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A property of spectrums of measures on
certain transformation groups
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§1 Introduction.

Let X be a locally compact Hausdorff space. Let Co(X) be the
Banach space of continuous functions on X which vanish at infinity, and
let M(X) be the Banach space of complex-valued bounded regular Borel
measures on X with the total variation norm. Let M*(X) be the set of
nonnegative measures in M (X). For pEM(X) and feL'(Jy)), we often

write p(f)= fx f(x)du(x). Let X’ be another locally compact Hausdorff

space, and let S: X—X’ be a continuous map. For peM (X)), let S(we
M (X" be the continuous image of p under S. We denote by #(X) the
o-algebra of Borel sets in X. %,(X) means the g-algebra of Baire sets in
X. Thatis, #,(X) is the g-algebra generated by compact Gs-sets in X.

Let G be a LCA group with dual G. M(G) and L'(G) denote the
measure algebra and the group algebra respectively. For peM(G), i
denotes the Fourier-Stieltjes transform of x. mg denotes the Haar measure
of G. Let M,(G) be the set of measures in M(G) which are absolutely
continuous with respect to mc. Then by the Radon-Nikodym theorem we
can identify M,(G) with L'(G). For a subset E of G, M:(G) denotes
the space of measures in M (G) whose Fourier-Stieltjes transforms vanish
off E. For a closed subgroup H of G, H* stands for the annihilator of
H.

Let (G, X) be a (topological) transformation group, in which G is a
compact abelian group and X is a locally compact Hausdorff space.
That is, suppose that there exists a continuous map (g, x)—g+x from GX
X onto X with the following properties :

(1.D x—g+x is a homeomorphism on X for each g&G and 0-x=x,
where 0 is the identity element in G;
1.2)  gio(gx)=(g+g)x for g, 2€G and x€X.

We note that (g, x)—f (g+x) is a Baire function on Gx X for each Baire
function f on X. For A€M (G) and peM (X)), define Axpe M (X) by
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(1.3) Asp(h)= h(g-x)dA(g)du(x) = h(g-x)du(x)da(g)
XJG GJX

for he G (X). Let J(x) be the collection of all feL'(G) with f*u=0.

DEFINITION 1.1. For peM(X), define the spectrum sp(w) of u by
sp(w= ) F7O.

Let 7:X—X/G be the canonical map. For x=X, let B,:G—
G-x(CX) be the continuous map defined by B.(g)=g+x. For x=70),
define m; € M*(X) by m:=B.(m¢). Let M,(X) be an L-subspace of
M (X) defined by

LD MO ={ueM () ; HEPY or some p€L1<G>mM+<G>}.

and yeM*(X)

Put Moc(X)t={veM(X):v Ly for all y€EM(X)}. Then M,.(X)*' is
also an L-subspace of M (X), and M (X)=M,;(X)®M,.(X)*. That is,
for every p=M (X), it can be uniquely represented as follows :

(1- 5) ﬂ:/lac'f‘#sc,

where p1,6€ Mo (X) and pe€ Moc(X)*. In [16], the author obtained the
following theorem as an extension of the F. and M. Riesz theorem of
Helson and Lowdenslager type.

THEOREM 1.1.  ([16, Theorem 2.1]).

Let (G, X) be a transformation group, in which G is a compact abelian
group and X is a locally compact Hausdorff space. Let P be a semigroup
in G such that PU(—P)=G. Let ¢ be a positive Radon measure on X
that is quasi-invariant. Let ne M (X), and let pu=pq+ s be the Lebesgue
decomposition of p with respect to ¢. Suppose sp(u)C P. Then both
sp(pa) and sp(us) arve also contained in P. If, in addition, P N(—P)=
{0} and r(uD<Ln(0), then sp(us) TP\{0}), where 7:X—X/G is the
canonical map.

In this paper, we shall prove the following theorem.

THEOREM 1.2.  Let (G, X) be a transformation group, in which G is
a compact abelian group and X is a locally compact Hausdorff space. Let
P be a semigroup in G such that P U(—=P)=G. Let © be a measure in
M(X) with sp(u)CP. Then both sp(pec) and sp(usc) arve also contained
in P. If, in addition, PN\ (—P)={0}, then sp Cuse) T P\{0}.

