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Blow-up solutions to a finite difference analogue of

u_{t}=\Delta u+u^{1+a} in N-dimensional balls*

Yun-Gang CHEN\dagger
(Received August 28, 1991)

\S 1. Introduction.

In this paper we consider asymptotic behaviours of difference solu-
tions for a semilinear parabolic equation

(E) u_{t}=\Delta u+u^{1+a}-(t, x)\in(0, T)\cross\Omega

with the boundary condition

(BC) (1- \sigma)u+\sigma\frac{\partial u}{\partial n}=0 for (t, x)\in(0, T)\cross\partial\Omega

and initial value

(IV) u(0, x)=u_{0}(x) , x\in\overline{\Omega} .

Here, u_{0}\in C^{1}(\overline{\Omega}) , \Omega=B(R)=\{x;|x|<R\}(0<R<+\infty) is a ball in R^{N} and n
is the outward normal of \partial\Omega , while \sigma\in[0,1] and \alpha>0 are fixed constants.
For convenience we refer to (BC) as (DBC) if \sigma=0 which gives the Diri-
chlet boundary condition, 0_{\hat{1}} refer to it as (NBC) if \sigma=1 which leads to
the Neumann boundary condition.

It is well-known that a classical solution u of (E) may blow up in
finite time, which means that its maximal existence time T= \sup\{s:u(t ,
x) is bounded in [0, s]\cross\Omega\} is finite and thus its maximum norm tends to
infinity as tarrow T In this case, T is called the blow-up time of the solu-
tion and a blow-up point is a point in \Omega such that u(t, x) is unbounded in
any neighbourhood of it for t\in[0, T) . There are many works on the
blow-up problem for semilinear parabolic equations (for instance, see
[Ful], [Fu2], [FuC] , {C2], [FrM] , [GK] and [W] ) .

On the other hand, numerical solutions and analogues for the equation
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(E) are also studied for the purpose of computing the blow-up solutions
with computers, such as the finite difference methods and the finite element
methods ([N], [NU]). Recently, the asymptotic behaviours of blow-up
solutions of difference analogues are discussed ([C1], [BK]), for the one-
dimensional problem of (E). The author studied in [C1] the asymptotic
behaviours of the blow-up difference solutions near the blow-up point for a
difference analogue of (E) with a variable time increment which was
essentially presented in [N] and improved in [C1]. Later, a rescaling al-
gorithm for the blow-up difference solutions was studied in [BK].

In [C1], the author proved that even if a difference solution blows up,
its values will remain bounded up to the moment of blow-up except at the
maximum point and its adjacent points; moreover, the number of blow-up
(net) points depends in a way on the value of the parameter \alpha provided
that the initial value is not a constant and only has one maximum point.

Here, we are going to extend the results in [C1] to the multi-
dimensional case N\geq 2 , showing that the blow-up points of a difference
solution will concentrate to its maximum points. We also present a
difference scheme for (E) in the ball B(R)\in R^{N}(N\geq 2) . We note that
from the results of numerical experiments with this scheme we obtained
important information for the investigation of the blow-up set of a classi-
cal solution (see [C2]).

For simplicity, we assume throughout this article that the initial value
is radially symmetric, namely

u_{0}(x)=\phi(|x|) for x\in\overline{\Omega} ,

where \phi(r) is a nonnegative function satisfying the compatibility condi-
tions needed. This implies that a unique classical solution u(t, x) of (E)

exists (at least locally), and is nonnegative and radially symmetric accord-
ing to the uniqueness. Thus the solution can be written as u(t, r) with r
=|x| . Using the polar (spherical) coordinates we can rewrite the equation
(E) into

(E’) u_{t}=u_{rr}+ \frac{N-1}{r}u_{r}+u^{1+a}(t, r)\in(0, T)\cross(0, R)

with the boundary condition

(BCO) u_{r}(t, 0)=0 for t\in(0, T) ,
(BC) (1-\sigma)u(t, R)+\sigma u_{r}(t, R)=0 for t\in(0, T)

and initial value

(IV) u(0, r)=\phi(r) , r\in[0, R] .
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Here, (BCO) is obtained by noting the radial symmetry of the solution.
Our main results are stated in Theorem 3. 2, including that if the ini-

tial value is radially decreasing and the difference solution for (E) blows

up, namely, \lim_{narrow\infty}||u^{n}||_{\infty}=+\infty and \sum_{n=0}^{\infty}\tau_{n}<+\infty , then the solution blows up in

a sharp shape. Furthermore, if 0<\alpha\leq 1 then the solution also blows up at
the points adjacent to the maximum point which is the central point of \Omega :
while if \alpha>1 then there is only a single point for the solution to blow up.
In particular, if \alpha=1 , then the solution just blows up at the maximum
point and the points around (adjacent to) it, but remains bounded at all of
the rest points.

By the way, we note that our difference scheme has a good approxi-
mate accuracy in that the difference analogue for the Laplacian operator
in a radially symmetric domain has an error estimate of order O(h^{2}) uni-
formly up to the origin r=0 .

Our difference scheme for (E’) is introduced in \S 2 and the main the0-
rem on the asymptotic behaviours of the difference solution is proved in
\S 3, with the analysis of error estimates for the difference approximation
in \S 4. Finally, we show several illustrations of numerical experiments
for blow-up solutions with a personal computer by our difference scheme.

\S 2. The difference scheme and corresponding lemmas.

We state our finite difference scheme for the equation (E’) .
Denoting by u_{j}^{n} the value of the differene solution at the n -th time step

t_{n} and the spatial net point r_{j} , our difference scheme which is referred to
as (S), is given by the following five equations, (SO)–(S2), (SB) and (SI):

(SO) \frac{u_{0}^{n+1}-u_{0}^{n}}{Tn}=2N\cdot\frac{u_{1}^{n+1}-u_{0}^{n+1}}{h^{2}}+(u_{0}^{n})^{1+a} .

(S1) \frac{u_{j}^{n+1}-u_{j}^{n}}{\tau_{n}}=N\cdot\frac{u_{j-1}^{n+1}-2u_{j}^{n+1}+u_{j+1}^{n+1}}{h^{2}}+(u_{j}^{n})^{1+a} . 1\leq j<N_{0} ,

(S2) \frac{u_{j}^{n+1}-u_{j}^{n}}{Tn}=\frac{u_{j-1}^{n+1}-2u_{i}^{n+1}+u_{j+1}^{n+1}}{h^{2}}+\frac{N-1}{r_{j}}o\frac{u_{j+1}^{n+1}-u_{j-1}^{n+1}}{2h}

+(u_{j}^{n})^{1+a}-N_{0}\leq j\leq m-1 , n=0,1,2,\cdots ;
(SB) (\sigma+(1-\sigma)h)u_{m}^{n}-\sigma u_{m-1}^{n}=0 , n=1,2 , \cdots :
(SI) u_{j}^{0}=\phi(r_{j}) , j=0 , \cdots , m .

Here, several notations have been introduced and will be used hereafter,

as below.
It has been assumed that h=R/m is the spatial mesh size of the divi-

sion where m is the number of subintervals in the uniform division of the
interval [0, R] , and r_{j}=jh is the j-th net point on [0, R](j=0,1,\cdots, m) ,
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with N_{0}=[(N+1)/2] being the integral part of (N+1)/2 . And t_{n} is
assumed to be the n-th discrete time step and \tau_{n}=t_{n+1}-t_{n} is the time incre-
n ot

The approximate relation between the difference solution and the cor-
responding classical solution is given by

u_{j}^{n} : approximate value of u(t_{n}, r_{j}) , j=0,1 , \cdots , m ;
\frac{u_{j}^{n+1}-u_{j}^{n}}{Tn} : approximation of u_{t}(t_{n}, r_{j}) , 0\leq j<m , n\geq 0 ;

\frac{u_{j+1}^{n}-u_{j-1}^{n}}{2h} : approximation of u_{r}(t_{n}, r_{j}) , 1\leq j\leq m-1 , n>0 ;

\frac{u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}}{h^{2}} : approximation of u_{rr}(t_{n}, r_{j}) , 0\leq j\leq m-1 .

And for j=0 (i.e., r_{0}=0 ), the approximation of \frac{u_{r}}{r} is taken as that of

u_{rr} because \lim_{rarrow 0}\frac{u_{r}}{r}=u_{rr} (with u_{-1}^{n}=u_{1}^{n} by the radial symmetry).

