On P-Galois extensions of rings of cyclic type

Dedicated to Professor Tosiro Tsuzuku on his 60th birthday

Kazuo Kishimoto
(Received August 31, 1989)

§ 1. A relative sequence of homomorphisms \mathbf{P} and a P-Galois extension.

Let B be a ring with an identity 1 and A a subring of B with common identity 1 of B. In [6], the author studied on a relative sequence of homomorphisms P of $\operatorname{End}\left(B_{A}\right)$ and a P-Galois extension B / A. In this paper we shall study on constructive P-Galois commutative extensions of cyclic type as an application of the works of [6].

For the convenience of readers, we shall summarized notions and several properties of a relative sequence of homomorphisms P and a P-Galois extension. The details and proofs will be seen in [6].

Let $P=\left\{D_{0}=1, D_{1}, \cdots, D_{n}\right\}$ be a finite subset of $\operatorname{End}\left(B_{A}\right)$ and let P be a poset with respect to the order \leq. For D_{i} and D_{j} in $P, D_{i} \gg D_{j}$ means that D_{i} is a cover of D_{j}, that is, $D_{i}>D_{j}$ and no $D_{k} \in P$ such that $D_{i}>D_{k}>$ D_{j}.
$P($ min $)($ resp. $P(\max))$ is the set of all minimal (resp. maximal) elements of P.

For $D_{i} \in P$, a chain of D_{i} means a descending chian in P such that $D_{i}=D_{i_{0}} \gg \ldots \ldots .>D_{i_{m}}, D_{i_{m}} \in P($ min $)$, and $m+1$ is said to be the length of the chain.
(I) P is said to be a relative sequence of homomorphisms if it satisfies the following conditions (A.1)-(A.4) and (B.1)-(B.4):
(A. 1) $D_{i} \neq 0$ for all $D_{i} \in P$ and $P(\min)$ coincides with all $D_{i} \in P$ such that D_{i} is a ring automorphism.
(A.2) The length of each chain of D_{i} is unique and denotes it by $h t\left(D_{i}\right)$.
(A. 3) $D_{i} D_{j} \in P$ if $D_{i} D_{j} \neq 0$ and if $D_{i} D_{j}=0$ then $D_{j} D_{i}=0$.
(A. 4) Assume $D_{i} D_{j}$ and $D_{i} D_{k}$ are in P.
(i) $D_{i} D_{j} \geq D_{i} D_{k}\left(\right.$ resp. $\left.D_{j} D_{i} \geq D_{k} D_{i}\right)$ if and only if $D_{j} \geq D_{k}$.
(ii) If $D_{i} D_{j} \geq D_{m}$ then $D_{m}=D_{s} D_{t}$ for some $D_{s} \leq D_{i}$ and $D_{t} \leq D_{j}$.
(B. 1) $\quad D_{i}(1)=0$ for any $D_{i} \in P-P(\min)$.

Let $D_{i} \in P$. Then there exists $g\left(D_{i}, D_{j}\right) \in \operatorname{End}\left(B_{A}\right)$ for each $D_{j} \leq D_{i}$ such that
(B. 2) $D_{i}(x y)=\sum_{D_{j}} g\left(D_{i}, D_{j}\right)(x) D_{j}(y)$ for $x, y \in B$ where the sum runs over all D_{j} such that $D_{j} \leq D_{i}$.
(B. 3) Let $x, y \in B$.
(i) $g\left(D_{i}, D_{j}\right)(x y)=\sum_{D_{k}} g\left(D_{i}, D_{k}\right)(x) g\left(D_{k}, D_{j}\right)(y)$ where the sum runs over all D_{k} such that $D_{j} \leq D_{k} \leq D_{i}$.
(ii) Let $D_{i}>D_{j}$ and $D_{j} D_{k} \geq D_{h}$. Then $g\left(D_{i}, D_{j}\right)(x) g\left(D_{j} D_{k}, D_{h}\right)(y)=$ $g\left(D_{i}, D_{j}\right)(x) \sum_{D_{j}^{\prime}, D_{k}^{\prime}} g\left(D_{j}, D_{j}^{\prime}\right)(x) g\left(D_{k}, D_{k}^{\prime}\right)(y)$ where the sum runs over all D_{j}^{\prime} and D_{k}^{\prime} such that $D_{j}^{\prime} D_{k}^{\prime}=D_{h}$.
(B. 4) (i) $g\left(D_{i}, D_{i}\right)$ is a ring automorphism.
(ii) $g\left(D_{i}, \Lambda\right)=D_{i}$ for any minimal Λ of P.
(iii) $g\left(D_{i}, D_{k}\right)(1)=0$ if $D_{k}<D_{i}$.

Since $P(\min)$ is a finite multiplicative semigroup which is contained in the group of automorphisms of B, it forms a group.

A relative sequence of homomorphisms $P=\left\{D_{0}=1, D_{1}, \ldots, D_{n}\right\}$ is said to be cyclic if $D_{i}=\left(D_{1}\right)^{i}$ for $i=1,2, \ldots, n$ and $D^{i} \geq D^{j}$ for $i \geq j$.

For the covenience, elements of P are some times denoted by Capital Greek.

The sum of all $\Delta_{j} \in P$ (max) is denoted by Δ and for $\Omega \in P, g\left(\Delta_{j}, \Omega\right)$ is the sum of all $g\left(\Delta_{j}, \Omega\right)$ such that $\Delta_{j} \geq \Omega$.