REMARK 1.1. (i) Let x4 be a measure in M(X). It follows from
[15, Proposition 5.1] that uEM,(X) if and only if x translates G-
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continuously (i.e., lim lz— S8o* 1] =0, where §, is the point mass at g€ G).
g—'

(ii) Let (G, X) be as in [Theorem 1.2. Let E be a Riesz set in G (.
e, M:(G)CL'(G)). Then, for any measure p=M(X) with sp(u)CE,
we have p& M,;(X), by [16, Theorem 2. 3].

(iii) Let o be a positive Radon measure on X that is quasi-invariant,
and let ¢ be a measure in M(X). If <o, then e M,c(X). In fact,
since x is bounded regular, we may assume that ¢ is bounded (.e., g€
M+*(X)). It follows from [15, Lemma 1.1] that ¢ and mg*g are mutu-
ally absolutely continuous. Hence we have py<mg*g, and so p& M,:(X).

Let G be a LCA group and H a compact subgroup of G. Then we
have a transformation group (H, G) such that H acts freely on G.

COROLLARY 1.1. Let G be a LCA group, and let P be an open semi-
group in G such that PU(—P)=G. Put A=PN(—P) and H=A*. Let
i be a measurve in Mp(G). Then

(i) HaH ﬂsHEMP<G>; and
(ii) fAsu(y)=0 on PN(=P).

REMARK 1.2.  We obtain [11, Corollary 3 (b)] in a consequence of
Corollary 1. 1.

REMARK 1.3. Suppose G is a compact abelian group. In
1.1, let p=pq+ ps be the Lebesgue decomposition of ;2 with respect to the
Haar measure of G. If u&Mp(G), then we have u,, p€Mp(G) (cf. [14,
Corollary]). Moreover, if PN (—P)={0}, then we have 4s(0)=0 (cf. [13,
8.2.3. Theorem]). However, if P N(—P)=+{0}, we can not expect that
£s(0)=0 in general.

REMARK 1.4. Suppose G is a compact abelian group. In
1.1, if P N(—P)={0}, then Mpu(G)=L'(G) and M ,x(G)*=M(G).
Hence, in this case, Corollary 1.1 is the F. and M. Riesz theorem of Hel-
son and Lowdenslager type ([13, 8.2.3. Theorem]).

In section 2, we shall prove Theorem 1. 2 and Corollary 1.1|

§2 Proofs of Theorem 1.2 and Corollary 1.1.
We first state two conditions (D.I) and (D.II).

(D.I) Let (G, X) be a transformation group, in which G is a metriza-
ble compact abelian group and X is a locally compact Hausdorff space.
For any peM+*(X), put p=nx(y), where n:X—X/G is the canonical
map. Then there exists a family {A:}:ex,c of measures in M*(X) with
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the following properties :

2.1 £—A:(f) is p-measurable for each bounded Baire function f on
X

2.2 |al=1,
2.3) supp (A:)Cx~'(X),

2.4 n(f)= /); p A:(f)dp(x) for each bounded Baire function f on X.

(D.II) Let (G X) and n be as in (D.I). Let yveM*(X/G). Sup-
pose {Ai}iex,c and {A%}icx,c are families of measures in M (X) with the
following properties :

(2.5) 1—AL(f) is y-integrable for each bounded Baire function f on
X(=1,2),
(2.6)  supp (W Ca7' (&) (G=1,2),

2.7 f AP dy(d) = f 2(Fdv(#) for each bounded Baire func-
X/G X/G
tion f on X.

Then \i=A% v-a.a. x€X/G.

Let peM(X) and peM*(X/G). By an p-disintegration of u, we
mean a family {A:}:cx/c of measures in M (X) satisfying (2.1)" £—->2A:(f)
is p-integrable for each bounded Baire function f on X and (2.3)-(2.4) in
(D.D. If, in addition, p=z(g|) and |A:|=1 for all £=X/G, then we
call {A:}:ex/c a canonical disintegration of x. Thus condition (D.I) says
that each p€M+*(X) has a canonical disintegration {A:}:cx;c With A:€
M+ (X).