Note that the difference scheme (S) is implicit with respect to u_{j}^{n+1}

Here, it is easy to get the difference equations (SO), (S2), (SB) and (SI) in
the scheme (S), by a backward Euler discretization with respect to the
variable t . However, the equation (SI) seems to be unreasonable. The
reason for introducing (SI) is that if (SI) is replaced by (S2) (for j=1 , \cdots ,
m-1) , then the maximum principle holding for a solution of (E) will not
hold for the solution of (S) and we can give a counter-example indicating
that the scheme is no more stable for N>3 . The trouble appears from
the fact that the discretization (the difference analogue) of the Laplacian
operator turns out to be unstable since the coefficient matrix has no posi-
tive definiteness. The details of this problem will be discussed in \S 4.

In the scheme (S), t_{n} is given by

t_{0}=0 , and t_{n}=t_{n-1}+ \tau_{n-1}=\sum_{k=0}^{n-1}\tau_{k} for n\geq 1

and the variable time increment \tau_{n} is determined by

(2. 1) \tau_{n}=\tau\circ\min(1, ||u^{n}||_{\overline{p}^{a}}) for a fixed p\in[1, \infty]

where \tau=\lambda h^{2}>0 and \lambda>0 is a fixed constant, and the analogue of the
L^{p} -norm ||\circ||_{p} here is defined by

||u^{n}||_{p}=\{

( \sum_{j=0}^{m-1}hr_{j+1}^{N-1}(u_{j}^{n})^{p})^{1/p}

\max.
|u_{j}^{n}| ,

J

if 1\leq p<\infty ,

if p=\infty .
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It is easy to show that the coeficient matrix of \{u_{j}^{n+1}\} in (S) is regular
and the solution can be solved uniquely. And actually, we can prove a
discrete version of the strong maximum principle and the comparison the0-
rem for the solutions of the difference equation (S).

LEMMA 2. 1. Let \{u_{j}^{n}\} and \{v_{j}^{n}\} be two solutions of (S).
(i) If u_{j}^{0}\geq v_{j}^{0}(j=0,1, \cdots, m) then

u_{j}^{n}\geq v_{j}^{n} for j=0,1 , \cdots , m-1 ; n=1,2 , \cdots .

(it) The equality part of the inequality in (i) holds for a pair of j and n
(0\leq j<m, n>0) if and only if u_{j}^{0}=v_{j}^{0} for j=0,1, \cdots , m.

The proof of Lemma 2. 1 will be given in \S 4.
In practical computation, the parameter p in the definition of \tau_{n} is to

be chosen suitably from 1, 2 or \infty , according to the problem concerned.
We note that all norms ||\circ||_{p}(p\geq 1) here are equivalent for a fixed h

because they are all norms in a finite-dimensional linear space ; actually
we have an evaluation of

C||u^{n}||_{p}\leq||u^{n}||_{\infty}\leq h^{-N/p}||u^{n}||_{p}(1\leq p<\infty) ,

where C is a constant only depending on R .
On the other hand, we should also note the fact that for a fixed p\in

[1^{ },\infty)

\sup\{||v||_{\infty}/||v||_{p} ; v\in C[0, R]\}=h^{-N/p}arrow\infty as harrow 0

holds, where in the definition of ||v|| the discrete function v_{j} is derived from
the continuous function v(r) by v_{j}=v(r_{j}) .

For convenience we refer to the difference scheme (S) as (SD) if \sigma=0 ,

or we call it (SN) if \sigma=0 . Under these assumptions, we have the follow-
ing lemma which is concerned with the local convergence of the difference
solutions to the corresponding solutions of (E).

LEMMA 2. 2. Let u(t, r) be the classical solution of (E) in the
domain Q=[0, T)\cross(0, R] , and let u_{j}^{n} be the solution of (S). Assume that
0<S<T and \lambda=\tau h^{-2} are fixed. If t_{n} lies in the interval [O, S] and h is
sufficiently small, then the following estimates

(2. 2) \max_{0\leq j<m}|u_{j}^{k}-u(t_{k}, r_{j})|\leq C_{0}h^{2} . k=0,1 , \cdots n :

(2. 3a) \max_{0<j\leq m}|\frac{u_{j}^{k}-u_{j-1}^{k}}{h}-\frac{\partial u}{\partial r}(t_{k}, r_{j})|\leq C_{1}h , k=0,1 , \cdots , n,\cdot

(2. 3b) \max_{0\leq j<m}|\frac{u_{j+1}^{k}-u_{j}^{k}}{h}-\frac{\partial u}{\partial r}(t_{k}, r_{j})|\leq C_{1}h , k=0,1 , \cdots r\prime n,\cdot
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hold true, where C_{0} and C_{1} are constants depending only on u and S.

We shall give the proof of Lemma 2.2 in \S 4.
For the case N=1 , we can get the convergence of the numerical

blow-up time to the blow-up time of the corresponding classical solution if
the variable time increment is determined by (2. 1), as in [N] and [C1].

We just state this fact in the following Proposition 2.3 which was proved
in [N] for \alpha=1 and p=2 under the Dirichlet boundary condition and in
[C1] for \alpha>0 and p=1 under the Neumann boundary condition, for N=1 .
This is why we take the variable time increment as (2. 1).

PROPOSITION 2. 3. Suppose the solution of (E) blows up at the blow-
up time T. Assume (2. 1) with a fixed \lambda>0 . Then

\lim_{0\tau}\tilde{T}(\tau)=T,

where \tilde{T}(\tau)=\sum_{n=0}^{\infty}\tau_{n} is the blow-up time of the difference solution which

depends on the parameter \tau.

The proof of Proposition 2.3 and the detailed discussion on this prob-
lem will be omitted here.

We want to discuss the behaviour of the blow-up solutions of
difference scheme (S) which are radially decreasing, and here we make
the following assumption (A).

ASSUMPTION (A).
(1) \phi(r) is nonnegative and radically monotone decreasing in [0, R] , i.e.,

\phi(r_{1})\geq\phi(r_{2}) for 0\leq r_{1}\leq r_{2}\leq R ;

(2) \phi(r) is not a constant.

Thus, the solution of (E) is also radially decreasing and it is easy to
obtain.

LEMMA 2. 4. Let \{u_{j}^{n}\} be a solution of (S).
(i) The assumption (A) implies 0<u_{j+1}^{n}<u_{j}^{n} for j=0, \cdots , m-1;n\geq 1 ;
(i\iota) If \phi(r)\geq 0 and \phi(r) is not constant in [0, R] then the solution of
(SN) blows up, namely \lim_{narrow\infty}||u^{n}||_{\infty}=+\infty but \sum_{n=0}^{\infty}\tau_{n}<+\infty , while the occur-

rence of blow-up ot the solution for (SD) depends on its initial value.

The proof of Lemma 2. 4. will be given in \S 4, and as a consequence of
(i), we can immediately get

COROLLARY 2. 5. Assume (A), then
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u_{0}^{n}=||u^{n}||_{\infty}= \max_{j}u_{j}^{n},

u_{1}^{n}= \max_{j\neq 0}u_{j}^{n}, u_{2}^{n}= \max_{1<j\leq m}u_{j}^{n}

for n=1,2 , \cdots .

\S 3. The asymptotic behaviours of the blow-up difference solution.

We discuss in this section the asymptotic behaviour of a discrete solu-
tion \{u_{j}^{n}\} computed by the scheme (S) for the case the solution blows up.
Lemma 2. 4 gives a blow-up condition for solutions of (SN), and for more
information one can see {N] and [C1].

Before stating the main results, we introduce some notation to be used
in the analysis of asymptotic behaviours of the difference solutions.

DEFINITION 3. 1. Regarding a difference solution \{u_{j}^{n}\} , two sequences
\{a_{n}\} and \{b_{n}\} are defined as

a_{n}= \frac{u_{1}^{n}}{u_{0}^{n}} , b_{n}= \frac{(u_{0}^{n})^{a}}{||u^{n}|_{p}^{a}} , n=0,1 , \cdots

Our main theorem is

THEOREM 3. 2. Let \{u_{j}^{n}\} be a blow-up solution of (SN) or (SD).
Then, under the assumption (A), the solution has the following properties
(i)-(iii) :

(i) For all \alpha>0 , the blow-up takes place in a sharp shape, namely, the
ratio u_{1}^{n}/u_{0}^{n}= \max_{1\leq j\leq m}|u_{j}^{n}|/\max_{0\leq j\leq m}|u_{j}^{n}| tends lo zero,

(3. 1) \lim_{narrow\infty}(u_{1}^{n}/u_{0}^{n})=\lim_{narrow\infty}a_{n}=0

with

(3. 2) \lim_{narrow\infty}b_{n}=b>0 ,

where b=h^{-Na/p} .
Moreover, if \alpha\geq 1 then

(3. 3) 0 \leq\lim_{narrow\infty}\frac{a_{n+1}}{a_{n}}=\frac{1}{1+\tau b}<1 .