For $P($ min $), B_{1}=B^{P(\text { min })}=\{b \in B ; \Omega(b)=b$ for all $\Omega \in P($ min $)\}$ and $B^{P}=B_{1} \cap B_{0}$ where $B_{0}=\{b \in B ; \Omega(b)=0$ for all $\Omega \in P-P($ min $)\}$.
(II) Assume a relative sequence of homomorphisms P satisfies the condition
(A. 5) $\mid P($ min $)|=| P($ max $) \mid$.

Then B / A is said to be a P-Galois extension if
(g. 1) $\quad B^{P}=A$
(g.2) There exists a system $\left\{x_{i}, y_{i} ; i=1,2, \ldots, s\right\} \subseteq B$ such that $\sum_{i=1}^{s} x_{i} g(\Delta, \Omega)\left(y_{i}\right)=\delta_{1, \Omega}$ where $\delta_{1, \Omega}$ is the Kronecker's delta.

If P is cyclic then P satisfies (A. 5) since $\mid P($ min $)|=1=| P($ max $) \mid$, and in this case, a P-Galois extension B / A is said to be cyclic.

The system $\left\{x_{i}, y_{i} ; i=1,2, \ldots, s\right\} \subseteq B$ which satisfies (g.2) is said to be a P-Galois system for B / A.

Let $D(B, P)=\sum_{\Omega \in P} \oplus B u_{\mathrm{n}}$ be a free left B-module with a B-basis $\left\{u_{\Omega}\right.$; $\Omega \in P\}$. Then $D(B, P)$ forms a ring by the multiplication ($\left.b u_{\Omega}\right)\left(c u_{\Gamma}\right)=$ $b \sum_{\Lambda \leq \Omega} g(\Omega, \Lambda)(c)\left(u_{\Lambda \Gamma}\right.$ where $u_{\Lambda \Gamma}=0$ if $\Lambda \Gamma=0$ (Theorem 2.2 [6].

Then the map j of $D(B, P)$ to $\operatorname{End}\left(B_{A}\right)$ defined by

$$
j\left(u_{\Omega} b\right)(x)=\Omega(b x) \text { for } x \in B
$$

is a ring homomorphism.
Assume a relative sequence of homomorphisms P satsifies the condition (A.6). For each maximal element Δ_{j}, if $\Delta_{j} \geq \Omega$ then there exists $\Omega^{\prime} \in$ P (resp. $\Omega^{\prime \prime}$) such that $\Delta_{j}=\Omega^{\prime} \Omega$ (resp. $\left.\Delta_{j}=\Omega \Omega^{\prime \prime}\right)$.

Then, under the assumption that $B^{P}=A$, (g .2) is equivalent to ($\mathrm{g} .2^{\prime}$) B_{A} is a finitely generated projective module and j is an isomorphism (Theorem 3.8 [6].

In the rest of this paper, we assume that a relative sequence of homomorphisms satisfies (A.5) and (A.6).
(III) Let $P=P(\min)$ (and hence $P=P(\max)$). Then P is a finite group of automorphisms of B, and $g(\Delta, \Omega)=g(\Omega, \Omega)=\Omega$ by (B. 3), (iii). Hence the existence of a P-Galois system $\left\{x_{i}, y_{i} ; i=1,2, \ldots, S\right\}$ means the existence of that of $\sum_{i=1}^{s} x_{i} \Omega\left(y_{i}\right)=\delta_{1, \Omega}$. Consequently, a P-Galois extension means a Galois extension of separable type which is studied in [2], [3] and the others.

Let B / A be a P-Galois extension. Then $B_{A} \oplus>A_{A}, A_{A}$ is a direct summand of B_{A}, if and only if there exists $x \in B$ such that

$$
\Delta(x)=1(\text { Theorem } 3.3[6]) .
$$

If B is commutative then $B_{A} \oplus>A_{A}$.
(IV) Let $P(\min)=\{1\}$ and $P(\max)=\{\Delta\}$. If B is commutative and $B^{P}=A$, then B / A is a P-Galois extension if and only if there exists a system $\left\{x_{i}, y_{i} ; i=1,2, \ldots, s\right\} \subseteq B$ such that $\sum_{i=1}^{s} \Omega\left(x_{i}\right) y_{i}=\delta_{\Delta \Omega \Omega}$, and if this is the case, $B=\sum_{i=1}^{s} A y_{i}$.

Moreover, the existence of such a system $\left\{x_{i}, y_{i} ; i=1,2, \ldots, s\right\}$ is equivalent to the existence of an element $x_{\Omega} \in B$ for each $\Omega \in P$ such that
(i) $\Omega\left(x_{\Omega}\right)=1$,
(ii) $\Gamma\left(x_{\Omega}\right) \neq 0$ if and only if $\Lambda \Gamma=\Omega$ for some $\Lambda \in P$
(iii) If $\Lambda \Gamma=\Omega$ then $\Gamma\left(x_{\Omega}\right)=x_{\Lambda}$ (Theorem 6.6 and Corollary 5.8 [6]).

Hereafter, we assume that all ring considered are commutative.

§ 2. Cyclic P-Galois extensions.

