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\S 1. Introduction

The purpose of this paper is to classify nonsingular flows with trans-
verse similarity structures satisfying certain auxiliary conditions. We
consider such flows as foliations with transverse similarity structures and
the classification is done in this view point. A motivation for th^{:s} study is
as follows. In Nishimori [7], the author investigated the qualitative prop-
erties of foliations with transverse similarity structures and gave an anal-
ogy of Sacksteder’s theorem (in Sacksteder [8]) on codimension one folia-
tions. Furthermore for such foliations, Matsuda [6] gave an analogy of a
theorem of Hector and Duminy (in Hector [5] and in Cantwell and Conlon
[1] ) on codimension one foliations. So we are interested in concrete
examples of foliations with transverse similarity structures.

Here we give the difinition of foliations with transverse similarity
structures. A codimension qC^{\infty} foliation \mathscr{F} of a C^{\infty} manifold M has a
transverse similarity structure if there exsits an open covering \{ U_{\iota}\cdot\}_{\iota\in I}. of
M , a family \{h_{i} : U_{i}arrow R^{q}\}_{i\in I} of C^{\infty} submersions such that (1) \mathscr{F}|_{U_{i}}=\{h_{l}^{-1}.

(t)\}_{t\in h_{i}(U_{i})} , and (2) for each i,j\in I with U_{i}\cap U_{j}\neq\phi , there exists a
similarity transformation \gamma ji : R^{q}arrow R^{q} satisfying.

\gamma_{ji}\circ(h_{i}|_{U_{i\cap}U_{j}})=h_{j}|_{U_{i}\cap U_{j}} .

We call \theta=\{U_{i}, h_{i}, \gamma_{ji}\} a transverse similarity structure of \mathscr{F}.
By starting from one of such submersions h_{i} ’s, we can construct the

analytic continuation and obtain a C^{\infty} submersion D:\overline{M}arrow R^{q} , where \overline{M} is
the universel covering of M. We call D a developing map of the foliation
\mathscr{F} with the similarity structure \theta=\{U_{i}, h_{i}, \gamma_{ji}\} . As is well known (see
Godbillon [4] for example), there exists a homomorphism \Phi:\pi_{1}(M) -arrow Sim
(q) such that D\circ\gamma=\Phi(\gamma)\circ D for all \gamma\in\pi_{1}(M) , where Sim(q) is the group of
similarity transformations of R^{q} . In this paper, we work in the oriented
category for simplicity. So we suppose that \gamma ji ’s are orientation preserv-
ing, that is, \gamma_{ji}\in Sim_{+}(q) .

If the dimension of such \mathscr{F} is zero, the triple (M, \mathscr{F}, \{ U_{i}, h_{i}, \gamma_{ji}\}) is a
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similarity manifold, which is classified by Fried [2] in the case where M

is closed. If the dimension of such \mathscr{F} is one, the triple can be considered
as a nonsingular flow with a transverse similarity structure. In a sense,
our result may be considered as a generalization of that of Fried [2].

The plan of this paper is as follows. In \S 2, we quote the results of
Fried [2] on closed similarity manifold in a formulation which is conve-
nient for our purpose. In \S 3, we give examples of nonsingular flows with
transverse similarity structures, which will make up the classification list.
In \S 4, we describe the auxiliary conditions and state our main result
(Theorem 4.5) on the classification. In \S 5, we prove Theorem 4.5. We
work in the C^{\infty} category, and hereafter we omit the term C^{\infty}

\S 2. The classification of closed oriented similarity manifolds due to
Fried

In this section, we quote the results in Fried [2] in a somewhat
modified form which is convenient for the later application.

Let N be a connected closed oriented similarity manifold of dimension
q\geqq 1 , and D : \overline{N}

- R^{q} an orientation preserving developing map of N,

where \overline{N} and R^{q} are naturally oriented. The following theorem is the
crucial result of Fried, which makes the classification possible.

THEOREM 2. 1. (Fried [2]) (1) If q=1 , then D is a diffeomorphism
onto its image D(\overline{N}) and one of the following cases occurs:

(i) D(\overline{N})=R,

(ii) D(\tilde{N})=]a, \infty [ or]-\infty , a [ for some a\in R.

