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\S 1 Introduction.

Let X be a locally compact Hausdorff space. Let C_{0}(X) be the

Banach space of continuous functions on X which vanish at infinity, and

let M(X) be the Banach space of complex-valued bounded regular Borel

measures on X with the total variation norm. Let M^{+}(X) be the set of
nonnegative measures in M(X) . For \mu\in M(X) and f\in L^{1}(|\mu|) , we often

write \mu(f)=\int_{X}f(x)d\mu(x) . Let X’ be another locally compact Hausdorff

space, and let S:\grave{X}arrow X’ be a continuous map. For \mu\in M(X) , let S(\mu)\in

M(X’) be the continuous image of \mu under S. We denote by \mathscr{B}(X) the
\sigma-algebra of Borel sets in X. \mathscr{B}_{0}(X) means the \sigma-algebra of Baire sets in
X. That is, \mathscr{B}_{0}(X) is the \sigma-algebra generated by compact G_{\delta} sets in X.

Let G be a LCA group with dual \hat{G}. M(G) and L^{1}(G) denote the
measure algebra and the group algebra respectively. For \mu\in M(G),\hat{\mu}

denotes the Fourier-Stieltjes transform of \mu . m_{G} denotes the Haar measure
of G. Let M_{a}(G) be the set of measures in M(G) which are absolutely

continuous with respect to m_{G} . Then by the Radon-Nikodym theorem we
can identify M_{a}(G) with L^{1}(G) . For a subset E of \hat{G}, M_{E}(G) denotes

the space of measures in M(G) whose Fourier-Stieltjes transforms vanish
off E. For a closed subgroup H of G, H^{\perp} stands for the annihilator of

H.
Let (G, X) be a (topological) transformation group, in which G is a

compact abelian group and X is a locally compact Hausdorff space.

That is, suppose that there exists a continuous map (g, x)arrow g\cdot x from G\cross

X onto X with the following properties:

(1. 1) xarrow g\cdot x is a homeomorphism on X for each g\in G and 0\cdot x=x ,

where 0 is the identity element in G ;
(1. 2) g_{1}\cdot(g_{2}\cdot x)=(g_{1}+g_{2})\cdot x for g_{1} , g_{2}\in G and x\in X.

We note that (\#, x)arrow f(g\cdot x) is a Baire function on G\cross X for each Baire

function f on X. For \lambda\in M(G) and \mu\in M(X) , define \lambda*\mu\in M(X) by
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(1. 3) \lambda*\mu(h)=\int_{X}\int_{G}h(g\cdot x)d\lambda(g)d\mu(x)=\int_{G}\int_{X}h(g\cdot x)d\mu(x)d\lambda(g)

for h\in C_{0}(X) . Let J(\mu) be the collection of all f\in L^{1}(G) with f*\mu=0 .
DEFINITION 1. 1. For \mu\in M(X) , define the spectrum sp (\mu) of \mu by

sp ( \mu)=\bigcap_{f\in f(\mu f^{-1}(0)} .

Let \pi:Xarrow X/G be the canonical map. For x\in X , let B_{x} : Garrow

G\cdot x(\subset X) be the continuous map defined by B_{x}(g)=g\cdot x. For \dot{x}=\pi(x) ,
define m. \in M^{+}(X) by m.=B_{x}(m_{G}) . Let M_{aG}(X) be an L-subspace of
M(X) defined by

(1. 4) M_{aG}(X)=\{\mu\in M(X) :
\mu\ll\rho*\nu for some

\rho\in L^{1}(G)\cap M^{+}(G)\} .and \nu\in M^{+}(X)

Put M_{aG}(X)^{\perp}= { M(X) : \nu\perp\mu for all \mu\in M_{aG}(X) }. Then M_{aG}(X)^{\perp} is
also an L-subspace of M(X) , and M(X)=M_{aG}(X)\oplus M_{aG}(X)^{\perp} . That is,
for every \mu\in M(X) , it can be uniquely represented as follows:
(1. 5) \mu=\mu_{aG}+\mu_{sG} ,

where \mu_{aG}\in M_{aG}(X) and \mu_{sG}\in M_{aG}(X)^{\perp} . In [16], the author obtained the
following theorem as an extension of the F. and M. Riesz theorem of
Helson and Lowdenslager type.

THEOREM 1. 1. ([16, Theorem 2. 1]).
Let (G, X) be a transformation group, in which G is a compact abelian
group and X is a locally compact Hausdorff space. Let P be a semigroup
in \hat{G} such that P\cup(-P)=\hat{G}. Let \sigma be a positive Radon measure on X
that is quasi-invariant. Let \mu\in M(X) , and let \mu=\mu_{a}+\mu_{s} be the Lebesgue
decomposition of \mu with respect to \sigma. Suppose sp(\mu)\subset P. Then both
sp(\mu_{a}) and sp(\mu_{s}) are also contained in P. If, in addition, P\cap(-P)=
\{0\} and \pi(|\mu|)\ll\pi(\sigma) , then sp(\mu_{s})\subset P\backslash \{0\} , where \pi:Xarrow X/G is the
canonical map.