In this section we assume that $P=\left\{D^{0}=1, D, D^{2}, \ldots, D^{p-1}\right\}$ is a cyclic relative sequence of homomorphisms of $\operatorname{End}\left(B_{A}\right)$. Thus P is a linearly ordered set with $P(\min)=\{1\}$ and $P(\max)=\left\{D^{p-1}\right\}$. Moreover,

$$
\begin{aligned}
D(x y) & =g(D, D)(x) D(y)+g(D, 1)(x) y \\
& =g(D, D)(x) D(y)+D(x) y \text { for } x, y \in B
\end{aligned}
$$

shows that D is a $g(D, D)$-derivation of B.
The purpose of this section is to determine the structure of B when B is a P-Galois extension over A.

REMARK: Let A be an algebra of prime characteristic p and let σ be an A-automorphism of B of order p. Then $D=\sigma-1$ is a σ-derivation, $P=\left\{D^{0}=1, D, D^{2}, \ldots, D^{p-1}\right\}$ forms a cyclic relative sequence of homomorphisms and a P-Galois extension is a σ-cyclic extension which is studied in [4] and [7].
R is said to be a p-extension of A if $R \cong A[X] /(f(X))$ for some monic polynomial $f(X)=X^{p}-X \alpha-\beta(\alpha, \beta \in A)$ of degree p. Hence if R is a p-extension of A then it can be written $R=A[x]=A \oplus x A \oplus x^{2} A \oplus \ldots \oplus x^{p-1} A$ and $x^{p}=x \alpha+\beta$ for some $\alpha, \beta \in A$.

In the rest we assume that $P=\left\{D^{0}=1, D, D^{2}, \ldots, D^{p-1}=\Delta\right\}$ such that $D g(D, D)=g(D, D) D$.

THEOREM 2.1. Let A be an algebra over a prime field $G F(p)$ of prime characteristic p and let B be an extension ring of A. Then B / A is a P-Galois extension for some P if and only if $B=A[x]=\sum_{i=0}^{p-1} \oplus x^{i} A$ is a p-extension with $x^{p}=x \alpha+\beta$ for $\alpha, \beta \in A$ and $\alpha \in A^{p-1}=\left\{a^{p-1} ; a \in A\right\}$. More precisely, if this is the case,
(i) $g(D, D)(x)=x+c$ for some $c \in A$ and $c^{p-1}=\alpha$,
(ii) $D^{k}\left(x^{k}\right)=k!$ for $1 \leq k \leq p-1$.

Proof. Assume B / A is P-Galois extension. Since $B_{A} \oplus>A_{A}$, there exists an element $w \in B$ such that $\Delta(w)=1$. Then $x=D^{p-2}(w)$ is a requested one. $D(g(D, D)(x)-x)=g(D, D)(D(x))-D(x)=1-1=0$ shows that

$$
\left.g(D, D)(x)-x=c \in B^{P}=A \ldots \ldots \ldots .^{*}\right)
$$

For this $x, D\left(x^{2}\right)=g(D, D)(x) D(x)+D(x) x=g(D, D)(x)+x=2 x+c$. Hence we can see that

$$
\begin{aligned}
& D\left(x^{k}\right)=\sum_{i=0}^{k-1}\binom{k}{i} x^{i} c^{k-1-i} \text { by induction on } k . \quad \text { Thus, } \\
& D\left(x^{p}\right)=c^{p-1}
\end{aligned}
$$

Since $D\left(x^{p}-x c^{p-1}\right)=0$,

$$
\begin{equation*}
x^{p}-x c^{p-1}=\beta \in B^{P}=A \tag{**}
\end{equation*}
$$

\qquad

Further, since $D^{2}\left(x^{2}\right)=2$!, we can see

$$
\left.D^{k}\left(x^{k}\right)=k!.^{* * *}\right)
$$

for $1 \leq k \leq p-1$ by induction on k.
Since

$$
D^{j}\left(x^{p-1}\right) \cdot 1+D^{j}\left(x^{p-2} /(p-2)!\right) \cdot D^{p-2}\left(x^{p-1}\right)=\left\{\begin{array}{l}
1 \text { if } D^{j}=\Delta \\
0 \text { if } D^{j}=D^{p-2},
\end{array}\right.
$$

we assume that there exist elements $u_{1}, u_{2}, \ldots, u_{t}$ and $v_{1}, v_{2}, \ldots, v_{t}$ of B such that $\sum_{i=1}^{t} \Omega\left(u_{i}\right) v_{i}=\delta_{\Delta, \Omega}$ for all $\Omega=D^{j}, j=k+1, \ldots, p-1$ and each u_{i}, v_{i} are contained in $A[x]$. Then

$$
\begin{aligned}
& \sum_{i=1}^{t} D^{i}\left(u_{i}\right) v_{i}-D^{j}\left(x^{k} / k!\right) \sum_{i=1}^{t} D^{j}\left(u_{i}\right) v_{i} \\
& =\left\{\begin{array}{l}
1 \text { if } j=p-1 \\
0 \text { if } j=k, k+1, \ldots, k-2 .
\end{array}\right.
\end{aligned}
$$

Thus there exists a system $\left\{u_{i}, v_{i} ; i=1,2, \ldots, s\right\}$ such that
$\sum_{i=1}^{s} \Omega\left(u_{i}\right) v_{i}=\delta_{\Delta, \Omega}$ for all $\Omega \in P$ and each $u_{i}, v_{i} \in A[x]$. Then $B=$ $\sum_{i=0}^{p=1} x^{i} A$ by (IV) and (**)

