
given Riemannian manifold admits a solution of the Gauss equation in a
given codimension. The author and Kaneda treated this problem in [8]

and proved the non-existence of local isometric immersions of the Rieman-
nian symmetric spaces, where the order of the codimension is about 1/2 \cdot

dim M . Later, the author improved these results for special classes of
Riemannian manifolds in the papers [3], [6], and gave some polynomial
relations on the curvature tensor of the Riemannian submanifolds in the
case of codimension 2 [4], But in higher codimensional cases, almost
nothing is known at present, except for some special cases, concerning the
solvability of the Gauss equation. This difficulty essentially originates in
the complicated structure of the polynomial ring of the space of
curvature-like tensors. (For example, compare with the simple results in
the case of matrices [1], [2], [11], and the character tables of curvature-
like tensors stated in [4, p. 112, p. 130].) In this paper, to improve these
results, we generalize the notion of the Gauss equation (the generalized
Gauss equation), and give new conditions on the curvature tensor in order
to admit a solution of the Gauss equation, by which we can prove the
non-existence of local isometric imbeddings of some Riemannian manifolds
that cannot be treated by previously known methods.

Roughly speaking, the generalized Gauss equation, which we call the
g-G-equation for simplicity, is the equation of polynomial valued 2-f0rms

(*) C=\alpha_{1}\wedge\beta_{1}+\cdots\cdot+\alpha_{r}\wedge\beta_{r} ,

where C is the curvature of M and \alpha_{i} , \beta_{i} are some polynomial valued
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1-forms on the tangent space of M. (We consider \{\alpha_{i}, \beta_{i}\} as an unknown
quantity of the equation. For the precise definition, see \S 1.) Then we
can prove that if the original Gauss equation of the n-dimensional Rieman-
nian manifold admits a solution in codimension r , the curvature C is ex-
pressed in the above form (*) (Theorem 1. 3). Thus, we may say that
the above equation (*) is a generalization of the Gauss equation, and in
this new simple formulation, the solvability of the Gauss equation is
reduced to the determination of the “ rank ” of the polynomial valued 2-
form C. In the group theoretical viewpoint, this generalization corre-
sponds to the separation of the variables, or the group action of GLin,R)
into the product of GL , which gives us a geometric perspective of the
structure of the Gauss equation. However, in contrast to the case of
scalar valued 2-form, (i. e. , the case where \alpha_{i} , \beta_{i} are usual scalar valued
1-forms), this reformulated problem is still hard to solve in general,
though it is easier to treat than the original equation itself. Our first
main purpose of this paper is to give a necessary and (almost) sufficient
condition for the solvability of the g-G-equation in the case of r\leq n-2 , and
apply it to the problem of local isometric imbedd_{\overline{1}}ngs of Riemannian mani-
folds. In addition, as we shall state in the latter half of this paper, the
g-G-equation also possesses many interesting algebraic concepts and prop-
erties that are described by the invariants of multi-tensor spaces, besides
actual applications in geometry. Our second main purpose is to clarify
such algebraic structure of the g-G-equation in some detail through these
invariants.

Now, we explain the contents of this paper. In the first part of this
paper (\S 1\sim \S 4), we study basic facts on the g-G-equation. In \S 1, after
introducing the notion of the g-G-equation, we state the relation between
this equation and the original Gauss equation (Theorem 1. 3). Further-
more, to simplify later calculations, we introduce a special class of the
g-G-equation, called the partial Gauss equation (the p-G-equation). Next,
in \S 2, we state some conditions in order that the curvature C admits a
solution of the g-G-equation (or the p-G-equation) in codimension r\leq n-2

(Theorems 2. 4 and 2. 5). Namely, we prove that if the g-G-equation (or
the p-G-equation) admits a solution, then a certain linear map, which is
determined by the curvature, must possess a non-zero decomposable ker-
nel. In addition, we prove that this condition is (almost) sufficient for
the solvability of the equation. We remark that in the proof of the con-
verse part in Theorem 2. 4, “ generalized Cartan’s lemma ” (the
polynomial version of classical Cartan’s lemma [7]) plays a fundamental
role. After these preliminaries, we apply in \S 3 and \S 4 these results to



Generalized Gauss equations 3

the problem of local isometric imbeddings of Riemannian manifolds.
First, in \S 3, we treat the case of Riemannian symmetric spaces. In par-
ticular, for semi-simple Lie groups G, the condition stated in \S 2 (TheO-

rem 2. 5) is reformulated \overline{1}nto the following simple form (Theorem 3. 1) :
If G is locally isometrically immersed into R^{n+r} . then there exists a non-
zero decomposable r form \Phi\in\wedge^{r}\mathfrak{g}^{*} such that \Phi\wedge d\omega_{a}=0 for all non-zero
roots \alpha , where \mathfrak{g} is the Lie algebra of G and \omega_{a} is the \mathfrak{g}_{a} -component of the
canonical 1-form on G. (For the precise statement, see \S 3.) As an appli-
cation of this theorem, we prove that SU(3) cannot be locally isometrical-
ly immersed into R^{12} . which improves the result in [8]. By using the p-G-
equations, we also prove the non-existence of local isometric immersions
of the symmetric spaces SO(5), SU(3)/SO(3) and P^{3}(C) into R^{15} . R^{7}

and R^{9} , respectively, some of which are already proved by different
methods in [3], [4]. Next, in S4 , we study the actual range of the
codimension r where our new condition on the curvature tensor (Theorem

2. 5) serves as a true condition. For example, as a general result, we can
show that generic n-dimensional manifolds cannot be locally isometrically
immersed into the Euclidean spaces of codimension at least of order
r-2/3\cdot n by explicit calculations on the curvature. (Note that the condi-
tion in [8] is useful only in the range of order r-1/2\cdot n. )

In the second part of this paper (\S 5, \S 6 and Appendix), we study the
algebraic structure of the g-G-equation, apart from actual applicat\overline{l}ons in
geometry. First, in \S 5, we state some necessary conditions on the curva-
ture. Concerning the solvability of the g-G-equation, there exist many
different types of conditions besides the one stated in \S 2. As typical
examples, we show 5 types of conditions that are expressed as polynomial
relations of the curvature tensor (Propositions 5. 1\sim 5. 4). These
polynomials are the invariants of certain multi-tensor spaces, and we may
say that these invariants express new concepts \overline{1}n the multi-tensor spaces,
just as determinants define the concept “ rank ” of matrices. (But the sit-
uation for multi-tensor spaces is not so simple as the case of matrices.
For details, see Appendix.) Finally, in \S 6, as an opposite case to \S 5, we
study the case where the g-G-equations always admit solutions. As in the
case of the original Gauss equation, C always admits a solution if the
codimension r is sufficiently large. We give some estimates of such r for
general n . But minimum value of r changes complicatedly according as
the value of n and the number of the variables. We state this phenome-
non by giving some examples. In Appendix, as an example of the compli-
cated structure of multi-tensor spaces, we explain the invariant of the
space k^{3}\otimes k^{2}\otimes k^{2} (k=R or C) appeared in \S 5 and \S 6, by giving 5
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different expressions. Besides the cases in \S 5 and \S 6, we encounter this
invariant in many different situations where the 3-tensor space k^{3}\otimes k^{2}\otimes k^{2}

is concerned. These 5 compound expressions have their own geometric
meaning respectively, and so it is surprising that they all just coincide in
spite of their different appearances.

\S 1. Generalized Gauss equations.

In this section, we first settle the notations and define the generalized
Gauss equation (the g-G-equation). And next, after reformulating the
equation in a matrix form, we state a relation between the g-G-equation
and the Gauss equat\overline{l}on (Theorem 1. 3).

1. 1. Let A be a polynomial ring over the field k of real numbers or
complex numbers with variables x_{1,.-} . ’

x_{l} , y_{1,.-} . ’ y_{m} , i . e. , A=k[x_{1} , \ldots , x_{t} ,
y_{1} , \ldots , y_{m} ] (k=R or C), and A= \sum_{p,q\geq 0}A^{p,q} be the homogeneous decomposi-
tion of A , where A^{p,q} is the space of polynomials that are homogeneous of
degree p (resp. q) with respect to x_{i} (resp. y_{j}). (We consider A^{0,0}=k.)
We denote by V the n- d_{\overline{1}}mensiona1 vector space k^{n} and V^{*}\overline{1}ts dual space.
Then, elements \alpha\in V^{*}\otimes A1,0 , \beta\in A^{*}\otimes A0,1 may be considered as
polynomial valued 1-forms on V. Since the ring A is commutative, the
exterior product \alpha\wedge\beta\in\wedge^{2}V^{*}\otimes A^{1,1} is naturally defined as in the scalar
valued case.

DEFINITION 1. 1. Let C\in\wedge^{2}V^{*}\otimes A^{1,1} , \alpha_{i}\in V^{*}\otimes A^{1,0} and \beta_{i}\in V^{*}\otimes

A^{0,1}(1\leq i\leq r)- Then we call the equality

(*) C=\alpha_{1}\wedge\beta_{1}+-\cdot\cdot-+\alpha_{r}\wedge\beta_{r}

the generalized Gauss equation (the g-G-equation), and the number r its
codimension. We say that C\in\wedge^{2}V^{*}\otimes A^{1,1} admits a solution of the g-G-
equation in codimension r if there exist \alpha_{i}\in V^{*}\otimes A^{1,0} and \beta_{i}\in V^{*}\otimes A^{0,1}

(1\leq i\leq r) which satisfy (*) . We often call C the curvature, and \{\alpha_{i}, \beta_{i}\}

the solution of the g-G-equation.
In the case of l=m=1, each A^{p,q} is isomorphic to k and hence the

element C\in\wedge^{2}V^{*}\otimes A^{1,1} may be naturally considered as a usual scalar
valued 2-form. Thus, in the above formulation, the least number r where
C admits a solution may be considered as a polynomial version of the
“ rank ” of the 2-form C.

1. 2. Next, for later use, we reformulate the equation (*) in a
matrix form. Let \{e_{1}, \ldots , e_{n}\} be a basis of V and we put C_{ij}=C (\ , e_{j})\in

A^{1.1} . Then clearly, we have C_{ij}=-C_{ji-} We can naturally consider the
polynomial C_{ij}\in A1,1 as an (l, m) -matrix by regarding the coefficient of
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x_{p}y_{q} in C_{ij} as the (p, q) -component of the matrix. In the following, we
often use this identification.

LEMMA 1. 2. A curvature C\in\wedge^{2}V^{*}\otimes A^{1,1} admits a solution of the
g-G-equation in codimension r if and only if there exist (/, r) -matrices
X_{1} , \ldots , X_{n} and (r, m) -matrices Y_{1} , \ldots r,Y_{n} satisfying

(**) C_{ij}=X_{i}Y_{j}-X_{j}Y_{i}, for 1\leq\iota^{-}, j\leq n .

Proof. Assume that C is equal to \sum_{i=1}^{r}\alpha_{i}\wedge\beta_{i} . We express \alpha_{i} (resp.

\beta_{i}) as \sum_{p,s}a_{ips}x_{p}e_{s} (resp. \sum_{q,s}b_{iqs}y_{q}e_{s}), and define matrices X_{i} , Y_{i}(1\leq i\leq n)

by

X_{i}=\{\begin{array}{llll}a_{11i} .\cdot a_{r1i}a_{1li} .- t a_{rli}\end{array}\} . Y_{i}=\{\begin{array}{ll}h_{1i}\cdot\cdot \ulcorner\cdot b_{mi}b_{r1i}\cdot\cdot .b_{rmi}\end{array}\} .

Then we have immediately the equality (**) . The converse can be
checked in the same way. q . e . d .

Now, we state a relation between the g-G-equation and the Gauss
equation. For this purpose, we prepare several notations. In the rest of
this subsection 1. 2, we assume that the ground field k is R, and the real
vector spaces V , R^{r} are endowed with the positive definite inner products,
which we denote by ( ) and < > , respectively. Let K be the space
of curvature-like tensors on V :

K=\{R\in\wedge^{2}V^{*}\otimes\wedge^{2}V^{*}|_{X,Y,Z}\mathfrak{S}R(X, Y, Z, W)=0\} .

and we define a quadratic map \gamma_{r} : S^{2}V^{*}\otimes R^{r}arrow K by

\gamma_{r}(\alpha)(X, Y, Z, W)=<\alpha(X, Z) , \alpha ( Y, W)>
-<\alpha(X, W) , \alpha(Y, Z)> ,

for \alpha\in S^{2}V^{*}\otimes R^{r}-X, Y, Z, W\in V. Then the Gauss equation is expres-
sed in the form R=\gamma_{r}(\alpha)(R\in K) , where we consider V as a tangent
space of an n-dimensional Riemannian manifold.

Next, by using the metric ( ) of V. we regard R\in K as an element
of \wedge^{2}V^{*}\otimes V^{*}\otimes V by

(R(X, Y)Z, W)=-R(X, Y, Z, W) , for X, Y, Z, W\in V.

Under these notations, we define an (n, n) -matrix C_{ij}\in V^{*}\otimes V by

C_{ij}=R(e_{i}, e_{j}) , 1\leq i, j\leq n,
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where \{e_{1}, \ldots.e_{n}\} is a (not necessary orthonormal) basis of V. By put-
ting l=m=n=\dim V. the set of matrices C=(C_{ij}) can be considered as
an element of \wedge^{2}V^{*}\otimes A^{1,1} as stated before. Then, the concept of the g-G-
equation is clarified by the follow\overline{l}ng theorem.

THEOREM 1. 3. Assume that R\in K admits a solution of lhe Gauss
equation in codimension r, i. e. , R\in{\rm Im}\gamma_{r} . Then the above C=(C_{ij})\in

\wedge^{2}V^{*}\otimes A^{1,1} possesses a solution of the g-G-equa tion in codimension r.

In particular, if the curvature C constructed from R\in K does not
admit a solut\overline{l}on of the g-G-equation in codimens\overline{l}on r , then any n-
dimensional Riemannian man\overline{l}fold having R as a curvature at one point
cannot be isometr\overline{l}cally immersed into R^{n+r}- because the Gauss equation
does not have a solution by this theorem.

To prove Theorem 1. 3, we must introduce several notations. Let
0(n+r) be the Lie algebra consist\overline{l}ng of skew symmetric (n+r, n+r) -

matrices and o(n+r)=f\oplus \mathfrak{m} be the canonical decomposition:

f=0(n)\oplus o(r)

\mathfrak{m}=\{ \{\begin{array}{ll}0 -{}^{t}\xi\xi 0\end{array}\} |\xi is an (r, n)- matrix\} .

We express the above element of rr simply as \xi and consider it as a linear
map from V to R^{r} . Next, we define a quadratic map \gamma : V^{*}\otimes \mathfrak{m}–

\wedge^{2}V^{*}\otimes o(n) by

\gamma(\alpha)(X, Y)=-[\alpha(X), \alpha(Y)]_{o(n)} ,

where \alpha\in V^{*}\otimes \mathfrak{m} , X, Y\in V, and [ ]_{o(n)} is the o(n) -component of [ ] .
Explicitly, we have

\gamma(\alpha)(X, Y)=^{t}\alpha(X)\alpha( Y)-^{t}\alpha ( Y) \alpha(X) .

Since \mathfrak{m}\overline{1}S isomorphic to V^{*}\otimes R^{r}\wedge there is a natural \overline{1}nclusionS^{2}V^{*}\otimes

R^{r}arrow V^{*}\otimes \mathfrak{m} . In addition, using the metric ( ) of V , there exists an
inclusion K\subset\wedge^{2}V^{*}\otimes\wedge^{2}V^{*}\simeq\wedge^{2}V^{*}\otimes o(n) . Under these notations, we
have the following lemma.

LEMMA 1. 4. The following diagram is commutative:

\gamma

V^{*}\otimes \mathfrak{m} \wedge^{2}V^{*}\otimes o(n)

\cup \cup

S^{2}V^{*}\otimes R^{r} K
\gamma_{r}
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PROOF. For \alpha\in S^{2}V^{*}\otimes R^{r} and X\in V . we define \alpha(X)\in \mathfrak{m}=V^{*}\otimes R^{r}

by \alpha(X) ( Y)=\alpha(X, Y) . Then

(\gamma(\alpha)(X, Y)Z, W)=-([\alpha(X), \alpha ( Y)]_{o(n)}Z, W)

= ( \alpha(X)\alpha ( Y) Z-^{t}\alpha ( Y) \alpha(X)Z, W )
=<\alpha ( Y)Z, \alpha(X)W>-<\alpha(X)Z, \alpha ( Y) W>
=<\alpha ( Y, Z) , \alpha(X, W)>-<\alpha(X, Z) , \alpha ( Y, W)>
=-\gamma_{r}(\alpha)(X, Y, Z, W)

= (\gamma_{r}(\alpha)(X, Y)Z, W) ,

and hence, we have \gamma(\alpha)(X, Y)=\gamma_{r}(\alpha)(X, Y)\in o(n) . q-e. d.
Now, under these preliminaries, we prove Theorem 1. 3. If R\in{\rm Im}\gamma_{\Gamma} ,

then by Lemma 1. 4, we have R\in{\rm Im}\gamma , i . e. , there exists \alpha\in V^{*}\otimes \mathfrak{m} such
that R=\gamma(\alpha) . Hence, we have

C_{ij}=R(e_{i}, e_{j})=^{t}\alpha(e_{i})\alpha(e_{j})-^{t}\alpha(e_{j})\alpha(e_{i})\in o(n)\subset V^{*}\otimes V.
Therefore, by putt\overline{l}ngX_{i}={}^{t}\alpha(e_{i}) and Y_{i}=\alpha(e_{i})(1\leq i\leq n) , it follows that
C_{ij}=X_{i}Y_{j}-X_{j}Y_{i} . (Note that X_{i} is an (n, r) matrix and Y_{i} is an (r, n)-
matrix.) Thus, by Lemma 1. 2, C admits a solut\overline{l}on of the g-G-equation
in codimension r_{-} q. e . d .

We remark that after considering R as an element of \wedge^{2}V^{*}\otimes V^{*}\otimes Vr.
we do not use the metric of V any more, and therefore, we may treat
everything in the GL(V) -invariant category. In particular, the basis
\{e_{1}, \ldots r, e_{n}\} need not be orthonormal.

