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A new one-parameter family of 2X2 matrix bialgebras
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Introduction

Kobozev gives a nice construction of the quantum matrix bialgebra
M,(2) (in case ¢®*+—1) starting with two quantum planes A*° and A%
(Manin [M, Theorem 1.4]). The first author generalizes this con-
struction as follows. Let us work over an algebraically closed field 4
with char(k)#2. Let F be the free matric bialgebra on e,1<7, j<2 (see
Section 1), and consider the 2-dimensional F-comodule V =ke;+ ke, with
coaction e;1—2e;®e . The tensor algebra T(V)=k{e;, e:> has an
extended F-comodule algebra structure. The results of [T1, Section 3]
tell that if W is a subspace of T(V), there is a least subspace N(W) of F
such that the comodule structure map sends W into W® F+ T(V)® N(W)
and that N(W) is coideal.

Assume we are given a decomposition V® V=W & W,. We will
define a quadratic bialgebra F(W;, W2) as the quotient bialgebra of F by
the ideal generated by N(W:) and N(W).

Kobozev's previously mentioned theorem tells that Mq(2) is of this
type, with Wi, W, of dimensions 1 and 3. The quantum matrix bialgebra
M4(2) is well-studied, and it is known to be cosemisimple unless ¢ is a
root of 1.

In this paper we study a new one-parameter family of quadratic bial-
gebras B, of the form F(Wi, W,) with both W; 2-dimensional. Explicitly,
let A be a parameter in £ such that A#0, A*#1 (this assumption is techni-
cally needed), and put B:=F(V*, Vi), where

Vi=<(e1®et+e:®e, e1®e+e:® e
Vi=<Ke1®e—e:® e, (/1+/1_1—2)€1®61—(/1+/1_1+2)€2®62>.

The first remarkable property is that B; is associated with a Yang-
Baxter operator R; (see 1.7). Recall that M,(2) is associated with
Jimbo’s R-matrix. So we are in a similar situation.

In this paper we are mainly interested in representations and corepre-
sentations. We prove that Bai is cosemisimple if A is not a root of 1. In
case of My(2), the cosemisimplicity is proved by using the complete
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reducibilty of Us(s/(2)) and the duality of Mq(2) and U(s/(2)) (see [T2]).
Interestingly enough, in the present case of B, the role of U,(s/(2)) will
be played by Bi; itself!

In Section 1 we give two presentations of B, by generators and re-
lations. The first one follows directly from definition and the second one
follows from it by a linear transformation of generators.

In Sections 2 and 3 we develop representation theory of B:. [Theorem
2.1 tells that all simple B;-modules have dimensions 1 or 2 and that the
2-dimensional simple modules are classified by parameters &, 7€k with =
+7+0. [Proposition 3. 1 gives the decomposition rule for the tensor prod-
uct of simple modules.

Looking at the decomposition rule carefully, we deduce that there is a
nondegenerate bialgebra pairing wi.: BiX B.—F% if A, x are not roots of 1.
This pairing yields to embed B; into a subbialgebra of the dual bialgebra
By, so that corepresentation theory for B, can be thought of as part of
representation theory for B.. Using this, we claim that B is cosemisim-
ple and all nontrivial simple comodules are 2-dimensional (Section 5).

Section 6 deals with a realization of all nontrivial simple comodules
as the homogeneous components of the syzygies of the algebra T(V)/(V;)
=k[x, y]/(xy). Tensor product decompositions of simple comodules are
also described.

The main results were announced at the Tsukuba International Con-
ference on Representation of Algebras and Related Topics in August 1990
and at the San Fransisco meeting of the AMS in January 1991.

Convensions. The dual space of a vector space V is denoted by V*.
The dual bialgebra of a bialgebra B in the sense of is denoted by B°.
B-Mod and Comod-B stand for the categories of left B-modules and right
B-comodules, respectively.

1. The bialgebra B;

We fix a parameter A€k, A*+0, 1 and a square root A throughout.
Let V==F? with basis ei=(1, 0), e.=(0, 1). Then V® V is the direct sum
of subspaces :

Vi=(e1®e:t+e®e,e®e+e,® e
I/A_:<€1®ez—€2®e1, (ﬂ‘|‘/1_1—2)€1®81—(/1+/1_1‘|‘2)ez® e2>.

We define a bialgebra B; associated to these subspaces as follows
[T1].