REMARK 2.1. Let (G, X) be a transformation group, in which G is
a metrizable compact abelian group and X is a locally compact metric
space. Then (G, X) satisfies conditions (D.I) and (D.II) (cf. [15,
Remark 6. 1]).

LEMMA 2.1. Let (G X) be a transformation group, in which G is a
metrizable compact abelian group and X is a locally compact Hausdorff
space. Suppose (G, X) satisfies conditions (D.I) and (D.II). Let u,
wLEM*(X), and let y€M*(X/G). Let {uf}icx/c be an p-disintegration
of ur with i M+(X) (k=1,2). Then the following ave equivalent

(i) m<L s ;
(ii) p<gd p-a.a 2€X/G
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ProOF. (i)=> (ii): Since wm< s, there exists a nonnegative real-
valued Baire function F on X such that g =Fu,. Define :&eM*(X) by
Ar=Fui. Then we have

(1) x—-A:(f) is p-integrable for each bounded Baire function f on
X,
(2) supp (A)Cx (%), and

(3) ﬁ W GLIOEIMGE ﬁ AN dy(®) for each bounded Baire

function f on X.
By condition (D.II), we have
L= p-a.a. 2€X/G,
which yields pi< i n-a.a. 1€X/G.
(ii)= (i) : Let B be a Baire set in X with x(B)=0. Then

0=(B)= [ (B dp(),
hence

Bi(B)=0 p-a.a. x€X/G
Accordingly, by the hypothesis, we have

wB=[ B =0,

which together with [15, Proposition 1.3] yields n< .. This completes
the proof.

LeEMMA 2.2. Let (G X) be as in the previous lemma. Let pe
M+(X) and pEM*(X/G). Let {ps}iexic be an p-disintegration of p
with e M*(X). If wsLlmu y-a.a. 2€X/G, then p belongs to Mac(X)* .

PrOOF. We may assume that p=0. Let pu=pec+ ttsc, Where pocE
M,eNM*(X) and pse€ Mae(XD*NM*(X). Since pac<p, there exists a
Baire measurable function F on X such that 0<F<1 and pue.c=Fpu.
Define :=M*(X) by A:=Fu:. Then {A:i}iex/c is an p-disintegration of
tac. Since y; Lmy p-a.a. £ €X/G, we have

(1) AsLlm paa 2€X/G
On the other hand, it follows from [16, Lemma 4.1] that
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(2) Uac K Me* g .

We note that {mg*Ai}icx/c is an z-disintegration of mig* e With mexA; €
M*(X). Hence, by (2) and Lemma 2.1, we have

A me*A; p-a.a. x€X/G,
which together with [15, Lemma 1. 3] yields
ALK X)m; p-a.a. 1€X/G,
where K (%) =A;(X). Hence
(3) Akmy p-a.a. x€X/G.

By (1) and (3), we have A:=0 7p-a.a. £€X/G. Since {A:}icx/c is an
n-disintegration of e, we get u,e=0, and S0 p= S Mue(X)L. This
completes the proof.

LEMMA 2.3. Let (G, X) be a transformation group, in which G is a
compact abelian group and X is a locally compact Hausdorff space. Let p
be a measure in M*(X). If pulmgy, then p belongs to Myc(X)*

PROOF.  Let pu=proc+ pse, Where pee& M oo(X)N M+(X) and Usc E
Moy (XD*NM*(X). Since pee<p and mg*pec<mc*y, we have, by the
hypothesis,

Uac L Me* pgc .

On the other hand, it follows from [16, Lemma 4.1] that pee< mc* .
Hence poc=0, and so p= ps¢ & Mue(X)*. This completes the proof.

Let G be a LCA group and H a compact subgroup of G. Then we
have a transformation group (H, G) such that H acts freely on G. For u
eM(G), let sp(u) be the spectrum of y defined in Definition 1.1.

LEMMA 2.4. Let G be a LCA group and P an open semigroup in G
such that PU(—P)=G. Let A=PN(—P) and H=A+. Let 74: @—»@/
A be the natural homomorphism, and put p=ns(P). Then, for neM
(&), the following are equivalent.

(i) #EMp{CE) )
(i) sp(wCP.