(i) If \alpha\leq 1 , then the solution blows up even at the points adjacent to
the maximum point, namely, the value u_{1}^{n} of the solution at the net point r
=r_{1} also tends to infinite :

(3. 4) \lim_{narrow\infty}u_{1}^{n}=+\infty .
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{Hi) If \alpha\geq 1 , then the solution is bounded at net points apart from the
maximum point. Actually, for \alpha=1 the solution is bounded except at the
central (maximum) point and the points adjacent to ( or, in other words,
on the spherical surface around) it, namely, there is a constant M=M(u_{0} ,
h)<\infty such that

(3. 5) u_{2}^{n}= \max_{j\neq 01}\{u_{j}^{n}\}\leq M for all n\geq 0 ,

However, if \alpha>1 then the solution is bounded except at the mmimum
point, namely, there is a constant M=M(u_{0}, h)<\infty such that

(3. 6) u_{1}^{n}= \max_{j\neq 0}\{u_{j}^{n}\}\leq M for all n\geq 0 .

REMARK 3. 3. It is indicated by Theorem 3.2 for the difference solu-
tion \{u_{j}^{n}\} that if \alpha>1 then the discrete blow-up set consists of a single net
point, while if \alpha=1 then the blow-up set consists of a single net point and
the net points around it, in the circumstances.

PROOF OF THEOREM 3. 2. First, we prove the statement ( ii) .
Rewriting (SO)–(S2) in the scheme (S) yields

(SO’) (1+2N\lambda_{n})u_{0}^{n+1}-2N\lambda_{n}u_{1}^{n+1}=(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n} ,
(SO’) -N\lambda_{n}u_{j-1}^{n+1}+(1+2N\lambda_{n})u_{j}^{n+1}-N\lambda_{n}u_{j+1}^{n+1}=(1+\tau_{n}(u_{j}^{n})^{a})u_{j}^{n} , 1\leq j<N_{0} ;

(S2’) -(1- \frac{N-1}{2j})\lambda_{n}u_{j-1}^{n+1}+(1+2\lambda_{n})u_{j}^{n+1}-(1+\frac{N-1}{2j})\lambda_{n}u_{j+1}^{n+1}

=(1+\tau_{n}(u_{j}^{n})^{a})u_{j}^{n} , N_{0}\leq j<m;n=01,2 , \cdots :

where \lambda_{n}=\tau_{n}h^{-2}=\lambda\cdot\min\{1, ||u^{n}||_{\overline{p}^{a}}\} . By (SO’) and Lemma 2.4, we have

(3. 7) u_{0}^{n+1}= \frac{2N\lambda_{n}u_{1}^{n+1}+(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n}}{1+2N\lambda_{n}}

\geq\frac{(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n}}{1+2N\lambda_{n}} .

If N\geq 3 (namely, N_{0}\geq 2 ), then (SI’) applies and is followed by

(3. 8) u_{1}^{n}= \frac{N\lambda_{n}(u_{0}^{n+1}+u_{2}^{n+1})+(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n}}{1+2N\lambda_{n}}

\geq\frac{N\lambda_{n}u_{0}^{n+1}+(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n}}{1+2N\lambda_{n}} .

From these inequalities it is easy to get

(3. 9) u_{1}^{n+1} \geq\frac{N\lambda_{n}(1+\tau_{n}(u_{0}^{n})^{a})u_{0}+(1+2N\lambda_{n})(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n}}{(1+2N\lambda_{n})^{2}}

\geq\frac{N\lambda_{n}u_{0}^{n}+u_{1}^{n}}{(1+2N\lambda_{n})^{2}} for n\geq 0 (if N_{0}\geq 2 ).
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If N=1 or 2 (namely, N_{0}=1 ), then merely (SO’) and (S2’) apply and
the latter implies

(3. 10)
u_{1}^{n+1}= \frac{(1-\frac{N-1}{2})\lambda_{n}u_{0}^{n+1}+(1+\frac{N-1}{2})\lambda_{n}u_{2}^{n+1}+(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n}}{1+2\lambda_{n}}

\underline{3-N}_{\lambda_{n}u_{0}^{n+1}+(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n}}

\geq\frac{2}{1+2\lambda_{n}}

which with (3. 7) yields

\frac{3-N}{2}\lambda_{n}(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n}+(1+2N\lambda_{n})(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n}

(3. 11) u_{1}^{n+1}\geq\overline{(1+2N\lambda_{n})(1+2\lambda_{n})}

\geq\frac{\lambda_{n}u_{0}^{n}/2+u_{1}^{n}}{(1+2N\lambda_{n})(1+2\lambda_{n})}, n\geq 0 (if N_{0}=1 ).

Either (3. 9) or (3. 11) leads to (3. 4) because

\lambda_{n}u_{0}^{n}=\lambda b_{n}(u_{0}^{n})^{1-a}\geq constant>0 (for large n),

by the definition of \lambda_{n} and b_{n} .
Next, we show the assertion (i). For the case N_{0}=1 , from the equal-

ities of (3. 7) and (3. 10) we can get

\frac{3-N}{2}\lambda_{n}(2N\lambda_{n}u_{1}^{n+1}+(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n}) \frac{N+1}{2}\lambda_{n}u_{1}^{n+1}+(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n}

u_{1}^{n+1}\leq+\overline{(1+2\lambda_{n})(1+2N\lambda_{n})}\overline{1+2\lambda_{n}}

Solving u_{1}^{n+1} from this inequality yields

\frac{3-N}{2}\lambda_{n}(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n}+(1+2N\lambda_{n})(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n}

(3. 12)
u_{1}^{n+1} \leq 1+\frac{\overline 3}{2}(N+1)\lambda_{n}

.

Similarly, if N_{0}\geq 2 then equalities of (3. 7) and (3. 8) lead to

(3. 13) u_{1}^{n+1} \leq\frac{N\lambda_{n}(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n}+(1+2N\lambda_{n})(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n}}{1+3N\lambda_{n}}

On the other hand, from the equality of (3. 7) and inequality of (3. 10),

it follows when N_{0}=1 that

u_{1}^{n+1} \geq\frac{\frac{3-N}{2}\lambda_{n}(2N\lambda_{n}u_{1}^{n+1}+(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n})}{(1+2\lambda_{n})(1+2N\lambda_{n})}+\frac{(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n}}{1+2\lambda_{n}}

,

and solving u_{1}^{n+1} from this inequality leads to
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\frac{3-N}{2}\lambda_{n}(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n}+(1+2N\lambda_{n})(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n}

(3.14) u_{1}^{n+1}\geq\overline{1+2(N+1)\lambda_{n}+N(N+1)\lambda_{n}^{2}}

By the definition of a_{n} and the equality of (3. 7), it is easy to see

a_{n+1}= \frac{1+2N\lambda_{n}}{2N\lambda_{n}+(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n}/u_{1}^{n+1}} .

Here, using (3. 12) we get

(1+2N \lambda_{n})(\frac{3-N}{2}\lambda_{n}(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n}+(1+2N\lambda_{n})(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n})a_{n+1}\leq-(1+ \frac{3}{2}(N+1)\lambda_{n}+N(3-N)\lambda_{n}^{2})(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n}+2N\lambda_{n}(1+2N\lambda_{n})(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n}

\frac{3-N}{2}\lambda_{n}(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n}+(1+2N\lambda_{n})(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n}\leq-(1+ \frac{3-N}{2}\lambda_{n})(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n}+2N\lambda_{n}(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n}

’

and thus for n sufficiently large,

\frac{3-N}{2}\lambda_{n}(1+\tau b_{n})+(1+2N\lambda_{n})(1+\tau b_{n}a_{n}^{a})a_{n}

(3. 15) a_{n+1}\leq-
(1+ \frac{3-N}{2}\lambda_{n})(1+\tau b_{n})+2N\lambda_{n}(1+\tau b_{n}a_{n}^{a})a_{n}

since ||u^{n}||_{p}\geq 1 and \tau_{n}=\tau||u^{n}||_{\overline{p}^{a}} . Similarly, by using (3. 14) we can obtain

\frac{3-N}{2}\lambda_{n}(1+\tau b_{n})+(1+2N\lambda_{n})(1+\tau b_{n}a_{n}^{a})a_{n}

(3. 16)
a_{n+1}\geq\overline{(1+2\lambda_{n})(1+\tau b_{n})+2N\lambda_{n}(1+\tau b_{n}a_{n}^{a})a_{n}}

for large n ,
However, if N_{0}\geq 2 , then by a similar argument we can derive from