Let F be the free algebra on e, 1<, <2, with the following bialge-
bra structure:

)
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d(el)= gez\{k Rey;, elel)=20dy.

The map e;—2)¢:®e; makes V into a right F-comodule. We define B;
=F/I,, the quotient bialgebra, with I; the smallest bi-ideal of F' such that
V*, Vi are F/I;-subcomodules of V® V.

With x; the image of e, we have the following defining relations of
B.:

(1.1) (1) xuXee=2Xe2x11
( i ) X12X21 = X21X12
(iii) X11x12—uX12X11:(1_#)x21X22
(iv)  Xo2xm1 + 12 =1+ 1) X221
(v)  xuxe— paxn = — (14 1) X202
(Vi) Xp2Xi2+ MX12X22— — (1 - #)3@19611
(Vii) X121 +x122:x221 +sz2
(Vlll) (1+#)x122= _(l‘ll)XZzl

where p=(A+A47")/2.
There is a more convenient presentation. Put

f= %(xu + X22)

g =—1—(x11 - XZz)

(1.2)

2
S:L< 1 X2+ 1 X21)
AT T
t:L< 1 X12— 1 JC21>
AT T )
We have

(1L.1)(1) &= fog=gf
1.D)(i1) & st=ts.

(1. D(ii)—(vi) are equivalent to
ST R o
0 i ST 2

which are rewritten respectively as

- i)
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(- )0

Assuming these relations, we have
(1. 1)(vii), (vii)=>fg=s>+1%, st=0.
It follows that B; is defined by generators f, g, s, ¢t and relations
fo=gf =s"+1?
st=ts=0

fs=Asg gs=A"lsf
ft=A"'tg gt=Atf.

With these new generators, we have

Af)=f®f+g®g+(A—A")s®s—t®1)
Ag)=f®g+g®f+(A—-A)t®s—s¢)
A(s)=f®s+g®t+sQf —tQyg
At)=f®t+9g®@s+i®f —s®g
e(f)=1e(g)=e(s)=e(¢)=0.

REMARK 1.4. We have Bi=B;-, because Vi =Vii. We have the
bialgebra automorphism o¢: B,—B,=B;-: taking x; to (—1)"7x,;, because
the automorphism e;— (—1)%; of V preserves the decomposition V® V=
Ve Vi. If we write s=s(y1), t=¢(J/A), then

o:ff, g—g, s(WA)t(YATY, t(JA)s(VA™).

This symmetry will be useful in later computations.

(1.3)

REMARK 1.5. B; has k-bases
{(x&xbxtxsila, b=0,0<c, d <1}
and

{Fis'li, 7 =0U{fit7]i =0, 1 >0}
U{g’s’li >0, 1=0}U{g't |7, 1 >0}.

REMARK 1.6. The GL(V)-orbits of the pairs (V*, Vi) for all A
occupy a dense subset of the set of pairs (U, U’) of subspaces of V® V
such that dimU=dimU’=2 and UCSym*(V), U DAIt*( V).

REMARK 1.7. Let R, be the linear automorphism of V' ® V such that
Ri=1on V* and R;=—A* on Vi. Explicitly



A new one-pavameter family of 2X2 matrix bialgebras 409

(A+1)?

RA=[1—L21)2]611®611+[1— 5 ez ® es
+—(’/1__21—)2‘€12 ® e+ (/Hél)z €21 ® e
+1_ (e11®enten®en)

+ 1+/12 (e12® en+ e ® er2)

where e;; are the matrix units. Then R, satisfies the Yang-Baxter equa-
tion

(Ri®1)1®R)(R:®1)=(19R)(R:®1)(1®R;)

in End(V® V® V). This is verified directly or as a consequence of [T,
Proposition 8.3]. Since B, is defined by the relation (X ® X)R,=R(X®
X), with X=(x1)5, B: has a braid structure in the sense of [H], [LT]
This braid sructure will be studied in detail in [T, Section 8].

2. Representation of B;

In this section we construct all simple Bi;-modules of dimension>1.

One will see that the following algebra maps ms(a, 8), m(a, B) for a, €
k are well-defined.