Proor. (i)= (ii): For &P choose ye C\P so that 7=xa(y).
Then (y+A)NP=¢. Hence, for f&(C,(G), we have
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pouch)= [ [£Chtg)7Chydmy () du(g)

:'/(;[{f(k+g)(h, 7>dmy(h>d/1(g>

= Cymu)* pn(f)
=0,

which shows 7¢&sp(x). Hence we have sp(u)CP.
(ii)= (i) : For any y€G\P, put y=ms(y). Then y&sp(w). Hence
we have

(mH)*ﬂ: '):*/1:0)
which yields 7(y)=0. Hence p& Mp(G), and the proof is complete.

LEMMA 2.5. Let (G X) be a transformation group, in which G is a
metrizable compact abelian group and X is a locally compact Hausdorff
space. If (G, X) satisfies conditions (D.I) and (D.II), then the conclu-
sion of [Theorem 1.2 holds.

PROOF. Let y be a measure in M (X) with sp(p)CP. Let n: X—
X /G be the canonical map, and put y=x(|g)). By condition (D.D), |g|
has a canonical disintegration {A:}iex/c With Az eEM*(X). Let & be a
unimodular Baire function on X such that pg=#h|y. Put w:=hA:. Then
{us)}iex/c is a canonical disintegration of p. Since sp(x)CP, it follows
from [15, Lemma 2. 6] that

(1) sp(us)CP p-a.a. x€X/G

For x€X, put £=x(x) and G,={g=G:g-x=x}. Then G, is a closed
subgroup of G. Define a map B,:G/G—G+x by B.(g+Go)=g-x. Then
B, is a homeomorphism. Since supp(u:) Cx~'(%), there exists a measure
&:eM(G/Gy) such that E’x(&)z u:. Then, by (1) and [15, Proposition
1.2], we have

(2)  &EEMpnca(G/GY 7-a.a. 1€X/G
which together with [14, Corollary] yields
(3> EZ) EJS'CEMPOGx*(G/Gx> 77'a a. xEX/G)

where & =& +& is the Lebesgue decomposition of &: with respect to
Mec,. Let pe=pi+ i be the Lebesgue decomposition of x; with respect
to m:. Then by [15, Proposition 1.5] we have B (6D =y¢ and B.(&)=
£. It follows from (3) and [15, Proposition 1.2] that



116 H. Yamaguchi

(4)  sp(up), sp(u)CP pa.a. 2€X/G

Let A;: =A{+ A} be the Lebesgue decomposition of A; with respect to »nz. It
follows from [15, Lemma 2.8] that % —»A;{(f) and % —Ai(f) are -

measurable for all bounded Baire functions f on X. Define A,, A,&
M*(X) by

hH= [ RHdnD,

(5)
R)= [ HPd@

for fe(C,(X). We note that (5) holds for all bounded Baire functions f
on X. Put g=my*|y|. Then ¢ is quasi-invariant and 7(¢)=7xg|)=7.
By (5), we have 7(1,)<7p=nr(s). Hence [15, Lemma 2.5] yields 1} <o=
me*|p|, which shows

(6) AEM(X).
By Lemma 2.2, we have

(7)) AEMu(XDH

Since ui=hA; and pi=hi;, x—pi(f) and *x—i(f) are p-measurable for
each bounded Baire function f on X. Define 1, r,eM(X) by

w= [P,
w)= [ mHdr@

for f€(C(X). Then, by (5)-(7), we have yuEM,c(X) and g M, (X)4,
and sO i =pec and p,=psc. For y&P, (4) and [15, Remark 1.1 (II.1)]
yield y*ui=0 n-a.a. £ X/G. It follows from [15, Lemma 2.3 (II)] that

(8)

iD= m = [ s Fdn =0

for fe(Cy(X). Hence y*pu,c=0, which together with [15, Remark 1.1 (IL
1)] yields y¢sp(usc). Thus we get sp(uec) CP. By [15, Remark 1.1
(I1. 2) ], we also have sp(usc) =sp(u— pac) CP.