Next, we shall show that $\left\{1, x, x^{2}, \ldots, x^{p-1}\right\}$ is linearly independent over A. If $z=\sum_{i=0}^{p-1} x^{i} a_{i}=0\left(a_{i} \in A\right)$, then $0=\Delta(z)=(p-1)!a_{p-1}$ by (***) and this means that $a_{p-1}=0$. Repeating this way we can see that $a_{i}=0$ for $i=0,1,2, \ldots, p-1$. Consequently, we can see that B is a p-extension such that

$$
B=A[x]=\sum_{i=0}^{p-1} \oplus x^{i} A \text { with } x^{p}=x c^{p-1}+d \text { for } c, d \in A \text {, }
$$

and further, this x satisfies (i) and (ii) by (*) and (**).
Conversely, assume that $B=A[x]=\sum_{i=0}^{p-1} \oplus x^{i} A$ is a p-extension such that $x^{p}=x c^{p-1}+d$ for $c, d \in A$. Then the map σ of a polynomial ring $A[X]$ over A defined by $\sigma(X)=x+c$ gives an A-automorphism of $A[X]$. Further the map D of $A[X]$ defined by (i) $D(X a)=a$ for $a \in A$, (ii) $D\left(X^{k} a\right)=\left(\sigma(X) D\left(X^{k-1}\right)+D(X) X^{k-1}\right) a$ and (iii) $D\left(\sum_{i=0}^{k} \quad X^{i} a_{i}\right)=\sum_{i=0}^{k}$ $D\left(X^{i}\right) a_{i}$ gives a σ-derivation of $A[X]$. For, assume $D\left(X^{k}\right)=$ $\sigma\left(X^{i}\right) D\left(X^{k-i}\right)+D\left(X^{i}\right) X^{k-i}$ for all $k \leq n$ and $i \leq k$. Then

$$
\begin{aligned}
D\left(X^{n+1}\right) & =\sigma(X) D\left(X^{n}\right)+X^{n} \\
& =\sigma(X)\left(\sigma\left(X^{i-1}\right) D\left(X^{n+1-i}\right)+D\left(X^{i-1}\right) X^{n+1-i}\right)+X^{n} \\
& =\sigma\left(X^{i}\right) D\left(X^{n+1-i}\right)+\left(\sigma(X) D\left(X^{i-1}\right)+X^{i-1}\right) X^{n+i-1} \\
& =\sigma\left(X^{i}\right) D\left(X^{n+1-i}\right)+D\left(X^{i}\right) X^{n+1-i} .
\end{aligned}
$$

Thus D is a σ-derivation. Since $D\left(X^{p}\right)=c^{p-1}, D\left(X^{p}-X c^{p-1}-d\right)=0$ and this shows that D induces a σ-derivation of $A[X] /\left(X^{p}-X c^{p-1}-d\right) \cong B$.

We denote it again by D. Then $P=\left\{D^{0}=1, D, D^{2}, \ldots, D^{p-1}=\Delta\right\}$ is a relative sequence of homomorphism for B / A such that $P(\min)=\{1\}$, $P(\max)=\{\Delta\}$ and $D g(D, D)=g(D, D) D$.

Let $z=\sum_{i=0}^{p-1} \quad x^{i} a_{i} \in B^{P}\left(a_{i} \in A\right)$. Then $0=\Delta(z)=\sum_{i=0}^{p-1} \Delta\left(x^{i}\right) a_{i}=(p-1)$! a_{p-1} yields $a_{p-1}=0$. Repeating the same way, we can see that $z=a_{0}$. Thus, $B^{P}=A$. Since $\Delta\left(x^{p-1}\right)=(p-1)!=-1, x_{(D j)}=D^{p-1-j}\left(x^{p-1}\right)$ satisfies (i), (ii) and (iii) of (IV). Thus B / A is a P-Galois extension by (IV).

Corollary 2.2. Let A be an algebra over $G F(p)$ and let $B=$ $A[x]=\sum_{i=0}^{p-1} \oplus x^{i} A$ be a P-Galois extension over A such that $x^{p}=x c^{p-1}+d$ for some $c, d \in A$ and $D(x)=1$. Then
(1) $\quad A g(D, D)$-derivation $g(D, D)-1$ is obtained by $c D$.
(2) $\quad B^{g(D, D)}=\{b \in B ; g(D, D)(b)=b\}=A$ if and only if c is a regular element (i.e, c is non-zero-divisor). In particular c is a unit element if and only if B / A is a $g(D, D)$-cyclic extension.
(3) $\quad B^{g(D, D)} \supset A\left(i, e ., A\right.$ is a proper subset of $\left.B^{g(D, D)}\right)$ if and only if c is a zero divisor. In particular if c is nilpotent then there exists a positive integer k such that $B^{p^{k}}=\left\{b^{p^{k}} ; b \in B\right\} \subseteq A$.
(4) $g(D, D)=1$ if and only if $c=0$. Moreover, if this is the case, $B^{p} \subseteq A$.