1_{-}3 . Finally, for later use, we introduce a special class of the g-G-
equat\overline{l}on . In Definition 1. 1, we call the equality (*) the partial Gauss
equa tion (the p-G-equation) if m=1 . In this situation, we may drop the
variable y_{1} , and in the following, we often use the notations: A=k[x_{1} , \ldots .
x_{l}]= \sum_{p\geq 0}A^{p} , C\in\wedge^{2}V^{*}\otimes A^{1} , \alpha_{i}\in V^{*}\otimes A^{1} and \beta_{i}\in V^{*}(1\leq i\leq r) .

Now, we assume l=n=\dim V. m=1 and k=R. Using a curvature
R\in K and an element Z\in V_{-}. we define a matrix C_{ij} by

C_{ij}=R(e_{i}, e_{j})Z, 1\leq\iota^{-}, j\leq n .
Then we can consider the p-G-equation for C=(C_{ij}) because the size of
the matrix C_{ij} is equal to (w, 1) . In this situation, we have the following
corollary, which \overline{1}S the p-G-equation of Theorem 1. 3.

COROLLARY 1. 5. If R\in K admits a solution of the Gauss equa tion in
codimension r, the above C=(C_{ij})\in\wedge^{2}V^{*}\otimes A^{1} also admits a solution of
the p-G-equation in codimension r for any Z\in V, \iota^{-}. e. , there exist (n, r)-
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matrices X_{1} , \ldots . X_{n} and (r, 1) matrices Y_{1,-}...Y_{n} such that C_{ij}=X_{i}Y_{j}-

X_{j}Y_{i} .

PROOF. We have only to replace Y_{i}=\alpha(e_{i}) in the proof of Theorem
1. 3 by Y_{i}=\alpha(e_{i}) Z. q. e . d .

In actual applications in \S 3 and \S 4, we use the p-G-equation instead
of the g-G-equation because the former is eas\overline{l}er to calculate for concrete
examples. We remark that, in the group theoretical point of view, we
can study the g-G-equation (or the p-G-equation) in the GL(n, k)\cross GL(l,
k)\cross GL(m, k) (or GL (n, k)\cross GL(l, k)- ) 1-nvariant category, although the
Gauss equation itself only in the GL(n, R)- invar\overline{l}ant category (cf. [4]).
This difference is implicitly essential in the following arguments.

\S 2. Main theorem.

2. 1. In this section we state a necessary and (almost) sufficient con-
dition in order that C\in\wedge^{2}V^{*}\otimes A^{1,1} may admit a solution of the g-G-
equation (or the p-G-equation) in the case of r\leq n-2 . To state the main
result, we must prepare several concepts on polynomial valued forms, and
for this purpose, we first review the results in [7] concerning a generaliza-
tion of Cartan’s lemma on the Grassmann algebra. We use the same nota-
tions as in \S 1.

PROPOSITION 2. 1 (cf. [7]). Assume that n, l, r, q>0 , p\geq 0 and n\geq

p+r_{-} Then there exists an open dense subset U\subset V^{*}\otimes A^{1,0}\otimes k^{r}(\simeq k^{n}\otimes k^{l}

\otimes k^{r}) satisfying the following : If \alpha=\{\alpha_{1}, \ldots, \alpha_{r}\}\in U(_{\alpha_{i}}\in V^{*}\otimes A^{1,0}) and
\beta_{1} , \ldots , \beta_{r}\in\wedge^{p}V^{*}\otimes A^{q,0} satisfy

\alpha_{1}\wedge\beta_{1}+\cdot . .+\alpha_{r}\wedge\beta_{r}=0\in\wedge^{p+1}V^{*}\otimes A^{q+1,0} ,

then there exist \gamma_{ij}=\gamma_{ji}\in\wedge^{p-1}V^{*}\otimes A^{q-1,0}(1\leq i, j\leq r) such that
\beta_{i}=\alpha_{1}\wedge\gamma_{1i}+\cdot .+\alpha_{r}\wedge\gamma_{ri}, 1\leq i\leq r.

(We cons\overline{l}der\wedge^{-1}V^{*}=\{0\} in the case of p=0.)

For the detailed proof, see [7]. The case l=p=1 in this proposition
corresponds to classical Cartan’s lemma (for example, see [10]), and
hence this is a natural generalization of it to the polynomial valued case.
Note that the condition \alpha\in U is indispensablen, namely, the element \alpha

must be “ generic ” to obtain the final expression. (Actually this open
dense subset U is a complement of an algebraic set of V^{*}\otimes A^{1,0}\otimes k^{r}- and
an explicit example is stated in Appendix [1] of this paper.) In the fol-
lowing, for later use, we express the above subset U as U_{p,q,r} in order to
distinguish the value of p , q , r. Note that the subset U_{p,q,r} actually exists
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only in the case p\geq 0 , q\geq 1 , r\geq 1 and n\geq p+r.
Next, we state one more lemma. The proof \overline{1}S also given in [7]

(Lemma 4 in \S 4).

LEMMA 2_{-}2 . Assume that n\geq p+1 , l\geq 2 and p\geq 1 . Then there exists
an open dense subset W_{p}\subset V^{*}\otimes A^{1,0}\otimes k^{p} such that the linear map V^{*}arrow

\wedge^{p+1}V^{*}\otimes A^{p,0} defifined by

\beta-\alpha_{1}\wedge\cdot \wedge\alpha p\wedge\beta

is injective for \alpha=\{\alpha_{1}, \ldots.\alpha p\}\in W_{p}(\alpha_{\iota}-\in V^{*}\otimes A^{1,0}) .
Now, we introduce the concept of “ decomposability ” of polynomial

valued forms.

DEFINITION 2. 3. (1) An element \Phi\in\wedge^{p}V^{*}\otimes Ap,0 \overline{1}S called
decomposable if there exist \alpha_{1} , \ldots , \alpha p\in V^{*}\otimes A^{1,0} such that \Phi=\alpha_{1}\wedge\cdot \wedge\alpha p .

(2) Assume n\geq p+2 . We say \Phi\in\wedge^{p}V^{*}\otimes A^{p,0} is regularly
decomposable \overline{1}f there exist \alpha_{1,..-} , \alpha p\in V^{*}\otimes A^{1,0} satisfying the following

conditions:
\Phi=\alpha_{1}\wedge\cdot . \wedge\alpha p

\alpha_{1}\in U_{p+1,p,1}

\{\alpha_{1}, \alpha_{2}\}\in U_{p,p-1,2}

\{\alpha_{1}, \ldots, \alpha p\}\in U_{2,1,p} .

In the case of l\geq 2 , we impose the additional condition
\{\alpha_{1,.-}. \alpha p\}\in W_{p} .

We remark that the above subsets U_{p+1,p,1}-U_{2,1,p} actually exist
because n\geq p+2 . It \overline{1}S clear from Proposit\overline{l}on2.1 , Lemma 2_{-}2 and the
definition that the set of regularly decomposable elements constitute an
open dense subset in the set of all decomposable elements, namely, we
may say that “ generic ” decomposable element is regularly decomposable.

2_{-}2 . Let C\in\wedge^{2}V^{*}\otimes A^{1,1} and p be a positive integer. Using the cur-
vature C , we define a linear map

\tilde{c}_{p}-.\wedge^{p}V^{*}\otimes A^{p,0}arrow\wedge^{p+2}V^{*}\otimes A^{p+1,1}

by C\sim p(\Phi)=\Phi\wedge C. Then we have the following theorem, which \overline{1}S the first
main result in this section.

THEOREM 2. 4. Let C\in\wedge^{2}V^{*}\otimes A^{1,1} and assume that r\leq n-2 . If C

admits a solution of the g-G-equation in codimension r, then there exists a
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non-zero decomposable kernel of the linear map \tilde{C}_{r-}.\wedge^{r}V^{*}\otimes A^{r,0}arrow

\wedge^{r+2}V^{*}\otimes A^{r+1,1}- Conversely, \iota\overline{f} the map C\sim r admits a regularly decomposa-
ble kernel \alpha_{1}\wedge\cdot\cdot \wedge\alpha_{r}, then there ex\iota^{-}sl\beta_{1} , \ldots , \beta_{r}\in V^{*}\otimes A^{0,1} such that C=\alpha_{1}

\wedge\beta_{1}+ \cdot\cdot+\alpha_{r}\wedge\beta_{r}, i. e. , C admits a solution of the g-G-equation in
codimension r. In addition, if l\geq 2 , such \beta_{i} exist uniquely.

REMARK. The converse part of this theorem does not hold in general
if we only assume that \tilde{C}_{r} admits a non-zero decomposable kernel. (See
the example stated at the end of \S 3.) But this theorem gives a necessary
and almost sufficient condition for the solvability of the g-G-equation in
the case of r\leq n-2 because “ generic ” decomposable element is regularly
decomposable, as stated above.

PROOF. First, assume that C admits a solution of the g-G-equation
in codimension r. Then C is expressed \overline{1}n the form \alpha_{1}\wedge\beta_{1}+\cdots\cdot+\alpha_{r}\wedge\beta_{r} .
If \alpha_{1}\wedge\cdots\wedge\alpha_{r}\neq 0 , then this form is a desired non-zero decomposable ker-
nel of \tilde{C}_{r-} In the case \alpha_{1}\wedge\cdots\wedge\alpha_{r}=0 , we may assume that \alpha_{1}\wedge\cdot\cdot\wedge\alpha_{s}\neq

0 and \alpha_{1}\wedge\cdot-\wedge\alpha_{S}\wedge\alpha_{i}=0(s+1\leq i\leq r) after a suitable change of indices.
Then clearly, we have \alpha_{1}\wedge\cdot\cdot-\wedge\alpha_{S}\wedge C=0 . Thus, we have only to find
\alpha_{\acute{S}\dagger 1} , \ldots , \alpha_{\acute{r}}\in V^{*}\otimes A^{1,0} such that \alpha_{1}\wedge\cdots\wedge\alpha_{S}\wedge\alpha_{\acute{s}+1}\wedge\cdots\wedge\alpha_{\acute{r}}\neq 0 . We show
that actually these forms exist. Let f(x_{1}, \ldots, x_{l})\omega_{i_{1}}\wedge\cdot\cdot\wedge\omega_{is} be a non-
zero term in \alpha_{1}\wedge\cdot\cdot \wedge\alpha_{S} , where \{\omega_{1}, \ldots r\omega_{n}\} is a basis of V^{*} . By the
symmetry, we may assume that it is equal to f\omega_{1}\wedge\cdots\wedge\omega_{s} . Then, by put-
ting \alpha_{\acute{s}+1}=x_{1}\omega_{s+1} , \ldots , \alpha_{\acute{r}}=x_{1}\omega_{r} , we have \alpha_{1}\wedge\cdot \wedge\alpha_{S}\wedge\alpha_{\acute{s}+1}\wedge\cdots\wedge\alpha_{\acute{r}}\neq 0

because the coefficient of \omega_{1}\wedge\cdots\wedge\omega_{r} in this form is fx_{1}^{r-s}\neq 0 .
Next, we prove the converse. Assume that \tilde{C}_{r} admits a regularly

decomposable kernel \alpha_{1}\wedge-\cdot\cdot\wedge\alpha_{r} . We express C in the form
C=y_{1}C_{1}+\cdot . . +y_{m}C_{m}, C_{i}\in\wedge^{2}V^{*}\otimes A^{1,0}

Then, clearly, \alpha_{1}\wedge\cdots\wedge\alpha_{r}\wedge C=0 if and only if \alpha_{1}\wedge-\cdot\wedge\alpha_{r}\wedge C_{i}=0\in

\wedge^{r+2}V^{*}\otimes A^{r+1,0} for \dot{\iota}=1 , \ldots , m. First, since \alpha_{2}\wedge\cdots\wedge\alpha_{r}\wedge C_{i}\in\wedge^{r+1}V^{*}\otimes

A^{r,0} , \alpha_{1}\in U_{r+1,r,1} and \alpha_{1}\wedge(\alpha_{2}\wedge\cdots\wedge\alpha_{r}\wedge C_{i})=0 , there exists \Phi_{i1}\in\wedge^{r}V^{*}\otimes

A^{r-1,0} such that \alpha_{2}\wedge\cdots\wedge\alpha_{r}\wedge C_{i}=\alpha_{1}\wedge(-\Phi_{i1}) , i . e. ,

\alpha_{1}\wedge\Phi_{i1}+\alpha_{2}\wedge(\alpha_{3}\wedge\cdots\wedge\alpha_{r}\wedge C_{i})=0 ,

(the case (p , q , r)=(r+1, r , 1) in Proposition 2. 1). Next, S\overline{l}nce\alpha_{3}\wedge , .
\wedge\alpha_{r}\wedge C_{i}\in\wedge^{r}V^{*}\otimes A^{r-1,0} and \{\alpha_{1}, \alpha_{2}\}\in U_{r,r-1,2} , we have from the above
equality \alpha_{3}\wedge\cdot \cdot\wedge\alpha_{r}\wedge C_{i}=\alpha_{1}\wedge(-\Phi_{i2})+\alpha_{2}\wedge(-\Phi_{i3}) for some \Phi i2, \Phi_{i3}\in

\wedge^{r-1}V^{*}\otimes A^{r-2.0}- namely,

\alpha_{1}\wedge\Phi_{i2}+\alpha_{2}\wedge\Phi_{i3}+\alpha_{3}\wedge(\alpha_{4}\wedge\cdots\wedge\alpha_{r}\wedge C_{i})=0 .
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(In this time, we use the case (p , q , r)=(r, r-1,2) .) We repeat these
procedures r-1-times. Then, finally, it follows that

\alpha_{1}\wedge\Psi_{i1}+\cdots\cdot+\alpha_{r-1}\wedge\Psi_{i,r-1}+\alpha_{r}\wedge C_{i}=0 , \Psi_{ij}\in\wedge^{2}V^{*}\otimes A^{1,0} .

Since \{\alpha_{1,-\cdot}, _{\alpha_{r}}\}\in U_{2,1,r} , we may once more use Proposition 2_{-}1 . Then,
we have

C_{i}=\alpha_{1}\wedge\beta_{i1}+\cdots\cdot+\alpha_{r}\wedge\beta_{i\gamma} , \beta_{ij}\in V^{*} .

Hence, by putting \beta_{j}=\sum_{i=1}^{m}\beta_{ij}y_{i}(1\leq j\leq r) , we obtain the des\overline{l}red equality

C=\alpha r\wedge\beta_{1}+\cdots\cdot+\alpha_{r}\wedge\beta_{r-}

To prove the uniqueness of \beta_{i} in the case of l\geq 2 , we have only to
show that the condition \alpha_{1}\wedge\beta_{1}+\cdot\cdot\cdot+\alpha_{r}\wedge\beta_{r}=0 implies \beta_{i}=0- But,
comparing the coeffiffiffic\overline{l}ent of y_{i} , this fact follows immediately from Lemma
2. 2 and the condition \{\alpha_{1}, \ldots, \alpha_{r}\}\in W_{r} because we have \alpha_{1}\wedge\cdot\cdot\wedge\alpha_{r}\wedge\beta_{i}=0

from the above expression. q.e.d.

2. 3. In the rest of this section, we assume that m=1 and state the
p-G-version of Theorem 2. 4, wh_{\overline{1}}ch is the second main result of this sec-
tion. In this case, we use the notations stated in \S 1. 3 because m=1 .

We first define a linear map

\overline{c}_{p-}.\wedge^{p}V^{*}arrow\wedge^{p+2}V^{*}\otimes A^{1}

by \overline{C}_{p}(\Phi)=\Phi\wedge C , analogously as \tilde{C}_{p} . But, we remark that in this case \Phi

is a scalar valued p -form and C\in\wedge^{2}V^{*}\otimes A^{1} .

THEOREM 2. 5. Assume r\leq n-2 . Then C\in\wedge^{2}V^{*}\otimes A^{1} admits a solu-
tion of the p-G-equation in codimension r if and only if the map \overline{C}_{r} has a
non-zero decomposable element as a kernel. In addition, if \overline{C}_{r} admits a
non-zero kernel \beta_{1}\wedge\cdot\cdot\wedge\beta_{r}, then the curvature C is expressed \iota^{-}n the form
\alpha_{1}\wedge\beta_{1}+\cdot\cdot-+\alpha_{r}\wedge\beta_{r}, using the same \beta_{i} as a solution.

REMARK. In this case, the above condition is completely “ necessary
and suffiffiffic\overline{l}ent

” to insure the existence of the solution of the p-G-equation
in the case of r\leq n-2- On the other hand, as we shall see later, the p-G-
equation always admits a solution if r=n-1 (Proposition 6. 1). There-
fore, this theorem gives a complete answer to the solvability of the p-G-
equation. Moreover, we remark that the condition of the decomposability
of \Phi\in\wedge^{r}V^{*} can be checked by Pl\"ucker’s relation that are quadratic
polynomials of the coefficients of \Phi . (For example, see [10].)

PROOF. Assume \beta_{1}\wedge\cdots\wedge\beta_{r}\wedge C=0 (\beta_{1}\wedge\cdot \wedge\beta_{r}\neq 0) . Then, since
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\beta_{1} , \ldots , \beta_{r} are linearly independent, there exist v1 , \ldots . v_{r}\in V such that
\beta_{i}(v_{j})=\delta_{ij} . Now we calculate the left hand side of the following equal\overline{l}ty

v_{1}\rfloor . . \rfloor v_{r}\rfloor(\beta_{1}\wedge\cdots\wedge\beta_{r}\wedge C)=0 ,

where \rfloor means the interior product. Then, after easy calculations, it is
reduced to the form

\pm C+\beta_{1}\wedge\alpha_{1}+\cdots\cdot+\beta_{r}\wedge\alpha_{r}=0 ,

for some \alpha_{i}\in V^{*}\otimes A^{1} . and hence C admits a solut\overline{l}on of the p-G-equation.
The proof of the converse is similar to that of Theorem 2. 4 and we omit
\overline{1}t-

q . e . d .
In addition to the results stated in this section, there exist many other

types of conditions on the curvature C to admit a solut\overline{l}on of the g-G-
equation (or the p-G-equation). For these examples, see \S 5.

\S 3. Applications to Riemannian symmetric spaces.