Next we prove the latter half. Suppose PN(—P)={0}. Then, by
(3) and [13, 8.2.3 Theorem], we get é;(o):o n-a.a. XX /G, and so 0&
sp(ui) n-a.a. x€X/G. Hence 1*ui=0 p-a.a. x&X/G, where 1 is the
constant function on G with value one. Hence, by a similar argument
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above, we have 1*uss=1*y,=0, which shows 0&sp(usc). Thus sp(usc)C
P\{0}, and the proof is complete.

LEMMA 2.6. Let (G, X) be a transformation group, in which G is a
compact abelian group and X is a o-compact, locally compact metric space.
Set H={geG:gx=x for all x&€X}. Then H is a compact subgroup of
G such that G/H 1is metrizable. Moveover, we have a transformation group
(G/H, X) by the action (g+H)x=g-x for g+ H&G/H and x&X.

PrROOF. It is easy to see that H is a closed subgroup of G. Hence

H is a compact subgroup of G. Let {f,}»-: be a countable dense subset of
G (X). Then

(1 H= (96 lheg—fill<)

where f,og(x)=f,(gex). Since {g=G: llf,,og—fnllm<%} is an open set in

G, it follows from (1) that H is a Gjs-set. Hence G/H 1is metrizable.
Since (G, X) is a transformation group, it is easy to verify that (G/H,
X) becomes a transformation group by the action (¢g+H)-x=g-x. This
completes the proof.

Let (G, X) and H be as in Lemma 2.6l Let x be a measure in

M(X). For AieM(G/H), we can define a convolution /é;#EM(X) by

@8  jep= [{ [} () dACQ) du(x)

for heG(X). Set Jou(pw={fL'(G/H) :fGMz:O}, and define the spec-
trum sp¢/x (1) of p by

A

2.9 spea(w=_ (N f7H0).

Sf€Jem(#)

LEMMA 2.7. Let (G, X) and H be as in [Lemma 2.6. Let A=H*.
Let y=G, and let y be a measure in M(X). Then

(i) y*u=01f yeé\A, and
(i) = if yEA.
In particular, sp(p) =spen(se).
Proor. For geG, g denotes the coset g+ H. For ye C\A, we have



118 H. Yamaguchi

yeuly= [ [ kg 0) (@) dma(a)duCx)
= [ [ Bt w2+ 7Cart sy dmy )y (> dia
:‘[( - h(b-x}ﬁy(g—l—u)dm,,(u)dmcm(b)d#(@
=0 (rle=#0)
for all heC,(X). Thus we have (i).

Next we prove (ii). For y€A, we have

o (h) = [( f h(gex) y(g) dme(g)dp(x)
= [ G [ yCg+u)dm () dme,u (@) dute)
= [ [, 50y dmen(§)dut)
A

for all he Gy (X). Thus (ii) follows.

By (i), (ii) and [15, Remark 1.1 (II.1)], we have sp(x) =sp¢/a ().
This completes the proof.

LEMMA 2.8. Let (G, X) and H be as in Lemma 2.6. Then
MaG(X>:MaG/H(X>-

Proor. Let gy: G—G/H be the canonical map. Let x be a measure
in M(X). We note that 69*;::6%(9)2/111 for g€ G. Hence we have

pE M (X) &= lglg)l lg—So*p|=0  (by Remark 1.1 (i))

&= lim g 8o}t I=0
& uEMyen(X). (by Remark 1.1 (i))
This completes the proof.

PROPOSITION 2.1. Let (G, X) be a transformation group, in which
G is a compact abelian group and X is a locally compact metric space.
Then the conclusion of Theovem 1.2 holds.

PrROOF. Since a measure in M (X) is bounded regular, we may
assume that X is g-compact. Put H={geG:g-x=x for all x&X}. It
follows from that H is a compact subgroup of G such that G/
H is metrizable. Moreover, by Lemma 2.6, we have a transformation
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group (G/H, X) by the action (g+H)-x=g+x for g&G and x€X.
Hence the conclusion of [Theorem 1.7 follows from Remark 2.1 and Lem-
mas 2.5, 2.7 and 2.8. This completes the proof.

The following lemma is due to [16].