(3.7) and (3.8) the following

(3. 17) a_{n+1} \leq\frac{N\lambda_{n}(1+\tau b_{n})+(1+2N\lambda_{n})(1+\tau b_{n}a_{n}^{a})a_{n}}{(1+N\lambda_{n})(1+\tau b_{n})+2N\lambda_{n}(1+\tau b_{n}a_{n}^{a})a_{n}}

(3. 18) a_{n+1} \geq\frac{N\lambda_{n}(1+\tau b_{n})+(1+2N\lambda_{n})(1+\tau b_{n}a_{n}^{a})a_{n}}{(1+2N\lambda_{n})(1+\tau b_{n})+2N\lambda_{n}(1+\tau b_{n}a_{n}^{a})a_{n}}

Let C=C(N) be a constant defined by

(3. 19) C=C(N)=\{
\frac{3-N}{2} , if N_{0}=1 ,

N, if N_{0}\geq 2 .
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Then (3. 15) and (3.17) can be written in a same form, as

(3. 20) a_{n+1} \leq\frac{C\lambda_{n}(1+\tau b_{n})+(1+2N\lambda_{n})(1+\tau b_{n}a_{n}^{a})a_{n}}{(1+C\lambda_{n})(1+\tau b_{n})+2N\lambda_{n}(1+\tau b_{n}a_{n}^{a})a_{n}} .

And we can calculate

a_{n+1}-a_{n} \leq\frac{C\lambda_{n}(1+\tau b_{n})(1-a_{n})+2N\lambda_{n}(1+\tau b_{n}a_{n}^{a})a_{n}(1-a_{n})+\tau b_{n}a_{n}(a_{n}^{a}-1)}{(1+C\lambda_{n})(1+\tau b_{n})+2N\lambda_{n}(1+\tau b_{n}a_{n}^{a})a_{n}}

\leq\frac{\tau_{n}(1-a_{n})(C+2N)(1+\tau b_{n})h^{-2}+\tau b_{n}a_{n}(a_{n}^{a}-1)}{(1+C\lambda_{n})(1+\tau b_{n})+2N\lambda_{n}(1+\tau b_{n}a_{n}^{a})a_{n}}

by 0<a_{n}<1 for n\geq 1 .
Note the following

0<a_{n}^{a}\leq a_{n}<1 if \alpha\geq 1

and
0<a_{n}\leq a_{n}^{a}<1,1-a_{n}\leq(K+1)(1-a_{n}^{a}) if 0<\alpha<1 ,

where K=[1/\alpha] (integral part of 1/\alpha). The latter holds true because for \alpha

\in(0,1) ,

(3. 21) 1-a_{n}\leq 1-a_{n}+a_{n}^{1-Ka}(1-a_{n}^{(K+1)a-1})

=(1-a_{n}^{a})(1+ \sum_{i=1}^{K}a_{n}^{1-ia})

\leq(K+1)(1-a_{n}^{a}) .

For sufficiently large n, if \alpha\geq 1 we obtain

(3. 22) a_{n+1}-a_{n} \leq\frac{\tau_{n}(1-a_{n})(D(1+\tau b_{n})h^{-2}-u_{1}^{n}(u_{0}^{n})^{a-1})}{(1+C\lambda_{n})(1+\tau b_{n})+2N\lambda_{n}(1+\tau b_{n}a_{n}^{a})a_{n}} ;

while if \alpha\in(0,1) we get

(3. 23) a_{n+1}-a_{n} \leq\frac{\tau_{n}(1-a_{n})(D(K+1)(1+\tau b_{n})h^{-2}-a_{n}(u_{0}^{n})^{a})}{(1+C\lambda_{n})(1+\tau b_{n})+2N\lambda_{n}(1+\tau b_{n}a_{n}^{a})a_{n}} ,

where D=D(N) is a constant defined as

D(N)=C(N)+2N=\{
\frac{3(N+1)}{2} , if N_{0}=1 ,

3N, if N_{0}\geq 2 .

Hence, if n is sufficiently large, then the right-hand side of (3. 22) takes
negative value because u_{0}^{n} tends to infinity, which means that if \alpha\geq 1 then

0<a_{n}<a_{n+1}<1 for n sufficiently large.
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Thus we see that \lim_{narrow\infty}a_{n}=a exists, and 0 \leq a=\lim_{narrow\infty}a_{n}<1 if \alpha\geq 1 . Here,

it should be noted that if the boundedness of \{u_{1}^{n}\} is already known then
(3. 1) has already been proved: while if u_{1}^{n} can take very large value then
it is monotone increasing for large n .

For the case of \alpha\geq 1 , we can take a convergent subsequence of \{b_{n}\} ,
with its limit, say \beta being necessarily positive. Setting narrow\infty and con-
sidering the limits of (3. 15) and (3. 16) along the corresponding subse-
quence, by \lambda_{n}arrow 0 , we see that the limit of \{a_{n}\} satisfies

(3. 24) a= \frac{(1+\tau\beta a^{a})a}{1+\tau\beta} .

This leads to a=0 immediately and proves (3. 1) and therefore (3. 2)
Furthermore, since \alpha\geq 1 it follows that

\lim_{narrow\infty}(\lambda_{n}/a_{n})=\lim_{narrow\infty}(\lambda b_{n}(u_{0}^{n})^{1-a}(u_{1}^{n})^{-1})=0 .

Thus, from (3. 15) and (3. 16) if N_{0}=1 , or from (3. 17) and (3. 18) if N_{0}\geq 2 ,
we can obtain

\frac{1}{1+\tau b}\leq\lim_{narrow\infty}\frac{a_{n+1}}{a_{n}}\leq\frac{1}{1+\tau b}

which proves (3. 3).
It remains to prove (3. 1) and (3. 2) for the case of 0<\alpha<1 . We do

this by reduction to absurdity. First we show the convergence of the
sequence \{a_{n}\} , and then show that the limit is nothing but zero.

If \{a_{n}\} is not a convergent sequence, then we have
0\leq a_{*}<a^{*}\leq 1

where a_{*}=\varliminf_{narrow\infty}a_{n} and a^{*}=\varlimsup_{narrow\infty}a_{n} . Thus there is a constant \gamma\in(a_{*}, a^{*})

and three subsequences A, B and \tilde{A} can be defined as
A=\{a_{n} ; a_{n}\leq\gamma\} .
B=\{a_{n} ; a_{n}>\gamma\} ,
\overline{A}=\{a_{n_{i}} : a_{n_{i}}\in A, a_{n_{i}+1}\in B\} .

Let \{n_{i}\} be an index subsequence such that a_{n_{i}}\in\tilde{A} , and \{n_{k}\} be subse-
quence of \{n_{i}\} such that \{b_{n_{k}}\} is a convergent subsequence of \{b_{n_{i}}\}\subset\{b_{n}\} .
Substituting \{n_{k}\} into (3. 20) and setting karrow\infty , we get

\varlimsup_{narrow\infty}a_{n_{k}+1}\leq\frac{1+\tau\beta\gamma^{a}}{1+\tau\beta}\cdot\gamma<\gamma
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where \beta\in[1, h^{-Na/p}] is the limit of \{b_{n_{k}}\} . This is a contradiction to a_{n_{k}+1}

\in B , which proves the convergence of \{a_{n}\} .
Setting narrow\infty in (3. 15) and (3. 16) if N_{0}=1 , or in (3. 17) and (3. 18) if

N_{0}\geq 2 , along a subsequence \{n_{k}\} such that \{b_{n_{k}}\} converges to the limit \beta>

0 , we get (3. 24) again. Thus, we see that either a=1 or a=0 holds true.
If a=1 holds, we should have

\lim_{narrow\infty}a_{n}(u_{0}^{n})^{a}=+\infty .

Then, however, by means of (3. 23) we can obtain

a_{n+1}-a_{n}<0 for sufficintly large n

which implies a= \lim_{narrow\infty}a_{n}<1 , because a_{n}<1 for all n\geq 1 . This is a contra-

diction which proves (3. 1), and hence, (3. 2) for \alpha\in(0,1) .
We note the following

(3. 25) \lim\frac{u_{0}^{n+1}}{n}=1+\tau b>1 (for all \alpha>0 )
narrow\infty \mathcal{U}0

and

(3. 26) if \alpha\geq 1 , then 0< \sum_{n=0}^{\infty}a_{n}<\infty and 1< \prod_{n=0}^{\infty}(1+\tilde{C}a_{n})<\infty for any \tilde{C}>0 .