(2) If q\geqq 2 , then D is a covering map onto its image D(\overline{N}) and one of
the following cases occurs:

(i) D(\overline{N})=R^{q},

(ii) D(\overline{N})=R^{q}-\{a\} for some a\in R^{q} .

{Note that D is a diffeomorphism onto its image except the case (ii) with q

=2.)

We call N Euclidean if D(\overline{N})=R^{q} , and radiant otherwise. When N
is radiant, we may suppose that a in Theorem 2.1 coincides with the ori-
gin 0 of R^{q} by modifying the developing map D.

In order to state the classification result, we define the isomorphisms
between closed oriented similarity manifolds as follows.

DEFINITION 2. 2: Let N_{1} and N_{2} be closed oriented similarity mani-
folds. We say that N_{1} is isomorphic to N_{2} if there is an orientation preser-
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ving homeomorphism g:N_{1}arrow N_{2} such that, if D_{2} : \overline{N}arrow R^{q} is an orienta-
tion preserving developing map and \tilde{g}:\tilde{N}_{1}arrow\tilde{N}_{2} is a lift of g , then D_{2}\circ\tilde{g} :
\overline{N}_{1}arrow R^{q} is an orientation preserving developing map. We call such g:N_{1}

arrow N_{2} an isomorphism. (Note that such g becomes automatically a real
analytic diffeomorphism.)

We give examples of closed oriented similarity manifolds, which will
form the classification list of Fried [2].

EXAMPLE 2. 3: Let \Gamma be a lattice group of R^{q} and denote by N^{q}(\Gamma)

the Euclidean closed oriented similarity manifold obtained as the quotient
R^{q}/\Gamma- Clearly N^{q}(\Gamma_{1}) and N^{q}(\Gamma_{2}) are isomorphic if and only if there
exists an orientation preserving similarity transformation g:R^{q}arrow R^{q} such
that g\Gamma_{1}g^{-1}=\Gamma_{2} .

EXAMPLE 2. 4: Take r\in ]0,1 [ and define a map m_{r} : Rarrow R by
m_{r}(x)=rx for all x\in R . Denote by N^{1}(r, +) (respectively N^{1} ( r , -)) the
radiant closed oriented similarity manifold obtained as the quotient of the
interval ] 0 , \infty [ (respectively]-\infty , 0 [ ) by the cyclic group generated by m_{r} .
Clearly N^{1}(r, +) and N^{1}(s, -) are not isomorphic for all r , s\in ] 0 , 1[. If
r\neq s , then N^{1}(r. +) and N^{1}(s, +) (respectively N^{1} ( r , -) and N^{1}(s , -))
are not isomorphic.

EXAMPLE 2. 5: Suppose that q=2 and identify R^{2} with C . Consider
the exponential map exp:Carrow C-\{0\} and the oriented similarity structure
\theta=\exp^{*}\theta_{0} on C induced from the canonical oriented similarity structure \theta_{0}

of C-\{0\} by the map exp . Then a homeomorphism g:C -arrow C is an
automorphism of oriented similarity manifold ( C, \theta) if and only if g is a
translation (since \exp(z+\alpha)=\exp(z) \exp(\alpha) ). Hence a lattice group \Gamma of
C=R^{2} acts on ( C, \theta) as an automorphism group, and determines a radi-
ant closed oriented similarity manifold N^{2}(\exp\Gamma) as the quotient. Note
that N^{2}(\exp\Gamma_{1}) and N^{2}(\exp\Gamma_{2}) are isomorphic if and only if \Gamma_{1}=\Gamma_{2} .

EXAMPLE 2. 6: Suppose that q\geqq 3 . Let K be a finite orientation
preserving isometry group of the standard sphere S^{q-1} such that the qu0-
then S^{q-1}/K is a manifold. (See Wolf [9] for the classification of such
K.) One can naturally consider K as a group of similarity transforma-
tions of R^{n} Take an orientation preserving similarity transformation \gamma :
R^{q}arrow R^{q} such that \gamma(0)=0 and ||\gamma(x)||<||x|| if x\neq 0 . (We call such \gamma