In this and next sections, we apply the results in \S 1 and \S 2 to the
problem of isometric imbeddings. In particular, by using the p-G-equation
(Theorem 2. 5), we prove in this section the non-existence of local
isometric imbeddings of some low dimensional Riemannian symmetric
spaces. First, we treat the case where M is locally \overline{1}sometric to a com-
pact semi-simple Lie group, and next we consider general cases.

3_{-}1 . Assume that M is locally isometric to a compact semi-simple
Lie group G with the bi -invariant Riemannian metric- We first refor-
mulate Theorem 2. 5 to the form which is easy to calculate in this situa-
tion. For this purpose, we prepare several notations. Let \mathfrak{g} be the
complexified Lie algebra of G, and we fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} .
Then, as is well known, \mathfrak{g} is decomposed in the form

\mathfrak{g}=\mathfrak{h}+\sum_{a\in\Delta}\mathfrak{g}_{a} ,

where \Delta is the set of non-zero roots of \mathfrak{g} and \mathfrak{g}_{a} is the root subspace corre-
sponding to \alpha\in\Delta (see [18]). Let X_{a}(_{\alpha}\in\Delta) be a basis of the 1-
dimensional vector space \mathfrak{g}_{a} and \omega_{a} be a dual of X_{a} , i_{-}e. , \omega_{a}\overline{1}S an element
of \mathfrak{g}^{*} such that \omega_{a}(X_{\beta})=\delta_{a\rho} and \omega_{a}(H)=0 for H\in \mathfrak{h} . We may consider
\omega_{a} as a complex valued left invariant 1-form on the Lie group G. Under
these notations, we reformulate Theorem 2. 5 to the following form.

THEOREM 3. 1. Assume M\iota^{-}s locally isometric to an n-dimensional
compact semi-simple Lie group G. Then, if M is locally isometrically im-
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mersed into R^{n+r},- there exists a non-zero decomposable element \Phi\in\wedge^{r}\mathfrak{g}^{*}

such that \Phi\wedge d\omega_{a}=0 for all \alpha\in\Delta , where d\omega_{a} is the exterior deriva tive of
the 1-form \omega_{a-}

PROOF. We assume that M is locally isometrically immersed \overline{1}nto

R^{n+r} Then by Corollary 1. 5, the p-G-equation admits a solution in
codimension r for any tangent vector Z of M_{-} In the following discus-
sions, we complexify all the vector spaces, the maps and the curvature in
a natural manner. Then, as is easy to see, the complexified p-G-equation
also adm\overline{l}ts a solut\overline{l}on in codimension r. We take an element H\in \mathfrak{h} which
satisfies \alpha(H)\neq 0 for all \alpha\in\Delta , and as in \S 1. 3, using this element H as
the above Z, we define C\in\wedge^{2}\mathfrak{g}^{*}\otimes \mathfrak{g} by

C(X, Y)=R(X, Y)H, X, Y\in \mathfrak{g} ,

where R\overline{1}S the (complex\overline{l}fified) curvature of M. We remark that since l=
n, the space A^{1} is isomorphic to \mathfrak{g} and hence we may consider \wedge^{2}V^{*}\otimes A^{1}

\simeq\wedge^{2}\mathfrak{g}^{*}\otimes \mathfrak{g} . Then, by Theorem 2. 5, the linear map \overline{C}_{r} : \wedge^{r}\mathfrak{g}^{*}arrow\wedge^{r+2}\mathfrak{g}^{*}\otimes

\mathfrak{g} possesses a non-zero decomposable kernel \Phi\in\wedge^{r}\mathfrak{g}^{*} . Us\overline{l}ng the Killing
form B of \mathfrak{g} and X\in \mathfrak{g} , we define a scalar valued 2-form B(C, X) on \mathfrak{g} by

B(C, X) ( Y, Z)=B(C ( Y, Z) , X)\in C, Y, Z\in \mathfrak{g} .

Then, it is easy to see that the condit\overline{l}on\overline{C}_{r}(\Phi)=0 holds if and only if
\Phi\wedge B(C, X)=0\in\wedge^{r+2}\mathfrak{g}^{*} for any X\in \mathfrak{g}_{-} Now, we calculate the 2-f0rm
B(C, X) explicitly. As is well known, the curvature R of M is given by

R(X, Y)Z=-\frac{1}{4}[[X, Y], Z] ,

for X, Y, Z\in \mathfrak{g} (cf. [14]). Hence, we have

B(C ( Y, Z) , X)=B(R( Y, Z)H, X)

=- \frac{1}{4}B([[Y, Z], H], X)

=- \frac{1}{4}B([Y_{J}Z], [H, X]) .

From this equality, \overline{1}t follows that \overline{C}_{r}(\Phi)=0 if and only if \Phi\wedge B(C, X_{a})=0

for any \alpha\in\Delta because \mathfrak{h}\overline{1}S abelian. Therefore, to prove Theorem 3. 1, we
have only to show that (up a non-zero constant) the 2-form B(C, X_{-a}) is
equal to d\omega_{a} . To prove this fact, we put [X_{a}, X_{\beta}]=N_{a\rho}X_{a+\beta}(\alpha, \beta , \alpha+\beta

\in\Delta) , and B(X_{a}, X_{-a})=c_{a}(\neq 0) . (Note that [\mathfrak{g}_{a}, \mathfrak{g}_{\beta}]\subset \mathfrak{g}_{a+\beta} , and if \alpha+\beta\neq

0 , then B(\mathfrak{g}_{a}, \mathfrak{g}_{\beta})=0 , where we consider \mathfrak{g}_{0}=\mathfrak{h} . See [18].) We fix a basis
\{H_{i}\} of \mathfrak{h} and let \{\omega_{a}, \omega_{i}\} be the dual basis of \{X_{a}, H_{i}\} . Then, we have
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B(C, X_{-a})= \sum_{\beta,\gamma\in\Delta}B(C(X_{\beta}, X_{\gamma}), X_{-a})\cdot\omega_{\beta}\wedge\omega_{\gamma}

+ \sum_{i}B
(C(X_{\beta}, H_{i})\beta\in\Delta ’

X_{-a}) \cdot\omega_{\beta}\wedge\omega_{i}

=- \frac{1}{4}(\sum_{\beta,\gamma\in\Delta}B([X_{\beta}, X_{\gamma}], [H, X_{-a}])\cdot\omega_{\beta}\wedge\omega_{\gamma}

+ \sum_{i}B([X_{\beta}, H_{i}], [H, X_{-a}])\cdot\omega_{\beta}\wedge\omega_{i})\beta\in\Delta

=- \frac{1}{4}(-\sum_{\gamma\beta=a}N_{\beta\gamma}\alpha(H)B(X_{a}, X_{-a})\cdot\omega_{\beta}\wedge\omega_{\gamma}\beta\gamma\in\Delta\dotplus

+ \sum_{i}\beta(H_{i})\alpha(H)B(X_{\beta}, X_{-a})\cdot\omega_{\beta}\wedge\omega_{i})\beta\in\Delta

=- \frac{1}{4}\alpha(H)c_{a}(-_{\beta,\beta\dotplus^{\gamma\in\Delta}}\sum_{\gamma=a}N_{\beta\gamma}\omega_{\beta} \wedge\omega_{\gamma}+\sum_{i}, \alpha(H_{i})\omega_{a}\wedge\omega_{i}) .

(Note that [H, X_{a}]=\alpha(H)X_{a} for H\in \mathfrak{h} and \alpha\in\Delta .) Hence, up to a non-
zero constant, the 2-form B(C, X_{-a}) is equal to

-\rho^{\beta}
\dotplus^{\gamma\in\Delta}\sum_{\gamma=a}N_{\beta\gamma}\omega_{\beta}\wedge\omega_{\gamma}+\sum_{i},

\alpha(H_{i})\omega_{a}\wedge\omega_{i} ,

which just coincides the 2-form d\omega_{a} , and therefore, the theorem follows.
q. e . d .

In this proof, we use the element H\in \mathfrak{h}satisfy_{\overline{1}}ng\alpha(H)\neq 0(_{\alpha}\in\Delta) to
define the curvature C . But, after the above modification of the 2-f0rm
B(C, X_{-a}) , the final expression d\omega_{a} does not depend on the choice of H ,

\overline{J} . e. , it becomes an intrinsic quantity associated to \mathfrak{g} itself.

3. 2. Next, as applications of Theorem 3. 1, we prove the non-
existence of local isometric imbeddings of some semi-simple Lie groups.
First, we prove the following theorem.

THEOREM 3. 2. The 8-dimensional Lie group SU(3) with the bi-
invariant Riemannian metric cannot be isometrically immersed into R^{12}

even locally.

REMARK. This theorem improves the result in [8], where the non-
existence of the immersion into R^{10} is proved. But, at present, we do not
know the least dimensional Euclidean space into which SU(3) can be
locally isometrically immersed. (It is already known that SU(3) is
globally isometrically imbedded in R^{18} and the Gauss equation admits a
solution in codimension 9 [13].)

To prove this theorem, we prepare the following lemma.
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LEMMA 3. 3. Let \omega_{1} , \omega_{2} , \omega_{3} , \omega_{4} be linearly independent l-forms.
Then a p-form \Phi salisfifies \Phi\wedge(\omega_{1}\wedge\omega_{2}+\omega_{3}\wedge\omega_{4})=0\iota^{-}f and only if

\Phi\equiv 0 (mod \omega_{1}\wedge\omega_{2}-\omega_{3}\wedge\omega_{4} , \omega_{1}\wedge\omega s , \omega_{1}\wedge\omega_{4} , \omega\wedge\omega_{3} , \omega_{2}\wedge\omega_{4}).

PROOF. We assume \Phi\wedge(\omega_{1}\wedge\omega_{2}+\omega_{3}\wedge\omega_{4})=0 . Then, from this equal-
ity, we have clearly \Phi\wedge\omega_{1}\wedge\omega_{2}\wedge\omega_{3}=0 , which is equivalent to

(3. 1) \Phi=\omega_{1}\wedge\rho_{1}+\omega_{2}\wedge\mu+\omega_{3}\wedge\rho_{3} .

Next, we substitute (3. 1) into the equality \Phi\wedge\omega_{1}\wedge\omega\wedge\omega_{4}=0 , which \overline{1}S

also obtained from the assumption. Then we have

\omega_{1}\wedge\omega_{2}\wedge\omega_{3}\wedge\omega_{4}\wedge\rho_{3}=0 ,

and hence \mu\equiv 0 (mod \omega_{1} , \omega_{2} , \omega_{3} , \omega_{4}). Combining with (3. 1), we have

(3.2) \Phi=\omega_{1}\wedge\rho_{4}+\omega_{2}\wedge g+ \omega_{3}\wedge\omega_{4}\wedge\mu .

Next, after substituting (3. 2) into the equal\overline{l}ties\Phi\wedge\omega_{1}\wedge\omega_{3}\wedge\omega_{4}=\Phi\wedge\omega_{2}\wedge

\omega_{3}\wedge\omega_{4}=0 , we repeat the same procedures as above. Then, finally, we
obtain

(3.3) \Phi=\omega_{1}\wedge\omega_{2}\wedge\tau_{1}+\omega_{1}\wedge\omega_{3}\wedge\tau_{2}+\omega_{1}\wedge\omega_{4}\wedge\tau_{3}+\omega\wedge\omega_{3}\wedge\tau_{4}

+\omega_{2}\wedge\omega_{4}\wedge\tau_{5}+\omega_{3}\wedge\omega_{4}\wedge\tau_{6} .

But, since \Phi\wedge(\omega_{1}\wedge\omega_{2}+\omega s\wedge\omega_{4})=\omega_{1}\wedge\omega_{2}\wedge\omega_{3}\wedge\omega_{4}\wedge(\tau_{1}+\tau_{6})=0 , we have

\tau_{6}=-\tau_{1}+\omega_{1}\wedge\tau_{7}+\omega_{2}\wedge\tau_{8}+\omega_{3}\wedge\tau_{9}+\omega_{4}\wedge\tau_{10} .

Therefore, comb\overline{l}n\overline{l}ng with (3. 3), we obtain the desired expression. The
converse part is trivial. q . e . d .

PROOF OF THEOREM 3_{-}2 . Since the complex\overline{l}fified Lie algebra of
\mathfrak{s}u(3)\overline{1}S isomorphic to \mathfrak{s}\mathfrak{l}(3, C) , we use the Lie algebra \mathfrak{s}\mathfrak{l}(3, C) to prove
this theorem. We define a basis of \mathfrak{s}\mathfrak{l}(3, C) by

X_{1}= \frac{1}{3} \{\begin{array}{lll}2 -1 -1\end{array}\} . X_{2}= \frac{1}{3} \{\begin{array}{lll}1 1 -2\end{array}\} . X_{3}=\{\begin{array}{lll}0 1 00 0 00 0 0\end{array}\}

,\eta

X_{4}=\{\begin{array}{lll}0 0 01 0 00 0 0\end{array}\} . X_{5}=\{\begin{array}{lll}0 0 l0 0 00 0 0\end{array}\}

,
\neg X_{6}=\{\begin{array}{lll}0 0 00 0 01 0 0\end{array}\} .

X_{7}=\{\begin{array}{lll}0 0 00 0 10 0 0\end{array}\} . X_{8}=\{\begin{array}{lll}0 0 00 0 00 1 0\end{array}\}
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and let \{\omega_{1}, \ldots.\omega_{8}\} be the dual basis of \{X_{i}\} . We define a Cartan subalge-
bra of \mathfrak{s}\mathfrak{l}(3, C) by \mathfrak{h}=<X_{1} , X_{2}> . It is easy to see that <X_{i}>(3\leq i\leq 8)

corresponds to the root subspace \mathfrak{g}_{a} , and by easy calculations, we have
immediately

\{

d\omega_{3}=-\omega_{1}\wedge\omega_{3}-oe\wedge\omega_{8}

d_{\omega_{4}=\omega_{1}\wedge\omega_{4}+aB}\Lambda\omega_{7}

d\omega_{5}=-(\omega_{1}+\omega_{2})\wedge\omega_{5}-\omega_{3}\Lambda\omega_{7}

dc\alpha=(\omega_{1}+\omega_{2})\wedge ak+\omega_{4}\wedge\omega_{8}

d\omega_{7}=-\omega_{2}\Lambda\omega_{7}-\omega_{4}\Lambda a\hslash

d\omega=\omega_{2}\wedge\omega_{8}+ \omega_{3}\bigwedge_{Q\hslash} .

Now, assume \Phi\in\wedge^{p}\mathfrak{g}^{*} satisfies \Phi\wedge d\omega_{3}=\cdot-\cdot=\Phi\wedge d\omega=0 . Then, ap-
plying Lemma 3. 3 to the equality \Phi\wedge (-d\omega_{3})=\Phi\wedge(\omega_{1}\wedge\omega_{3}+\omega_{5}\wedge\omega_{8})=0 ,
we have in part\overline{l}cular

(3.4) \Phi\equiv 0 (mod \omega_{13} , \omega 15 , \omega 18 , \omega_{35} , \omega 38 , a\hslash 8),

where we express \omega_{i}\wedge\omega_{j} as \omega_{ij} for simplicity. Next, from the equality
\Phi\wedge d\omega_{4}=\Phi\wedge(\omega_{1}\wedge\omega_{4}+ak\wedge\omega_{7})=0 , we have
(3.5) \Phi\equiv 0 (mod \omega 14 , \omega 16 , \omega 17 , \omega_{46} , \omega_{47} , G\hslash 7) -

Comb_{\overline{1}}ning(3.4) and (3. 5), we have
(3. 6) \Phi\equiv 0 (mod \omega_{134} , 0038, \omega_{137} , \omega 145 , \omega 148 , \omega 156 , \omega 157 , \omega_{168} ,

\omega 178 , \omega 3456 , \omega 3457 , \omega 3468 , \omega 3478 , \omega 3567 , \omega 3678 ,
\omega 4568 , \omega 4578 , 0oe678) ,

where the form \omega 134 means \omega_{1}\wedge\omega_{3}\wedge\omega_{4} , etc. Note that we have only to
consider 6\cross 6=36 combinations of 2-forms in (3. 4) and (3. 5) to obtain
the above expression (3. 6). For example, if \Phi\equiv 0 (mod \omega_{13}) and \Phi\equiv 0

(mod \omega_{14}), we have \Phi\equiv 0 (mod \omega 134). In addition, from the condition
\Phi\equiv 0 (mod \omega 13) and \Phi\equiv 0 (mod \omega 46), we have \Phi\equiv 0 (mod \omega 1346) - But we
may omit this term because the 3-form \omega 134 is already contained in the
right hand side of (3. 6).

Next, using the equalities \Phi\wedge (-d\omega_{7})=\Phi\wedge d\omega_{8}=0 , we repeat the same
procedure as above. Then finally, we have
(3-7) \Phi\equiv 0 (mod \omega 234 , \omega 35 , \omega 237 , \omega 246 , 0013, \omega 256 , &0258, 67267,

\omega 278 , \omega 3456 , \omega 3458 , a\mathfrak{B}467 , \omega_{3478} , \omega 3567 , \omega 3578 ,
\omega 4568 , \omega 4678 , oe678) .

(Actually, \overline{1}n order to obtain this expression, we have only to exchange
suitable letters 1-8 in (3. 6) on account of the symmetric property.)
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Now, we assume \Phi\in\wedge^{4}\mathfrak{g}^{*}(p=4) . Then, combining two expressions
(3. 6) and (3. 7) in the same way as above, we have easily

\Phi\equiv 0 (mod 6)1234 , \omega 1237 , \omega 1248 , \omega 1256 , 6)1278 , 6)3456 , 6)3478 ,

\omega 3567 , \omega_{4568} , \omega_{5678}) .

We express \Phi as a linear combination of these ten 4-forms, and substitute
it to the original equalities \Phi\wedge d\omega_{i}=0(3\leq i\leq 8) . Then, after some calcu-
lations, it follows that \Phi=0 . Therefore, by Theorem 3. 1, the group
SU(3) cannot be locally isometrically \overline{1}mmersed into the Eucl\overline{l}dean space
of cod\overline{l}mension4 . q-e. d .