In this paper, we shall prove the following theorem.

THEOREM 1. 2. Let (G, X) be a transformation group, in which G is
a compact abelian group and X is a locally compact Hausdorff space. Let
P be a semigroup in \hat{G} such that P\cup(-P)=\hat{G}. Let \mu be a measure in
M(X) with sp(\mu)\subset P. Then both sp(\mu_{aG}) and sp(\mu_{sG}) are also contained
in P. If, in addition, P\cap(-P)=\{0\} , then sp(\mu_{SG})\subset P\backslash \{0\} .

REMARK 1. 1. ( i) Let \mu be a measure in M(X) . It follows from
[15, Proposition 5.1] that \mu\in M_{aG}(X) if and only if \mu translates G-
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continuously (i . e. , \lim_{garrow 0}||\mu-\delta_{g}*\mu||=0 , where \delta_{g} is the point mass at g\in G).

(ii) Let (G, X) be as in Theorem 1. 2. Let E be a Riesz set in \hat{G}(i .
e. , M_{E}(G)\subset L^{1}(G)) . Then, for any measure \mu\in M(X) with sp (\mu)\subset E ,
we have \mu\in M_{aG}(X) , by [16, Theorem 2. 3].

(iii) Let \sigma be a positive Radon measure on X that is quasi-invariant,
and let \mu be a measure in M(X) . If \mu\ll\sigma , then \mu\in M_{aG}(X) . In fact,
since \mu is bounded regular, we may assume that \sigma is bounded (i. e. , \sigma\in

M^{+}(X)) . It follows from [15, Lemma 1. 1] that \sigma and m_{G}*\sigma are mutu-
ally absolutely continuous. Hence we have \mu\ll m_{G}*\sigma , and so \mu\in M_{aG}(X) .

Let G be a LCA group and H a compact subgroup of G. Then we
have a transformation group (H, G) such that H acts freely on G.

COROLLARY 1. 1. Let G be a LCA group, and let P be an open semi-
group in \hat{G} such that P\cup(-P)=\hat{G}. Put \Lambda=P\cap(-P) and H=\Lambda^{\perp} . Let
\mu be a measure in M_{P}(G) . Then

(i) \mu_{aH} , \mu_{sH}\in M_{P}(G) , and
(ii) \hat{\mu}_{sH}(\gamma)=0 on P\cap(-P) .

REMARK 1. 2. We obtain [11, Corollary 3 (b)] in a consequence of
Corollary 1. 1.

REMARK 1. 3. Suppose G is a compact abelian group. In Corollary
1. 1, let \mu=\mu_{a}+\mu_{s} be the Lebesgue decomposition of \mu with respect to the
Haar measure of G. If \mu\in M_{P}(G) , then we have \mu_{a} , \mu_{S}\in M_{P}(G) (cf. [14,
Corollary]). Moreover, if P\cap(-P)=\{0\} , then we have \hat{\mu}_{s}(0)=0 (cf. [13,
8.2.3. Theorem]). However, if P\cap(-P)\neq\{0\} , we can not expect that
\hat{\mu}_{s}(0)=0 in general.

REMARK 1. 4. Suppose G is a compact abelian group. In Corollary
1.1, if P\cap(-P)=\{0\} , then M_{aH}(G)=L^{1} (G) and M_{aH} (G)^{\perp}=M_{s}(G) .
Hence, in this case, Corollary 1.1 is the F. and M. Riesz theorem of Hel-
son and Lowdenslager type ([13, 8.2.3. Theorem]).

In section 2, we shall prove Theorem 1. 2 and Corollary 1.1.

\S 2 Proofs of Theorem 1. 2 and Corollary 1. 1.

We first state two conditions (D. I) and (D. II).

(D. I) Let (G, X) be a transformation group, in which G is a metriza-
ble compact abelian group and X is a locally compact Hausdorff space.
For any \mu\in M^{+}(X) , put \eta=\pi(\mu) , where \pi : X– X/G is the canonical
map. Then there exists a family \{\lambda_{\dot{x}}\}_{\dot{x}\in X/G} of measures in M^{+}(X) with
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the following properties:

(2. 1) \dot{x}arrow\lambda_{\dot{x}}(f) is \eta -measurable for each bounded Baire function f on
X,

(2. 2) ||\lambda_{\dot{x}}||=1 ,
(2. 3) supp (\lambda_{\dot{x}})\subset\pi^{-1}(\dot{x}) ,

(2. 4) \mu(f)=\int_{x/c}\lambda_{\dot{x}}(f)d\eta(\dot{x}) for each bounded Baire function f on X.