contracting.) Denote by \langle\gamma\rangle the cyclic group generated by \gamma . Suppose
that \gamma K\gamma^{-1}=K , and let G be the group generated by K\cup\{\gamma\} (that is, G=
K>\triangleleft\langle\gamma\rangle) . Denote by N^{q}(K\rangle\triangleleft\langle\gamma\rangle) the radiant closed oriented similarity
manifold obtained as the quotient of R^{q}-\{0\} by G . Note that N^{q}(K_{1}x
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\langle\gamma_{1}\rangle) and N^{q}(K_{2}*\langle\gamma_{2}\rangle) are isomorphic if and only if there exists orienta-
tion preserving similarity transformation g:R^{q}arrow R^{q} such that g(0)=0 and
gG_{1g}^{-1}=G_{2} , where G_{1}=K_{1}\rangle\triangleleft\langle\gamma_{1}\rangle and G_{2}=K_{2}* \langle \gamma\rangle .

Now we can state the classification result.

THEOREM 2. 7. (Fried [2]). Let N be a connected closed oriented
similarity manifold.
(I) If N is Euclidean, then N is isomorprhic to N^{q}(\Gamma) for some lattice
group \Gamma of R^{q} .
(II) Suppose that N is radiant.
(i) If q=1 , then N is isomorphic to N^{1}(r, +) or N^{1}(r, -) for some r
\in]0,1[ .
(ii) If q=2 , then N is isomorphic to N^{2}(\exp\Gamma) for some lattice group \Gamma

of C.
(iii) If q\geqq 3 , then N is isomorphic to N^{q}(K>\triangleleft\langle\gamma\rangle) for some K and \gamma.

One can easily classify the automorphisms g:Narrow N. But we omit
the details.

\S 3. Examples of nonsingular flows with transverse similarity struc-
tures

In this and the next sections, we are going to classify nonsingular
flows \phi : M\cross Rarrow M with transverse similarity structures under certain
conditions. We treat only oriented underlying manifolds M. Hence such
flows have the natural transverse orientation. We begin by describing the
isomorphism between such flows.

DEFINITION 3. 1: Let M_{1} and M_{2} be closed oriented manifolds of
dimension n\geqq 2 and \phi_{1} and \phi_{2} nonsingular flows with transverse similarity
structures. We say that \phi_{1} is isomorphic to \phi_{2} if there exists an orienta-
tion preserving diffeomorphism f:M_{1}arrow M_{2} such that
(1) for all x\in M_{1} , there exists an orientation preserving homeomorphism
\alpha:Rarrow R with

f\circ\phi_{1}(x, t)=\phi_{2}(f(x), \alpha(t)) for all t\in R ,

(2) if U is an open subset of M_{2} and a submersion h:Uarrow R^{n-1} is compat-
ible with the transverse similarity structure of \phi_{2} , then h\circ f:f^{-1}(U) -arrow R^{n-1}

is compatible with the transverse similarity structure of \phi_{1} .
We call such f:M_{1}arrow M_{2} an isomorphism between \phi_{1} and \phi_{2} .

Our intention is the classification of nonsingular flows with transverse
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similarity structures up to the above isomorphisms. Now we give exam-
ples.

EXAMPLE 3. 2: Suspension flows. Let N be a closed oriented simi-
larity manifold of dimension n-1 and g:Narrow N an automorphism of N.
Consider a Z-action on N^{\backslash }\cross R defined by

n\cdot (x, t)=(g^{n}(x), t-n) for n\in Z and (x, t)\in N\cross R .

Since the vector field \partial/\partial t on N\cross R is preserved by this action, it induces
a vector field X on the quotient manifold M of N\cross R by this action.
Furthermore this action preserves the transverse similarity structure of
\partial/\partial t induced from the similarity structure of N. Hence the vector field X
generates a nonsingular flow \phi:M\cross R - M with a natural transverse sim-
ilarity structure. We call \phi_{(N,g)} :=\phi the suspension flow of N by g . Note
that \phi_{(N_{1},g_{1})} and \phi_{(N_{2},g_{2})} are isomorphic if and only if there exists an isomor-
phism h:N_{1}arrow N_{2} such that the diagram

h\downarrow N_{1}\underline{g_{1}}N_{1}\downarrow h

N_{2}-N_{2}
g_{2}

commutes.