The relation (3. 25) can be derived from the equation

1+2N \lambda_{n}(1-a_{n+1})=(1+\tau_{n}b_{n}||u^{n}||_{p}^{a})\frac{u_{0}^{n}}{u_{0}^{n+1}}

by (SO’). Taking the limit leads to

1=(1+ \tau b)\cdot(\lim_{narrow\infty}(u_{0}^{n+1}/u_{0}^{n}))^{-1}

which is just (3. 25). The statement (3. 26) can be obtained from (3. 3),
noting that

\prod_{n=0}^{\infty}(1+\overline{C}a_{n})=\exp(\sum_{n=0}^{\infty}\log(1+\tilde{C}a_{n}))\leq\exp(\overline{C}\sum_{n=0}^{\infty}a_{n}) .

Now we are ready to prove (iii). First we consider the case when \alpha

>1 . If N_{0}=1 , then by virtue of (3. 12), we have

u_{1}^{n+1} \leq\frac{3-N}{2}\lambda_{n}(1+\tau b_{n})u_{0}^{n}+(1+2N\lambda_{n})(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n} for large n ,

and thus
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(3. 27) u_{1}^{n+1}-u_{1}^{n} \leq\frac{3-N}{2}\lambda_{n}(1+\tau b_{n})u_{0}^{n}+(2N\lambda_{n}+\tau_{n}(u_{1}^{n})^{a}+2N\lambda_{n}\tau_{n}(u_{1}^{n})^{a})u_{1}^{n} .

Similarly, if N_{0}\geq 2 then using (3. 13) we get

(3. 28) u_{1}^{n+1}-u_{1}^{n}\leq N\lambda_{n}(1+\tau b_{n})u_{0}^{n}+(2N\lambda_{n}+\tau_{n}(u_{1}^{n})^{a}+2N\lambda_{n}\tau_{n}(u_{1}^{n})^{a})u_{1}^{n} ,

and combining (3. 27) and (3. 28) we can write for all N\geq 1

(3. 29) u_{1}^{n+1}-u_{1}^{n}\leq C\lambda_{n}(1+\tau b_{n})u_{0}^{n}+(2N\lambda_{n}+\tau_{n}(u_{1}^{n})^{a}+2N\lambda_{n}\tau_{n}(u_{1}^{n})^{a})u_{1}^{n} ,

where C=C(N) is the constant in (3. 19).
Noting that

\lim_{narrow\infty}\frac{\lambda_{n+1}(1+\tau b_{n+1})u_{0}^{n+1}}{\lambda_{n}(1+\tau b_{n})u_{0}^{n}}=\lim_{narrow\infty}\frac{\lambda b_{n+1}(u_{0}^{n+1})^{1-a}}{\lambda b_{n}(u_{0}^{n})^{1-a}}=(1+\tau b)^{1-a}<1 ,

\lim_{narrow\infty}\frac{\lambda_{n+1}u_{1}^{n+1}}{\lambda_{n}u_{1}^{n}}=\lim_{narrow\infty}\frac{\lambda b_{n+1}(u_{0}^{n+1})^{-a}u_{1}^{n+1}}{\lambda b_{n}(u_{0}^{n})^{1-a}u_{1}^{n}}=\lim_{narrow\infty}\frac{(u_{0}^{n+1})^{1-a}a_{n+1}}{(u_{0}^{n})^{1-a}a_{n}}

=(1+\tau b)^{1-a}\cdot(1+\tau b)^{-1}<1 ,

\lim_{narrow\infty}\frac{\tau_{n+1}(u_{1}^{n+1})^{1+a}}{\tau_{n}(u_{1}^{n})^{1+a}}=\lim_{narrow\infty}\frac{\tau b_{n+1}a_{n+1}^{1+a}u_{0}^{n+1}}{\tau b_{n}a_{n}^{1+a}u_{0}^{n}}=(1+\tau b)^{-(1+a)}\cdot(1+\tau b)<1 ,

we obtain

(3. 30) u_{1}^{n}= \sum_{k=0}^{n-1}(u_{1}^{k\dagger 1}-u_{1}^{k})+u_{1}^{0}

\leq\sum_{k=0}^{\infty}(C\lambda_{n}(1+\tau b_{n})u_{0}^{n}+(2N\lambda_{n}+\tau_{n}(u_{1}^{n})^{a}+2N\lambda_{n}\tau_{n}(u_{1}^{n})^{a})u_{1}^{n})+u_{1}^{0}

<+\infty , n\geq 0 .

Thus we have proved the boundedness of \{u_{1}^{n}\} when \alpha>1 .
For \alpha=1 , we show the boundedness of \{u_{2}^{n}\} as below. If N_{0}\leq 2 , then

by (S2’) it follows that

\underline{5-N}_{\lambda_{n}u_{1}^{n+1}+\frac{3+N}{4}\lambda_{n}u_{2}^{n+1}+(1+\tau_{n}(u_{2}^{n})^{a})u_{2}^{n}}

u_{2}^{n+1} \leq\frac{4}{1+2\lambda_{n}} ,

and thus, solving u_{2}^{n+1} from the inequality leads to

\underline{5-N}_{\lambda_{n}u_{1}^{n+1}+(1+\tau_{n}(u_{2}^{n})^{a})u_{2}^{n}}

(3. 31)
u_{2}^{n+1} \leq\frac{4}{1+\frac{5-N}{4}\lambda_{n}}

\leq\frac{5-N}{4}\lambda_{n}u_{1}^{n+1}+(1+\tau_{n}(u_{2}^{n})^{a})u_{2}^{n} , n\geq 0 .

By means of (3. 12) and (3. 13), we see
u_{1}^{n+1}\leq N\lambda_{n}(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n}+(1+2N\lambda_{n})(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n}
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as in showing (3. 29), since C(N)\leq N . Substituting this inequality into (3.

31) yields

(3. 32) u_{2}^{n+1}+ \leq\frac{5-N}{4}\lambda_{n}(N\lambda_{n}(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n}+(1+2N\lambda_{n})(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n})

+(1+\tau_{n}(u_{2}^{n})^{a})u_{2}^{n}

= \frac{N(5-N)}{4}\lambda_{n}^{2}(1+\tau_{n}(u_{0}^{n})^{a})u_{0}^{n}+\frac{5-N}{4}\lambda_{n}(1+2N\lambda_{n})(1+\tau_{n}(u_{1}^{n})^{a})u_{1}^{n}

+(1+\tau_{n}(u_{2}^{n})^{a})u_{2}^{n} , n\geq 0 .

Therefore, we have

(3. 33) u_{2}^{n+1} \leq\frac{N(5-N)}{4}\lambda_{n}^{2}(1+\tau b_{n})u_{0}^{n}+\frac{5-N}{4}\lambda_{n}(1+2N\lambda_{n})(1+\tau b_{n}a_{n}^{a})u_{1}^{n}

+(1+\tau b_{n}a_{n}^{a})u_{2}^{n}

=A_{n}u_{2}^{n}+B_{n} for sufficiently large n ,

where the sequences \{A_{n}\} and \{B_{n}\} are defined as

(3. 34) A_{n}=1+\tau b_{n}a_{n}^{a} ,

B_{n}= \frac{N(5-N)}{4}\lambda_{n}^{2}(1+\tau b_{n})u_{0}^{n}+\frac{5-N}{4}\lambda_{n}(1+2N\lambda_{n})(1+\tau b_{n}a_{n}^{a})u_{1}^{n} .

Noting \sum_{n}a_{n}^{a}<\infty and

(3. 35) 1<A_{n}\leq 1+\tau ba_{n}^{a} ,

we see

(3. 36) 1< \prod_{n=0}^{\infty}A_{n}<\infty .

On the other hand, by virtue of

\lim_{narrow\infty}\frac{\lambda_{n+1}^{2}(1+\tau b_{n+1})u_{0}^{n+1}}{\lambda_{n}^{2}(1+\tau b_{n})u_{0}^{n}}=\lim_{narrow\infty}\frac{\lambda^{2}b_{n+1}^{2}(u_{0}^{n+1})^{1-2a}}{\lambda^{2}b_{n}^{2}(u_{0}^{n})^{1-2a}}=(1+\tau b)^{1-2a}<1

and

\lim_{narrow\infty}\frac{\lambda_{n+1}(1+2N\lambda_{n+1})(1+\tau b_{n+1}a_{n+1}^{a})u_{1}^{n+1}}{\lambda_{n}(1+2N\lambda_{n})(1+\tau b_{n}a_{n}^{a})u_{1}^{n}}

= \lim_{narrow\infty}\frac{\lambda b_{n+1}a_{n+1}(u_{0}^{n+1})^{1-a}}{\lambda b_{n}a_{n}(u_{0}^{n})^{1-a}}=(1+\tau b)^{-1}\cdot(1+\tau b)^{1-a}<1 ,

we get

(3. 37) \sum_{n=0}^{\infty}B_{n}<+\infty .
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By the induction, we obtain

u_{2}^{n} \leq u_{2}^{0}\prod_{i=0}^{n-1}A_{i}+(\sum_{i=0}^{n-2}B_{i}\prod_{s=i+1}^{n-1}A_{s}+B_{n-1})

\leq u_{2}^{0}\prod_{i=0}^{n}A_{i}+\sum_{i=0}^{n}B_{i}\prod_{s=0}^{n}A_{s} for large n ,

which immediately leads to

(3. 38) u_{2}^{n} \leq(u_{2}^{0}+\sum_{n=0}^{\infty}B_{k})\prod_{n=0}^{\infty}A_{k}<+\infty for all n\geq 0 .