(D. II) Let (G, X) and \pi be as in (D. I). Let 1/\in M^{+}(X/G) . Sup-
pose \{\lambda_{k}^{1}\}_{k\in X/G} and \{\lambda_{k}^{2}\}_{k\in X/G} are families of measures in M(X) with the
following properties:

(2. 5) \dot{x}arrow\lambda_{k}^{i}(f) is \nu-integrable for each bounded Baire function f on
X(i=1,2) ,

(2. 6) supp (\lambda_{\dot{x}}^{i})\subset\pi^{-1}(\dot{x})(i=1,2) ,

(2. 7) \int_{X/G}\lambda_{k}^{1}(f)d_{1/}(\dot{x})=\int_{X/G}\lambda_{\dot{x}}^{2}(f)d\nu(\dot{x}) for each bounded Baire func-

tion f on X.

Then \lambda_{k}^{1}=\lambda_{k}^{2}i v-z. a.\dot{x}\in X/G.
Let \mu\in M(X) and \eta\in M^{+}(X/G) . By an \eta -disintegration of \mu , we

mean a family \{\lambda_{\dot{x}}\}_{\dot{x}\in X/G} of measures in M(X) satisfying (2. 1)’\dot{x}arrow\lambda_{\dot{x}}(f)

is \eta -integrable for each bounded Baire function f on X and (2. 3)-(2.4) in
(D. I). If, in addition, \eta=\pi(|\mu|) and ||\lambda_{\dot{x}}||=1 for all \dot{x}\in X/G , then we
call \{\lambda_{\dot{x}}\}_{\dot{x}\in X/G} a canonical disintegration of \mu . Thus condition (D. I) says
that each \mu\in M^{+}(X) has a canonical disintegration \{\lambda_{\dot{x}}\}_{\dot{x}\in X/G} with \lambda_{\dot{x}}\in

M^{+}(X) .

REMARK 2. 1. Let (G, X) be a transformation group, in which G is
a metrizable compact abelian group and X is a locally compact metric
space. Then (G, X) satisfies conditions (D. I) and (D. II ) (cf. [15,
Remark 6. 1]).

Lemma 2. 1. Let (G, X) be a transformation group, in which G is a

metrizable compact abelian group and X is a locally compact Hausdorff
space. Suppose (G, X) satisfies conditions (D. I ) and (D. II ). Let \mu_{1} ,

\mu_{2}\in M^{+}(X) , and let \eta\in M^{+}(X/G) . Let \{\mu_{k}^{k}\}_{\dot{x}\in X/G} be an \eta-disintegration

of \mu_{k} with \mu_{k}^{k}\in M^{+}(X)(k=1,2) . Then the following are equivalent:

(i) \mu_{1}\ll\mu_{2} :
(ii) \mu_{k}^{1}\ll\mu_{k}^{2}\eta- a . a.\dot{x}\in X/G.
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PROOF. (i)\Leftrightarrow(ii) : S\dot{l}nce\mu_{1}\ll\mu_{2} , there exists a nonnegative real-
valued Baire function F on X such that \mu_{1}=F\mu_{2} . Define \lambda_{\dot{x}}\in M^{+}(X) by
\lambda_{\dot{X}}=F\mu_{\dot{x}}2 . Then we have

(1) x.arrow\lambda_{\dot{x}}(f) is \eta -integrable for each bounded Baire function f on
X ,

(2) supp (\lambda_{\dot{x}})\subset\pi^{-1}(\dot{x}) , and

(3) \int_{X/G}\mu_{x}(!f)d\eta(\dot{x})=\mu_{1}(f)=\int_{x/c}\lambda_{\dot{x}}(f)d\eta(\dot{x}) for each bounded Baire

function f on X.

By condition (D. II), we have

\mu_{x}^{!}=\lambda_{\dot{x}}\eta- a . a.\dot{x}\in X/G ,

which yields \mu_{x}^{!}\ll\mu_{\dot{x}}^{2}\eta- a . a.\dot{x}\in X/G.

(ii)\Leftrightarrow(i) : Let B be a Baire set in X with \mu_{2}(B)=0 . Then

0= \mu_{2}(B)=\int_{X/G}\mu_{\dot{x}}^{2}(B)d\eta(\dot{x}) ,

hence

\mu_{\dot{x}}^{2}(B)=0\eta- a . a.\dot{x}\in X/G.

Accordingly, by the hypothesis, we have

\mu_{1}(B)=\int_{x/c}\mu_{x}(!B)d\eta(\dot{x})=0 ,

which together with [15, Proposition 1. 3] yields \mu_{1}\ll\mu_{2} . This completes
the proof.

L EMMA 2. 2. Let (G, X) be as in the previous lemma. Let \mu\in

M^{+}(X) and \eta\in M^{+}(X/G) . Let \{\mu_{\dot{x}}\}_{\dot{x}\in X/G} be an \eta-disintegration of \mu

with \mu_{\dot{x}}\in M^{+}(X) . If \mu_{\dot{x}}\perp m. \eta- a . a.\dot{x}\in X/G, then \mu belongs to M_{aG}(X)^{\perp} .