7Z'As(a’, B) . B,\“"Mz(k)

fH(a-:)_B agﬁ’>_%— g’_)<a55 a-?-,[:’)éi—
s—0 tH(a':)—B 0 )@

me(a, B) : Ba— Ma(k)
f|_)<a+/3 0 )L gH<a—B 0 ),1—1

0 a—p/2 0 at+tp/ 2
0 a—B\J/A!
SF<a+3 0 ) 5y tH0

THEOREM 2.1. (i)  Every irreducible representation of Bi has dimen-
sion 1 or 2.
(ii) Choose a square root V7 for each nSk. Then {ms(E, V), me(€,

Jn|E2Fn=+0} gives a complete list of 2-dimensional irvreducible representa-
tions of Ba.

PrOOF: By (1.3) we see that Bis, Bit are ideals annihilating each
other. Hence any irreducible representation of B kills s or ¢. So it is
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enough to consider representations of B./(s) and B./(¢).
Let K be the algebra defined by generators %, v, w and relations

uy =y
uw = wu
VW= —wWv
u*—vi=u’.
The following is easily verified.
PROPOSITION 2.2.  We have algebra isomorphisms

Bi/(s) >~ K =B/(t)
fHA g uef +2g
f=A'gouef—2g
2VAT'E cwe2/As

where bar means the residue class.

The centre of K is the polynomial algebra C=Fk[u, v*] and K is a
quaternion C-algebra generated by v and w. Therefore all irreducible
representations of K have dimensions 1 or 2, and any 2-dimensional one is
equivalent to the representation

")
—
u( :
)
},_.)
o o
E—n )
b
v <s+ﬁ
for a unique &, 7€k such that £#7=+0. Through the isomorphisms of
Proposition 2.2, the above map induces the representations ms(&, v7),

m(&,Vn) of Bs. This proves the theorem.

REMARK 2.3. The quaternion algebra K is split over C. Indeed we
have an injective C-algebra map

K—>M2(C)

u u2—1)2>
—1 —u
0 uz—vz)
1 0

oo
o

whose cokernel is annihilated by v%(«®— v?).
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This enables us to improve the parametrization of irreducible repre-
sentations of B; as follows. Let

ps: Bi— B/ (s)=K—M,(C)
Ot . BA*BA/(t)EK—)Mz(C)

be the composites of the natural surjections, the isomorphisms of Proposi-
tion 2. 2 and the above map. For & 7€k, composing ps, o: with the eval-
uation map u—&, v’—7, we have algebra maps ps(&, 7), (& 7):
Bi—=Mx(k). Then ps(a, B2)=ms(a, B), ola, B)=ma, B) if f+0, and
{os(&, 1), (&, 7)|E*+7n+0} is a complete list of 2-dimensional irreducible
representations of B,.

REMARK 2.4. Since ¢ is not a zero divisor in B./(s), we have
(s)N(#)=0. Thus we have a pullback diagram of rings:

B — BA/(S)

|

Bi/(t)——B:/(s, t).

The ideal (s, )=(x12, x21) is a bi-ideal of B; and the quotient bialgebra B/
(x12, x21) is generated by group-like elements %1, X2 with relations %1, %s=
. =2 __ =2

X22X11, X11— X22.

3. Tensor products of simple B;-modules

In this section we study tensor products of simple B:-modules. For a,
BEFk let Mis(e, B), Mi(a, B) be the Bi;-modules with underlying space £
and actions ms(a, 8), m:(a, B) respectively. We write e1=(1,0), e.=(0, 1)
€k*. The subscript A is omitted in this section.

PROPOSITION 3.1. Let a+=*B, a’'+=x 8, ad’+xBB. Then we have
isomorphisms of Bi-modules

(1) Ms(a, B)® M, B)=Ms(aa', BR")® M. (A2aa’, A*BB’)

a®ea+a®e —(e1, 0)

a®eat+e®e ‘—’(62, 0)

(a—B)Nad—B)a®ea—(a+8)ad+B)a®e (0, &)

(a—B)a+B)a®e—(a+B)a—B)e:®e (0, &)
(i) Ms(a, B)OM(a, B)=Ms(aa', BB)® Maa’, BB

(ad’+ BB (a—B)a®a+(a+B)e®e) —(e, 0)

(aa’ — BB ) (a—PB)a® e+ (a+B)e:®e) (e, 0)

