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Abstract.

Let X be a vector sublattice of a vector lattice Y and let f be a
positive functional on X. Generalizing a result of M. Valadier [Val] we
show that for a large class of vector lattices X and Y as above, for each
f there exists a singular (=localizable) extension to Y If f is addition-
ally anormal, then Theorem 2 asserts that there always exists an anormal
extension. Let us mention also Theorem 5 which describes the situation
when any positive order continuous functional has only singular positive
extensions.

1. Introduction

The present article was inspired by the following unexpected result
due to M. Valadier [Val]. Let \lambda denote the standard Lebesgue measure

on [0, 1] and let \phi_{\lambda}(x):=\int xd\mathcal{A} , x\in L_{\infty}[0,1] . The space C[0,1] of continu-

ous functions is considered as a vector sublattice of L_{\infty}[0,1] . Valadier
[Val] proved that the restriction \phi_{\lambda}|C[0,1] of the order continuous func-
tional \phi_{\lambda} admits a singular extension back to the whole space L_{\infty} . In
other words, the restriction of a “good” functional to a fairly large sub-
space C[0,1] of L_{\infty} admits a “bad” extension back to L_{\infty} . It was tempt-
ing to explain this result by the absence of non-trivial order continuous
functionals on C[0,1] : however, it is not the case, and Theorem 1 shows
that this phenomenon occurs rather often. After establishing this we
investigate in a detailed way the problem of when each extension of a
good functional is bad (Theorems 4 and 5), and find out that this is equiv-
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alent to the opposite problem of when the restriction of each good fun-
ctionlal from Y to X is bad (Theorem 4).

2. Preliminaries

We use the standard terminology regarding Banach and vector lat-
tices; for the most part it may be found in [AB] and [Zaa]. All our
vector lattices are assumed to be Archimedean. The only definitions that
we need to recall in detail are those of different classes of functionals
which will be used throughout the work.

Let Y be a vector lattice. Then Y^{\sim} denotes the space of all order
bounded functionals on Y The band in Y^{\sim} of all order continuous func-
tionals ( =normal integrals) is denoted by Y_{\tilde{n}}

A functional \psi\in Y^{\sim} is said to be anormal if there exists an order
dense ideal J in Y such that \phi|J=0 . The collections of all anormal func-
tionals is denoted by Y_{\tilde{an}} . It is knows (see [Vul], Theorem IX. 4. 2) that

Y_{an}^{\sim} is an order dense ideal in ( Y_{n}^{\sim})^{d} the disjoint complement of Y_{\tilde{n}} in
Y^{\sim} A well known theorem of G. Ya. Lozanovsky and Luxemburg
-Zaanen (see [KA], Theorem X. 4. 6) asserts the equality Y_{\tilde{an}}=(Y_{n}^{\sim})^{d}

under a very mild assumption that Y_{\tilde{n}} separates the points of Y
Finally, following G. Ya. Lozanovsky [Loz], we say that a functional

\psi\in Y^{\sim} is localizable ( = singular in the sense of Valadier) if there exists
an increasing collection of bands B_{a} in Y such that \phi|B_{a}=0 for each \alpha

and that the only element disjoint to each of these bands is y=0 . We
denote by Y_{l\tilde{o}c} the space of all localizable functionals on Y Recall [Loz]
that Y_{lOC} is an order dense ideal in Y_{\tilde{an}} , and in general, Y_{l\tilde{o}c}\neq Y_{\tilde{an}} . How-
ever, a simple criterion due to Lozanovsky (see [Loz], Theorem 1) asserts
that if Y is a Banach lattice and a functional \phi\in Y_{\tilde{an}} is of countable type
( = satisfies the countable sup property), then \emptyset is localizable. To sum up:
in general the following inclusions hold Y_{lOC}\subseteq Y_{\tilde{an}}\subseteq(Y_{\tilde{n}})^{d} . and if Y is a
Banach lattice with the separating order continuous dual Y_{\tilde{n}} and Y^{*} is of
countable type, then all three spaces ( Y_{\tilde{n}})^{d} . Y_{\tilde{an}} and Y_{l\tilde{o}c} coincide. In
particular, it is so for Y=L_{\infty}[0,1] and Y=l_{\infty}(\Gamma) , where \Gamma is an arbitrary
set.