PROOF. We may assume that \mu\neq 0 . Let \mu=\mu_{aG}+\mu_{sG} , where \mu_{aG}\in

M_{aG}\cap M^{+}(X) and \mu_{SG}\in M_{aG}(X)^{\perp}\cap M^{+}(X) . Since \mu_{aG}\leq\mu , there exists a
Baire measurable function F on X such that 0\leq F\leq 1 and \mu_{aG}=F\mu .
Define \lambda_{\dot{x}}\in M^{+}(X) by \lambda_{\dot{x}}=F\mu_{\dot{x}} . Then \{\lambda_{\dot{x}}\}_{\dot{x}\in X/G} is an \eta -disintegration of
\mu_{aG} . Since \mu_{\dot{x}}\perp m. \eta- a . a.\dot{x}\in X/G , we have

(1) \lambda_{\dot{x}}\perp m. \eta- a . a.\dot{x}\in X/G.

On the other hand, it follows from [16, Lemma 4. 1] that
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(2) \mu_{aG}\ll m_{G}*\mu_{aG} .

We note that \{m_{G}*\lambda_{\dot{x}}\}_{\dot{x}\in X/G} is an \eta -disintegration of m_{G}*\mu_{aG} with m_{G}*\lambda_{\dot{x}}\in

M^{+}(X) . Hence, by (2) and Lemma 2. 1, we have
\lambda_{\dot{x}}\ll m_{G}*\lambda_{\dot{x}}\eta- a . a.\dot{x}\in X/G ,

which together with [15, Lemma 1. 3] yields

\lambda_{\dot{x}}\ll K(\dot{x})m. \eta- a . a.\dot{x}\in X/G ,

where K(\dot{x})=\lambda_{\dot{x}}(X) . Hence

(3) \lambda_{\dot{x}}\ll m. \eta- a . a.\dot{x}\in X/G.

By (1) and (3), we have \lambda_{\dot{x}}=0
\eta- a . a.\dot{x}\in X/G. Since \{\lambda_{\dot{x}}\}_{\dot{x}\in X/G} is an

\eta -disintegration of \mu_{aG} , we get \mu_{aG}=0 , and so \mu=\mu_{sG}\in M_{aG}(X)^{\perp} . This
completes the proof.

LEMMA 2. 3. Let (G, X) be a transformation group, in which G is a
compact abelian group and X is a locally compact Hausdorff space. Let \mu

be a measure in M^{+}(X) . If \mu\perp m_{G}*\mu, then \mu belongs to M_{aG}(X)^{\perp}

PROOF. Let \mu=\mu_{aG}+\mu_{sG} , where \mu_{aG}\in M_{aG}(X)\cap M^{+}(X) and \mu_{sG}\in

M_{aG}(X)^{\perp}\cap M^{+}(X) . Since \mu_{aG}\leq\mu and m_{G}*\mu_{aG}\leq m_{G}*\mu , we have, by the
hypothesis,

\mu_{aG}\perp m_{G}*\mu_{aG} .

On the other hand, it follows from [16, Lemma 4. 1] that \mu_{aG}\ll m_{G}*\mu_{aG} .
Hence \mu_{aG}=0 , and so \mu=\mu_{sG}\in M_{aG}(X)^{\perp} . This completes the proof.

Let G be a LCA group and H a compact subgroup of G. Then we
have a transformation group (H, G) such that H acts freely on G. For \mu

\in M(G) , let sp(\mu) be the spectrum of \mu defined in Definition 1.1.

LEMMA 2. 4. Let G be a LCA group and P an open semigroup in \hat{G}

such that P\cup(-P)=\hat{G}. Let \Lambda=P\cap(-P) and H=\Lambda^{\perp} . Let \pi\Lambda : \hat{G}arrow\hat{G}/

\Lambda be the natural homomorphism, and put \tilde{p}=\pi_{\Lambda}(P) . Then, for \mu\in M

(G) , the following are equivalent.

(i) \mu\in M_{P}(G) :
(ii) sp(\mu)\subset\tilde{P}.

PROOF. ( i) \Leftrightarrow ( ii) : For \tilde{\gamma}\in\tilde{P}^{c} , choose \gamma\in\hat{G}\backslash P so that \tilde{\gamma}=\pi_{\Lambda}(\gamma) .
Then (\gamma+\Lambda)\cap P=\phi . Hence, for f\in C_{0}(G) , we have
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\tilde{\gamma}*\mu(f)=\int_{G}\int_{H}f(h+g)\tilde{\gamma}(h)dm_{H}(h)d\mu(g)

= \int_{G}\int_{H}f(h+g)(h, \gamma)dm_{H}(h)d\mu(g)

=(\gamma m_{H})*\mu(f)

=0,

which shows \tilde{\gamma}\not\in sp(\mu) . Hence we have sp (\mu)\subset\tilde{P}.
(ii)\subset\Rightarrow(i) : For any \gamma\in\hat{G}\backslash P , put \tilde{\gamma}=\pi_{\Lambda}(\gamma) . Then \tilde{\gamma}\not\in sp(\mu) . Hence

we have

(\gamma m_{H})*\mu=\gamma*\mu=0 ,

which yields \hat{\mu}(\gamma)=0 . Hence \mu\in M_{P}(G) , and the proof is complete.