(e’ + BB ) (' —B)a®e—(a'+ B)e:® e2) (0, &)
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(e’ — BB (@ +B)a®e—(a—B)e®ea) (0, &)
(iii) M(e, B)® Ms(a', B)=M:(aa’, BB)® Ms(aa’, BB’)
(iv) Mda, B)@M(a, B)=M(aa, BB)® Ms(Aaa’, A72B8"),
where the maps in (iii), (iv) are the same as the omes in (ii), (i) respec-
tively.
PROOF : (i) With respect to the basis ei®e;, e1®e;, e:®e1, e:Q ey,
the actions of g, s, ¢ on Ms(a, B)® Ms(a’, B’) are represented as follows.

aa’ — ,8,6’ 0 0 0
aa’ + BB 0 0 A
0 ad + BB’ 0 2
0 0 aa’ — BB’
yyYT o YT 0
0 0 —r Y VAR
—y v 0 0 rTrT 4
vyt ry” 0
YT oy 0
7* 0 0 7 r \Ja
> VA
g ytyt 0 0 ryr |4’
0 Yy royt 0

where y*=a=xp, y*=a'+ 8. Therefore Kers has the basis

e 0
0 y YT
(20 , W2 — ,_
‘ 0 =ty
—r'y” 0

We have the B;-isomorphisms

Ms(aa’, BB)=Kers: e v;
M.(aa’, *BB)=Kert: e~ w:.
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If (a’)?=(B8B’)% then KersNKert=0. This proves (1i).
(ii) For yEk let L(y) be the Bi-module with underlying space . and
character g—7v; f, s, t—=0. We have B;-isomorphisms

Ms(a, B)® L(y)=M:(Aay, ABy)
M.(a, B)® L(y)=M{A " ay, A7 By)

given by the same correspondence

e®l—(a+pB)es
—e® 1“*(&'—,8)61.

Therefore tensoring (i) with L(A™") yields (ii).

(iii) and (iv) follow from (ii) and (i), using the formula ms(a, B)=
m-1(a, B)°o, where o: B;— B is the bialgebra isomorphism of Remark
1. 4.

COROLLARY 3.2. Let A, u€k—{0} with A*#1+u'. If we let B act
on V==F through ms(1, 1), then V*, Vi (Section 1) are Bi-submodules of
Vev.

REMARK 3.3. The computations in the above proof show also that if
aa’ =T BB’, the composition factors of the tensor product modules in the
proposition are 1-dimensional.

REMARK 3.4. We consider here tensor products of the generic repre-
sentations ps, o:: Bi—MXC), where C=Fk[u, v*] (Remark 2.3). Let N,
N, be the (Bi, C)-bimodules with underlying right C-module C® and left
B;-actions through ps,0: respectively. An algebra map ¢: C—C®C
induces the scalar extension functor Mod-C—Mod-C® C, which we denote
by (—)?. Define algebra maps 4, 4': C—C®C by

4 uu®u, VP rey?
4 ulu®u, A2 00

Then there exist injective (Bi, C® C)-bimodule maps

N:® No—N#® N4
N;® N;—N¢ & N

with cokernels annihilated by (2@ 1)(#*® u*—v*® v*)EC® C.
4. Faithfulness of & ,.Ms(a, B)°"

In this section we show that the representation ns(a, 8): Bi—Ma(k)
factors through no proper quotient bialgebra of B; if A, @, 8 are general.
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PROPOSITION 4.1. Let a, SEk. Assume B+0 and a"+ " for all n
>0. Then we have isomorphisms of Bi-modules

Ms(a) B)®ﬂ
=~ mMs(/lz”‘a/”, AZmBn)ea("z;,‘) fasyyasy th(/'IZma,n, Aszn)@(;,;h)
for all n>0.

PROOF : This follows from [Proposition 3.1 easily by induction.

PROPOSITION 4.2. Let a, B€Ek B+0. Assume that neither A nor a/
B is a root of 1. Then the Bi-module ®ns0 Ms(a, B)°" is faithful.

PROOF: Set
Qs: @N MS(AZmanJ Azmﬁn)’ Qt — (__BN Mt(AZman, AZmBn)
ms'(ﬁl)/z 1;”’7:;/2

In view of Proposition 4.1 and the fact that (s)\(#)=0, it is enough to
show that the B./(s)-module Qs and the B./(¢#)-module Q. are faithful.
Set u=7f+4"'g, v=F—A"'GEB:/(s). Any nonzero ideal of B:/(s) has a
nonzero intersection with the centre k[u, v?]. Therefore Qs is a faithful
B./(s)-module if it is a faithful £[«, v*]-module, namely if there is no non-
zero polynomial P(X, Y) such that P(A*"a" A*"B*")=0 for all m, nEN
with m<(n—1)/2. But this is verified in an elementary way by using the
Vandermonde determinant and the assumption that A, @/8 are not roots of
1. The faithfulness of @: is proved similarly.