We may say that the result in Theorem 3. 2 is the best estimate con-
cern\overline{l}ngSU(3) which can be obtained by using the p-G-equation. In fact,
we can easily check that the decomposable 5-form \Phi=\omega_{1}\wedge(oe\wedge G\hslash\wedge\omega r\wedge\omega 8

satisfies \Phi\wedge d\omega_{i}=0(3\leq i\leq 8) , or more strongly, we can prove that the
map \overline{C}_{5} : \wedge^{5}V^{*}arrow\wedge^{7}V^{*}\otimes A^{1} ( V=R^{8})adm\overline{l}ts a non-zero decomposable
kernel in the real category.

Next, we consider the Lie groups SO(n). In the cases n=3 and 4,
the best results are already known, (cf. [3, p. 713]). But, by using TheO-
rem 3_{-}1 , we can also easily prove the non-existence of local isometric
immersions of SO(4) into R^{7} . The best estimate for the group SO(5) is
also already determ\overline{l}ned\overline{1}n[3]_{-} In the following, we give another proof of
this result in our new formulation. For this purpose, we first prepare the
following lemma.

LEMMA 3. 4. Let \omega_{1} , \ldots . \omega_{6} be linearly independent 1-forms. Then a
p-form \Phi salisfifies \Phi\wedge(\omega_{1}\wedge\omega_{2}+\omega_{3}\wedge\omega_{4}+_{G\hslash}\wedge G\hslash)=0\overline{\iota}f and only if

\Phi\equiv 0 (mod \omega 135 , \omega 136 , 6)145 , 6)146 , \omega 35 , \omega 236 , \omega 245 , \omega 46 ,
\omega_{1}\wedge(\omega_{34^{-}G\approx 6}) , \omega\wedge(\omega_{34}-\omega_{56}) , \omega_{3}\wedge(\omega_{12}-0oe6) ,
\omega_{4}\wedge(\omega_{12^{-}oe6}) , a\approx\wedge (\omega_{12}-\omega_{34}) , G\kappa\wedge(\omega_{12}-\omega_{34})) ,

where \omega 135 implies \omega_{1}\wedge GB\wedge Q\hslash , etc. In particular, from the above condi-
tion, it follows that \Phi\equiv 0 (mod \omega ijk) (1\leq i, j, k\leq 6) .

The proof of this lemma is similar to that of Lemma 3. 3 and we left
it to the readers. Using this lemma, we prove the follow\overline{l}ng proposition.

PROPOSITION 3. 5 (cf. [3]). The 10-dimensional L\iota^{-}e group SO (5)

with the b\iota^{-}-invariant Riemannian metric cannot be isometrically immersed
into R^{15} even locally.

PROOF. We fix a basis of the complex Lie algebra 0(5, C) by

X_{1}=E_{12}-E_{21} , X_{2}=E_{13}-E_{31} , X_{3}=E_{14}-E_{41} ,
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X_{4}=E_{15}-E_{51} , X_{5}=R_{3}-E_{32} , X_{6}=b_{4}-E_{42} ,
X_{7}=E_{25}-E_{52} , X_{8}=E_{34}-E_{43} , X_{9}=E_{35}-E_{3} ,
X_{10}=E_{45}-B_{4} ,

where E_{ij} is the matrix whose entry at (\iota^{-}, j) is 1 and other entries are all
zero, and let \{\omega_{i}\} be the dual basis of \{X_{i}\} . We fix a Cartan subalgebra
\mathfrak{h}=<X_{1} , X_{8}> . Then, it is easy to see that the follow\overline{l}ng2 -forms span the
same subspace of \wedge^{2}\mathfrak{g}^{*} as \{d\omega_{a}\} .

\{\begin{array}{l}d\omega_{2}=-\omega_{1}\wedge\omega_{5}+\omega_{3}\wedge\omega_{8}+\omega_{4}\Lambda a_{\hslash}d_{\omega_{3}=-\omega_{1}\wedge a\hslash^{-\omega_{2}\wedge\omega_{8}+\omega_{4}\wedge\omega 10}}d\omega_{4}=-\omega_{1}\wedge\omega r-\omega_{2}\Lambda a\hslash^{-}\omega_{3}\wedge\omega 10d\oe=\omega_{1}\wedge\omega_{2}+[\alpha\wedge\omega_{8}+\omega_{7}\bigwedge_{G\infty}d_{C\alpha=\omega_{1}\wedge\omega 3^{-a\hslash}}\Lambda\omega_{8}+\omega r\Lambda\omega 10d_{\omega_{7}=\omega_{1}\wedge\wedge\omega_{9^{-}}a\hslash}\omega_{4^{-Q\hslash}}\wedge\omega 10d\omega_{9}=\omega_{2}\wedge\omega_{4}+\oe\wedge\omega_{7}-\omega_{8}\wedge\omega_{1}od\omega_{10}=\omega_{3}\wedge\omega_{4}+\omega_{6}\wedge\omega_{7}+a\hslash\wedge\omega.\end{array}

For \Phi\in\wedge^{5}\mathfrak{g}^{*} . we apply Lemma 3. 4 to the equality \Phi\wedge d\omega=0 . Then we
have

\Phi\equiv 0 (mod \omega 134 , \omega 135 , \omega 138 , \omega 139 , \omega_{145} , \omega 148 , \omega 149 , \omega 158 , 00138,
\omega 189 , \omega_{345} , \omega 348 , \omega 349 , \omega 358 , \omega 359 , \omega 389 , \omega 458 , \omega 459 ,
\omega 489 , a\hslash 89) .

And next, we repeat the same procedures stated \overline{1}n the proof of Theorem
3. 2 until \Phi\wedge d\omega_{10}=0 . (But, in this case, we cannot calculate by hand
because there appear too many combinat\overline{l}ons of forms in each step, and
hence we use the computer to complete these calculations.) Then, finally,
we obta\overline{l}n the following simple expression

\Phi\equiv 0 (mod \omega 14789 , 6214780, \omega 14790 , \omega_{14890} , \omega 17890 , \omega 47890),

where 0 impl\overline{l}es10 . (For example, \omega 14780^{=}\omega_{1}\wedge\cdot\cdot\wedge\omega\wedge\omega_{10}. ) By sub-
st\overline{l}tuting the linear combination of these six 5-forms into \Phi\wedge d\omega_{i}=0 , we
have easily \Phi=0 , which completes the proof of the propos\overline{l}tion- q. e . d .

We remark that as stated in [3], the group SO(5) can be locally
isometrically imbedded into R^{16} . which implies that the best estimate on
SO(5) can be obtained by using the p-G-equation. But, as the above
examples show, actual calculations in Theorem 3. 1 become hard as the
dimension of the Lie groups increase. Hence, it is desirable to refor-
mulate the method in Theorem 3. 1 to the form which is easier to calcu-
late.
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3. 3. Next, by using Theorem 2_{-}5 directly, we show some non-
existence of local isometric imbedd\overline{l}ngs of low dimensional symmetric
spaces that are not Lie groups.

PROPOSITION 3. 6_{-} (1) The 5-dimensional Ricmannian symmetric
space SU(3)/SO(3) cannot be isometrically immersed into R^{7} even locally.

(2) The complex projective space P^{3}(C) of real dimension 6 cannot
be locally isometrically immersed into R^{9} .

REMARK. The result (1) \overline{1}S already proved in [4] by using a
d_{\overline{1}}fffferent method, and in [8], the non-existence of local \overline{1}sometric immer-
sion of P^{3}(C) into R^{8} is proved. As for the general complex projective
spaces P^{n}(C) , see [6].

PROOF. (1) The curvature of SU(3)/SO(3) is stated in [4, p. 129].
Using the same notations, we define C\in\wedge^{2}V^{*}\otimes A^{1}(V=\mathfrak{m}=R^{5}-A=

R[x_{1}, \ldots, _{j}oe]) by

C(X, Y)=R(X, Y)X_{1} , X, Y\in V.

Then, as is easily seen, we have
C=x_{3}(\omega_{1}\wedge\omega_{3}+\sqrt{3}\omega_{2}\wedge\omega_{3}+\omega_{4}\wedge\omega_{5})+x_{4}(4\omega_{1}\wedge\omega_{4}+2\omega_{3}\wedge\omega_{5})

+_{i}oe(\omega_{1}\wedge 0oe-\sqrt{3}\omega_{2}\wedge a\approx+\omega_{3}\wedge\omega_{4}) .
Therefore, \Phi\in\wedge^{p}V^{*} satisfies \Phi\wedge C=0\overline{1}f and only if

\{

\Phi\wedge(\omega_{1}\wedge aB+\sqrt{3}\omega\wedge\omega+\omega_{4}\Lambda a\hslash)=0

\Phi\Lambda(2\omega_{1}\Lambda\omega_{4}+\omega_{3}\wedge a\hslash)=0

\Phi\wedge(\omega_{1}\wedge 0oe-\sqrt{3}\omega\wedge a\hslash+\omega_{3}\wedge\omega_{4})=0 .

If \Phi\in\wedge^{2}V^{*} , then direct calculations show that \Phi=0 , and hence by TheO-
rem 2. 5, SU(3)/SO(3) cannot be locally isometrically immersed \overline{1}ntoR^{7}-

(Note that in the case \Phi\in\wedge^{3}V^{*} . there exists a decomposable kernel of
\overline{C}_{3} . For example, \Phi=\omega_{1}\wedge\omega_{3}\wedge G\hslash\cdot )

(2) The curvature of P^{n}(C) is described in [6, p. 504]. We use
these notations. Let \{_{\omega 1}, \ldots\neg. \omega_{2n}\} be the dual basis of \{X_{1}, Y_{1}, \ldots , X_{n}, Y_{n}\}

and we define C\in\wedge^{2}V^{*}\otimes A^{1} ( V=R^{2n}, A=R[x_{1}, \ldots, x_{2n}]) by

C(X, Y)=R(X, Y)X_{1} , for X, Y\in V.
Then, after some calculations, we have finally,

C= \sum_{i=1}^{n}\{x_{2i-1}(\omega_{1}\wedge\omega_{i-1}+\omega\wedge\omega_{i})

+x_{2i}(\omega_{1}\wedge\omega_{i}-\omega_{2}\wedge\omega_{2i-1})+2x_{2\omega 2i-1}\wedge\omega_{i}\} .
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(Actually, in this expression the variable x_{1} does not appear.) Hence,
\Phi\in\wedge^{p}V^{*} satisfies \Phi\wedge C=0 if and only if

\{

\Phi\wedge(\omega_{1}\wedge\omega_{2i-1}+\omega_{2}\wedge\omega i)=0

\Phi\wedge(\omega_{1}\wedge\omega_{2i}-\omega_{2}\wedge\omega 2i-1)=0

\Phi\wedge(2\omega_{1}\wedge\omega_{2}+\sum_{k=2}^{n}\omega_{2k-1}\wedge\omega_{2k})=0 ,

for 2\leq i\leq n . Now, we assume n=3. Then it is easy to see that \Phi\in

\wedge^{3}V^{*} satisfies the above conditions if and only if

\Phi=a(\omega_{135^{-}}\omega 146^{-}\omega 236^{-}\omega_{2}45)+b(_{\omega_{136}+\omega_{145}+\omega 35^{-}\omega 46}) .

Since \Phi is decomposable, we have from Plticker’s relation

p_{134}p_{156}-p_{135}p_{146}+p_{136}p_{145}=0 ,

where p_{ijk} is the coefficient of \omega_{ijk}=\omega_{i}\wedge\omega_{j}\wedge\omega_{k} in \Phi_{-} Substituting the
above expression, we have immediately a^{2}+b^{2}=0 , wh\overline{l}ch\overline{1}mplies that \Phi=0 .
Therefore, P^{3}(C) cannot be locally isometrically immersed into R^{9}-q . e . d .

As for the general complex pro\overline{]}ective spaces P^{n}(C) , the map \overline{C}_{p}

admits a decomposable kernel for p=n+1 . (For example, \Phi=\omega_{1}\wedge\omega z\wedge\omega_{4}

\wedge a\hslash\wedge\cdot\cdot\wedge\omega_{2n}.) In particular, the p-G-equation always admits a solution
in codimension n+1 and hence, for large n , this method is not so strong
as to improve the results in [6].

Finally, we state a remark on the solvability of the g- G- equat\overline{l}on\overline{1}n

Theorem 2. 4, by using the space SU(3)/SO(3) as an example. The cur-
vature of SU(3)/SO(3) stated in [4, p. 129] is reformulated in the
polynomial valued 2-form C\in\wedge^{2}V^{*}\otimes A^{1,1} as follows-.

C=\varphi_{1}(\omega_{1}\wedge\omega_{3}+\sqrt{3}\omega_{2}\wedge\omega_{3}+ \omega_{4}\wedge a\approx)+\varphi_{2}(2\omega_{1}\wedge\omega_{4}+\omega s\wedge\omega_{5})

+ \varphi_{3}(\omega_{1}\bigwedge_{G\hslash}-\sqrt{3}\omega_{2}\wedge oe+\omega_{3}\wedge\omega_{4}) ,

where \varphi_{i}\in A^{1,1} are defined by

\{

\varphi_{1}=x_{1fl}-x_{3}y_{1}+\sqrt{3}x_{2Jb}-\sqrt{3}x_{3}x+x_{4}{?}-xy_{4}

\varphi=2x_{1}y_{4}-2ny_{1}+x_{3}\Re-aeg_{b}

\varphi_{3}=_{X_{1}fi^{-}\pi y_{1}-\sqrt{3}\chi_{2\Re+\sqrt{3}}}\mathfrak{B}x+x_{3}y_{4}-x_{4)\S} .

In particular, from these expressions, the 3-form \Phi=(x_{1}\omega_{1})\wedge(x_{1}\omega_{3})\wedge(x_{1oe})

\in\wedge^{3}V^{*}\otimes A^{3,0} satisfies \Phi\wedge C=0 , i_{-}e. , \Phi is a non-zero decomposable kernel
of the linear map \tilde{C}_{3}-.\wedge^{3}V^{*}\otimes A^{3,0}arrow\wedge^{5}V^{*}\otimes A^{4,1}\wedge But it \overline{1}S clear that C
cannot be expressed in the form C=x_{1}\omega_{1}\wedge\beta_{1}+x_{1}\omega\wedge\beta_{2}+x_{1}\omega_{5}\wedge\beta_{3}(\beta_{i}\in V^{*}

\otimes A^{0.1}) because the polynomials \varphi_{i}conta\overline{l}n the variables x_{2}\sim ae . Hence,
by Theorem 2. 4, the above decomposable 3-form \Phi is not “ regularly
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decomposable ” (Definitin 2. 3 (2)). In other words, this example shows
that in the converse part of Theorem 2. 4, we cannot drop the condit\overline{l}on of
the “ regularity” of the decomposable kernel of \tilde{C}_{r}. This is quite
different from the case of the p-G-equation, where the solvability of the
equat\overline{l}on is completely characterized by the map \overline{C}_{p} only (Theorem 2. 5).

\S 4. The range where the p-G-equations are useful.

In this section, we study the range of the codimension r where the
p-G-equations serve as actual obstructions to the existence of local
isometric imbeddings. In particular, we investigate the range of r where
the map \overline{C}_{r} : \wedge^{r}V^{*}arrow\wedge^{r+2}V^{*}\otimes A^{1} is injective for generic Riemannian
manifolds. Clearly, in this case, the map \overline{C}_{r} does not admit a non-zero
decomposable kernel, and hence, we can show the non-existence of local
isometric imbeddings of generic n- d\overline{l}mensional Riemannian manifolds into
R^{n+r} by explicit calculat\overline{l}ons on the curvature. But \overline{1}n general, it \overline{1}S very
difficult to determine the exact range of such r explicitly. In this section,
we first give some estimates of such r for general cases, and next, deter-
mine the maximum value of r for each small n , by giving concrete exam-
ples. From these results, the non-.existence of local isometric imbeddings
can be proved by the p-G-equation for a wide class of manifolds, which
cannot be treated by prev\overline{l}ously known methods.

First, as a general result, we show that our new method serves as a
true condit\overline{l}on at least of order r\sim 2/3\cdot n . Precisely, we prove the follow-
ing proposition.

PROPOSITION 4. 1. Assume that n\geq 3k+1 and r=2k-1 . Then \overline{C}_{r} is
injective for generic R\in K.

To prove this proposition, we prepare the following lemma.

LEMMA 4_{-}2 . Assume that there exist 1-forms n, \ldots , \gamma_{n}, &, ... ’
\delta_{n} satis-

fying the following two conditions :
(i) n, \ldots \gamma_{n} are linearly independent.
(ii) If \Phi\in\wedge^{r}V^{*} salisfifies \Phi\wedge\varphi\wedge\ =\cdot--\cdot=\Phi\wedge\gamma_{n}\wedge\delta_{n}=0 , then \Phi=0 .
Then the map \overline{C}_{r}-.\wedge^{r}V^{*}arrow\wedge^{r+2}V^{*}\otimes A^{1} is injective for generic R\in

K.

PROOF. Under the above situations, we have only to construct a cur-
vature such that \overline{C}_{r} is injective. Then it \overline{1}S clear that \overline{C}_{r} is injective for
generic case.