Lemma 2. 5. Let (G, X) be a transformation group, in which G is a

metrizable compact abelian group and X is a locally compact Hausdorff
space. If (G, X) satisfies conditions (D. I ) and (D. II ), then the conclu-
sion of Theorem 1. 2 holds.

PROOF. Let \mu be a measure in M(X) with sp(\mu)\subset P. Let \pi:Xarrow

X/G be the canonical map, and put \eta=\pi(|\mu|) . By condition (D. I), |\mu|

has a canonical disintegration \{\lambda_{\dot{x}}\}_{\dot{x}\in X/G} with \lambda_{\dot{x}}\in M^{+}(X) . Let h be a
unimodular Baire function on X such that \mu=h|\mu| . Put \mu_{\dot{x}}=h\lambda_{\dot{x}} . Then
\{\mu_{\dot{x}}\}_{\dot{x}\in X/G} is a canonical disintegration of \mu . Since sp(\mu)\subset P , it follows
from [15, Lemma 2. 6] that

(1) sp (\mu_{\dot{x}})\subset P\eta- a . a.\dot{x}\in X/G.

For x\in X , put \dot{x}=\pi(x) and G_{x}=\{g\in G:g\cdot x=x\} . Then G_{x} is a closed
subgroup of G. Define a map \tilde{B}_{x} : G/G_{x}arrow G\cdot x by \tilde{B}_{x}(g+G_{x})=g\cdot x. Then
\tilde{B}_{x} is a homeomorphism. Since supp(\mu_{\dot{x}})\subset\pi^{-1}(\dot{x}) , there exists a measure
\xi_{\dot{x}}\in M(G/G_{x}) such that \tilde{B}_{x}(\xi_{\dot{x}})=\mu_{\dot{x}} . Then, by (1) and [15, Proposition
1. 2], we have

(2) \xi_{\dot{x}}\in M_{P\cap G_{X^{\perp}}}(G/G_{x})\eta- a . a.\dot{x}\in X/G,

which together with [14, Corollary] yields

(3) \xi_{\dot{x}}^{a} , \xi_{\dot{x}}^{s}\in M_{P\cap Gx^{\perp}}(G/G_{x})\eta-a a.\dot{x}\in X/G,

where \xi_{\dot{x}}=\xi_{\dot{x}}^{a}+\xi_{\dot{x}}^{s} is the Lebesgue decomposition of \xi_{\dot{x}} with respect to
m_{c/Gx} . Let \mu_{\dot{x}}=\mu_{\dot{x}}^{a}+\mu_{\dot{x}}^{s} be the Lebesgue decomposition of \mu_{\dot{x}} with respect

to m. . Then by [15, Proposition 1. 5] we have \tilde{B}_{x}(\xi_{\dot{x}}^{a})=\mu_{i}^{a} and \tilde{B}_{x}(\xi_{\dot{x}}^{s})=

\xi_{\dot{x}}^{s} . It follows from (3) and [15, Proposition 1. 2] that
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(4) sp (\mu_{k}^{a}) , sp (\mu_{\dot{x}}^{s})\subset P\eta- a . a.\dot{x}\in X/G.

Let \lambda_{\dot{x}}=\lambda_{f}^{a}+\lambda_{k}^{s} be the Lebesgue decomposition of \lambda_{\dot{x}} with respect to m. . It
follows from [15, Lemma 2. 8] that \dot{x}arrow\lambda k(af) and \dot{x}arrow\lambda s\dot{x}(f) are \eta

-

measurable for all bounded Baire functions f on X. Define \lambda_{1} . \lambda_{2}\in

M^{+}(X) by

\lambda_{1}(f)=\int_{X/G}\lambda_{k}^{a}(f)d\eta(\dot{x}) ,
(5)

\lambda_{2}(f)=\int_{X/G}\lambda_{k}^{s}(f)d\eta(\dot{x})

for f\in C_{0}(X) . We note that (5) holds for all bounded Baire functions f
on X. Put \sigma=m_{G}*|\mu| . Then \sigma is quasi-invariant and \pi(\sigma)=\pi(|\mu|)=\eta .
By (5), we have \pi(\lambda_{1})\ll\eta=\pi(\sigma) . Hence [15, Lemma 2. 5] yields \lambda_{1}\ll\sigma=

m_{G}*|\mu| , which shows

(6) \lambda_{1}\in M_{aG}(X) .