Thus we have proved (3. 5) for the case of N_{0}\leq 2 .

If N_{0}\geq 3 , then by (SI’) we have

u_{2}^{n+1} \leq\frac{N\lambda_{n}(u_{1}^{n+1}+u_{2}^{n+1})+(1+\tau_{n}(u_{2}^{n})^{a})u_{2}^{n}}{1+2N\lambda_{n}} .

Solving u_{2}^{n+1} from this inequality yields

(3. 39) u_{2}^{n+1}\leq N\lambda_{n}u_{1}^{n+1}+(1+\tau_{n}(u_{2}^{n})^{a})u_{2}^{n} , n\geq 0 .

Hence, replacing (5-N)/4 by N in (3. 31)–(3. 34) and making the same
argument as in the case of N_{0}\leq 2 , we can get the same estimation (3. 38)
for the case of N_{0}\geq 3 , which completes the proof of Theorem 3. 2. \blacksquare

REMARK 3. 4: Theorem 3. 2 gives very sharp estimates for the blow-up
points, in that if \alpha>1 , the solution only has a single blow-up point, while
when \alpha=1 the blow-up set exactly consists of a single point and its adja-
cent net points.

Considering the fact that the boundary condition was not used explicitly
ly in the proof, we can immediately get a similar result for solutions with
the third boundary condition.

COROLLARY 3. 5. The conclusion of Theorem 3.2 remains valid when
the boundary condition is replaced by (BC) with 0<\sigma<1 . \blacksquare

\S 4. Proofs of lemmas and remarks.

The purpose of this section is to discuss the properties of the
difference solutions and the accuracy of the difference scheme introduced
in \S 2.

PROOF OF LEMMA 2. 1: To get the comparison principle, we consider
w_{j}^{n}=u_{j}^{n}-v_{j}^{n} , which satisfies the following (4. 1)-(4.5) ,

(4. 1) (1+2N\lambda_{n})w_{0}^{n+1}-2N\lambda_{n}w_{1}^{n+1}=w_{0}^{n}+\tau_{n}((u_{0}^{n})^{1+a}-(v_{0}^{n})^{1+a}) ,
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(4. 2) (1+2N\lambda_{n})w_{j}^{n+1}-N\lambda_{n}(w_{j-1}^{n+1}+w_{j+1}^{n+1})=w_{j}^{n}+\tau_{n}((u_{j}^{n})^{1+a}-(v_{j}^{n})^{1+a}) ,
1\leq j<N_{0} , n\geq 0 :

(4. 3) -(1- \frac{N-1}{2j})\lambda_{n}w_{j-1}^{n+1}+(1+2\lambda_{n})w_{j}^{n+1}-(1+\frac{N-1}{2j})\lambda_{n}w_{j+1}^{n+1}=w_{j}^{n}

+\tau_{n}((u_{j}^{n})^{1+a}-(v_{j}^{n})^{1+a}) , N_{0}\leq j<m , n\geq 0 ;

(4. 4) (1+(1-\sigma)h)w_{m}^{n}-\sigma w_{m-1}^{n}=0 , n\geq 0 ;

(4. 5) w_{j}^{0}=u_{j}^{0}-v_{j}^{0}\geq 0 , j=0,1 , \cdots m.

First, we show

(4. 6) w_{j}^{n}\geq 0,0\leq j\leq m , n\geq 0

by the induction. By the assumption, it holds for n=0 . Suppose it also
holds for n=k and assume w_{i}^{k+1}= \min_{j}w_{j}^{k+1} . If i=0 , then

(1+2N\lambda_{k})w_{0}^{k+1}-2N\lambda_{k}w_{1}^{k+1}\leq w_{0}^{k+1} .

and thus (4. 1) leads to

(4. 7) w_{0}^{k+1}\geq w_{0}^{k}+\tau_{k}((u_{0}^{k})^{1+a}-(v_{0}^{k})^{1+a})\geq 0 .

If 1\leq j<N_{0} , then
(1+2N\lambda_{k})w_{i}^{k+1}-N\lambda_{k}(w_{i-1}^{k+1}+w_{i+1}^{k+1})\leq w_{i}^{k+1}

and (4. 2) implies

(4. 8) w_{i}^{k+1}.\geq w_{i}^{k}+\tau_{k}((u_{i}^{k})^{1+a}-(v_{i}^{k})^{1+a})\geq 0 .

While if N_{0}\leq i\leq m , then because of

w_{m}^{n}= \frac{\sigma}{1+(1-\sigma)h}w_{m-1}^{n}

we may only consider the case when i<m . It is easy to see that (4. 3)

with

-(1- \frac{N-1}{2i})\lambda_{k}w_{i-1}^{k+1}+(1+2\lambda_{k})w_{i}^{k+1}-(1+\frac{N-1}{2i})\lambda_{k}w_{i+1}^{k+1}\leq w_{i}^{k}

implies (4. 8) again. Thus we have proved (i) of Lemma 2. 1.
To verify the assertion (ii), we discuss the case of n=1 , and the case

of n>1 can be proved by the induction.
Let w_{i}^{0}=u_{i}^{0}-v_{i}^{o}>0 for some i . Then with the first part of the inequal-

ity (4. 7) (when i=0) or (4. 8) (when i>0 ) for k=0 , we see

(4. 9) w_{i}^{1}>0 .



464 Yun-Gang Chen

Noting w_{j}^{1}\geq 0 for j=0,1 , \cdots m, we can get

\{\begin{array}{l}w_{j}^{1}\geq F_{j}^{-}w_{j-1}^{1}>0 ifj>1 andw_{j-1}^{1}>0,w_{j}^{1}\geq F_{j}^{+}w_{j+1}^{1}>0 ifj<mandw_{j+1}^{1}>0,\end{array}

where

F^{\pm}=\{\begin{array}{l}2N\mathcal{A}_{n}/(1+2N\lambda_{n})N\mathcal{A}_{n}/(1+2N\lambda_{n})(1\pm\frac{N-1}{2j})\mathcal{A}_{n}/(1+2\mathcal{A}_{n})\end{array}

if1<j<NifN_{0}\leq j<m’

.

if j=0 ,

Thus, by virtue of (4. 9) we obtain (ii) of Lemma 2. 1. \blacksquare

Before proving Lemma 2. 2, we first discuss the accuracy of the ana-
logue part of the Laplacian operator in the difference sch\underline{e}me . Let v=
v(|x|)=v(r) be a sufficiently smooth function defined on \Omega=\overline{B(R)} , v_{j}=

v(r_{j}) , and the discrete operator L be defined by

Lv_{0}=2N\cdot\frac{v_{1}-v_{0}}{h^{2}} ,

Lv_{j}=N\cdot\frac{v_{j-1}-2v_{j}+v_{j+1}}{h^{2}},1\leq j<N_{0} ,

Lv_{j}=\frac{v_{j-1}-2v_{j}+v_{j+1}}{h^{2}}+\frac{N-1}{r_{j}}\cdot\frac{v_{j+1}-v_{j-1}}{2h} , N_{0}\leq j\leq m-1 ,

with

(\sigma+(1-\sigma)h)v_{m}-\sigma v_{m-1}=0 ,

where the symbols used here are similar to those introduced in \S 2.

Without loss of generality we only discuss the case when the Dirichlet
boundary condition is assumed. For the discrete operator L, we heve the
following theorem concerning the error estimate between L and the La-
placian operator \Delta .

THEOREM 4. 1. Let h=R/m be fixed. If h is sufficiently small, then

(4. 10) \max_{()\leq j\leq m-1}|Lv_{j}-\Delta v(r_{j})|=O(h^{2}) .