REMARK 4.3. A similar argument shows that the conclusion of Prop-
osition 4.2 holds if @f+0 and «, B are independent in the multiplicative
group of 4.

5. The bialgebra pairing w..: B:XB.—k

A bialgebra pairing means a bilinear map A X B—% with A, B bialge-
bras such that the adjoint maps A—B*, B—A* are algebra maps. In this
section we construct a bialgebra pairing w..: BiX B.—k, which is non-
degenerate if A, ¢ are not roots of 1. Using this, we prove that B, is
cosemisimple if g is not a root of 1.

The bialgebra pairing arises as a consequence of [Corollary 3.2 Let
A, p€k—{0} with A*+=1+*. We consider V=F? which is a left B;-module
through ms(1, ), hence a right Bf-comodule. [Corollary 3.2 means that
the subspaces V', Vi of V®V are Bj-subcomodules. Hence the univer-
sality of B, yields a bialgebra map B.,—Bj, or a bialgebra pairing wi:
B: X B,—k.
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The pairing w=uws,. is described as follows:
w(xu, xll):%(l"'/l'i‘/l—/l/l)
w(a1, xzz)z%(l'i"/i—ﬂ-f-/iu)

a)(xzz, xu) :—%—(1 — A+ j2 + A,U)

w(x22, %22) Z%(l —A—p—Ayn)

C()(JC12, JC12> = —%(1 - /1)(1 - ﬂ)
(2, 7)== (1= A1+ )
W, 12)= =1+ (1~ )

cu(le, x21): __%“(1”*‘/1)(1"'#)
w(%i;, x.)=0 for the other i, j, %, /.
In particular w..(a, b)=wu:(b, a) for all aEB,, bE B,.

THEOREM 5.1.  If wneither A nor p is a root of 1, then the paiving
Wi 1S nondegenerate.

PROOF: By symmetry it is enough to show that the map fw: B,— B}
adjoint to w is injective. Let p: T(End(V)*)— B, be the natural surjec-
tion. The map p*°*w is identified with the map B:—II.-End(V®") coming
from the Bi-module structures of V°®". As V=M1, ¢), the Bi-module
®,V*®" is faithful by [Proposition 4.2, Thus *w is injective.

Right Bu-comodules are viewed as left B;-modules through the algebra
map ‘w: B,—Bj¥. This functor is denoted by j: Comod-B,— B;-Mod. If
A, ¢ are not roots of 1, then by [Theorem 5.1 *w has a dense image. In
this case j is fully faithful and Im; is closed under submodules.

THEOREM 5.2. If pis not a voot of 1, them B. is cosemisimple.

PROOF : Take A=py. Proposition 4.1 means that the B;-modules
J(Ve)=j(V)°"=M(1, £)°" are semisimple for all #n. Therefore the B,-
comodules V°” are semisimple for all ». Thus B, is cosemisimple.

COROLLARY 5.3. If u is not a root of 1, all simple Bu-comodules are
2-dimensional except for the trivial ome. In particular 1 is the unmique
grouplike element in Bh.



416 M. Takeuchi and D. Tambara

6. The Koszul complex and simple B.-comodules

If ¢ is not a root of 1, all nontrivial simple B.-comodules are 2-
dimensional. In this section we give an explicit construction of them by
means of the Koszul complex ([M, Section 9]). We consider the quadratic
graded algebra

Su=®Sun=T(V)/(Vi)
and its Manin dual
Su=®nSun=T(V*)/((Vi)).

The subscript ¢ will be omitted if no confusion may arise. (Si)* is
canonically identified with the subspace (Np+g=n-—2 V® Vi ® V® of V*®”
for each »=0. The Koszul complex of S. consists of the differential
maps

1®(incl)

(mult)®1
Omn: Snoa®(Shar) s St ® V & (Sh) s Sy ® (S)*.

The canonical right Bu.-comodule structure of ¥V makes S (resp.S) into a
right (resp. left) comodule algebra. Hence the Koszul complex consists of
right B.-comodules and comodule maps. We define Sum»=Sm,=Im 0Onn
for m, n=0.