Proof. (1) $g(D, D)-1=c D$ if and only if $(g(D, D)-1)\left(x^{i} a\right)=$ $c D\left(x^{i} a\right)$ for $a \in A$ and $0 \leq i \leq p-1$. Since $(g(D, D)-1)(x a)=c a=c D(x a)$, we can easily see $\left.(g(D, D)-1) x^{i} a\right)=c D\left(x^{i} a\right)$ by induction on i.
(2) Let c be regular and let $y=\sum_{i=0}^{p-1} x^{i} a_{i} \in B^{g(D, D)}$. Then $0=(g(D$, D) -1$)(y)=\sum_{i=0}^{p-1}(x+c)^{i} a_{i}-\sum_{i=0}^{p-1} \quad x^{i} a_{i}$ yields $\binom{p-1}{p-2} c a_{p-1}=0$. Since c is regular, this means that $a_{p-1}=0$. Repeating this way, we can easily see that $y=a_{0}$, and hence $B^{g(D, D)}=A$. Conversely, assume that $B^{g(D, D)}=A$. If $c a=0$ for some $a(\neq 0) \in A$, then $g(D, D)(x a)=(x+c) a=x a$ shows that $x a \in A$ and this contradicts to linear independence of $\left\{1, x, x^{2}, \ldots, x^{p-1}\right\}$.

Let c be a unit. Then $g(D, D)(y)=y+1$ for $y=x c^{-1}$. Moreover we can see that $B=\sum_{i=0}^{p-1} \oplus y^{i} A$ and $y^{p}=y+d$ for some $d \in A$. Thus B / A is a $g(D, D)$-cyclic extension, and the converse is also true [see [4]].
(3) $B^{g(D, D)} \supset A$ if and only if c is a zero divisor by (2). Since $D\left(x^{s}\right)=$ $\sum_{i=0}^{s-1}\binom{s}{i} x^{i} c^{s-1-i}$ (see the proof of Theorem 2.1), $D\left(x^{p t}\right)=c^{p t-1}$ for some $t \geq 1$. If c is nilpotent, we may assume $\left(c^{p-1}\right)^{p k}=0$ for some $k \geq 0$. Then $x^{p k+1}=\left(x^{p}\right)^{p^{k}}=d^{p^{k}}$ shows that $B^{p k+1} \subseteq A$.
(4). Since $g(D, D)(x)=x+c, g(D, D)=1$ if and only if $c=0$. Further
if this is the case, $x^{p}=d$ shows that $B^{p} \subseteq A$.
REMARK: (i) If A is an algebra over $G F(2)$, and B is a 2-extension of A, then $B=A[x]=A \oplus x A$ with $x^{2}=x c+d$ for some $c, d \in A$. Hence any 2 -extension of A is a P-Galois extension by Theorem 2.1.
(ii) Let $B=A[x]=\sum_{i=0}^{p-1} \oplus x^{i} A$ be a p-extension such that $x^{p}=x c^{p-1}+d$. Corollary 2.2 of (2) shows that if c is a regular element but not a unit element then B / A is a P-Galois extension but not a $g(D, D)$-cyclic extension though $B^{g(D, D)}=A$.

In the rest we assume that $p>2$ is a prime and K is a field of characteristic p or of 0 and K contains a primitive $p-1$ the root ζ of 1 if the characteristic is 0 . Further A is an algebra over K.

Let $C=A[y]=\sum_{i=0}^{p-2} \oplus y^{i} A$ be a ring with $y^{p-1}=c \in A$ (and hence, $\left.A[y] \cong A[Y] /\left(Y^{p-1}-c\right)\right)$. For a primitive $p-1$ th root ζ of 1 of K, we define two maps τ and E of C as follows:

$$
\begin{aligned}
& \tau\left(\sum_{i=0}^{p-2} y^{i} a_{i}\right)=\sum_{i=0}^{p-2}(y \zeta)^{i} a_{i}, \\
& E(y a)=a, E\left(y^{k} a\right)=\left(\tau(y) E\left(y^{k-1}\right)+E(y) y^{k-1}\right) a \text { and } \\
& E\left(\sum_{i=0}^{p-2} y^{i} a_{i}\right)=\sum_{i=0}^{p-2} E\left(y^{i} a_{i}\right)\left(a_{i}, a \in A\right) .
\end{aligned}
$$

Then τ is an A-automorphism of order $p-1$. Further, we have the following

Lemma 2.3. E is a τ-derivation of C such that
(i) $E\left(y^{k}\right)=y^{k-1}\left(\zeta^{k-1}+\zeta^{k-2}+\ldots \ldots+\zeta+1\right)$
(ii) $\quad E^{i}\left\{\begin{array}{l}=0 \text { if } i=p-1 \\ \neq 0 \text { if } 0 \leq i \leq p-2\end{array}\right.$
(iii) $E^{k}\left(y^{k}\right)=(\zeta+1)\left(\zeta^{2}+\zeta+1\right) \cdots\left(\zeta^{k-1}+\zeta^{k-2}+\ldots \ldots+\zeta+1\right)$ for $2 \leq k \leq$ $p-2$.
(iv) $E \tau=\tau E \zeta$.

Proof. By the same way as in the proof of Theorem 2.1, we have $E\left(y^{k}\right)=\tau\left(y^{i}\right) E\left(y^{k-i}\right)+E\left(y^{i}\right) y^{k-i}$ for $0 \leq i \leq k$. Since $E\left(y^{2}\right)=\tau(y)+y=$ $y(\zeta+1)$, we can easily see that $E\left(y^{k}\right)=y^{k-1}\left(\zeta^{k-1}+\zeta^{k-2}+\cdots+\zeta+1\right)$ by induction on k. Further $E\left(y^{p-1}\right)=y^{p-2}\left(\zeta^{p-2}+\zeta^{p-3}+\cdots+\zeta+1\right)=0=E(c)$ shows that E is well-defined and is a τ-derivation. This proves (i).