By Lemma 2. 2, we have

(7) \lambda_{2}\in M_{ac}(X)^{\perp}

Since \mu_{X}^{a}=h\lambda_{k}^{a} and \mu_{k}^{s}=h\lambda_{\dot{x}}^{s},\dot{x}arrow\mu_{\dot{x}}^{a}(f) and \dot{x}arrow\mu_{\dot{x}}^{s}(f) are \eta -measurable for
each bounded Baire function f on X. Define \mu_{1} , \mu_{2}\in M(X) by

\mu_{1}(f)=\int_{x/c}\mu_{\dot{x}}^{a}(f)d\eta(\dot{x}) ,
(8)

\mu_{2}(f)=\int_{X/G}\mu_{\dot{x}}^{s}(f)d\eta(\dot{x})

for f\in C_{0}(X) . Then, by (5)-(7) , we have \mu_{1}\in M_{aG}(X) and \mu_{2}\in M_{aG}(X)^{\perp} ,
and so \mu_{1}=\mu_{aG} and \mu_{2}=\mu_{sG} . For \gamma\not\in P , (4) and [15, Remark 1. 1 (II. 1) ]
yield \gamma*\mu_{k}^{a}=0\eta- a . a.\dot{x}\in X/G. It follows from [15, Lemma 2. 3 (II)] that

\gamma*\mu_{aG}(f)=\gamma*\mu_{1}(f)=\int_{X/G}\gamma*\mu_{\dot{x}}^{a}(f)d\eta(\dot{x})=0

for f\in C_{0}(X) . Hence \gamma*\mu_{aG}=0 , which together with [15, Remark 1. 1 (II .
1)] yields \gamma\not\in sp(\mu_{aG}) . Thus we get sp (\mu_{aG})\subset P. By [15, Remark 1. 1
(II. 2)] , we also have sp(\mu_{SG})=sp(\mu-\mu_{aG})\subset P.

Next we prove the latter half. Suppose P\cap(-P)=\{0\} . Then, by
(3) and [13, 8.2.3 Theorem], we get \hat{\xi}_{\dot{x}}^{s}(0)=0\eta- a . a.\dot{x}\in X/G , and so 0\not\in

sp (\mu_{\dot{x}}^{s})\eta- a . a.\dot{x}\in X/G. Hence 1*\mu_{\dot{x}}^{s}=0\eta- a . a.\dot{x}\in X/G , where 1 is the
constant function on G with value one. Hence, by a similar argument
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above, we have 1*\mu_{SG}=1*\mu_{2}=0 , which shows 0\not\in sp(\mu_{SG}) . Thus sp(\mu_{sG})\subset

P\backslash \{0\} , and the proof is complete.

LEMMA 2. 6. Let (G, X) be a transformation group, in which G is a
compact abelian group and X is a \sigma-compact, locally compact metric space.
Set H= {g\in G:g\cdot x=x for all x\in X}. Then H is a compact subgroup of
G such that G/H is metrizable. Moreover, we have a transformation group
(G/H, X) by the action (g+H)\cdot x=g\cdot x for g+H\in G/H and x\in X.

PROOF. It is easy to see that H is a closed subgroup of G. Hence
H is a compact subgroup of G. Let \{f_{n}\}_{n=1}^{\infty} be a countable dense subset of
C_{0}(X) . Then

(1) H= \bigcap_{k,n=1}^{\infty}\{g\in G:|\psi_{n}\circ g-f_{n}||_{\infty}<\frac{1}{k}\} ,

where f_{n}\circ g(x)=f_{n}(g\cdot x) . Since \{g\in G:|\psi_{n}\circ g-f_{n}||_{\infty}<\frac{1}{k}\} is an open set in

G, it follows from (1) that H is a G_{\delta}-set. Hence G/H is metrizable.
Since (G, X) is a transformation group, it is easy to verify that (G/H,

X) becomes a transformation group by the action (g+H)\cdot x=g\cdot x. This
completes the proof.

Let (G, X) and H be as in Lemma 2. 6. Let \mu be a measure in

M(X) . For \lambda\in M(G/H) , we can define a convolution \lambda_{c/\#}*\ell\in M(X) by

(2. 8) \lambda_{c/\#}*(h)=\int_{X}\int_{c/H}h(\dot{g}\cdot x)d\lambda(\dot{g})d\mu(x)

for h\in C_{0}(X) . Set J_{G/H}(\mu)=\{f\in L^{1}(G/H):f*gG/=0\} , and define the spec-

from sp_{G/H}(\mu) of \mu by

(2. 9) sp_{G/H}(\mu)=\bigcap_{f\in f_{GlH}(\mu)}\hat{f}^{-1}(0) .

Lemma 2. 7. Let (G, X) and H be as in Lemma 2. 6. Let \Lambda=H^{\perp} .
Let \gamma\in\hat{G}, and let \mu be a measure in M(X) . Then

(i) \gamma*\mu=0 if \gamma\in\hat{G}\backslash \Lambda , and

(ii)
\gamma*\mu=\gamma*c/\#^{\ell} if \gamma\in\Lambda .

In particular, sp(\mu)=sp_{G/H}(\mu) .