At this point a word of warning is due. The term “singular func-
tional” is overused in the existing literature. For example, according to
[AB] and [Zaa] singular functionals are defined as elements of the band
(Y_{\tilde{c}})^{d} . complementary to the band of order \sigma-continuous functionals,
while according to [KA] the space of singular functionlals is defined as

Y_{\tilde{an}} . And, as we mentioned above, Valadier’s definition of singularity
means Y_{lOC} . Although the differences between these definitions are small
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and they often define the same object, nevertheless, to avoid any risk of
misunderstanding, we refrain from using the term “singular functional” in
the remainder of this paper, adhering instead to the precise and consistent
terminology introduced above.

3. Results

In the first theorem, let K be a compact Hausdorff space containing a
countable dense subset D ; let Q be a compact Hausdorff hyperstonean
space with no isolated points and let \pi:Qarrow K be a continuous surjection,
so that we may consider C(K) (or, more precisely, C(K)\circ\pi ) as a sub-
lattice of C(Q) . Recall [KA] that Q is called hyperstonean if there exists
a regular Borel measure \mu on Q such that \mu(A)=0 if and only if A is
nowhere dense in Q. This implies in particular that \mu(A)=0 for each
countable subset A of Q .

THEOREM 1. Every bounded linear functional \phi on C(K) is the
restriction of a localizable linear functional \emptyset on C(Q) . Moreover, if \phi is
positive, then \emptyset can also be chosen positive.

PROOF. For each k\in D , choose an element q_{h}\in\pi^{-1}(k) . Let D’=\{q_{k} :
k\in D\} . Since Q is hyperstonean with no isolated points, D’ is nowhere
dense in Q , so the ideal J=\{f\in C(Q): f|D’=0\} is order dense in C(Q) .
The ideal J has trivial intersection with C(K)\circ\pi as if g\in C(K) and g\circ\pi\in

J, then g(\pi q_{k})=0 for all k\in D . That is, g vanishes on the dense subset D
of K, and hence g is identically zero by continuity. We may thus con-
sider the mapping of C(K)\circ\pi+J onto C(K) defined by P : a^{\circ}\pi+b - a .
This is clearly linear and has norm one as if ||a\circ\pi+b||\leq 1 , then for each q_{k}

\in D’ we have |a(\pi q_{k})+b(q_{h})|=|a(k)|\leq 1 . Thus |a(k)\leq 1 at all points of the
dense subset D of K and hence, by continuity, on the whole of K. If \phi\in

C(K)^{*} . then \phi\circ P is a bounded linear functional defined on the subspace
C(K)\circ\pi+J of C(Q) , so extends to a bounded linear functional, \emptyset , on the
whole of C(Q) , by the Hahn-Banach theorem. If b\in J then \phi(b)=\phi(Pb)

=0 , so \emptyset is anormal, and consequently localizable. Clearly if a\in C(K) ,

then \phi(a^{\circ}\pi)=\phi(P(a^{\circ}\pi))=\phi(a) , so that \emptyset does indeed extend \phi .
To finish the proof in the case when \phi is positive, notice that the

projection P is clearly a positive operator. Therefore the functional \phi\circ P

is also positive, and hence its extension \emptyset can be made positive, too. \blacksquare

Recall that L_{\infty}[0,1] may be identified with C(Q) , where Q is the Stone
space of the Banach lattice L_{\infty}[0,1] (or, equivalently, Q is the maximal
ideal space of the Banach algebra L_{\infty}). It is well known (see, for exam-
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ple , [GJ], Chapter 10) that Q may be continuously mapped onto K=[0,1] .
Thus the pair Y=L_{\infty}[0,1] and X=C[0,1] satisfies the conditions of the
previous theorem. That is, Valadier’s result is valid not only for \phi_{\lambda} but
for any \emptyset\in(L_{\infty})^{*} .

The idea used in Theorem 1 for the concrete spaces L_{\infty} and C(K)
may be easily formalized as follows for a general setting. Let X be a
closed vector sublattice of a Banach lattice Y satisfying Y_{loc}^{*}=(Y_{n}^{*})^{d} and
assume that there exists a closed order dense ideal J in Y such that X\cap J

=\{0\} and X+J is closed (the latter condition guarantees the continuity of
the projection P(x+j)=x from X+J onto X). Then every bounded func-
tional on X is a restriction of a localizable functional on Y Notice that
we have constructed the ideal J in Theorem 1 more or less explicitly. It
is also possible to produce J with the desired properties via Zorn’s lemma.