Since any element of C is obtained by $\sum_{i=0}^{p-2} y^{i} a_{i}\left(a_{i} \in A\right)$, (ii) is clear by (i).

By induction on k, we can easily see (iii).
$E \tau\left(y^{k}\right)=E\left(y^{k}\right) \zeta^{k}=y^{k-1}\left(\zeta^{k-1}+\zeta^{k-2}+\cdots+\zeta+1\right) \zeta^{k}$ and $\tau E \zeta\left(y^{k}\right)=$ $\tau\left(E\left(y^{k}\right)\right) \zeta=y^{k-1} \zeta^{k-1}\left(\zeta^{k-1}+\zeta^{k-2}+\cdots+\zeta+1\right) \zeta$ for each $0 \leq k \leq p-2$ shows
that $E \tau=\tau E \zeta$
For $1 \leq k \leq p-2$, we put $\eta_{k}=\zeta^{k}+\zeta^{k-1}+\cdots+\zeta+1$.
THEOREM 2.4. Let C be an extension ring of A. Then C / A is a Q-Galois extension for some $Q=\left\{E^{0}=1, E, E^{2}, \ldots, E^{p-2}\right\}$ with $E g(E, E)=$ $g(E, E) E \zeta$ if and only if C is isomorphic to $A[Y] /\left(Y^{p-1}-c\right)$ for some c $\in A$.

Proof. Assume $C=A[y]=A \oplus \cdots \oplus y^{p-2} A$ with $y^{p-2}=c$. Then $Q=$ $\left\{E^{0}=1, E, \ldots, E^{p-2}\right\}$ is a relative sequence of homomorphisms of C / A where E is a τ-derivation which is discussed in Lemma 2.3 and so $E_{\tau}=$ $\tau E \zeta$.

Let $\alpha=\sum_{i=0}^{p-2} \quad y^{i} a_{i} \in C^{E}$. Then $0=E^{p-g}(\alpha)=a_{p-2} \eta_{p-3} \eta_{p-4} \cdots \eta_{1}$ shows that $a_{p-2}=0$. Repeating this way, we have $C^{E}=A$. For each $E^{j}=\Omega, y_{\Omega}=y^{j} /$ ($\eta_{1} \eta_{2} \cdots \eta_{j-1}$) satisfies the conditions (i), (ii) and (iii) of (IV), and so C / A is a Q-Galois extension by (IV) again.

Conversely, assume that C / A is a Q-Galois extension. Since $C_{A} \oplus>$ A_{A}, there exists $w \in C$ such that $E^{p-2}(w)=1$. Put $y=E^{p-3}(w)$. Then $E(y)=1$. Since $E g(E, E)=g(E, E) E \zeta, E(g(E, E)(y)-y \zeta)=$ $g(E, E) E(y \zeta)-E(y \zeta)=\zeta-\zeta=0$, and hence, $g(E, E)(y)-y \zeta=a \in C^{E}=A$. Then $g(E, E)(y+a /(\zeta-1))=(y+a /(\zeta-1)) \zeta$. We denote this $y+a /(\zeta-$ 1) by y again. Then $g(E, E)(y)=y \zeta$ and $E(y)=1$.

Let $\Omega=E^{j}, y_{\Omega}=y^{j} / \eta_{1} \eta_{2} \cdots \eta_{j-1}$ and $\Gamma=E^{i}$. Then $\Omega\left(y_{\Omega}\right)=1$ and $\Gamma\left(y_{\Omega}\right) \neq 0$ if and only if $i \leq j$, that is, $\Omega=\Gamma \Lambda$ where $\Lambda=E^{j-i}$. Further if this is the case, $\Gamma\left(y_{\Omega}\right)=y^{j-i}\left(\eta_{j-i} \eta_{j-i+1} \cdots \eta_{j-1}\right)=y_{\Lambda}$. Thus y_{Ω} satisfies the conditions (i), (ii) and (iii) of (IV), and so $C=\sum_{j=0}^{p-2} y^{j} A$ by (IV). Let $\alpha=$ $\sum_{j=0}^{p-2} y^{j} a_{j}=0$. Then $0=E^{p-2}(\alpha)=a_{p-2}\left(\eta_{1} \eta_{2} \cdots \eta_{p-3}\right)$ implies $a_{p-2}=0$. Repeating this way we can obtain $a_{p-2}=a_{p-3}=\cdots=a_{1}=a_{0}=0$. Thus $\left\{1, y, y^{2}, \ldots\right.$, $\left.y^{p-2}\right\}$ is a linearly independent A-basis for C. Since $E\left(y^{p-1}\right)=y^{p-2} \eta_{p-2}=0$, $y^{p-1}=c$ for some $c \in A$. Thus C is isomorphic to $A[Y] /\left(Y^{p-1}-c\right)$.