EXAMPLE 3. 3: Circle bundle flows. Let N be a closed oriented simi-
larity manifold, and \xi=(M, \pi, N) an oriented circle bundle. Let \phi:M\cross R

arrow M be a nonsingular flow such that the orbits of \phi are the fibers of \xi ,

and the natural orientation of an orbit of \phi coincides with that as a fiber
of \xi . Then the similarity structure of N determines a transverse similar-
ity structure of \phi . We call \phi_{\xi} :=\phi a circle bundle flow over N. Note
that the circle bundle flows \phi_{\xi_{1}} and \phi_{\xi_{2}} are isomorphic if and only if there
exists an orientation preserving bundle isomorphism

\pi_{1}\downarrow M_{1}\underline{f}

M_{2}\downarrow\pi_{2}

N_{1}\overline{h}
N_{2}

such that h:N_{1}arrow N_{2} is an isomorphism. If \xi is a trivial bundle, then the
circle bundle flow \phi_{\xi} is isomorphic to the suspension flow \phi_{(N,1d)} .

We can generalize the circle bundle flows as follows. Let N be a
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closed oriented similarity manifold of dimension 2. Then N is
diffeomorphic to T^{2} and any Seifert bundle M over N has a nonsingular
flow \phi : M\cross R -arrow M with a transverse similarity structure in the similar
way as circle bundles.

EXAMPLE 3. 4: Contraction flows. For n\geqq 2 , take an orientation
preserving contracting similarity automorphism g:R^{n-1}arrow R^{n-1} with g(0) ,
and define a map f:R^{n}arrow R^{n} by

f(x, t)=(g(x), rt) for x\in R^{n-1} and t\in R ,

where r>0 means the similitude ratio of g. Then f is an orientation
preserving similarity transformation of R^{n} . Consider a vector field \overline{X} on
\overline{M}:=R^{n}-\{0\} defined by

\overline{X}(x, t)=||(x, t)||\cdot\frac{\partial}{\partial t} for (x, t)\in R^{n-1}\cross R-\{(0,0)\}=\overline{M} .

Note that \overline{X} is a nonsingular vector field with the transverse similarity
structure induced from the canonical similarity structure of R^{n-1} by the
submersion h:\overline{M}arrow R^{n-1} defined by

h(x, t)=x for (x, t)\in R^{n-1}\cross R-\{(0,0)\}=\overline{M} .

Since f|\overline{M} is an automorphism of \overline{X}, we have a vector field X on the
quotient manifold M of \overline{M} by the cyclic group generated by f|\overline{M} . Then
X generates a nonsingular flow \phi:M\cross R - M with the transverse similar-
ity structure induced from that of \overline{X} . We call \phi_{g} :=\phi a contraction flow.
Clearly \phi_{g} has exactly two closed orbits and M is diffeomorphic to S^{1}\cross

S^{n-1} . The subset \overline{N}:=(R^{n-1}-\{0\})\cross\{0\} of \overline{M} is invariant by f|\overline{M} , and
submersed onto a submanifold N of M. Since N is transverse to \phi_{g} , it is
a closed similarity manifold. If n=3 , then N is isomorphic to N^{2}(\exp\Gamma) ,
where \Gamma=\{pz+q\cdot 2\pi\sqrt{-1}:p, q\in Z\} and z is any complex number such that

g(x)=(\exp z)\cdot x for x\in C=R^{2} .

If n\geqq 4 , then N is isomorphic to 1V^{n-1}(\{id\}>\triangleleft\langle g\rangle) . Note that \phi_{g1} and \phi_{g2}

are isomorphic if and only if there exists an orientation preserving similar-
ity automorphism h:R^{n-1}arrow R^{n-1} such that h\circ g_{1}\circ h^{-1}=g_{2} .

EXAMPLE 3. 5: Generalized contraction flows. We consider the case
n=2 in Example 3. 4. Then there exists uniquely r\in ] 0,1 [ such that g(x)
=rx for all x\in R , that is, g=m_{r} . We see that N is isomorphic to the
disjoint union N^{1}(r, +)\cup N^{1}(r . -) . Take \nu\in N and consider the \nu-fold
covering \pi:\hat{M}arrow M such that \pi^{-1}(N) has 2v connected components. The
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lift \phi_{(r,\nu)} of \phi_{g} by \pi is naturally a nonsingular flow with a transverse
similarity structure. We call \phi_{(r} a generalized contraction flow. Note
that \phi_{(r,\nu)} has exactly 2\nu closed orbits and M is diffeomorphic to T^{2} .