LEMMA 2.9 (cf. [16, Lemma 3.1]).
Let (G, X) be a transformation group, in which G is a compact abelian
group and X is a o-compact, locally compact Hausdorff space. Let u, be a
nonzero measure in M(X), and let y, and o, be mutually singular mea-
sures in M*(X). Then there exists an equivalence relation “ ~ " on X
with the following properties :

(i) X/~ is a o-compact metrizable, locally compact Hausdovff space
with respect to the quotient topology ;

(ii) (G, X/~) becomes a transformation group by the action ger(x)=
t(g+x) for geG and x=X ;

(i) () #0;

(iv) () Lz(0),

where v X— X/~ is the canonical map.

Now we prove [Theorem 1.2. We may assume that X is ¢g-compact
(cf. the proof of [16, Theorem 2.1]). Let x be a measure in M (X) with
sp(p)C P. In order to prove the first assertion, it suffices to show that
sp(usc) CP. We may assume that u.c+0. Suppose there exists y,& G\P
with %Esp(usc). Then y*usc+0. Since |usc| L me*|uscl, it follows from
Lemma 2.9 that there exists an equivalence relation “ ~” on X satisfying
(i)—C@v) in Lemma 2.9 with m=y*us, p2=|pscl and o =me*|pscl.
Hence we have

(2.10) t(n*usc) #+0, and
(2.11)  r(luse]) L r(mc*| psc)),

where 7: X—X/~ is the canonical map. By [16, Lemma 2.1] and (2.
11), we have r(|usc|) L mc * t(|use|). It follows from that
r(lpscD E Mo (X /~)*. By [16, Lemma 2.1], we have 1(uac)E Moc(X/
~). Thus, since r(x) =r(tac) + r(usc), We have

t(wWac=1(tac) and r(w)sc=1(tsc)-

By [16, Lemma 2.2], we have sp(z(u))Csp(x)CP. Hence, by Proposi-
tion 2.1, we have sp(r(usc)) =sp(r()sc) CP. On the other hand, (2.10)
implies that y*r(usc) =7(r*usc)#+0, and so ynEsp(r(uss)). Hence we
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have y&P, which contradicts the choice of 5. Thus we have sp(usc)C
P.

Next we prove the second half of [Theorem 1.2. It is sufficient to
prove that 0&sp(usc). Suppose 0Esp(usc). Then 1*psc+0, where 1 is
the constant function on G with value one. Since |usc| L mc*|usc|, it fol-

lows from Lemma 2.9 that there exists an equivalence relation “ =~ ” on
X such that

(2.12) X/= is a o¢-compact metrizable, locally compact Hausdorff
space with respect to the quotient topology,

(2.13) (G, X/=) becomes a transformation group by the action
g '(x)=1'(gex) for g=G and x X,

(2.14)  '(Q*pse)*0, and

2.15)  '(lusel) L7/ (mg*|psc,

where ': X—X /= is the canonical map. Then, as seen in the first half,
we have '(p)=1"(ptac) + 7' (tse), T (W ac=1"(ttac) and ' (u)sc=1"(ttsc).
Since sp(r’(u)) Csp(u)C P, it follows from Proposition 2.1 that
sp(7'(us)) CP\{0}, which yields

1= TI(#SG) =0.

Since 7'(1* usc) =1*t'(usc), this contradicts (2.14). Hence 0¢sp(usc),
and the proof of [Theorem 1. 2 is complete.

Finally we prove [Corollary 1.1. We note that H is a compact sub-
group of G. We first prove (i). Let x be a measure in Mp(G). Let
A @—»C/A be the natural homomorphism, and put P=7,(P). Then P
is a semigroup in G/A such that PU(—P)=G/A and PN (—P)={0}. By

Lemma 2.4, we have sp(x) CP, which together with [Theorem 1.2 yields
sp(/,zaH)Usp(,usH)CP. Hence (i) follows from [Lemma 2.4 Next we

we prove (ii). By and the latter half of Theorem 1.2, we
have sp(;st)CP\{O}. Let y be any element in PN(—P). Then, by the
argument in the proof of and [15, Remark 1.1 (II)], we have

(WH)*#sH:ﬁA(7>*ﬂsH
=1*pen (by yePN(—=P))
=0. (by sp (us) CP\{0})

This shows that ji;; vanishes on PN (—P) since (ymy)” is the character-
istic function of PN(—P). Hence we get (ii), and the proof of Corol-
lary 1.1 is complete.
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