PROOF. For g\in G,\dot{g} denotes the coset g+H. For \gamma\in\hat{G}\backslash \Lambda , we have
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\gamma*\mu(h)=\int_{X}\int_{G}h(g\cdot x)\gamma(g)dm_{G}(g)d\mu(x)

= \int_{X}\int_{c/H}\int_{H}h((g+u)\cdot x)\gamma(g+u)dm_{H}(u)dm_{G/H}(\dot{g})d\mu(x)

= \int_{X}\int_{c/H}h(\dot{g}\cdot x)\int_{H}\gamma(g+u)dm_{H}(u)dm_{G/H}(\dot{g})d\mu(x)

=0 (\gamma|_{H}\neq 0)

for all h\in C_{0}(X) . Thus we have ( i ) .
Next we prove ( ii) . For \gamma\in\Lambda , we have

\gamma*\mu(h)=\int_{X}\int_{G}h(g\cdot x)\gamma(g)dm_{G}(g)d\mu(x)

= \int_{X}\int_{c/H}h(\dot{g}\cdot x)\int_{H}\gamma(g+u)dm_{H}(u)dm_{G/H}(\dot{g})d\mu(x)

= \int_{X}\int_{c/H}h(\dot{g}\cdot x)\gamma(\dot{g})dm_{G/H}(\dot{g})d\mu(x)

=\gamma*c/\not\in^{\ell(h)}

for all h\in C_{0}(X) . Thus ( ii) follows.
By ( i ) , ( ii) and [15, Remark 1. 1 (II. 1) ], we have sp (\mu)=sp_{G/H}(\mu) .

This completes the proof.

L EMMA 2. 8. Let (G, X) and H be as in Lemma 2. 6. Then
M_{aG}(X)=M_{aG/H}(X) .

PROOF. Let q_{H} : Garrow G/H be the canonical map. Let \mu be a measure

in M(X) . We note that \delta_{g}*\mu=\delta_{q_{H}(g)}*/_{H}^{1}c for g\in G. Hence we have

\mu\in M_{aG}(X)\Leftrightarrow\lim_{garrow 0}||\mu-\delta_{g}*\mu||=0 (by Remark 1. 1 ( i ))

\Leftrightarrow\lim_{qH(g)arrow 0}||\mu-\delta_{f_{H}^{\ell||=0}}qH(g)^{*}c

\Leftrightarrow\mu\in M_{aG/H}(X) . (by Remark 1. 1 ( i ))

This completes the proof.

PROPOSITION 2. 1. Let (G, X) be a transformation group, in which
G is a compact abelian group and X is a locally compact metric space.
Then the conclusion of Theorem 1. 2 holds.

PROOF. Since a measure in M(X) is bounded regular, we may
assume that X is \sigma compact Put H= {g\in G:g\cdot x=x for all x\in X }. It
follows from Lemma 2. 6 that H is a compact subgroup of G such that G/

H is metrizable. Moreover, by Lemma 2. 6, we have a transformation
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group (G/H, X) by the action (g+H)\cdot x=g\cdot x for g\in G and x\in X.
Hence the conclusion of Theorem 1. 2 follows from Remark 2. 1 and Lem-
mas 2. 5, 2. 7 and 2. 8. This completes the proof.

The following lemma is due to [16].

Lemma 2. 9 (cf. [16, Lemma 3. 1]).
Let (G, X) be a transformation group, in which G is a compact abelian
group and X is a \sigma-compact, locally compact Hausdorff space. Let \mu_{1} be a

nonzero measure in M(X) , and let \mu_{2} and \sigma_{2} be mutually singular mea-
sures in M^{+}(X) . Then there exists an equivalence relation ”\sim’’ on X
with the following properties :

(i) X/- is a \sigma-compact metrizable, locally compact Hausdorff space
with respect to the quotient topology;

(ii) (G, X/-) becomes a transformation group by the action g\cdot\tau(x)=

\tau(g\cdot x) for g\in G and x\in X ;
(iii) \tau(\mu_{1})\neq 0 ;
(iv) \tau(\mu_{2})\perp\tau(oe) ,

where \tau:Xarrow X/- is the canonical map.

Now we prove Theorem 1. 2. We may assume that X is \sigma compact
(cf. the proof of [16, Theorem 2. 1]). Let \mu be a measure in M(X) with
sp(\mu)\subset P. In order to prove the first assertion, it suffices to show that
sp(\mu_{sG})\subset P. We may assume that \mu_{sG}\neq 0 . Suppose there exists \gamma_{0}\in\hat{G}\backslash P

with \gamma_{0}\in sp(\mu_{sG}) . Then \gamma_{0}*\mu_{sG}\neq 0 . Since |\mu_{sG}|\perp m_{G}*|\mu_{sG}| , it follows from
Lemma 2. 9 that there exists an equivalence relation ”\sim ” on X satisfying
(i)-(iv) in Lemma 2. 9 with \mu_{1}=\gamma_{0}*\mu_{sG} , \mu_{2}=|\mu_{sG}| and \sigma_{2}=m_{G}*|\mu_{sG}| .
Hence we have

(2. 10) \tau(\gamma_{0}*\mu_{sG})\neq 0 , and
(2. 11) \tau(|\mu_{sG}|)\perp\tau(m_{G}*|\mu_{sG}|) ,

where \tau:Xarrow X/- is the canonical map. By [16, Lemma 2. 1] and (2.