THEOREM 6.1. If u is not a root of 1, then Sman for m>0, n=0
form a complete list of nontrivial simple Bu-comodules.

PROPOSITION 6.2. If ¢ is not a root of 1, them we have isomor-
phisms of Bu-comodules

Sm,n ® Sm’,n’g Sm+m’,n+n' @ Sm+m’—l,n+n’+1
for m, m’>0, n, n'=0.

REMARK 6.3. The graded algebra R=T(V)/(V™) is also a right
Bu-comodule algebra. The compositions (Si)* < T(V),— R. of the

natural maps are isomorphisms for all # if ¢ is not a root of 1.

Before proving these results, we give an explicit description of Snu,».
For elements x, vy of an algebra we write

(x. v} :{(xy)’”z if n is even
VI (ey)* 2% if % is odd.

Set
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fi=(g—De+(pg+1)ex
fi=(p—1)er—(p+1)e.
The algebra S is defined by generators fi, fz and relations fi/e=/2/1=0.

Hence S, has the basis f?, 7 and (Si)* is identified with the linear span
of {A, fo)n, {f2, filn in V®" for n>0. We see easily that

Omn: fPIR{Ss, firtns1 —fT® {fir, fi}n
e {fy, filnn 0

where i’=3—i. Hence Sn.» has the basis f7®{f, fi}r, [F®{f, fo}n for m>
0, n=0.

Let y;;< B, be such that the comodule structure of V is given by
fi3./:®v;. The condition that V5 is a subcomodule of ¥V'® V' amounts
to the relations vivi=1y2ya=0 for i=1, 2. It follows that the comodule
structure of Sn,. is given by

2 fy, fitn '—’21 (Fr®{fe, fi}n) ® YE yirs, Vishn.
We have

( _.):<f+~/ﬁs+x/ﬁ‘lt g—@‘ISﬂ/ﬁz‘)
Yo g+ ts+ut f—Jus—Ju 't/

The following is proved easily by induction.

LEMMA 6.4. We have

yi-’%{yjj, yii}nEYii(f+/J_lg)m_l(f—/l_lg)n mod s
=y, (f +pg)" "(f —ug)" mod ¢
Y Vs, Vitn=yi(uf +9)" N (—uf+g)" mod s

=y,;(u " (= f+9)" mod ¢
for i1¥].

Mheorem 6.1 and Proposition 6.2 are proved by means of the pairing
w... Let A, u# be not roots of 1. We have the embedding 7 : Comod-
B,— B;-Mod induced by wi. (Section 5). For m>0, n=0 set $r=/1'®{f,
filn, d2=FF®{f1, fo}n, the basis of Sum,n.

PROPOSITION 6.5. We have isomorphisms of Bi-modules

7Sumn = Mas(A", A"p™) if nis even
1+ ™) b1+ d2) e
—(1=p"") (1~ o) e

3Sumn = M (A%, AW ™) if nis odd
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¢1+¢2‘—’el
¢1“¢2‘—’€2.
PrROOF: Let ¢: Bi—End(Sum».) be the module structure of /Sum.n.
Identify End(Su,n,»)=M.(k) by the basis ¢1, ¢». Then

the (7, ) entry of the matrix @(x:)
:G)A,#(xkly yZ’-{ywr, yij}n)
=the (k, /) entry of the matrix mmus(1, )y visr, Vis}n).

One can compute the last matrix using Lemma 6.4. It results that ¢ is
given by

< 1+2 (—1>"<1—A)#m+")ﬁ
M= 1”(1 A);/“" 1+2 2
(=D*A+D) ™™\ (= Q)"
xz*’(( 1) (1+,1),/ﬂ+" 14 ) 2
(( 1" ’”*”)A”u A)
#m+n __( 1) 2

(=D" ="\ (=D"1+A)
Xz21 }_’( ﬂm+n _(__l)n/ 2 .

Comparing this with the representations of Section 2, the proposition fol-
lows.

Now let us prove [Theorem 6.1 and Proposition 6.2 Take any A€k
which is not a root of 1. By Propositions and .1, the Bi-modules
JSu,mn for m>0, n>0 are in one to one correspondence with the isomor-
phism classes of the simple direct summands of j(V*®') for />0. This
proves [lheorem 6.1. [Proposition 6.2 follows from Propositions and
3.1
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