We take a 1-form \gamma_{1} such that \{\gamma_{1}, ..-, \gamma_{n}\} forms a basis of V^{*} , and let
\{e_{1,.-\cdot r},e_{n}\} be the dual basis of \{\gamma_{i}\}_{-} We introduce a metric on V such
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that \{e_{i}\} becomes an orthonormal basis. For 2\leq i\leq n , we express the
form \delta_{i} as

\delta_{i}=-a_{i}\gamma_{1}+\sum_{j=2}^{n}b_{ij}\gamma_{j} ,

and by using the coefficients \{a_{i}, b_{ij}\} , we define a curvature R\in K by
R_{1i1i}=a_{i}, R_{ij1i}=b_{ij} for 2\leq i, j\leq n(i\neq j) and other R_{ijkl}=0- Then, it is
clear that R satisfies Bianchi’s identityd. Next, we define C\in\wedge^{2}V^{*}\otimes A^{1}

by

C(X, Y)=R(X, Y)e_{1} , for X, Y\in V,

as before. Then, we have easily

C= \sum_{i=1}^{n}a_{i}x_{i}\cdot\gamma_{1}\wedge\gamma_{i}+\sum_{i,j=2}^{n}b_{ij}x_{i}\cdot\gamma_{i}\wedge\gamma_{j} ,

and

\frac{\partial C}{\partial x_{i}}=a_{i}\gamma_{1}\wedge\gamma_{i}+\sum_{j=2}^{n}b_{i_{J}}-\gamma_{i}\wedge\gamma_{j} ,

\frac{\partial}{\partial x_{i}}(e_{i}\rfloor C)=e_{i}\rfloor\frac{\partial C}{\partial x_{i}}=-a_{i}\gamma_{1}+\sum_{j=2}^{n}b_{ij}\gamma_{j}-b_{ii}\gamma_{i}

=\delta_{i}-b_{ii}\gamma_{i} ,

for 2\leq i\leq n , where \rfloor means the inter\overline{l}or product. Now, assume that \Phi\in

\wedge^{r}V^{*} satisfies \Phi\wedge C=0 . Then for 2\leq i\leq n , we have
0=e_{i}\rfloor(\Phi\wedge C)

=(e_{i}\rfloor\Phi)\wedge C+(-1)^{r}\Phi\wedge(e_{i}\rfloor C)-

Differentiating this equality by x_{i} , we have

0=(e_{i} \rfloor\Phi)\wedge\frac{\partial C}{\partial x_{i}}+(-1)^{r}\Phi\wedge\frac{\partial}{\partial x_{i}}(e_{i}\rfloor C)

=(e_{i} \rfloor\Phi)\wedge(a_{i}\cdot\gamma_{1}\wedge\gamma_{i}+\sum_{j=2}^{n}b_{ij}\cdot\gamma_{i}\wedge\gamma_{j})+(-1)^{r}\Phi\wedge(\delta_{i}-b_{ii}\gamma_{i}) .

We product the 1-form \gamma_{i} to the above equality. Then we have immedi-
ately \Phi\wedge\gamma_{i}\wedge\delta_{i}=0 for 2\leq i\leq n , and hence, by the assumption ( ii) , it fol-
lows that \Phi=0 . This impl\overline{l}es that \overline{C}_{r} is injective. q. e_{-}d .

Proof OF PROPOSITION 4. 1. We assume that 1-forms \omega_{1} , \ldots . \omega_{3k}\in

V^{*} are 1\overline{1}nearly independent, and the form \Phi\in\wedge^{2k-1}V^{*} ( V=R^{n} , n\geq 3k+

1) satisfies \Phi\wedge\omega_{j}\wedge\omega_{l}=0 for 3k decomposable 2-forms \omega_{j}\wedge\omega_{l} listed
below \cdot.
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\{

(***)

\omega_{1}\wedge\omega_{k+1} \omega_{k+1}\wedge\omega_{2k+1} \omega_{2k+1}\wedge\omega_{1}

\omega\Lambda\omega k+2 \omega_{k+2}\wedge\omega_{2k+2} \omega_{2k+2}\wedge\omega_{2}

1\omega_{k}\wedge\cdot

.
\omega k

\omega_{k}\wedge\cdot

.

\omega_{3k}

\omega_{3k}.\cdot\wedge\omega_{k}

.

In the following, by us\overline{l}ng these conditions, we show that \Phi=0 . Then, by
Lemma 4. 2, the map \overline{C}_{2k-1} is in\overline{]}ective for generic R\in K.

Now, we first show that for each decomposable 2k-1-form \Psi=\omega_{i_{1}}\wedge

. . r \wedge\omega_{i_{2k-1}}(1\leq\iota_{1}^{-}<\cdot-\cdot-<i_{2k-1}\leq n) , there exists some 2-form \omega_{j}\wedge\omega_{l} in
(***) such that \Psi\wedge\omega_{j}\wedge\omega_{l}\neq 0 . In fact, if we assume \Psi\wedge\omega_{j}\wedge\omega_{l}=0 for all
\omega_{j}\wedge\omega_{l}\overline{1}n(***) , then from the first condition \Psi\wedge\omega_{1}\wedge\omega_{k+1}=0,\overline{1}t follows
that the set \{i_{1,.-\cdot\uparrow}, i_{2k-1}\} must contain 1 or k+1 . We repeat the same pr0-
cedure to the 2-forms in the first column of (***) . Then after changing
suitable indices if necessary, the numbers 1, 2, \cdot\cdot , p , k+p+1 , \cdots , 2k are
contained in \{i_{1,-}.., i_{2k-1}\}(0\leq p\leq k) , and the remaining cond\overline{l}tions are

\{\begin{array}{l}\Psi\Lambda\omega_{k+1}\wedge\omega_{2k+1}=0,..\Psi\Lambda\omega_{k+p}\Lambda\omega_{2k+p}=0_{\prime}\end{array} \Psi\wedge\omega k+p+1\wedge\omega p+1=0\Psi\wedge\omega_{3k}\wedge\omega_{k}=0.

’

But the 2k1-forms \omega p+1 , \cdots , \omega_{k} , \omega_{k+1} , \cdot . , \omega_{k+p} , \omega k+1 , \cdot . , \omega_{3k} appeared
above are linearly independent, and hence \{\iota_{1}^{-}, \ldots, \iota_{2k-1}^{-}\} must conta\overline{l}nk of
\{p+1, \ldots, k+p, 2k+1, .-. , 3k\} . On the other hand, as stated above, it also
contains the set \{1, \ldots , p, k+p+1, \ldots, 2k\} , and hence \#\{i_{1}, \ldots r. \iota_{2k-1}^{-}\}\geq 2k ,
wh_{\overline{1}}ch is a contradict\overline{l}on- Therefore, there exists some \omega_{j}\wedge\omega_{l} in (***)
such that \Psi\wedge\omega_{j}\wedge\omega_{l}\neq 0 .

Now, we express \Phi\in\wedge^{2k-1}V^{*} in the form

\Phi=\sum_{i_{1}<\cdots<i_{2k-1}}\Phi_{i_{1}\cdots i_{2k-1}}\omega_{i_{1}}\wedge\cdot-\wedge\omega_{i_{2k-1}} .

We fix the index (i)=(i_{1}, \ldots , i_{2k-1})(1\leq\iota_{1}^{-}<\cdots<i_{2k-1}\leq n) . Then as we
showed above, there exists \omega_{j}\wedge\omega_{l} in (***) such that

\omega_{i_{1}}\wedge\cdot\cdot-\wedge\omega_{i_{2k-1}}\wedge\omega_{j}\wedge\omega_{l}\neq 0 .

Hence the form \Phi\wedge\omega_{j}\wedge\omega_{l} contains the term \omega_{\iota 1}-\wedge\cdot\cdot\wedge\omega_{i_{2k-1}}\wedge\omega_{j}\wedge\omega_{l} , and
it is easy to see that the coefficient of this term is just equal to \Phi_{(i)} .
Therefore, from the condition \Phi\wedge\omega_{j}\wedge\omega_{l}=0 , it follows that \Phi_{(i)}=0 , which
implies \Phi=0 . q_{-}e . d_{-}

The condition on the curvature tensor

rank R(X, Y)\leq 2r, X, Y\in V,
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which we used in [8], serves as a true obstruct\overline{l}on only in the range r\leq

1/2\cdot(n-2) . Hence, comparing the order of r in Propos\overline{l}tion4.1 , our new
condition (Theorem 2. 5) is more useful for a wide class of manifolds than
the above known one. But, at present, we do not know the exact upper
bound of r such that the map \overline{C}_{r} is injective. (By Proposition 6. 1 in \S 6,
\overline{1}t is at most n-2 . Perhaps, the order r-2/3\cdot n in Proposition 4. 1 is not
best possible. It \overline{1}S also interesting but difficult to determine the order of
r such that the conditions ( i ) , ( ii) in Lemma 4. 2 hold.) However, for
small value of n , we can prove the follow\overline{l}ng proposition.

PROPOSITION 4. 3. Assume that (n, r) is one of the following cases:
(n, r)=(4,1) , (5, 2) , (6, 3) , (7, 4)- Then \overline{C}_{r} is injective for generic R\in K.
In addition, for 4\leq n\leq 7 , these cases give the maximum value of r such
that \overline{C}_{r} is injective.

PROOF. The case (n, r)=(4,1) is already proved in Proposition
4. 1. We first consider the case (n, r)=(5,2) . In this case, using a basis
\{\omega_{i}\} of V^{*} , we put

p=\omega_{1} , n=\omega , \gamma_{4}=\omega_{3} , n^{=\omega_{1}+\omega_{4}} ,
&=\omega , \ =\omega_{3} , \delta_{4}=\omega_{4} , ae=eoe .

Then, by an easy calculation, we can check that these forms \gamma_{i} , \delta_{i} satisfy
the cond_{\overline{1}}tions ( i) and ( ii)\overline{1}n Lemma 4. 2, and hence \overline{C}_{2} is injective for
generic R\in K . (Of course, the symmetric space SU(3)/SO(3) also gives
such an example, cf. Proposit\overline{l}on3.6(1).)

Next, in the case of (n, r)=(6,3) , we put

\varphi=\omega_{1} , n^{=\omega_{3}} , \gamma_{4}=\omega_{4} , n=oe, \gamma_{6}=ak ,
&=\omega , \ =\omega_{1} + \omega_{4} , \delta_{4}=\omega_{1}+\omega_{5} , \delta_{5}=\omega_{2}+\omega_{6} , \ =\omega+\omega_{3} .

Then the same results also hold as above.
As for the case (\#, r)=(7,4) , we directly construct R\in K such that

\overline{C}_{4} is injective. For this purpose, we put

R_{1213}=R_{1214}=R_{1226}=R_{1227}=R_{1335}=R_{1337}=R_{1424}=R_{1434}

=R_{1445}=R_{1515}=R_{1556}=R_{1616}=R_{1646}=R_{1717}=R_{1737}=1

and other R_{ijkl}=0- (Note that Bianchi’s ident\overline{l}ty is automat\overline{l}cally

satisfied.) Then, the curvature C\in\wedge^{2}V^{*}\otimes A^{1} defined by

C(X, Y)=R(X, Y)e_{1} , X, Y\in V,

is equal to
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C=x_{2}(\omega_{13}+\omega_{14}+\omega_{26}+\omega_{27})+x_{3}(\omega_{12}+\omega_{35}+\omega_{37})

+x_{t}(\omega_{12}+\omega_{4}+\omega_{34}+\omega_{45})+_{i}oe(\omega_{15}+_{Q\hslash 6})

+n(\omega_{16}+\omega_{46})+x_{7}(\omega_{17}+\omega_{37}) ,

where \omega_{ij}=\omega_{i}\wedge\omega_{j} , as before. In this situation, we assume that \Phi\in\wedge^{4}V^{*}

satisfies the condition \Phi\wedge C=0 . Then, by using the algebraic program-
ming system REDUCE3, we can directly show \Phi=0 , which implies that \overline{C}_{4}

is injective for generic R\in K\tau (In this case, it is hard to calculate by
hand.)

Finally, we show that these results are best possible. In the case
(n, r)=(4,2) , we have \dim\wedge^{2}V^{*}=6 , dim \wedge^{4}V^{*}\otimes A^{1}=4 , and therefore, the
map \overline{C}_{2} : \wedge^{2}V^{*}arrow\wedge^{4}V^{*}\otimes A 1 cannot be injective. The other cases
(n, r)=(5,3) , (6, 4) , (7, 5) can be treated in the same way, and we omit
the details. q . e . d .

For the case (n, r)=(8,4) , we can also show that \overline{C}_{4} is injective for
generic R\in K . In fact, if we put

\varphi=\omega_{1} , \gamma_{3}=\omega_{4} , \gamma_{4}=_{Cffi} , n=\omega , \gamma_{6}=\omega_{1}+\omega_{3} , \gamma_{7}=\omega+\omega_{4} ,
\ ^{=\omega_{2}} , \ ^{=\omega_{3}} , \delta_{4}=_{Q\hslash} , \delta_{5}=\omega_{7} , \alpha=\omega_{1}+a\hslash , ae=\omega_{2}+a\hslash

( \mu and & may be arbitrary), then the same results hold as above. But,
we do not know at present whether \overline{C}_{r} is injective for generic R\in K in
the case (n, r)=(8,5) .

For the cases (w, r)=(4,1) and (5, 2) , we have already obtained the
polynomial relations of the curvature tensor of submanifolds \overline{1}nR^{n+r}([8] ,

[4] ) . But other cases (n, r)=(6,3) , (7, 4) , (8, 4) treated above are out of
this range, and hence, Theorem 2. 5 serves as a new obstruction to local
isometrics imbeddings for these cases.

Finally, we remark that the estimates in Proposition 4. 3 do not give
the upper bound of the codimension r where Theorem 2. 5 is useful.
Namely, there ex\overline{l}st some other cases where the non-existence of the im-
beddings can be proved by using the p-G-equation. As an easy example,
we consider the case (w, r)=(4,2) . Let M be a 4-dimensional Rieman-
nian manifold, whose curvature at one point is g\overline{l}ven by

R_{1212}=R_{1414}=-1 , R_{1313}=R_{1324}=2 , R_{1234}=R_{1423}=1 and other R_{ijkl}=0 .
Then, by putting C(X, Y)=R(X, Y)e_{1} , it is easy to see that the 2-f0rm
\Phi=\Sigma p_{ij\omega_{i}\wedge\omega j}.\in\wedge^{2}V^{*} is contained in the kernel of \overline{C}_{2\overline{1}}f and only if p_{12}=

p_{34} , p_{13}=-b4 and p_{14}=b3 . Hence, by Pl\"ucker’s relation, we have \overline{1}mmedi-

ately \Phi=0 , which implies that the above M cannot be locally isometrical-
ly immersed into R^{6}-
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\S 5. Typical necessary conditions.

In the rest of this paper, we study the algebraic structure of the g-G-
equations defined in \S 1 for general (n, l, m) , apart from the applicat\overline{l}ons

in geometry. First, \overline{1}n this section, we study the conditions on the curva-
ture C\in\wedge^{2}V^{*}\otimes A^{1,1} in order to admit a solution of the g-G-equation.
Especially, we describe conditions on C that can be expressed as
polynomial relations of the components of C_{-} According as the value of
(n, l, m, r) , there appear many types of polynomials as obstruct\overline{l}ons to the
solvability, and as typical examples, we show 5 different types of rela-
tions, which are the \overline{1}nvariants of the space \wedge^{2}V^{*}\otimes A^{1,1} with respect to
the act\overline{l}on of the group GLCn,k) \cross GL(l, k)\cross GL(m, k) .

5. 1. We first show that, for each codimension r , there exist 2 typi-
cal series of polynomial relations. For this purpose, we prepare several
notations. Using linear maps A_{1,.-} . ’

A_{p} : k^{m}arrow k^{l} . we define a linear map
A_{1}\circ\cdots\circ A_{p} : S^{p}(k^{m})arrow S^{p}(k^{l}) by

(A_{1} \circ\cdot . \circ A_{p})(v_{1}\circ\cdots\circ v_{p})=\frac{1}{p!}\sum_{\sigma\in \mathfrak{S}p}(A_{1}v_{\sigma(1)})\circ\cdot .\circ(A_{p}v_{\sigma(p)}) , v_{i}\in k^{m},

where v_{1}\circ\cdots\circ v_{p}\in S^{p}(k^{m}) implies the symmetric tensor product of v_{i} , and
\mathfrak{S}_{p} is the symmertric group of degree p (cf. [5]). We denote by (-1) \sigma

the signature of the permutation \sigma\in \mathfrak{S}_{p} . In addition, we consider C(v_{1} ,
u)\in A^{1,1} as a linear map from k^{m} to k^{l} . as in \S 1. Then we have the fol-
lowing proposition.

PROPOSITION 5_{-}1 . Assume that C\in\wedge^{2}V^{*}\otimes A^{1,1} admits a solution of
the g-G-equa tion in codimension r. Then the following two conditions on
C hold :

(1) rank C(v_{1}, v_{2})\leq 2r.
(2) \sum_{\sigma\in \mathfrak{S}_{2r+2}}(-1)^{\sigma}C(v_{\sigma(1)}, v_{\sigma(2)})\circ- .\circ C(_{V\sigma(2r+1)})=0

: S^{r+1}(k^{m})arrow S^{r+1}(k^{l}) ,

for v_{i}\in V.

REMARK. (1) The condition (1) is non-trivial only in the range
n\geq 2 and l, m\geq 2r+1 . The condition (2) resembles Amitsur-Levitzki’s
identity, or its tensor version (see [5]). This becomes a true condition
only in the case n\geq 2r+2 because the left hand side of (2) is skew sym-
metric with respect to the indices \{1, 2, \ldots, 2r+2\} . Hence, in actual appli-
cat\overline{l}ons to isometric imbeddingsm, both conditions become true relations of
the curvature tensor only in the range r-1/2\cdot n because l=m=n. The
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condition (1) is noth_{\overline{1}}ng but the one which we used in [8] to prove the
non-existence of local isometric imbeddings of Riemannian symmetric
spaces.

(2) If we express the conditions (1), (2) as polynomials of the com-
ponents of C , then its degrees are 2r+1 and r+1 , respectively. In the
case (n, l, m)=(2,2r+1,2r+1) , the condition (1) is equivalent to the
vanishing of the determinant of (2r+1,2r+1) matrix C(v_{1}, v_{2}) , which is
the invariant of the space A^{1,1} with respect to the action of GL(2r+1, k)\cross

GL(2r+1, k) . As for the condition (2), if n=2r+2 and l=m=1 , it is
reformulated to the vanishing of the r+1-th Pfaffian of the skew symmet-
ric (n, n) matrix (C(v_{i}, v_{j}))_{1\leq i,j\leq n} , which is also the invariant of \wedge^{2}V^{*}

with respect to the action of GL(n, k) .

PROOF. The condition (1) is easily obta\overline{l}ned if we use the matrix
form of the g- G,equat\overline{l}on (Lemma 1. 2). We prove only (2).