PROOF : For j=0, we see

Lv_{0}=2Nh^{-2}(v(0)+hv_{r}(0)+\frac{h^{2}}{2}v_{rr}(0)+\frac{h^{3}}{6}v_{rrr}(0)+\frac{h^{4}}{24}v_{rrrr}(\tilde{h})-v(0))

=N(v_{rr}(0)+ \frac{h^{2}}{12}v_{rrrr}(\tilde{h}))
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for some \tilde{h}\in(0, h) , by using

v_{r}(0)=v_{rrr}(0)=0 .

For j=1,2 , \cdots , N_{0}-1 , we have

Lv_{j}=Nh^{-2}(v(r_{j})-hv_{r}(r_{j})+\frac{h^{2}}{2}v_{rr}(r_{j})-\frac{h^{3}}{6}v_{rrr}(r_{j})+\frac{h^{4}}{24}v_{rrrr}(\tilde{r}_{j})-2v(r_{j})

+v(r_{j})+hv_{r}(r_{j})+ \frac{h^{2}}{2}v_{rr}(r_{j})+\frac{h^{3}}{6}v_{rrr}(r_{j})+\frac{h^{4}}{24}v_{rrrr}(\overline{r}_{j}))

=N(v_{rr}(r_{j})+ \frac{h^{2}}{24}(v_{rrrr}( \tilde{r}_{j})+v_{rrrr}( \overline{r}_{j})))

=N(v_{rr}(0)+ \frac{h^{2}}{2}v_{rr}(r_{j}^{*})+\frac{h^{2}}{24}(v_{rrrr}(\tilde{r}_{j})+v_{rrrr}(\overline{r}_{j}))) ,

where r_{j-1}<\tilde{r}_{j}<r_{j}<\overline{r}_{j}<r_{j+1} and r_{j}^{*}\in(0, r_{j}) . For j=N_{0} , \cdots m-1 , we
have

Lv_{j}=h^{-2}(v(r_{j})-hv_{r}(r_{j})+\frac{h^{2}}{2}v_{rr}(r_{j})-\frac{h^{3}}{6}v_{rrr}(r_{j})+\frac{h^{4}}{24}v_{rrrr}(\tilde{r}_{j})-2v(r_{j})

+v(r_{j})+hv_{r}(r_{j})+ \frac{h^{2}}{2}v_{rr}(r_{j})+\frac{h^{3}}{6}v_{rrr}(r_{j})+\frac{h^{4}}{24}v_{rrrr}(\overline{r}_{j}))

+ \frac{N-1}{r_{j}}\cdot (2h)^{-1}((v(r_{j})+hv_{r}(r_{j})+ \frac{h^{2}}{2}v_{rr}(r_{j})+\frac{h^{3}}{6}v_{rrr}(\xi_{j}))

-((v(r_{j})-hv_{r}(r_{i})+ \frac{h^{2}}{2}v_{rr}(r_{j})-\frac{h^{3}}{12}v_{rrr}(\eta_{j})))

=v_{rr}(r_{j})+ \frac{h^{2}}{24}(v_{rrrr}(\tilde{r}_{j})+v_{rrrr}(\overline{r}_{j}))+\frac{N-1}{r_{j}}v_{r}(r_{j})

+ \frac{N-1}{j}\cdot\frac{h^{2}}{12}(v_{rrr}(\xi_{j})+v_{rrr}(\eta_{j})) ,

where r_{j-1}<\tilde{r}_{j} , \eta_{j}<r_{j}<r_{j} , \xi_{j}<r_{j+1} .

Thus we get (4. 10) by means of

\Delta v(r_{0})=Nv_{rr}(0) ,

\Delta v(r_{j})=v_{rr}(r_{j})+\frac{N-1}{r_{j}}v_{r}(r_{j})

=v_{rr}(0)+hv_{rrr}(0)+ \frac{h^{2}}{2}v_{rrrr}(\tilde{r}_{j}^{*})

+ \frac{N-1}{r_{j}}\cdot(v_{r}(0)+r_{j}v_{rr}(0)+\frac{1}{2}r_{j}^{2}v_{rrr}(0)+\frac{1}{6}r_{j}^{3}v_{rrrr}(\overline{r}_{j}^{*}))

=Nv_{rr}(0)+ \frac{1}{2}h^{2}v_{rrrr}(\tilde{r}_{j}^{*})+\frac{N-1}{6}\cdot j^{2}h^{2}v_{rrrr}(\overline{r}_{j}^{*})

for j=1,2 , \cdots N_{0}-1 , and
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\Delta v(r_{j})=v_{rr}(r_{j})+\frac{N-1}{r_{j}}\cdot v_{r}(r_{j}) for j=N_{0} , \cdots m-1 ,

where \tilde{r}_{j}^{*},\overline{r}_{j}^{*}\in(0, r_{j}) , since N_{0}=[(N+1)/2] is a fixed constatnt. \blacksquare

Now, we are ready to prove Lemma 2. 2.

PROOF OF LEMMA 2. 2: For simplicity, we only show the case when \alpha

=1 and the Dirichlet boundary condition (namely, \sigma=0 ) is concerned.
Let w_{j}^{k}=u(t_{k}, r_{j})-u_{j}^{k} . From the difference scheme (S) and the equation
(E) we have

(4. 11) \frac{w_{0}^{k+1}-w_{0}^{k}}{\tau_{k}}=2N\cdot\frac{w_{1}^{k+1}-w_{0}^{k+1}}{h^{2}}+u(t_{k}, 0)^{1+a}-(u_{0}^{k})^{1+a}+O(h^{2}) ,

(4. 12) \frac{w_{j}^{k+1}-w_{j}^{k}}{\tau_{k}}=N\cdot\frac{w_{j-1}^{k+1}-2w_{j}^{k+1}+w_{j+1}^{k+1}}{h^{2}}

+u(t_{k}, r_{j})^{1+a}-(u_{j}^{k})^{1+a}+O(h^{2}) , 1\leq j<N_{0} ,

(4. 13) \frac{w_{j}^{k+1}-w_{j}^{k}}{\tau_{k}}=\frac{w_{j-1}^{k+1}-2w_{j}^{k+1}+w_{j+1}^{k+1}}{h^{2}}+\frac{N-1}{r_{j}}\cdot\frac{w_{j+1}^{k+1}-w_{j-1}^{k+1}}{2h}

+u(t_{k}, r_{j})^{1+a}-(u_{j}^{k})^{1+a}+O(h^{2}) , N_{0}\leq j\leq m-1,0\leq k<n ;

(4. 14) w_{m}^{k}=0 (since \sigma=0 ), k=1,2 , \cdots n ;

(4, 15) w_{j}^{k}=0 , j=0 , \cdots m.

Rewriting (4. 11)–(4. 13) leads to

(1+2N\lambda_{k})w_{0}^{k+1}-2N\lambda_{k}w_{1}^{k+1}=w_{0}^{k}+\tau_{k}(u(t_{k}, 0)^{1+a}-(u_{0}^{k})^{1+a}+O(h^{2})) ,
(1+2N\lambda_{k})w_{j}^{k+1}-N\lambda_{k}(w_{j-1}^{k+1}+w_{j+1}^{k+1})=w_{j}^{k}+\tau_{k}(u(t_{k}, r_{j})^{1+a}-(u_{j}^{k})^{1+a}+O(h^{2})) ,

1\leq j<N_{0},0\leq k<n :
-(1- \frac{N-1}{2j})\lambda_{k}w_{j-1}^{k+1}+(1+2\lambda_{k})w_{j}^{k+1}-(1+\frac{N-1}{2j})\lambda_{k}w_{j+1}^{k+1}=w_{j}^{k}

+\tau_{k}(u(t_{k}, r_{j})^{1+a}-(u_{j}^{n})^{1+a}+O(h^{2})) , N_{0}\leq j<m , 0\leq k<n .

Thus, putting W_{k}= \min_{j}|w_{j}^{k}| we can obtain

W_{k+1}\leq W_{k}+\tau_{k}F_{k}+\tau_{k}\tilde{R}h^{2} . k=0,1 , \cdots n-1 ,
where \tilde{R} is a constant depending only on S\in(0, T) and the bound of u
which is given by U= \max\{|u(t, r)| : (t, r)\in[0, S]\cross[0, R]\} , and

F_{k}= \max_{j}|u(t_{k}, r_{j})^{1+a}-(u_{j}^{k})^{1+a}| .