Our next result is a Hahn-Banach extension type theorem, which says
that if a functional \phi on a sublattice X of Y is anormal, then there
always exists an anormal extension to all of Y

THEOREM 2. Let Y be a normed lattice and X a vector sublattice of
Y. If f\in X_{an}^{*}(:=X^{*}\cap X_{\tilde{an}}) , then there exists \hat{f}\in Y_{an}^{*} with \hat{f}|X=f. More-
over, if f>0 then we may make \hat{f}\geq 0 .

PROOF. The proof will be divided into four simple steps.
1) If X is an order dense ideal in Y then the statement is obvious,

since we can take for \hat{f} the standard minimal extension of f. Recall that
if f\geq 0 , then \hat{f} is defined as follows: \hat{f}(y)=\sup\{f(x):0\leq x\leq y\} for y\in Y^{+}

and linearly for other elements in Y If f is arbitrary, then we apply the
previous procedure separately to f^{+} and f^{-} Clearly \hat{f}\in Y_{an}^{*} .

2) Let X be an dieal in Y Consider J=X+X^{d}- Then J is as order
dense ideal in Y and there is a trivial extension (still denoted by f) of f
from X to J by letting f be zero on X^{d} . Obviously f is anormal on J,

and hence we can apply step 1.)
3) Let X be arbitrary and assume that f\geq 0 . Let J=Y_{X} be the ideal

in Y generated by X. It is a well known consequence of the standard
Hahn-Banach extension theorem that there is a positive extension, \overline{f} , of f
to J with ||\overline{f}||=||f|| . We claim that \overline{f}\in J^{*}an . Since N_{f}=\{x\in X: f(|x|)=0\}

is an order dense ideal in X, it follows that the ideal J_{N_{f}} generated by N_{f}

in J is an order dense ideal in J , and it is immediate that \overline{f}|J_{N_{f}}=0 . That
is, f is an anormal extension of f from X onto J. Now we can apply
step 2) to \overline{f}\in J_{\tilde{a}n} .

4) Let X and f be arbitrary. Applying step 3) to f^{+} and f^{-} we
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obtain a desired anormal extension. \blacksquare

REMARK. (1) We do not know whether a result similar to Theorem
2 is true for f\in X_{lOC}^{*} or f\in(X_{n}^{*})^{d}- The only step in the proof above which
does not go through is Step 3). Just to single this step out we have
divided the proof of Theorem 2 into several steps; otherwise, for f\in X_{an}^{*} ,

the proof could be made slightly shorter.
(2) If Y is not assumed to be a normed space, or, in other words, if

one deals with f\in X_{\tilde{a}n} , then it may happen that f has no order bounded
extension to Y at all. However, if we assume that some order bounded
extension \hat{f} exists, then basically the same proof shows that there exists
an anormal extension too. The only modification we need is to apply the
following version of the Hahn-Banach theorem. Let X be a vector sub-
lattice of a vector lattice Y and let Z be a Dedekind complete vector lat-
tice. If a regular operator T:Xarrow Z admits a regular extension \hat{T} : Yarrow

Z , then T_{+} admits a positive extension dominated by ( \hat{T})_{+} .

In two previous results we claimed the existence of a particular type
of extension. Now we are going to consider a situation when any exten-
sion is of this type. To this end we need a definition.

DEFINITION 3. Let Y be a Riesz space and X a vector sublattice of
Y Let us introduce the following two conditions on the pair (X, Y) .

(R_{ns}^{+}) For any \circ\leq\emptyset\in Y_{\tilde{n}} its restriction \phi|X\in(X_{\tilde{n}})^{d} .
(E_{ns}^{+}) For any 0\leq\phi\in X_{\tilde{n}} any positive extension, \hat{\phi} , of \phi to Y belongs

to (Y_{\tilde{n}})^{d}1 .

It is interesting that these two seemingly opposite properties are actu-
ally equivalent.

THEOREM 4. For an arbitrary pair (X, Y) such that X^{dd}=Y, we
have (R_{ns}^{+})\Leftrightarrow(E_{ns}^{+}) .