Since (2) is skew symmetric with respect to v_{i} as remarked above,
we have only to consider the case where v_{1,..-} , u_{r+2} are linearly indepen-
dent. Considering these vectors as a part of a basis of V. we assume that
C_{ij}=C(v_{i}, v_{J}-) is expressed as X_{i} Y_{j}-X_{j} Y_{i} , where X_{i} and Y_{i} are certa\overline{l}n

(l, r) and (r, m) -matrices, respectively (Lemma 1. 2)- First, we prove the
following \overline{1}dentity :

\Sigma (-1) \sigma(-1)^{\tau}(X_{\sigma(1)}Y_{\tau(1)})\circ\cdot\cdot\circ(X_{\sigma(r+1)}Y_{\tau(r+1)})=0

\sigma,\tau\in \mathfrak{S}_{r+1}

: S^{r+1}(k^{m})arrow S^{r+1}(k^{l}) .

For this purpose, we put

X_{i}=(v_{i,..- r}^{1},v_{i}^{r}) ( v_{i}^{p} is an (n , 1)-matrix),

and

Y_{j}=\{\begin{array}{l}\xi_{j}^{1}\wedge.\xi_{j}^{r}\end{array}\} ( \xi_{j}^{p} is a (1, m)-matrix).

Then, for u\in k^{m}\wedge we have

X_{i}Y_{j}u= (v_{i,..- ^{v_{i}^{r})}}^{1} \{\begin{array}{l}\xi_{j}^{1}u.-\xi_{j}^{r}u\end{array}\}

= \sum_{p=1}^{r}(\xi_{j}^{p}u)\cdot v_{i}^{p} .



28 Y. Agaoka

Hence we have

\wedge r+1\sim

\sum_{\sigma.\tau}(-1)^{\sigma}(-1)^{\tau}(X_{\sigma(1)}Y_{\tau(1)})\circ\cdots\circ(X_{\sigma(r+1)}Y_{\tau(r+1)})(u^{\circ\cdot\circ}\llcorner\cdot u)

= \sum_{\sigma,\tau}(-1)^{\sigma}(-1)^{\tau}(X_{\sigma(1)}Y_{\tau(1)})u\circ\cdots\circ(X_{\sigma(r+1)}Y_{\tau(r+1)})u

= \sum_{\sigma,\tau,p}(-1)^{\sigma}(-1)^{\tau}(\xi_{\tau(1)}^{p_{1}}u)\cdot-\cdot(\xi_{\tau(r+1)}^{p_{r+1}}u)\cdot v_{\sigma(1)}^{p_{1}}\circ\cdots\circ v_{\sigma tr+1)}^{p_{r+1}} .

In this expression, we fix \sigma\in \mathfrak{S}_{r+1} , p= (p_{1}, \ldots, p_{r+1}) , and next, add with
respect to \tau\in \mathfrak{S}_{r+1} . Then the coefficient of v_{\sigma(1)^{\circ}}^{p_{1}}\cdot\cdot\circ v_{\sigma(r+1)}^{p_{r+1}}\overline{1}S

( -1 )^{\sigma} \sum_{\tau}(-1)^{\tau}(\xi_{\tau(1)}^{p_{1}}u)\cdot\cdot-(\xi_{\tau(r+1)}^{p_{r+1}}u) .

But, since the index p_{i} runs through from 1 to r , there exist distinct in-
dices a and b satisfying p_{a}=p_{b} . Then we have

\sum_{\tau}(-1)^{\tau}(\xi_{\tau(1)}^{p_{1}}u)\cdots(\xi_{\tau}^{p}\uparrow_{a)}u)-\cdot\cdot(\xi_{\tau(b\rangle}^{p_{b}}u)\cdots(\xi_{\tau(r+1)}^{p_{r+1}}u)

= \sum_{\tau}(-1)^{\tau}(\xi_{\tau}^{p}\{_{1)}u)-\cdot\cdot(\xi_{\tau}^{p}\uparrow_{b)}u)\cdots(\xi_{\tau(a)}^{p_{b}}u)\cdots(\xi_{\tau(r+1)}^{p_{r+1}}u)

=- \sum_{\tau}(-1)^{\tau}(\xi_{\tau}^{p}\{_{1)}u)\cdots(\xi_{\tau}^{p}?a)u)\cdots(\xi_{\tau(b)}^{p_{b}}u)\cdots(\xi_{\tau(r+1)}^{p_{r+1}}u) ,

and hence this is equal to zero. By adding with respect to \sigma and p , we
have

\sum_{\sigma,\tau}(-1)^{\sigma}(-1)^{\tau}(X_{\sigma(1)}Y_{\tau(1)})\circ\cdots\circ(X_{\sigma(r+1)}Y_{\tau(r+1)})(u\circ\cdot . \circ u)=0 ,

and thus we obtain the des\overline{l}red identity. (Note that the elements of the
form u\circ-\cdot\cdot\circ u span the space S^{r+1}(k^{m}).)

Now, we return to the identity (2). Since C_{ij} is expressed \overline{1}n the
form X_{i}Y_{j}-X_{j}Y_{i} , we have

\sigma\in{?}_{2r+2}^{(-1)^{\sigmaC_{\sigma(1)\sigma(2)^{\circ\cdot\circ}}\cdot\cdot C_{\sigma(2r+1)\sigma(2r+2)}}

=2^{r+1} \sum_{\sigma}(-1)^{\sigma}(X_{\sigma(1)}Y_{\sigma(2)})\circ\cdot .\circ(X_{\sigma(2r+1)}Y_{\sigma(2r+2)}) .

We divide the elements of \mathfrak{S}_{2r+2} into (\begin{array}{ll}2r +2r+1 \end{array}) disjoint groups, each of them
consists of \sigma\in \mathfrak{S}_{2r+2} having \{\sigma(1), \sigma(3), \ldots, \sigma(2r+1)\} as the same subset
of \{1, ^{2},-.. , ^{2r}+2\} . Then, from the above identity, the sum in each group
is zero, and hence the total sum is also zero, wh_{\overline{1}}ch completes the proof of
the condition (2)- q . e . d .

5. 2. Next, we state the rest of 3 types of polynomial relations on
the curvature C. These polynomials serve as obstructions in the case r=
1 or 2, and the degrees are 3, 6 and 10, respectively. The first one is the
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following.

PROPOSITION 5. 2. Assume n, l\geq 3 , m=1 and C\in\wedge^{2}V^{*}\otimes A^{1} admits
a solution of the p-G-equation in codimension r=1 . Then the polynomials
C(v_{1}, u) , C(v_{1}, u) , C(u, v_{3}) are linearly dependent in A^{1} for any v_{1} , u,

u\in V.
PROOF. Assume that there ex\overline{l}st\alpha\in V^{*}\otimes A^{1} and \beta\in V^{*} such that

C=\alpha\wedge\beta . Then, substituting v_{1} , u, v_{3}\in V to the equality \beta\wedge C=0 , we
have

\beta_{1}C_{23}-\beta_{2}C_{13}+\beta_{3}C_{12}=0 ,

where \beta_{i}=\beta(v_{i}) and C_{ij}=C(v_{i}, v_{j}) . Hence, if certain \beta_{i}\neq 0 , this equality
\overline{1}mplies that C_{12} , C_{13} , C_{23} are linearly dependent. In the case \beta_{1}=\beta_{2}=\beta_{3}=0 ,

we have clearly C_{ij}=0 , and the same result also holds. q. e . d .
This condition is equivalent to the vanishing of the (3, 3) -minors of

the matrix (C_{12}, C_{13}, C_{23}) , and hence, in the special case (n, l)=(3,3) , this
becomes the invariant of the space \wedge^{2}V^{*}\otimes A^{1} with respect to the action of
GL(3, k)\cross GL(3, k) . It should be also remarked that even if m\geq 2 , there
ex\overline{l}st similar polynom\overline{l}al relations on C by considering each coefficient of
y_{i}(1\leq i\leq m) as an element of \wedge^{2}V^{*}\otimes A^{1} .

To state the next polynomial relation, we must introduce some nota-
tions. Assume that n\geq 3 and l, m\geq 2 . We fix two dist\overline{l}nct variables x_{i}, x_{j}

(1\leq i, j\leq l) , and for v_{1} , u, u\in V, we put C_{pq}=C(v_{p}, v_{q}) . We consider
the der\overline{l}vative of the polynomial

\frac{\partial C_{pq}}{\partial x_{i}}\in A^{0,1}

as a (1, m) -matrix, and next, define two (3, m) matrices C_{pq}^{1} and C_{pq}^{2} by

C_{pq}^{1}=[^{\frac{\partial C_{pq}}{\frac{\partial C_{pq}\partial x}{a_{0}x_{j}}i}}] , C_{pq}^{2}=[ \frac{\partial C_{pq}0}{\frac{\partial C_{pq}\partial x}{\partial x_{j}}i}] ,

for 1\leq p , q\leq 3 .

PROPOSITION 5. 3. Assume n\geq 3 and l, m\geq 2 . Then under the above
nota tions, if C\in\wedge^{2}V^{*}\otimes A^{1,1} admits a solution of the g-G-equation in
codimension r=1, the 6 matrices C_{12}^{1} , C_{12}^{2} , C_{13}^{1} , C_{13}^{2} , C_{23}^{1} , C_{23}^{2} are linearly
dependent in the space of (3, m) matrices
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PROOF. Assume C is expressed as \alpha\wedge\beta , where \alpha\in V^{*}\otimes A^{1,0} and
\beta\in V^{*}\otimes A^{0,1} . Then from the condition \alpha\wedge C=0 , we have

\alpha_{1}C_{23}-\alpha_{2}C_{13}+\alpha_{3}C_{12}=0\in A^{2,1} .

where \alpha_{i}=\alpha(v_{i}) . By putting

a_{i}^{p}= \frac{\partial\alpha p}{\partial x_{i}} and a_{j}^{p}= \frac{\partial\alpha p}{\partial x_{j}}\in k ,

the coefficients of x_{i}^{2} , x_{i}x_{j}, x_{j}^{2} in the above polynom\overline{l}al are given by

\{\begin{array}{l}a_{i}^{1}\frac{\partial C_{23}}{\partial x_{i}}-a_{i}^{2}\frac{\partial C_{13}}{\partial x_{i}}+a_{i}^{3}\frac{\partial C_{12}}{\partial x_{i}}=0,a_{i}^{1}\frac{\partial C_{23}}{\partial x_{j}}-a_{i}^{2}\frac{\partial C_{13}}{\partial x_{j}}+a_{i}^{3}\frac{\partial C_{12}}{\partial x_{j}}+a_{j}^{1}\frac{\partial C_{23}}{\partial x_{i}}-a_{j}^{2}\frac{\partial C_{13}}{\partial x_{i}}+a_{j}^{3}\frac{\partial C_{12}}{\partial x_{i}}=0,a_{j}^{1}\frac{\partial C_{23}}{\partial x_{j}}-a_{j}^{2}\frac{\partial C_{13}}{\partial x_{j}}+a_{j}^{3}\frac{\partial C_{12}}{\partial x_{j}}=0,\end{array}

respectively. Using the matrices C_{pq}^{1} and C_{pq}^{2} , we can express these con-
d_{\overline{1}}tions in the following single matrix form:

a_{i}^{1}C_{23}^{1}+a_{j}^{1}C_{23}^{2}-a_{i}^{2}C_{13}^{1}-a_{j}^{2}C_{13}^{2}+a_{i}^{3}C_{12}^{1}+a_{j}^{3}C_{12}^{2}=0 .
Therefore, if certain coefficient is not zero, we obtain the desired result.
In the case a_{i}^{p}=a_{j}^{p}=0 for 1\leq p\leq 3 , we have clearly

\frac{\partial C_{pq}}{\partial x_{i}}=\frac{\partial C_{pq}}{\partial x_{j}}=0

because C_{pq}=\alpha p\beta_{q}-\alpha_{q}\beta p- In particular, C_{pq}^{1}=C_{pq}^{2}=0 , and hence the prop-
osition also holds in this case. q. e . d .

We remark that this proposit\overline{l}on serves as a true condit\overline{l}on only in the
case n\geq 3 , l, m\geq 2 . In particular, in the least case (n, l, m)=(3,2, 2) , it
is related to Theorem 2. 4 as follows. If C admits a solution in codimen-
sion r=1 , then by Theorem 2. 4, the map \tilde{C}_{1} : V^{*}\otimes A^{1,0}arrow\wedge^{3}V^{*}\otimes A^{2,1}

admits a non-zero kernel. Since dim V^{*}\otimes A^{1,0}=\dim\wedge^{3}V^{*}\otimes A^{2,1}=6 , this
condition is equivalent to the vanishing of the determinant of the (6, 6)-
matrix, which is a polynomial relation of C with degree 6. Then, by
using a suitable basis, it is easy to see that Proposition 5. 3 is a natural
generalization of this relat\overline{l}on to the case n\geq 3 , l, m\geq 2 . In addition,
from the construction, this determinant is clearly the invariant of the
space \wedge^{2}V^{*}\otimes A^{1,1}\simeq k^{3}\otimes k^{2}\otimes k^{2} with respect to the action of GL(3, k)\cross

GL(2, k)\cross GL(2, k) . As we shall explain \overline{1}n Appendix, this invariant
appears in several different situations where the 3-tensor space k^{3}\otimes k^{2}\otimes k^{2}
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is concerned. (See also Remark (2) after the proof of Proposition 6. 2.)

The third polynom\overline{l}al relation is of degree 10 and serves as a true
condition in the case n\geq 4 , l\geq 5 , m=1 and r=2 . First, for C\in\wedge^{2}V^{*}\otimes A^{1}

and v_{1} , \ldots . v_{4}\in V . we put

\tilde{C}_{pq}=\frac{\partial^{2}(C\wedge C)(v_{1},\ldots,v_{4})}{\partial x_{p}\partial x_{q}}\in k ,

and define a symmetric (l, l) matrix \tilde{C} by \tilde{C}=(\tilde{C}_{pq}) .

PROPOSITION 5. 4. Assume n\geq 4 , l\geq 5 , m=1 , and C\in\wedge^{2}V^{*}\otimes A^{1}

admits a solution of the p-G-equa tion in codimension 2. Then the rank of
the matrix \tilde{C} is smaller than or equal to 4.

PROOF. Assume C admits a solution in codimension 2:
C=\alpha_{1}\wedge\beta_{1}+\alpha_{2}\wedge\beta_{2} , \alpha_{i}\in V^{*}\otimes A^{1} , \beta_{i}\in V^{*} .

Then we have C\wedge C=-2\alpha_{1}\wedge\alpha_{2}\wedge\beta_{1}\wedge\beta_{2} . In the case (\beta_{1}\wedge\beta)(v_{i}, v_{j})=0 ,
we have clearly \tilde{C}=0 and the propos\overline{l}tion holds. Thus, we may assume
that (\beta_{1}\wedge h)(v_{i}, v_{j})\neq 0 for some i , j, and \overline{1}n addition, v_{1} , \ldots . v_{4} are linearly
independent. Then there exist vectors u_{1} , \ldots : u_{4}\in V such that

\{

(C\wedge C)(v_{1,\ldots-}v_{4})=a(C\wedge C)(u_{1}, \ldots.u_{4}) (a\neq 0\in k)

\beta_{1}(u_{i})=\delta_{1i} , \beta_{2}(u_{i})=\ i ,

and hence, up to a non-zero constant, we have

\tilde{C}_{pq}=\hat{\frac{\partial^{2}(\alpha_{1}\alpha_{2})(u_{3},u_{4})}{\partial x_{p}\partial x_{q}}} .

By expressing \alpha_{i}(u_{j})\in A^{1} in the form

\{\begin{array}{l}\alpha_{1}(u_{3})=a_{31}x_{1}+\cdot-\cdot\cdot+a_{3l}x_{t}\alpha_{1}(u_{4})=a_{41}x_{1}+\cdot\cdot+a_{4l}x_{l}\alpha_{2}(u_{3})=\ 1x_{1}+\cdot\cdot-+\ lX\iota\alpha_{2}(u_{4})=b_{41}x_{1}+\cdots+b_{4l}x_{l}\end{array}

(a_{i_{J}}-, b_{ij}\in k) , we have easily

\tilde{C}_{pq}=\frac{\partial^{2}}{\partial x_{p}\partial x_{q}}(\alpha_{1}(u_{3})\alpha_{2}(u_{4})-\alpha_{1}(u_{4})\alpha_{2}(u_{3}))

=(a_{3p}a_{4p}\ _{p}b_{4p}) \{\begin{array}{l}b_{4q}-h_{q}-a_{4q}a_{3q}\end{array}\} .
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Therefore, the matrix \tilde{C}\overline{1}S expressed as

\tilde{C}=\{\begin{array}{llll}a_{31} a_{41} h_{1} b_{41}\cdots \cdots \cdots .\cdot(a_{3l} \ _{l} b_{4l}\end{array}\}\{\begin{array}{lll}b_{41} b_{4l}-h_{1} --.. -\ l-a_{41} -a_{4l}a_{31} a_{3l}\end{array}\} ,

which implies that rank \tilde{C}\leq 4 . q . e_{-}d .
Since the components of the matr\overline{l}X\tilde{C} are quadratic polynomials of

C , this cond_{\overline{1}}tion is expressed as a vanishing of the polynomials of degree
10. In particular, we consider the case (n, l)=(4,5) . We express the
curvature C in the form-.

C= \sum_{i,j=1}^{4}\sum_{k=1}^{5}C_{ijk}x_{k}\omega_{i}\wedge\omega_{j} .

Then, by using a similar method stated in Proposit\overline{l}on2.1 of [4, p. 115],
we can show that the following polynomial (\#) is the invariant of the
space \wedge^{2}V^{*}\otimes A^{1}\simeq\wedge^{2}k^{4}\otimes k^{5} with respect to the action of GL(4, k)\cross

GL(5, k) , if it is non-trivial.
(\#) \Sigma(-1)^{\sigma}{}^{t}(-1)^{\tau}(-1)^{\rho}C_{\sigma_{1}(1)\sigma_{1}(2)\tau(1)}C_{\sigma_{1}(3)\sigma_{1}(4)\rho(1)}\cdots-

\tau.\rho\in\sigma_{t}\in \mathfrak{S}g_{5}

C_{\sigma_{5}(1)\sigma_{5}(2)\tau(5)}C_{\sigma_{5}(3)\sigma_{5}(4)\rho(5)}

(Note that the character of this invariant is given by S_{555}(\epsilon_{i})\cdot S_{2222}(_{\mu_{i}}) ,
where \epsilon_{i} and \mu_{i} are the eigenvalues of the element of GL(4, k) and
GL(5, k) , respectively, and S_{\lambda} is the Schur funct\overline{l}on corresponding to the
partition \lambda . For the defifin\overline{l}tion of Schur functions, see [12], [15].) Since
the quadratic polynomial

\sum_{\sigma_{t}\in \mathfrak{S}_{4}}(-1)^{\sigma_{i}}C_{\sigma_{t}(1)\sigma_{t}(2)\tau(i)}C\sigma_{i}(3)\sigma_{i}(4)\rho(i)

is equal to \tilde{C}_{\tau(i)\rho(i)} up to a non-zero constant, the above polynomial (\#) is
essentially equal to

\sum_{\rho\in \mathfrak{S}_{5}}(-1)^{\rho}\tilde{C}_{1\rho(1)}\cdots
. \tilde{C}_{5\rho(5)} ,

which implies that det \tilde{C} is the invariant of the space \wedge^{2}V^{*}\otimes A^{1} .