Here, since we have assumed \alpha=1 , it follows that
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F_{k}= \max_{j}|u(t_{k}, r_{j})^{2}-(u_{j}^{k})^{2}|

= \max_{j}|(u(t_{k}, r_{j})-u_{j}^{k})(u(t_{k}, r_{j})+u_{j}^{k})|

= \max_{j}|w_{j}^{k}(2u(t_{k}, r_{j})-w_{j}^{k})|

\leq W_{k}(W_{k}+2U) , k=0,1 , \cdots n-1 ,

This implies

W_{k+1}\leq W_{k}+\tau_{k}W_{k}(W_{k}+2U)+\tau_{k}\tilde{R}h^{2}-k=0,1 , \cdots n-1 ,

By comparison of W_{k} to the solution of

(4. 16) \frac{dy}{dt}=y(y+2U)+\overline{R}h^{2} . t>0 ,

(4. 17) y(0)=0 ,

we can see that if the parameter \tau=\lambda h^{2} is suficiently small, say,

0< \tau\tilde{R}\leq\frac{4U^{2}}{4+e^{2US}} ,

then

(4. 18) W_{k}\leq y(t_{k})\leq C_{0}h^{2} , k=0,1 , \cdots n ,

which is exactly (2. 2). This is because the solution of (4. 16) and (4. 17)

is given by

y(t)= \frac{\tau\overline{R}(\exp(2t\sqrt{U^{2}-\tau\tilde{R}})-1)}{U+\sqrt{U^{2}-\tau\tilde{R}}-(U-\sqrt{U^{2}-\tau\tilde{R}})\exp(2t\sqrt{U^{2}-\tau\tilde{R}})}

for t\in[0, S] , for which we can get the following estimation

(4.19) y(t) \leq\frac{\tau\tilde{R}}{\sigma U}(e^{2US}-1)=C_{0}h^{2} for t\in[0, S]

where C_{0}= \frac{\lambda\tilde{R}}{\sigma U}(e^{2US}-1) .

To prove (2.3a), we make the following estimation

| \frac{u_{j}^{k}-u_{j-1}^{k}}{h}-u_{r}(t_{k}, r_{j})|=|\frac{1}{h}(u_{j}^{k}-u(t_{k}, r_{j}))-\frac{1}{h}(u_{j-1}^{k}-u(t_{k}, r_{j-1}))

+ \frac{1}{h}(u(t_{k}, r_{j})-u(t_{k}, r_{j-1}))-u_{r}(t_{k}, r_{j})|

\leq\frac{1}{h}|w_{j}^{k}-w_{j-1}^{k}|+|u_{r}(t_{k},\overline{r}_{j})-u_{r}(t_{k}, r_{j})|

\leq\frac{1}{h}W_{j}^{k}+|u_{rr}(t_{k},\tilde{r}_{j})|\cdot|r_{j}-\overline{r}_{j}| ,
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where \overline{r}\in(r_{j-1}, r_{j}) and \overline{r}_{j}\in(\overline{r}_{j}, r_{j}) . Then noting

|r_{j}-\overline{r}_{j}|<|r_{j}-r_{j-1}|=h

and (4. 18), we obtain (2. 3a) , with the constant C_{1} given by

C_{1}=C_{1}(u, S)=2C_{0}+ \max\{|u_{rr}(t, r)|;(t, r)\in[0, S]\cross[0, R]\} .

The estimation (2. 3b) can be shown in the same way. Thus, we have
completed the proof of Lemma 2. 2. \blacksquare

Next, we give an outline of the proof of Lemma 2. 4.

OUTLINE OF THE proof OF LEMMA 2.4: The assertion (i) can be
shown by a same argument as in the proof of Lemma 2, 1, with \{w_{j}^{n}\} be
defined by w_{j}^{n}=u_{j}^{n}-u_{j+1}^{n}(0\leq j<m) . While (it) can be proved by the
methods used in [N] and [C1], which is omitted here. \blacksquare

Finally, we give a counter-example which indicates the significance of
the equation (SI) for the difference scheme in the case when N\geq 3 . It is
introduced in order to ensure the accuracy, the stability (i. e. , the local
boundedness), as well as the validity of the maximum principle for a
difference solution even in dealing with the linear problems. To show the
key point of the problem in a simpler way, we consider a corresponding
explicit difference scheme here.

EXAMPLE 4. 2: Let \{w_{j}^{n}\} be a solution of difference equation

(SO”) \frac{w_{0}^{n+1}-w^{n_{0}}}{\tau_{n}}=2N\cdot\frac{w_{1}^{n}-w_{0}^{n}}{h^{2}} ,

(S2 ”) \frac{w_{j}^{n+1}-w_{j}^{n}}{\tau_{n}}=\frac{w_{j-1}^{n}-2w_{j}^{n}+w_{j+1}^{n}}{h_{2}}+\frac{N-1}{r_{j}}\cdot\frac{w_{j+1}^{n}-w_{j-1}^{n}}{2h}

1\leq j<m , n\geq 0 :

(SB’) w_{m}^{n}=0 , n\geq 0 ;

(SI”) w_{j}^{0}=\{
1, j=0 ,
0, j=1 , \cdots m.

The solution \{w_{j}^{n}\} can be solved explicitly as

(4. 20) w_{0}^{n+1}=(1-2N\lambda_{n})w_{0}^{n}+2N\lambda_{n}w_{1}^{n} ,

(4. 21) w_{j}^{n+1}=(1- \frac{N-1}{2j})\lambda_{n}w_{j-1}^{n}+(1-2\lambda_{n})w_{j}^{n}+(1+\frac{N-1}{2j})\lambda_{n}w_{j+1}^{n} ,

1\leq j<m , n\geq 0 .
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The scheme is stable if N\leq 3 and \lambda_{n}\leq 1/(2N) . But for N>3 , the

coefficient of w_{j-1}^{n} on the right-hand side of (4. 21) turns out to be negative

if 1\leq j<N_{0}=[(N+1)/2] . Consequently, assuming 0<\lambda<1/(2N) we get

w_{0}^{1}=(1-2N\lambda_{0})w_{0}^{0}+2N\lambda_{0}w_{1}^{0}=1-2N\lambda_{0}>0 ,

while

w_{1}^{1}=(1- \frac{N-1}{2})\lambda_{0}w_{0}^{0}+(1-2\lambda_{0})w_{1}^{0}+(1+\frac{N-1}{2})\lambda_{0}w_{2}^{0}=\frac{3-N}{2}\lambda_{0}<0 ,

which shows absurdity of the maximum principle. For the convergence,

one is referred to [E1] and [E2].

REMARK 4. 3: Although for N=3 the solution in the example

satisfies the maximum principle, it does not satisfy the strong maximum
principle because

w_{0}^{n}>0 , w_{j}^{n}=0(1\leq j\leq m) for n\geq 0

under present circumstances. This is why we have applied (SI) for j=1 ,

\ldots N_{0}-1 , which appears even for N=3 .

REMARK 4. 4: There are several other works on the difference
approximate schemes for elliptic equations and parabolic equations in

radial domains which ought to be mentioned here. But to our knowledge,

the scheme (S), or merely the linear part of it, is the first one which has

an accuracy of O(h^{2}) and is stable for all N\geq 1 , concerning a radial
domain and radial solutions. The difference approximations of elliptic

equations in radial domains were discussed in [D], [Fry], [SN], [SS] and
[Sw] for N\leq 3 . On the other hand, the difference approximations for par-

abolic equations in radial domains were studied in [A], [E1], [E2], [FaM] ,

[Fra], [I], [Sa] and [Sm], mostly for N\leq 3 . The only works dealing with

the case of N>3 are [E1] and [E2] which are concerning the linear para-

bolic problems, so far as we know. However, in [E1] it was assumed
that 2\leq N\leq 4 or N is even to get the uniform stability and convergence;

while for the difference scheme in [E2] the stability was proved for maxi-
mum norm but the consistency was obtained with respect to L^{p} norm It

was also pointed out in [E1] and [E2] that straightforward replacement of

derivatives by corresponding difference quotients could often lead to un-
bounded difference operators, even with respect to the L^{2} norm
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Illustrations of numerical computation of blow-up solutions.

Figure 1. Assume N=2, R=1 and \alpha=1 with the Dirichlet boundary

condition (\sigma=0) . The initial value is \phi(r)=1000\cos(\frac{\pi r}{2}) . Taking m=

50 and \lambda=10 , the graph shows the behaviour of the blow-up solution in
(t, r, u) -space.

t\approx T

O
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Figure 2. Assume N=5, R=1 and \alpha=3 with the Neumann boundary

condition (\sigma=1) . The initial value is \phi(r)=1000+500\cos(\pi r) . Taking

m=50 and \lambda=5 , the graph shows the behaviour of the blow-up solution
in (t, r, u)-space.

t\approx T
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Figure 3. The shape of the blow-up solution in Figure 1 at time t\approx T

in (x_{1}, x_{2}, u) -space.
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