Clearly \emptyset(r,\nu) and \phi(s,\mu) are isomorphic if and only if r=s and )\supset=\mu .

\S 4. Statement of the results

In this section, we give a classification of nonsingular C^{\infty} flows with
transverse similarity structures satisfying certain conditions. We begin by
giving definitions, which are needed in order to describe the conditions.
Let M be a closed oriented manifold of dimension\geqq 2 and \phi:M\cross Rarrow M a
nonsingular flow with a transverse similarity structure.

DEFINITION 4. 1: A submanifold N of M is a closed transversal to \phi

if N is a codimension one closed submanifold and N is transverse to \phi .

REMARK 4. 2: Since a closed transversal N to \phi has the canonical
similarity structure induced from the transverse similarity structure of \phi ,

we can find N in the classification table of the closed similarity manifolds
(due to Fried [2]) described in \S 2. This is the starting point of our
research.

REMARK 4. 3: All the suspension flows \phi_{(N,g)} in Example 3.2, all the
contraction flows \phi_{g} in Example 3.4, and all the generalized contraction
flows \emptyset(r, \nu) in Example 3.5 have closed transversals. On the other hand,
some circle bundle flows \phi_{\xi} in Example 3.3 have no closed transversal.
For example, take a circle bundle \xi=(M, \pi, N_{0}) such that N_{0} is a closed
oriented similarity manifold of dimension 2 (which implies that N_{0} is
diffeomorphic to the 2-torus T^{2}), and the Euler number eu(\mbox{\boldmath $\xi$}) of \xi is not
zero. Then the circle bundle flow \phi_{\xi} has no closed transversal. For,
otherwise, the restriction \pi|_{N} : Narrow N_{0} is a covering map, where N is a
closed transversal to \phi . Since the induced bundle (\pi|_{N})^{*}\xi has a section,
its Euler number eu((\pi|_{N})^{*}\xi) is zero. This implies that eu(\mbox{\boldmath $\xi$}) =0 . A con-
tradiction.

DEFINITION 4. 4: Suppose that \phi has a closed transversal N. We
say that the pair (\phi, N) has the lifting property if, for any continuous map
c : [a, b] -arrow N, any number \tau\in R-\{0\} and any compact codimension one
submanifold T of M such that \phi(c(a), \tau)\in IntT and T is transverse to
\phi , there exists b^{*}\in[a, b] and a continuous map H:[a, b^{*}]\cross J - M (where
J=[0, \tau] if \tau>0 and J=[\tau, 0] if \tau<0 ) such that
(1) H(s, O)=c(s) for all s\in[a, b^{*}] ,
(2) H(a, t)=\phi(c(0), t) for all t\in J ,
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(3) H(\{s\}\cross J)\subset\phi(\{c(s)\}\cross R) for all s\in[a, b^{*}] ,
(4) H([a, b^{*}]\cross\{\tau\})\subset T .
(5) if b^{*}<b , then H(b^{*}, \tau)\in\partial T

We call H a lift-homotopy of \phi|_{\{c(a)\}\cross[0,r]} along c and T

Now we can state the result of classification, which is the main result
of this paper.

THEOREM 4. 5. Let M be a closed oriented C^{\infty} manifold of dimen-
sion n\geqq 2 and \phi a nonsingular C^{\infty} flow with a transverse structure. Sup-
pose that \phi has a closed transversal N and the pair (\phi, N) has the lifting
property. Then \phi is isomorphic to (1) the suspension flow \phi_{(N,g)} for some
closed similarity manifold N and some C^{\infty} automorphism g of N, (2) the
contraction flow \phi_{g} for some contracting similarity transformation g : R^{n-1}

arrow R^{n-1} . or (3) the generalized contraction flow \phi_{r}(\nu_{\rangle} for some r>0 and 1/

\in N(in the case n=2).