We can extend the result in Proposition 5. 4 to general cod\overline{l}mens\overline{l}onr

in a natural way. Namely, we can prove that in the case of n\geq 2r and
m=1 , the rank of the symmetric r -tensor \tilde{C}=(\tilde{C}_{p_{1}\cdots p_{r}})\in S^{r}(k^{l}) defined by



Generalized Gauss equations 33

-r-
\tilde{C}_{p_{1}- p_{r}}..=\frac{\partial^{r}(C\wedge\cdot\cdot\cdot\wedge C)}{\partial x_{p_{1}}\cdot\cdot\cdot\partial x_{p_{r}}}(v_{1,\ldots\prime}. u_{r})

(v_{i}\in V, 1\leq p_{1,-}.., p_{r}\leq l)\overline{1}S smaller than or equal to (r!)^{2} if C admits a
solution of the p-G-equation in codimension r. (For the definition of the
“ rank ” of the multi-tensor space, see for example [17].) But actually, in
the case r\geq 3 , we do not know an effective method to determine the rank
of the multi-tensor \tilde{C}\in S^{r}(k^{l}) at present.

Finally, we remark that the polynomials that appeared in this section
are all non-trivial. In fact, we can eas\overline{l}ly construct C such that the value
of these polynomials does not vanish. For example, we put

C=x_{1}y_{1}\omega_{1}\wedge\omega_{2}+x_{2}{?}\omega_{1}\wedge\omega_{3}+(x_{1}n+x_{2}y_{1})\omega_{2}\wedge\omega_{3} ,

((n, l, m)=(3,2, 2)) and
C’=x_{1}\omega_{1}\wedge\omega\dagger x_{2}\omega_{1}\wedge\omega_{3}+x_{3}(\omega_{1}\wedge\omega_{4}+\omega\wedge\omega_{3})+x_{f}\omega\wedge\omega_{4}+ae\omega s\wedge\omega_{4} ,

((n, l, m)=(4,5, 1))- Then, as for the first curvature C , the 6 matrices in
Proposition 5. 3 are given by

\{ \{\begin{array}{ll}1 00 00 0\end{array}\} , \{\begin{array}{ll}0 01 00 0\end{array}\} , \{\begin{array}{ll}0 00 10 0\end{array}\} , \{\begin{array}{ll}0 00 00 1\end{array}\} , \{\begin{array}{ll}0 11 00 0\end{array}\} , \{\begin{array}{ll}0 00 11 0\end{array}\} \} ,

and clearly, these are linearly independent. In addition, it is easy to see
that the rank of the (5, 5) -matrix \tilde{C}’ in Proposition 5. 4 is equal to 5, and
hence the above C and C’ do not admit a solution of the g-G-equation in
codimension 1 and 2, respectively.

\S 6. The case where the g-G-equations always admit solutions.

In this last section, we study the range of (w, l, m, r) where the g-G-
equat\overline{l}ons always adm\overline{l}t solutions, or in other words, the case where the
map \{\alpha_{i}, \beta_{j}\}-\sum_{i=1}^{r}\alpha_{i}\wedge\beta_{i} is surjective. Our final purpose is to determine
the least r for each triple of \overline{1}ntegers(n, l, m) such that the above map is
surjective. But, as we shall see later, such r changes complicatedly
according as the value of (n, l, m) . The estimates stated in this section
give a partial answer to this problem. (We note that, by consider\overline{l}ng the
dimens\overline{l}on of the vector spaces V^{*}\otimes A^{1,0}-V^{*}\otimes A^{0,1} and \wedge^{2}V^{*}\otimes A^{1.1} , the
above map cannot be sur\overline{]}ective if r(l+m)<1/2\cdot lm(n-1).)

6. 1 First, as a general result, we prove the following proposition.
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PROPOSITION 6. 1. (1) If l=m=1, then the g-G-equation always pos-
sesses a solution in codimension r=[n/2] .

(2) For general (n, l, m) , the g-G-equation admits a solution \iota^{-}n

codimension r=(n-1)min \{l, m\}- In particular, the p-G-equation always
possesses a solution in codimension r=n-1 .

PROOF. In the case of l=m=1, the problem is essent\overline{l}ally reduced to
the usual scalar 2-forms as stated in \S 1, and we prove only (2). Assume
that l\geq m , and we express the curvature C as

C=y_{1}C_{1}+\cdots\cdot+y_{m}C_{m}, C_{i}\in\wedge^{2}V^{*}\otimes A^{1,0}-

Using a basis \{\omega_{1}, \ldots , \omega_{n}\} of V^{*} , each 2-form C_{i} is expressed in the form
C_{i}=^{1}\alpha_{i}\wedge\omega_{1}+\cdot . .+\alpha_{i}^{n-1}\wedge\omega_{n-1} , \alpha_{i}^{j}\in V^{*}\otimes A^{1,0}\wedge

Hence, by putting \beta_{i}^{j}=y_{i}\omega_{j}\in V^{*}\otimes A^{0,1} . we have

C= \sum_{i=1}^{m}\sum_{j=1}^{n-1}\alpha_{i}^{j}\wedge\beta_{i}^{j},

i_{-}e. , C admits a solution in codimension m(n-1) . The case m\geq l can be
treated in the same way. q . e . d .

In the case of l , m\geq 2 , it seems that the above estimate is not best
possible. In fact, we can improve it for small n\overline{1}n the following way.

PROPOSITION 6. 2_{-} Assume l, m\geq 2 . Then the g-G-equation admits a
solution in codimension r=\lceil 1/2\cdot(n-1)min \{l, m\}1 if n\leq 4 , where \lceil\chi\rceil

denotes the least integer greater than or equal to x.
PROOF. We divide the proof accord\overline{l}ng as the value of n_{-} We prove

the ex\overline{l}stence of solutions, by using the matrix form of the g-G-equation in
Lemma 1. 2.

(i) The case n=2 . In this case, by Lemma 1. 2, it is easy to see
that C admits a solution in codimension r if and only if rank C_{12}\leq 2r .
Therefore, if 2r \geq\min\{l, m\} , it always possesses a solution. (In particu-
lar, the estimate r= \lceil 1/2\cdot\min\{l, m\}\rceil is best poss\overline{l}ble in this case.)

(i\overline{1}) The case n=3. By the symmetry, we have only to construct a
solution in the case r=l. Since r\geq 2 , there exist (r, r) -matrices X_{1} , X_{2} ,
X_{3} such that X_{1} and X_{2}X_{1}^{-1}X_{3}-X_{3}X_{1}^{-1}X_{2} are non-singular. (For example,
we put X_{1}=I_{r} and
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X_{2}=\{

0

0

01

20

0

0

r_{0}^{-}1] , X_{3}=\{

0
1

0

01

0

01

0
0].)

Then, by putting

\{

Y_{1}=(X_{2}X_{1}^{-1}X_{3}-X_{3}X_{1}^{-1}X_{2})^{-1}(C_{23}-X_{2}X_{1}^{-1}C_{13}+X_{3}X_{1}^{-1}C_{12})

Y_{2}=X_{1}^{-1}(C_{12}+X_{2}Y_{1})

Y_{3}=X_{1}^{-1}(C_{13}+X_{3}Y_{1}) ,

we have eas\overline{l}lyC_{ij}=X_{i}Y_{j}-X_{j}Y_{i}(1\leq i, j\leq 3) , which \overline{1}mplies that C admits
a solution in codimension r=l.

(\overline{1}i_{\overline{1}}) The case n=4. First, we prove that if l=2p , C admits a solu-
tion \overline{1}n codimension r=3p for arbitrary m. For this purpose, we express
(2p, m) -matrices C_{ij}(1\leq i, j\leq 4) as

C_{ij}=\{\begin{array}{l}C_{ij}^{1}C_{ij}^{2}\end{array}\} ,

where C_{ij}^{k} are (p, m) -matrices, and define (2p, 3p) -matrices X_{i} and (p ,

m) -matrices Y_{i} by

X_{1}=\{\begin{array}{lll}I_{p} 0 00 I_{p} 0\end{array}\} , X_{2}=\{\begin{array}{lll}0 I_{p} 00 0 I_{p}\end{array}\} ,

X_{3}=\{\begin{array}{lll}0 0 I_{p}I_{p} 0 0\end{array}\} , X_{4}=\{\begin{array}{lll}I_{p} 0 00 0 0\end{array}\} ,

Y_{1}=\{\begin{array}{ll}C_{34}^{2}- C_{14}^{1}C_{14}^{2}-C_{12}^{1}- C_{24}^{1}C_{24}^{2}-C_{13}^{1}- C_{34}^{1}\end{array}\} , Y_{2}=\{\begin{array}{llll} C_{14}^{2}- C_{24}^{1} C_{12}^{2}- C_{13}^{1}+ C_{24}^{2}- C_{34}^{1}C_{13}^{2}- C_{14}^{1}- C_{23}^{1}+ C_{34}^{2}\end{array}\} ,

Y_{3}=\{\begin{array}{ll}C_{24}^{2}- C_{34}^{1}C_{13}^{2}-C_{14}^{1}+ C_{34}^{2}C_{14}^{2}+C_{23}^{2}- C_{24}^{1}\end{array}\} , Y_{4}=\{\begin{array}{l}C_{34}^{2}C_{14}^{2}C_{24}^{2}\end{array}\} .

Then, we have directly C_{ij}=X_{i}Y_{j}-X_{j}Y_{i},\overline{1} . e. , the above X_{i} , Y_{j} are the
solution of the g-G-equation.
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Next, in the case l=2p+1 , we construct a solution in cod\overline{l}mension

r=\lceil 3/2\cdot (2p+1)\rceil=3p+2 . As above, we express (2p+1, m) matrices C_{ij}

in the form

C_{ij}=\{\begin{array}{l}C_{ij}^{1}C_{ij}^{2}\epsilon_{ij}\end{array}\} ,

where C_{ij}^{k} are (p, m) matrices and \epsilon_{ij} are (1, m)-matrices. We define
(2p+1,3p+2) matrices X_{i} and (3p+2, m) matrices Y_{i} by

X_{1}=\{\begin{array}{lllll}I_{p} 0 0 0 00 I_{p} 0 0 00 0 0 1 0\end{array}\} , X_{2}=\{\begin{array}{lllll}0 I_{p} 0 0 00 0 I_{p} 0 00 0 0 0 1\end{array}\} ,

X_{3}=\{\begin{array}{lllll}0 0 I_{p} 0 0I_{p} 0 0 v 00 0 0 0 0\end{array}\} , X_{4}=\{\begin{array}{lllll}I_{p} 0 0 0 00 0 0 0 00 \xi 0 0 1\end{array}\} ,

Y_{1}=\{\begin{array}{llll}-C_{14}^{1}+ C_{34}^{2}+ v\xi K_{1}- v\epsilon_{14} -K_{1} -K_{3} -\xi(K_{1}+K_{2})+\epsilon_{14^{-}} \epsilon_{34} 0 \end{array}\} , Y_{2}=\{\begin{array}{llll} C_{14}^{2}- C_{24}^{1} C_{12}^{2}-K_{3} K_{2}- C_{23}^{1}-v\xi K_{2}- v\epsilon_{34} \epsilon_{12} 0 \end{array}\} ,

Y_{3}=\{\begin{array}{lll}C_{24}^{2}- C_{34}^{1} K_{2}- v\xi K_{2}-v\epsilon_{34} C_{14}^{2}+ C_{23}^{2}-C_{24}^{1}+ v\epsilon_{12} \epsilon_{13} \epsilon 23 \end{array}\} , Y_{4}=\{\begin{array}{lll}C_{34}^{2}+ v\xi K_{1}- v\epsilon 14 C_{14}^{2} C_{24}^{2} -\xi K_{1}+ \epsilon 14 \xi(C_{12}^{2}-K_{3})+\epsilon_{24} \end{array}\} ,

where \xi is a (1, p) -matrix and v is a (p, 1) -matrix such that \xi v=1 and

\{

K_{1}=C_{12}^{1}-C_{14}^{2}+C_{24}^{1} ,
K_{2}=C_{13}^{2}-C_{14}^{1}+C_{34}^{2} ,
K_{3}=C_{13}^{1}-C_{24}^{2}+C_{34}^{1} .

Then, by direct calculations, we can easily check that the equalities C_{ij}=

X_{i}Y_{j}-X_{j}Y_{i} hold. q . e . d_{-}

REMARK- (1) We conjecture that the estimate r= \lceil 1/2\cdot(n-1)\min

\{l, m\}\rceil in this proposition always holds without the assumption “ n\leq 4 ”

But \overline{1}t seems very d_{\overline{1}}ffiffifficu1t to find the matrices X_{i} , Y_{j} in the above proof
for general n.

(2) In the case of n=3, the g-G-equation C_{ij}=X_{i}Y_{j}-X_{j}Y_{i} is expres-
sed in the following single matrix form:
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\{\begin{array}{l}C_{12}-C_{13}C_{23}\end{array}\}=\{\begin{array}{lll}0 X_{1} -X_{2}-X_{1} 0 X_{3}X_{2} -X_{3} 0\end{array}\}\{\begin{array}{l}Y_{3}Y_{2}Y_{1}\end{array}\} .

If X_{1} is an \overline{1}nvertible(r, r) -matrix, then it is easy to see that the determi-
nant of the above (3r, 3r) -matrix is equal to

|X_{1}|^{2}|X_{2}X_{1}^{-1}X_{3}-X_{3}X_{1}^{-1}X_{2}| ,

and hence the existence of a solution can be also proved in this formula-
tion. (Note that if r=1 , the above determinant is 0 because it is skew
symmetric, and hence the condition “ r=l\geq 2 ” is indispensable.) The
matrix X_{2}X_{1}^{-1}X_{3}-X_{3}X_{1}^{-1}X_{2} often appears in the papers concern\overline{l}ng the
3-tensor space. (For example, see Strassen [17, p. 673, p. 679], Barth [9,
p. 64].) This implies that the above (3r, 3r) -matrix (or its determinant)
is related to the fundamental concept of the 3-tensor space k^{3}\otimes k^{r}\otimes k^{r}

(In our situation, the set of matrices \{X_{1}, X_{2}, X_{3}\} may be naturally consid-
ered as an element of k^{3}\otimes k^{r}\otimes k^{r} since l=r_{-} ) In Appendix, we give sev-
eral expl\overline{l}cit expressions of the above determinant in the case of r=2.

6. 2. The estimate “ r=n-1 ” in Proposition 6_{-}1 for the p-G-
equation is not also best possible in general. In fact, as an example, we
can prove the following proposition.

PROPOSITION 6. 3. In the case of (n, l, m)=(3,2, 1) and (5, 2, 1),
the p-G-equation always admits a solution in codimension r=1 and 2,
respectively. In addition, if the ground fifield k is C, the p-G-equation for
the case (n, l, m)=(4,4, 1) also possesses a solution in codimension r=2 .

(Note that the above 3 cases all satisfy the inequality “ r<n-1 ”.)

Proof. We first treat the case (n, l, m)=(3,2, 1) . In this case,
since l=2, the polynomials C_{12} , C_{13} , C_{23}\in A^{1} are linearly dependent, and
hence there exists ( a_{1} , a2, a_{3}) \neq 0\in k^{3} such that a_{3}C_{12} -a2 C_{13}+a_{1}C_{23}=0 .
Then, by putting \alpha=a_{1}\omega_{1}+a_{2}\omega_{2}+a_{3}\omega_{3} , this equal\overline{l}ty is equ\overline{l}valent to \alpha\wedge

C=0, and hence, by Theorem 2_{-}5 , the p-G-equation admits a solution \overline{1}n

codimension r=1 .
Next, we assume that k=C and consider the case (n, l, m)=(4,4,1) .

Since dim \wedge^{2}V^{*}=6 and \dim\wedge^{4}V^{*}\otimes A^{1}=4 , we have clearly d\overline{l}m Ker \overline{C}_{2}\geq 2

for any C\in\wedge^{2}V^{*}\otimes A^{1} . We fix linearly independent elements \Sigma p_{ij}\omega_{i}\wedge\omega_{j} ,
\Sigma q_{ij}\omega_{i}\wedge\omega_{j} of Ker \overline{C}_{2} . Then the element

a \Sigma p_{ij\omega_{i}\wedge\omega_{j}+b}\Sigma q_{ij}\omega_{i}\wedge\omega_{j}\in\wedge^{2}V^{*}

is decomposable if and only if it satisfies Plticker’s relation:
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(ap_{12}+bq_{12})(ak4+bq_{34})-(ap_{13}+bq_{13})(ak4\dagger bq_{24})

+(ap_{14}+bq_{14})(ap_{3}+bq_{23})=0 .

Since this is a homogeneous quadratic equation of (0, b) , \overline{1}t has a non-
tr\overline{l}V\overline{l}al solution (a, b)\in C^{2} . Therefore, by Theorem 2. 5, C admits a solu-
tion in codimension 2.

Finally, we treat the case (w, l, m)=(5,2, 1) . To prove the existence
of a solution in codimension 2, we have only to show the following state-
ment: “ For arbitrary 2-forms \alpha_{1} , \alpha_{2} on V=k^{5} . there exists a non-zero
decomposable 2-form \beta such that \alpha_{1}\wedge\beta=\alpha_{2}\wedge\beta=0.