PROOF. Suppose that (R_{ns}^{+}) holds and that 0\leq\phi\in X_{\tilde{n}} has a positive
extension \hat{\phi} to Y which does not belong to ( Y_{\tilde{n}})^{d}- Let \emptyset denote the order
continuous part of \hat{\phi} , so that 0<\phi\leq\overline{\phi} . It follows that 0\leq\phi|X\leq\hat{\phi}|X=\phi .
Since \phi is order continuous, it follows that \phi|X is also order continuous.
On the other hand, by (R_{ns}^{+}) , the restriction \phi|X is disjoint to X_{\tilde{n}} , so that
\phi|X=0 . The positivity of \emptyset now forces \emptyset to be zero on the ideal generated
ed by X in Y and, by order continuity, on the band generrated by X,

which is the whole of Y This contradicts the assumption that \phi\neq 0 .
Now suppose that (Ens)+ holds and let 0\leq\phi\in Y_{\tilde{n}} Assume that \phi=

\psi|X does not belog to (X_{\tilde{n}})^{d} . then we may write \phi=\phi_{n}+\phi_{s} , where 0<\phi_{n}
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\in X_{\tilde{n}} and 0\leq\phi_{s}\in(X_{\tilde{n}})^{d} . Since 0\leq\phi_{n}\leq\phi|X , we may extend \phi_{n} to a posi-
tive linear functional on the whole of Y dominated by \emptyset , which is there-
fore order continuous. This contradicts (E_{ns}^{+}) . \blacksquare

REMARK. (1) Without the assumption that X^{dd}=Y the implication
(R_{ns}^{+})\Rightarrow(E_{ns}^{+}) clearly does not hold. For example, we can take any pair
(X, Y) satisfying (R_{ns}^{+}) and replace Y by the direct sum of Y with R and
X by \{(x, 0): x\in X\} .

(2) If Y_{\tilde{n}} separates the points of Y. then (E_{ns}^{+}) actually implies that
X^{dd}=Y. since otherwise any positive order continuous functional on Y
vanishing on X would be a counter-example.

(3) If X_{\tilde{n}}=\{0\} , then the pair (X, Y) automatically satisfies the condi-
tion (R_{ns}^{+}) .

(4) There is a simple way of generalizing Definition 3 and Theorem 4
to operators. Let X, Y be as in Definition 3 and let Z be an arbitrary
Dedekind complete vector lattice We say that the pair (X, Y) satisfies
R_{ns}^{+}(Z) if for each positive order continuous operator T\in L_{n}^{\sim}(Y\backslash Z) its
restriction T|X is disjoint from the band L_{\tilde{n}}(X, Z) . Similarly, (X, Y)
satisfies E_{ns}^{+}(Z) if for any 0\leq T\in L_{\tilde{n}}(X, Z) any positive extension of T to
Y is disjoint from L_{\tilde{n}}(Y_{7}Z) . Now, imitating the proof of Theorem 4 we
can easily show that R_{ns}^{+}(Z)\Leftrightarrow E_{ns}^{+}(Z) .

Next we are ready to present an example of a pair (X, Y) satisfying
either of the equivalent conditions of the previous theorem.

THEOREM 5. Let X=C(Q) and Y=l_{\infty}(Q) , where Q is an arbitrary
totally disconnected space without isolated points. Then the pair (X, Y)

satisfies (E_{ns}^{+}) and (R_{ns}^{+}) . A lso, if 0\leq\phi\in X_{\tilde{n}} has an order continuous
extension \psi\in Y^{\sim} then \psi=0 (and hence, of course, \phi=0)^{\mathfrak{s}} On the other
hand, for each 0\leq\phi\in X_{\tilde{n}} there exists an extension \emptyset to Y which is not
localizable.

REMARK. As we mentioned in Section 2, for the space Y=l_{\infty}(Q) all
three spaces ( Y_{\tilde{n}})^{d} . Y_{\tilde{an}} and Y_{lOC} coincide.

PROOF. In view of Theorem 4 it is enough to verify, say, (E_{ns}^{+}) .
Take any 0\leq\phi\in X_{\tilde{n}} , and let \emptyset denote any positive extension of \phi to Y
We will show that \emptyset is disjoint to the band l_{\infty}(Q)_{\tilde{n}} of order continuous
functionals on l_{\infty}(Q) . Recall that l_{\infty}(Q)_{\tilde{n}}=l_{1}(Q) . Suppose, contrary to