REMARK 4. 6: When n=3, the concept of a transverse similarity
structure to a nonsingular flow coincides with that of a transverse com-
plex affine structure. Ghys [3] treated this case, independently and with-
out our auxiliary conditions.

\S 5. The proof of Theorem 4. 5

Let M be a connected closed oriented manifold of dimension n\geqq 2 and
\phi : M\cross R -arrow M a nonsingular flow with a transverse similarity structure.
Suppose that \phi has a closed transversal N and the pair (\phi, N) has the
lifting property. We may suppose that N is connected.

Here we recall the usual notations. Let x\in M . We call O(x):=\{\phi(x ,
t):t\in R\} the orbit of x and O^{+}(x):=\{\phi(x, t):t>0\} (respectively O^{-}(x):=

\{\phi(x, t) : t<0\}) the positive (respectively negative) semi-Orbit of x . We
call L^{+}(x) := \bigcap_{\tau>0}\overline{\{\phi(x,t).\cdot t\geqq\tau\}} (respectively L^{-}(x):= \bigcap_{\tau<0}\overline{\{\phi(x,l).\cdot t\leqq\tau\}}

the \omega- limit set (respectively \alpha- limit set) of x . For a subset A of M, we
call Sat(A): =\{\phi(x, t):x\in A, t\in R\} the saturation of A. It is well known
that L^{+}(x) , L^{-}(x) and Sat(A) are invariant (that is, the union of a family
of orbits of \phi ).

Now we divide the situation into the following two cases:
Case I. O^{+}(x)\cap N\neq\emptyset for all x\in N .
Case II . O^{+}(x_{0})\cap N=\emptyset for some x_{0}\in N .
First consider Case I. For x\in N , let g(x) be the first intersecting

point of O^{+}(x) with N. Then the obtained map g:Narrow N is an immer-
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sion. Hence the image g(N) is a compact open subset of N. Since N is
Hausdorff and connected, it follows that g(N)=N, which implies that Sat
(N)= M. Furthermore we see that g:Narrow N is an automorphism of the
closed oriented similarity manifold N, and that \phi is isomorphic to the
suspension flow \phi_{(N,g)} .

Hereafter we consider Case II . Note that the \omega- limit set L^{+}(x_{0}) of x_{0}

is compact, connected, nonempty and invariant, and that the saturation
Sat(iV) of N is an open subset of M .

LEMMA 5. 1. L^{+}(x_{0})\subset\partial Sat(iV) :=\overline{Sat(N)}- Sat(iV)

PROOF : It is clear that L^{+}(x_{0})\subset\overline{Sat(N)} . Suppose that there exists
a point y\in L^{+}(x_{0})\cap Sat(N) . Since y\in Sat(N) , there exists x\in N and t\in R

such that y=\phi(x, t) . Since L^{+}(x_{0}) is invariant and y\in L^{+}(x_{0}) , it follows
that x\in L^{+}(x_{0}) . Hence the positive semi-0rbit O^{+}(x_{0}) must intersect N
infinitely many times, which contradicts the assumption O^{+}(x_{0})\cap N=\emptyset .

Hence L^{+}(x_{0})\cap Sat(N)=\emptyset . \square

Let \iota : Narrow M be the inclusion map, and \pi:\overline{M}arrow M and \pi_{N} : \overline{N}arrow N

the universal covering maps. We can construct a developing map D:\overline{M}

arrow R^{n-1} of the nonsingular flow \phi with the transverse similarity structure
in a natural way. We have the following diagram:

\overline{N}

\pi_{N}\downarrow

\overline{M}\underline{D}R^{n-1}

\pi\downarrow

N\overline{\iota}M

We are going to take three compact disks T\subset M,\overline{T}\subset\overline{M} and \overline{T}\subset

R^{n-1} . and six points y , z\in Int T. \tilde{y},\tilde{z}\in Int\overline{T} and \hat{y},\hat{z}\in Int\overline{T} First
take a point z\in L^{+}(x_{0})\subset M . Choose a point \overline{z}\in\pi^{-1}(z)\subset\overline{M} and put \overline{z}=

D(\tilde{z})\in R^{n-1} . Next take a sufficiently small compact (n-1)-disk \overline{T} in \overline{M}

such that \overline{z}\in Int\overline{T} and \overline{T} is transverse to the lift \tilde{\emptyset}:\overline{M}\cross R -
arrow\overline{M} of \phi .