” Then, it is easy to see
that the map \overline{C}_{2} : \wedge^{2}V^{*}arrow\wedge^{4}V^{*}\otimes A^{1}(A=k[x_{1}, x_{2}]) always admits a
non-zero decomposable kernel. In the following, we divide the proof into
several cases.

First, assume that rank \alpha_{1}=4 . In this case, we may put \alpha_{1}=\omega_{12} \dagger \omega_{34}

(\omega_{ij}=\omega_{i}\wedge\omega_{j}) , and express \alpha 2 in the form

\alpha_{2}=\sum_{1\leq i<j\leq 4}p_{ij\omega_{ij}+(q_{1}\omega_{1}+q_{2}\omega_{2}+q_{3}\omega_{3}+q_{4}\omega_{4})\wedge\omega_{5}} .

If q_{2}\neq 0 , we change the forms \omega_{1} and \omega_{2} by -\omega_{2} and \omega_{1}+q_{1}/q_{2}\cdot\omega , respec-
tively- Then the term \omega\bigwedge_{G\hslash} in \alpha_{2} vanishes and the form \alpha_{1}\overline{1}S unchanged.
In the same way, we may put q_{4}=0 . In addition, we may assume that q_{1} ,
q_{3}=1 or 0 by replacing \omega_{2} and \omega_{4} by the\overline{l}r suitable multiples if necessary.
Under these pre |iminaries , in the case q_{1}=q_{3}=1 , we put

\beta=(\omega_{1}+\omega_{3})\wedge(a_{2}\omega_{1}-a_{1}\omega_{2}+a_{1}\omega_{4}) ,

where (a_{1}, a_{2})\neq 0\in k^{2}\overline{1}S the pair of numbers satisfying a_{1}(p_{12}+p_{14}+p_{23}-

tb4)+a_{2}b4=0 . Then it is easy to see that the decomposable 2,form\beta

satisfies the desired equalities \alpha_{1}\wedge\beta=\alpha_{2}\wedge\beta=0 . For the remaining 3 cases
(q_{1}, q_{3})=(1,0) , (0, 1) , (0, 0) , we can also easily construct \beta in a similar
way.

Next, assume that rank \alpha_{1}=rank\alpha_{2}=2 . In this case, we express \alpha_{i} in
the form

\alpha_{1}=\gamma_{1}\wedge\varphi , \alpha_{2}=n\wedge\gamma_{4} (\gamma_{i}\in V^{*}) .

If \gamma_{1} , \ldots . \gamma_{4} are linearly independent, we have only to put \beta=\gamma_{1}\wedge n . In
the case d\overline{1}m<\gamma_{1} , \ldots . \gamma_{4}>=3 , after a change of basis, the 2-forms \alpha 1 and \alpha_{2}

are expressed as \gamma_{1}\wedge\varphi and \gamma_{1}\wedge n , respectively. Then the form \beta=n\wedge

n satisfies the desired propert\overline{l}es . Finally, if \dim<\gamma_{1} , \ldots , \gamma_{4}>=2 , the 2- \sqrt

forms \alpha_{1} and \alpha_{2} are parallel, and hence the form \beta=\alpha_{1} itself satisfies
\alpha_{i}\wedge\beta=0 .
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The proof for the remaining cases is easy, and we left it to the
readers. q . e . d .

REMARK. (1) The solvability of the g-G-equation depend on the
choice of the ground field k . In fact, it does not admit a solution for the
case (n, I, m, r)=(4,4,1, 2) in general if k=R, although there exists a
solution in the case k=C, as stated in this proposition. For example, in
the case of k=R, we consider the curvature

C=x_{1}(\omega_{1}\wedge\omega_{2}-\omega_{3}\wedge\omega_{4})+x_{2}(\omega_{1}\wedge\omega_{3}+\omega_{2}\wedge\omega_{4})+x_{3}(\omega_{1}\wedge\omega_{4}-\omega\wedge\omega_{3}) .

Then it \overline{1}S easy to see that any element of Ker \overline{C}_{2} is expressed as
a(\omega_{1}\wedge\omega+\omega s\wedge\omega_{4})+b(\omega_{1}\wedge\omega_{3}-\omega_{2}\wedge\omega_{4})+c(\omega_{1}\wedge\omega_{4}+\omega_{2}\wedge\omega_{3}) ,

and this element is decomposable if and only if a^{2}+b^{2}+c^{2}=0 . Hence, Ker
\overline{C}_{2} does not contain a non-zero decomposable element if k=R, and the
above C does not have a solution in codimension 2_{-} This example actu-
ally impl\overline{l}es that even in the case (n, l, m, r)=(4,3,1, 2) , the p-G-equation
is not in general solvable if k=R.

(2) In sp_{\overline{1}}te of the examples in this proposition, the est\overline{l}mate “ r=
n-1 ” for the p-G-equation is best poss\overline{l}ble in a sense. In fact, in the
case of m=1 , there exist l and C\in\wedge^{2}V^{*}\otimes A^{1} such that C does not have
a solut\overline{l}on\overline{1}n codimension r=n-2 . As an example, we cons\overline{l}der the case
l\geq(\begin{array}{l}n2\end{array}) and the coefficients of \omega_{i}\wedge\omega_{j} in C are linearly independent in A^{1} .

Then it is easy to see that the map \overline{C}_{n-2}\overline{1}S injective, and hence by TheO-
rem 2. 5, C does not admit a solution in codimension r=n-2.

(3) We conjecture that the examples in this proposition are extended
to the following forms-. ( i) The p- G- equat\overline{l}on always admits a solution
in codimension r if (w, l)=(2r+1,2) . ( ii) In the case of k=C, the p-G-
equat\overline{l}on for the case (n, l)=(r+2,2r) also possesses a solution in
codimension r. Or more generally, if k=C, we conjecture that the p-G-
equation is always solvable \overline{1}f and only if the integers n, l, r satisfy the
inequality r\geq l(n-1)/(l+2) (or equivalently, r\geq n-1-2r/l).

6. 3. Finally, \overline{1}n the case of r=1 , combining the results in \S 5 and
\S 6, we can completely divide the triple of integers (n, l, m) into two clas-
ses according as the solvability of the g-G-equation: The first one is the
case where the curvature C always admits a solution, and the second one
is the case where there exist some polynomial relations on C in order to
admit a solution. We summarize these results in the follow\overline{l}ng form.
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THEOREM 6. 4_{-} (1) Assume that (n, l, m) is one of the following
cases:

(i) n=2, l\leq 2 or n=2, m\leq 2

(ii) n=3, lm\leq 2 .
Then the curvature C\in\wedge^{2}V^{*}\otimes A^{1,1} always admits a solution of the g-G-
eqmtion in codimension 1.

(2) Assume (n, I, m) salisfifies neither of the above conditions, i. e. , it
is one of the following cases:

(iii) n=2, l, m\geq 3

(iv) n=3, l, m\geq 2

(v) n=3, l\geq 3 or n=3, m\geq 3

(vi) n\geq 4 .
Then, if C admits a solution of the g-G-equation in codimension 1, C

salisfifies some polynomial relations stated in Propositions 5. 1–5. 3.
It should be remarked that in the second case of this theorem, the

curvature C must satisfy different types of polynomial relations simultane-
ously. For example, if (n, l, m)=(4,3, 3) , C satisfies all the conditions in
Propositions 5. 1 (1), (2), 5. 2 and 5. 3. (The degrees of these polynomials
are 3, 2, 3 and 6, respectively.) This shows a considerable difference
from the case of scalar valued 2-forms, where the decomposability condi-
tion of \wedge^{2}V^{*} is completely characterized only by Pl\"ucker’s quadratic rela-
f or (cf. [10]). In our polynomial valued case, on the contrary, we must
consider the above compound conditions. Onr next problem is to decide
whether these conditions are sufficient to insure the existence of solutions
of the g-G-equation.

The correspond\overline{l}ng result for the case r=2 is not fully known yet. In
this case, as stated before, the result depends on the choice of the ground
field k , and hence if k=R, we must cons\overline{l}der not only polynomial relat\overline{l}ons

but also “ reality conditions ” on the curvature C.

Appendix: The invariant of k^{3}\otimes k^{2}\otimes k^{2} with degree 6.
In this appendix, we state 5 different expressions of the invariant of

the space k^{3}\otimes k^{2}\otimes k^{2} . with respect to the action of GL(3, k)\cross GL(2, k)\cross

GL(2, k) that appeared in \S 5 and \S 6. As we shall explain below, this
invariant appears in many different situations where the 3-tensor space
k^{3}\otimes k^{2}\otimes k^{2}\overline{1}S concerned. In the following, we express the element of
k^{3}\otimes k^{2}\otimes k^{2} as a=(a_{ijk})(1\leq i\leq 3,1\leq j, k\leq 2) and the invariant as I_{6} . (We

remark that by calculat\overline{l}ng the character of k^{3}\otimes k^{2}\otimes k^{2} . the invariant with
degree 6 uniquely exists up to a non-zero constant.)

[1] First, we define (2, 2)- matr\overline{l}cesA_{i}(1\leq i\leq 3) by
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A_{i}=\{\begin{array}{ll}a_{\iota 11}- a_{i12}a_{i21} a_{i22}\end{array}\} .

Then, the \overline{1}nvariantI6 is expressed as

I_{6}=|\begin{array}{lll}0 A_{1} -A_{2}-A_{1} 0 A_{3}A_{2} -A_{3} 0\end{array}| .

As stated in Remark (2) after Propos\overline{l}tion6.2 , Strassen [17, p. 679] ex-
presses this quantity in the form |A_{1}|^{2}|A_{2}A_{1}^{-1}A_{3}-A_{3}A_{1}^{-1}A_{2}|_{-} (See also
Barth [9, p. 64].) This expression is further reformulated in the following
way. We put

A_{ij}=\{\begin{array}{lll}-a_{2ij} a_{1ij} 0-a_{3ij} 0 a_{1ij}0 -a_{3ij} a_{2ij}\end{array}\} (i, j=1,2) .

Then, by exchanging su\overline{l}table rows and columns in the above I_{6} , we have

I_{6}=|\begin{array}{ll}A_{11} A_{12}A_{21} A_{22}\end{array}| .

This expression is already appeared in \S 7 of [7], where this invariant
serves as the defining equation of “ singular elements ” of k^{3}\otimes k^{2}\otimes k^{2} , con-
sidered from the viewpoint of generalized Cartan’s lemma.

[2] Next, we cons\overline{l}der the map \tilde{C}_{1} : V^{*}\otimes A^{1,0}arrow\wedge^{3}V^{*}\otimes A^{2.1} , defined
in \S 2 in the case of (w, l, m)=(3,2, 2) . As stated in \S 5 (after Proposi-
tion 5. 3), I_{6} is the determ\overline{l}nant of this map \tilde{C}_{1-} Using a basis of V^{*} . we
express C\in\wedge^{2}V^{*}\otimes A^{1,1} as

C= \sum_{i=1}^{3}\sum_{j=1}^{2}\sum_{k=1}^{2}a_{ijk}x_{j}y_{k}\Omega_{i} ,

where \Omega_{1}=\omega\wedge\omega_{3} , \Omega_{2}=-\omega_{1}\wedge\omega_{3} and \Omega_{3}=\omega_{1}\wedge\omega . Then the determinant of
\tilde{C}_{1} is equal to

I_{6}=|\begin{array}{llllll}v_{11} u_{1} 0 v_{12} u_{2} 00 v_{11} u_{1} 0 \eta_{2} u2\end{array}| ,

where we put

v_{ij}=\{\begin{array}{l}a_{1ij}a_{2ij}a_{3ij}\end{array}\} (_{l,J}^{--}=1,2) .
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[3] We consider a\in k^{3}\otimes k^{2}\otimes k^{2} as a 1\overline{1}near map k^{2}\otimes k^{2}arrow k^{3} If a is
suffiffiffic\overline{l}ently generic, then the kernel of this map \overline{1}S 1 -dimensional. The
generator of this subspace is decomposable in k^{2}\otimes k^{2}\overline{1}f and only if its
determinant is zero, where we consider k^{2}\otimes k^{2} as the space of (2, 2)-
matr\overline{l}ces , and this quantity just coincides with our invariantn I_{6} . Explicit-
ly, using the (3, 1)- matr\overline{l}cesv_{ij} defined above, we have

I_{6}=|\begin{array}{ll}|v_{11}v_{12}u_{2}| |v_{11}v_{12}u_{1}||v_{12}u_{1}u_{2}| |v_{11}u_{1}u_{2}|\end{array}|r

[4] We put A=k[x_{1}, x_{2}] . Then the pair (\alpha_{1}, \alpha_{2}) of A^{1} -valued l-forms
on the 3-dimensional vector space V may be cons\overline{l}dered as an element of
k^{3}\otimes k^{2}\otimes k^{2} by putting

\alpha_{i}=\Sigma a_{kij}x_{j}\omega_{k} (i=1,2) .

We define a linear map f : V^{*}arrow\wedge^{3}V^{*}\otimes A^{2} by

f(\beta)=\alpha_{1}\wedge\alpha_{2}\wedge\beta , for \beta\in V^{*}

(cf. Lemma 2. 2). Then the invariant I_{6} is equal to the determ\overline{l}nant of the
(3, 3)- matr\overline{l}xf. By putting

d_{ij1}=|\begin{array}{ll}a_{i11} a_{j11}a_{i21} a_{j21}\end{array}| , d_{ij2}=|\begin{array}{ll}a_{i11} a_{j11}a_{i22} a_{j22}\end{array}| +|\begin{array}{ll}a_{i12} a_{J}- 12a_{i21} a_{j21}\end{array}| ,

d_{ij3}=|\begin{array}{ll}a_{i12} a_{j12}a_{i22} a_{j22}\end{array}| (1\leq i, j\leq 3) ,

it is expressed as

I_{6}=|\begin{array}{lll}d_{121} d_{131} d_{231}d_{122} d_{132} d_{232}d_{123} d_{133} d_{233}\end{array}| .

[5] The character of GL(3, k)\cross GL(2, k)\cross GL(2, k) corresponding to
the 1-dimensional space <I_{6}>is equal to S_{22}(\epsilon)\cdot S_{3}(\mu)\cdot S_{3}(\nu) , where \epsilon=

(\epsilon 1, \epsilon 2, \epsilon_{3}) , \mu=(_{\mu_{1},\mu_{2}}) and \nu=(_{\nu_{1},n}) are the eigenvalues of the elements
of GL(3, k) , GL(2, k) , GL(2, k) , respectively, and S_{\lambda} is the Schur function
corresponding to the partition \lambda (cf. [12], [15]). Thus, using a similar
principle as in [4, p. 115], the invariant I_{6} is equal to

\tau_{J},\rho_{k}\in\sum_{\sigma_{t}\in \mathfrak{S}g_{2}}(-1)^{\sigma}{}^{t}(-1)^{\tau_{J}}(-1)^{\rho k}a_{\sigma_{1}(1)\tau_{1}(1)\rho 1(1)}a_{\sigma_{1}(2)\tau 2(1)\rho 2(1)}\cross

0\sigma_{1}(3)\tau_{3}(1)\rho_{3}(1)\Omega\sigma_{2}(1)\tau_{1}(2)\rho_{1}(2)\Omega\sigma_{2}(2)\tau_{2}(2)\rho_{2}(2)\Omega\sigma_{2}(3)\tau_{3}(2)\rho_{3}(2) ,

up to a non-zero constant. (See also the remark after the proof of PropO-
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sit\overline{l}on5.4.) Hence, by putting

e_{ij}= \sum_{\tau,\rho\in \mathfrak{S}_{2}}(-1)^{\tau}(-1)^{\rho}a_{i\tau(1)\rho(1)}a_{j\tau(2)\rho(2\rangle}

=|\begin{array}{ll}a_{i11} a_{i12}a_{j21} a_{j22}\end{array}| +|\begin{array}{ll}a_{j11} a_{j12}a_{i21} a_{i22}\end{array}| (1\leq i_{ J}^{-},\leq 3) ,

we have

I_{6}= \frac{1}{2} |\begin{array}{lll}e_{11} e_{12} e_{13}e_{21} e_{22} e_{23}e_{31} e_{32} e_{33}\end{array}| .

We can express this symmetric (3,3) matrix (e_{ij}) in another form.
We define a complex (4, 3) matrix X by

X=\{\begin{array}{lll}a_{112}-a_{121} a_{212}-a_{221} \ell h12^{-a_{321}}a_{111}+a_{122} a_{211}+a_{222} a_{311}+a_{322}\iota^{-}(a_{122}-a_{111}) i(a_{222}-a_{211}) i(a_{322}-a_{311})i(a_{112}+a_{121}) i(a_{212}+a_{221}) i(a_{312}+a_{321})\end{array}\} .

Then by d\overline{l}rect calculations, we have (e_{ij})=1/2\cdot {}^{t}XX. (Note that {}^{t}XX

becomes a real matrix though X itself is a complex matrix.) In particu-
lar, we have

I_{6}= \frac{1}{16}|^{t}XX| .

In the case of k=C, it is known that the space C^{n}\otimes C^{m} is a pre-
homogeneous vector space with respect to the action of S\^O n, C) \cross GL(m ,

C) . (See [16, p. 110].) In this situation, we put n=4, m=3, and replace
the action of SO (4, C) on C^{4} by that of GL(2, C)\cross GL(2, C) on C^{2}\otimes C^{2} ,

by using a su\overline{l}table local Lie group homomorph_{\overline{1}}sm that \overline{1}nduces an algebra
isomorphism 0(4, C)arrow \mathfrak{s}\mathfrak{l}(2, C)\oplus \mathfrak{s}\mathfrak{l}(2, C) . Then it follows that the 3-
tensor space C^{3}\otimes C^{2}\otimes C^{2} is a (non-reduced) prehomogeneous vector space
with respect to the action of GL(3, C)\cross GL(2, C)\cross GL(2, C) . In this set-
ting, the expression 1/16 \cdot |{}^{t}XX| is a reformulation of the invariant stated
at the bottom of [16, p. 109].

We can check that these different 5 expressions represent the same
polynomial of a_{ijk} by us\overline{l}ng the algebraic programming system REDUCE3.
Exp licitly, it is expressed as a sum of 72 monomials. But unfortunately,
we do not know the reason why these polynom\overline{l}als just coincide although
they have completely different appearances.
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