Corollary 2.5. Let $C=A \oplus y A \oplus \cdots \oplus y^{p-2} A$ be $a \quad Q$-Galois extension with $y^{p-1}=c \in A$, where $Q=\left\{E^{0}=1, E, E^{2}, \ldots, E^{p-2}\right\}$ and E is a τ-derivation such that $E_{\tau}=\tau E \zeta$, Then
(i) $C^{g(E, E)}=A$
(ii) If c is a unit element then C / A is a $g(E, E)$-strongly cyclic extension.
(iii) If A is of prime characteristic p and c is nilpotent, then there exists a positive integer k such that $C^{p k} \subseteq A$.

Proof. (i) Let $z=\sum_{i=0}^{p-2} y^{i} a_{i} \in C^{g(E, E)}$. Then $0=g(E, E)(z)-z=$ $\sum_{i=0}^{p-2} y^{i}\left(\zeta^{i} a_{i}-a_{i}\right)$ implies $z \in A$.
(ii) This is proved in [5].
(iii) Since c is nilpotent, y is also nilpotent. Hence there exists an integer k such that $y^{p^{k}}=0$. Since $C=\sum_{i=0}^{p-2} \oplus y^{i} A, \quad C^{p^{k}}=A^{p^{k}} \subseteq A$.

§ 3. Embedding of p-extensions.

Let A be an algebra over $G F(p)$ again. As is stated in Theorem 2.1, a p-extension $B \cong A[X] /\left(X^{p}-X \alpha-\beta\right)$ is a P-Galois extension over A for some $P=\left\{D^{0}=1, D, D^{2}, \ldots, D^{p-1}\right\}$ if and only if $\alpha \in A^{p-1}$. Then it is natural to ask that whether a p-extension B / A can be embedded into an S Galois extension T / A for some relative sequence of homomorphisms S. It seems like an open problem. But we can see that B / A can be embedded into such T / A that $T^{s}=A$ and T_{A} is finitely generated projective for some finite set S of $\operatorname{End}\left(T_{A}\right)$ where T^{s} means $\{t \in T ; \Lambda(t)=t$ for all $\Lambda \in$ S_{a}, the set of all ring automorphism in $\left.S\right\} \cap\{t \in T ; \Omega(t)=0$ for all $\Omega \in S-$ S_{a} \}.

Let $B=A[x]=\sum_{i=0}^{p-1} \oplus x^{i} A$ be a p-extension with $x^{p}=x c+d$ and let $C=$ $A[y]=\sum_{j=0}^{p-2} \oplus y^{i} A$ be a Q-Galois extension with $y^{p-1}=c$ which is given in Theorem 2.4.

Let $T=B \otimes_{A} C=\sum_{\substack{p=1, p, j=0}}^{\substack{i=0}}\left(x^{i} \otimes y^{j}\right) A$. For the covenience, we denote $x^{i} \otimes y^{j}$ by $x^{i} y^{j}$. Hence $T=\sum_{j=0, j=0}^{p-1, p-2} \oplus x^{i} y^{j} A=\sum_{i=0}^{p-1} \oplus x^{i} C=\sum_{j=0}^{p-2} \oplus y^{j} B$.

Let σ be the map of T defined by $\sigma\left(\sum_{i=0}^{p-1} x^{i} c_{i}\right)=\sum_{i=0}^{p-1}(x+y)^{i} c_{i}\left(c_{i} \in C\right)$. Since $\sigma\left(x^{p}\right)=(x+y)^{p}=x^{p}+y^{p}=x c+d+y c=\sigma(x c+d), \sigma$ is well-defined and a C-automorphism of order p. For this σ the map D of T defined by
(i) $\quad D(C)=0$ and $D(x d)=d$
(ii) $\quad D\left(x^{k} d\right)=\left(\left(\sigma(x) D\left(x^{k-1}\right)+D(x) x^{k-1}\right) d\right.$
(iii) $D\left(\sum_{i=0}^{p-1} x^{i} d_{i}\right)=\sum_{i=0}^{p-1} D\left(x^{i}\right) d_{i}$, where $d, d_{i} \in C$
becomes a σ-derivation of T, and $P=\left\{D^{0}=1, D, \ldots, D^{p-1}=\Delta_{D}\right\}$ is a relative sequence of homomorphisms with $P(\max)=\left\{\Delta_{D}\right\}$ and $T^{P}=C$. Further, $x_{\left(D^{k}\right)}=x^{k} / k$! satisfies the conditions (i), (ii) and (iii) of (IV). Therefore T / C is a P-Galois extension.

Next, an automorphism τ and a τ-derivation E of C which are discussed in Lemma 2.3 can be extended to that of T by $\tau\left(\sum_{j=0}^{p-1} y^{j} b_{j}\right)=$ $\sum_{j=0}^{p-2} \tau(y)^{j} b_{j}$ and $E\left(\sum_{j=0}^{p-2} y^{j} b_{j}\right)=\sum_{j=0}^{p-2} E\left(y^{j}\right) b_{j}$ for $b_{j} \in B$, and T / B is a $Q=\left\{E^{0}=1, E, E^{2}, \ldots, E^{p-2}=\Delta_{E}\right\}$-Galois extension.

Let $F(i, j)$ be $D^{i} E^{j}$ for $0 \leq i \leq p-1$ and $0 \leq j \leq p-2$. By S we denote the set of all nonzero finite products of $F(i, j)$, that is, $S=\left\{\prod_{s=1}^{m} F\left(i_{s}, j_{s}\right)\right.$; $m \geq 1\}-\{0\}$. Then we have the following theorem.