11), we have \tau(|\mu_{sG}|)\perp m_{G}*\tau(|\mu_{sG}|) . It follows from Lemma 2. 3 that
\tau(|\mu_{SG}|)\in M_{aG}(X/-)^{\perp} . By [16, Lemma 2. 1], we have \tau(\mu_{aG})\in M_{aG}(X/

-). Thus, since \tau(\mu)=\tau(\mu_{aG})+\tau(\mu_{sG}) , we have

\tau(\mu)_{aG}=\tau(\mu_{aG}) and \tau(\mu)_{sG}=\tau(\mu_{sG}) .

By [16, Lemma 2. 2], we have sp (\tau(\mu))\subset sp(\mu)\subset P. Hence, by Proposi-
tion 2. 1, we have sp(\tau(\mu_{sG}))=sp(\tau(\mu)_{sG})\subset P. On the other hand, (2. 10)

implies that \gamma_{0}*\tau(\mu_{sG})=\tau(\gamma_{0}*\mu_{sG})\neq 0 , and so \gamma_{0}\in sp(\tau(\mu_{SG})) . Hence we
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have \gamma_{0}\in P , which contradicts the choice of \gamma_{0} . Thus we have sp(\mu_{sG})\subset

P.
Next we prove the second half of Theorem 1. 2. It is sufficient to

prove that O\not\in sp(\mu_{sG}) . Suppose 0\in sp(\mu_{sG}) . Then 1*\mu_{SG}\neq 0 , where 1 is
the constant function on G with value one. Since |\mu_{sG}|\perp m_{G}*|\mu_{sG}| , it fol-
lows from Lemma 2. 9 that there exists an equivalence relation ”\approx ” on
X such that

(2. 12) X/\approx is a \sigma-compact metrizable, locally compact Hausdorff
space with respect to the quotient topology,

(2. 13) ( G, X/\approx) becomes a transformation group by the action
g\cdot\tau’(x)=\tau’(g\cdot x) for g\in G and x\in X ,

(2. 14) \tau’(1*\mu_{SG})\neq 0 , and
(2. 15) \tau’(|\mu_{SG}|)\perp\tau’(m_{G}*|\mu_{sG}|) ,

where \tau’ : Xarrow X/\approx is the canonical map. Then, as seen in the first half,
we have \tau’(\mu)=\tau’(\mu_{aG})+\tau’(\mu_{sc}) , \tau’(\mu)_{aG}=\tau’(\mu_{aG}) and \tau’(\mu)_{sG}=\tau’(\mu_{sc}) .
Since sp(\tau’(\mu))\subset sp (\mu)\subset P , it follows from Proposition 2. 1 that
sp (\tau’(\mu_{sG}))\subset P\backslash \{0\} , which yields

1*\tau’(\mu_{SG})=0 .

Since \tau’(1*\mu_{SG})=1*\tau’(\mu_{SG}) , this contradicts (2. 14). Hence 0\not\in sp(\mu_{sG}) ,
and the proof of Theorem 1. 2 is complete.

Finally we prove Corollary 1. 1. We note that H is a compact sub-
group of G. We first prove ( i ) . Let \mu be a measure in M_{P}(G) . Let
\pi_{\Lambda} : \hat{G}arrow\hat{G}/\Lambda be the natural homomorphism, and put \tilde{P}=\pi_{\Lambda}(P) . Then \tilde{P}

is a semigroup in \hat{G}/\Lambda such that \tilde{P}\cup(-\tilde{P})=\hat{G}/\Lambda and \tilde{P}\cap(-\tilde{P})=\{0\} . By
Lemma 2. 4, we have sp(\mu)\subset\tilde{P} , which together with Theorem 1. 2 yields
sp(\mu_{aH})\cup sp(\mu_{sH})\subset\tilde{P} . Hence ( i) follows from Lemma 2. 4. Next we
we prove ( ii) . By Lemma 2. 4 and the latter half of Theorem 1. 2, we
have sp(\mu_{sH})\subset\tilde{P}\backslash \{0\} . Let \gamma be any element in P\cap(-P) . Then, by the
argument in the proof of Lemma 2. 4 and [15, Remark 1. 1 (II)], we have

(p_{H})*\mu_{SH}=\pi_{\Lambda}(\gamma)*\mu_{sH}

=1*\mu_{SH} (by \gamma\in P\cap(-P) )

=0 . (by sp (\mu_{sH})\subset\tilde{P}\backslash \{0\} )

This shows that \hat{\mu}_{SH} vanishes on P\cap(-P) since (\gamma m_{H})^{\wedge} is the character-
istic function of P\cap(-P) . Hence we get ( ii) , and the proof of Corol-
lary 1. 1 is complete.
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