Notice that \emptyset is not assumed to be positive, otherwise the desired conclusion that \psi=0 is
immediate in view of (E_{ns}^{+}) .
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what we claim, that \emptyset\not\in(l_{\infty}(Q)_{\tilde{n}})^{d} Then \emptyset dominates a non-zero multiple

of evaluation at some point q of Q , that is, \psi\geq\alpha\delta_{q} . Consider the net \{\chi_{E}\}

of characteristic functions of all clopen subsets E of Q containing q .
Obviously the infimum of this net in X=C(Q) is zero, so the order conti-
nuity of \phi guarantees that for any \epsilon>0 there is some E such that 0\leq

\phi(\chi_{E})<\epsilon . As 0\leq x_{\{q\}}\leq x_{E} , we have 0\leq\alpha=(\alpha\delta_{q})(\chi_{\{q\}})\leq\phi(\chi_{\{q\}})\leq\phi(\chi_{E})=

\phi(\chi_{E})<\epsilon . Thus \alpha=0 , a contradiction.
To prove our second statement suppose that \emptyset is an order continuous

extension of \phi to l_{\infty}(Q) . Assume that \phi\neq 0 . Hence \psi=\phi^{+}-\psi^{-} and \psi^{+}\neq 0

since otherwise it would imply that \phi<0 . Clearly \phi\leq\psi^{+}|C(Q) . So the
Hahn-Banach-Kantorovich extension theorem gives us a positive exten-
sion of \phi to the whole of l_{\infty}(Q) which is dominated by \psi^{+} and hence this
extension is order continuous, contradicting the part already proven.

To prove the last statement of the theorem, fix q\in Q . The functional
\delta_{q}\in C(Q)^{*} is anormal, so, by Theorem 2, it extends to an anormal func-
tional \hat{\delta}_{q}\in l_{\infty}(Q)_{an}^{*} . It also allows a trivial order continuous extension,

namely the very same evaluation at q which we will again denote by \delta_{q} .

Clearly \delta_{q} and \hat{\delta}_{q} are disjoint in l_{\infty}(Q)^{*} . If \phi is any order continuous
functional on C(Q) , then it extends to a positive functional, \emptyset , on l_{\infty}(Q)

which is localizable by (i). Now \phi-\delta_{q}+\hat{\delta}_{q} is another extension of \phi to
l_{\infty}(Q) , and the order continuous part of this extension equals -\delta_{q} which is
non-zero. \blacksquare

Note that we may also introduce analogues of both (R_{ns}^{+}) and (E_{ns}^{+})

which do not mention positivity. Let us denote them by (R_{ns}) and (E_{ns}) .
It is simple to verify that (R_{ns}) is equivalent to (R_{ns}^{+}) so it comes as a
slight surprise to observe that condition (E_{ns}) is not equivalent to (E_{ns}^{+}) .
Indeed, the pair (C(Q), l_{\infty}(Q)) considered in Theorem 5 satisfies (E_{ns}^{+}) , but
does not satisfy (E_{ns}) by the concluding statement of the same theorem.
However, this is not actually so surprising since as our last result shows
condition (E_{ns}) is actually almost impossible to fulfill, except in rather
trivial cases, such as when Y_{\tilde{n}}=\{0\} .

THEOREM 6. If both Y_{\tilde{n}} and X_{\tilde{n}} separate points, then (X, Y) does
not satisfy (E_{ns}) .

PROOF. Assume that we are wrong. Take 0<\psi\in Y_{\tilde{n}} and let \phi=

\phi|X . Since clearly (E_{ns})\Rightarrow(E_{ns}^{+})\Rightarrow(R_{ns}^{+}) we have that \phi\in(X_{\tilde{n}})^{d} . By the
condition, X_{\tilde{n}} separates the points of X, so (X_{\tilde{n}})^{d}=X_{an} . Therefore, by

Theorem 2, we may extend \phi to \overline{\phi}\in Y_{\tilde{an}} . Consider now the linear func-
tional \phi-\hat{\phi}\in Y^{\sim} It extends the (order continuous) zero functional on X,

and \phi-\hat{\phi}\not\in(Y_{\tilde{n}})^{d} contradicting (E_{ns}) . \blacksquare
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One concluding remark. Let X be vector sublattice of a vector lattice
Y A glance at the list of problems discussed in this article reveals that
one very natural question has not been considered. Namely, when does
any order continuous functional on X admit an order continuous extension
to all of Y ? In general the answer to this question is negative, since the
existence of such an extension implies a strong relationship between X
and Y We refer to [And] for some deep positive results in this direction.

The authors would like to thank the referee for his valuable sugges-
tions.
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