Theorem 3.1. $\quad S$ is a finite set and $T^{s}=A$.
Proof. $\quad F(i, j)\left(x^{k} y^{h}\right)=D^{i}\left(x^{k}\right) E^{j}\left(y^{h}\right)=\sum_{h=0}^{k-i} x^{h} c_{h}, \quad c_{h} \in C=A[y]$ shows that $F\left(i_{1}, j_{1}\right) F\left(i_{2}, j_{2}\right) \cdots F\left(i_{n}, j_{n}\right)=0$ if $i_{1}+i_{2}+\cdots+i_{n} \geq p$. Hence if $F\left(i_{1}, j_{1}\right) F\left(i_{2}, j_{2}\right) \cdots F\left(i_{m}, j_{m}\right) \neq 0$ then it must be $i_{1}+i_{2}+\cdots+i_{m} \leq p-1$ and $j_{k}<p-1$ for all $k=1,2, \ldots, m$. Thus S must be a finite set. Since $S_{a}=$ $\{1\}, T^{s}=A$ is clear.

Let $B=A[X] /\left(X^{p}-X c-d\right)$ and let c be a unit element. Then B / A can be embedded into an S-Galois extension T / A for some $S=S$ (min) since B / A is strongly separable ([1]). As a corollary to Theorem 3.1, we can show that a non-abelian group of the order $p^{2}-p$ can be choose as S if $p>2$. For, let $C \cong A[Y] /\left(Y^{p-1}-c\right)$ and let $T=B \otimes_{A} C=$ $\sum_{i=0, j=0}^{p=1, p-2} \oplus x^{i} y^{j} A$. (Note that y is a unit element since so is c). As is seen in the begining of this section, $\sigma: x^{i} y^{j} \Longrightarrow(x+y)^{i} y^{j}$ and $\tau: x^{i} y^{j} \Longrightarrow x^{i}(y y)^{j}$, where $\nu \in G F(p)$ is a primitive $p-1$ th root of 1 , are automorphisms of T respectively, and further, T / C is a σ-cyclic extension and T / B is a τ cyclic extension. Put $z=x y^{-1}$. Then $T=\sum_{i=0}^{p-1} \oplus z^{i} C, \sigma(z)=z+1$ and $\tau(z)=z \nu^{-1}$. Hence $\sigma^{\nu} \tau\left(z^{i} y^{j}\right)=\sigma^{\nu}\left(z^{i} y^{j} \nu^{j-1}\right)=(z+\nu)^{i} y^{j} \nu^{j-1}$ and $\nu \sigma\left(z^{i} y^{j}\right)=$ $\left.\tau(z+a)^{i} y^{j}\right)=\left(z \nu^{-1}+1\right)^{i} y^{j} \nu^{j}=\left(z+\nu^{i} y^{j} \nu^{j-i}\right.$ show that $\sigma^{\nu} \tau=\tau \sigma$. Therefore $S=(\sigma, \tau)=\left\{\sigma^{i} \tau^{j} ; i=0,1, \ldots, p-1\right.$ and $\left.j=0,1, \ldots, p-2\right\}$ is a non-abelian group of the order $p^{2}-p$ and $T^{s}=A$. Let $\left\{x_{i}, y_{i} ; i=1,2, \ldots, t\right\}$ be a σ Galois system for T / C and let $\left\{u_{j}, v_{j} ; j=1,2, \ldots, s\right\}$ be a τ-Galois system for T / B. Then we may choose the system $\left\{u_{j}, v_{j} ; j=1,2, \ldots, s\right\}$ in C since C / A is a τ-cyclic extension, and hence, u_{j} and v_{j} are invariant under the action of σ. Consequently we have

$$
\sum_{i=1}^{t}\left(x_{i}\left(\sum_{j=1}^{s} u_{j} \sigma^{k} \tau^{h}\left(v_{j}\right)\right) \sigma^{k}\left(y_{i}\right)=\delta_{1, \sigma k \tau}\right.
$$

and this shows that T / A is an S-Galois extension. Thus we have
Corollary 3.2. Let $p>2$ be a prime. If $B=A[x]=\sum_{i=0}^{p-1} \oplus x^{i} A$ is a p-extension such that $x^{p}=x c+d$ and c is a unit element, then B / A can be embedded into a G-Galois extension T / A where G is a non-abelian group of the order $p^{2}-p$.

References

[1] M. Auslander and O. Goldman ; The Brauer group of a commutative ring, Trans. A. M. S., Vol. 97 (1960), 367-409.
[2] S. U. Chase, D. K. Harrison and A. Rosenberg ; Galois theory and Galois cohomology of commutative rings, Mem. A. M. S., No. 52 (1965), 15-33.
[3] F.R.Demeyer; Some notes on the general Galois theory of rings, Osaka Math. J., Vol. 2 (1970), 159-174.
[4] K. Kishimoto; On abelian extensions of rings I, Math. J. Okayama Univ., Vol. 14 (1970), 159-174.
[5] K. Kishimoto; On abelian extensions of rings II, Math. J. Okayama Univ., Vol. 15 (1971), 57-70.
[6] K. Kishimoto; Finite posets P and P-Galois extensions of rings, (to appear).
[7] T. NAGAhara and A. NAKAJIMA ; On cyclic extensions of commutative rings, Math. J. Okayama Univ., Vol. 15 (1971), 81-90.

Department of Mathematics
Shinshu University
Matsumoto 390, Japan