Put T=\pi(\overline{T})(\subset M) and \overline{T}=D(\overline{T})(\subset R^{n-1}) . We may suppose that \pi|_{\overline{T}} :
\tilde{T}arrow T and D|_{\tilde{T}} : \tilde{T}arrow\hat{T} are diffeomorphisms. Then T and \hat{T} are com-
pact disks. Furthermore z\in IntT and \hat{z}\in Int\hat{T} Last we take the points
y,\overline{y} and \hat{y} as follows. Since z\in L^{+}(x_{0}) , there exists \tau>0 with y:=\phi(x_{0} ,

\tau)\in IntT Put \overline{y}=(\pi|_{\overline{T}})^{-1}(y)\in Int\tilde{T} and \hat{y}=D(\tilde{y})\in Int\hat{T}

Define a curve \omega:[0, \tau]arrow M by \omega(t)=\phi(x_{0}, t) for all t\in[0, \tau] , and let
\overline{\omega}:[0, \tau] -

\overline{M} be the lift of \omega with \tilde{\omega}(\tau)=\overline{y} . Put \tilde{x}_{0}=\tilde{\omega}(0) . Note that
D(\overline{x}_{0})=D(\overline{y})=\hat{y} because the points \overline{x}_{0} and \overline{y} are on the same orbit of the
flow \phi . Since \tilde{x}_{0}\in\pi^{-1}(x_{0}) , there exists an immersion \tilde{\iota}:\overline{N}arrow\tilde{M} such that
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\overline{x}_{0}\in\tilde{\iota}(\overline{N}) and the diagram

\tilde{\iota}

\tilde{N}-\tilde{M}

\pi_{N}\downarrow \downarrow\pi

N\overline{\iota} M

commutes. Choose a point \overline{x}_{N}\in\tilde{\iota}^{-1}(\overline{x}_{0}) .
Since the similarity structure of N comes from the transverse similar-

ity structure of \phi , the composition D_{N} :=D\tilde{\iota}:\tilde{N}arrow R^{n-1} is a developing
map of N. By Theorem 2.1, the map D_{N} : \tilde{N}arrow D_{N}(\tilde{N}) is a covering map
and the image D_{N}(\tilde{N}) is one of the following :

(a) the whole R^{n-1} .
(b) R^{n-1} deleted a point (n-1\geqq 2) ,
(c) a connected component of R deleted a point.

This implies that the intersection Int \hat{T}\cap D_{N}(\tilde{N}) is diffeomorphic to (a)
an open disk, (b) a punctured open disk of dimension n-1\geqq 2 , or (c) an
open interval. Note that Int \hat{T}\cap D_{N}(\tilde{N}) is path-connected.

LEMMA 5. 2. \overline{z}=D(\overline{z})\not\in D_{N}(\overline{N}) .

PROOF : We suppose that \overline{z}\in D_{N}(\tilde{N}) and will bring out a contradic-
tion. Since Int \hat{T}\cap D_{N}(\tilde{N}) is path-connected and the points \hat{y} and \overline{z}

belong to Int \overline{T}\cap D_{N}(\overline{N}) , we can take a curve \overline{c} : [0, 1]arrow Int \hat{T}\cap D_{N}(\tilde{N})

such that \hat{c}(0)=\hat{y} and \hat{c}(1)=\hat{z} . Since D_{N} : \tilde{N}arrow D_{N}(\tilde{N}) is a covering
map and

D_{N}( \overline{x}_{N})=D\tilde{\iota}(\tilde{x}_{N})=D(\overline{x}_{0})=D(\tilde{y})=\overline{y}=\overline{c}(0) ,

there exists uniquely a continutus map \overline{c}_{N} : [0, 1]arrow\tilde{N} such that D_{N}\overline{c}_{N}=\overline{c}

and \tilde{c}_{N}(0)=\overline{x}_{N} . Put c=\pi_{N}\overline{c}_{N} : [0, 1]arrow N. Then it follows that
c(0)=\pi_{N}\tilde{c}_{N}(0)=\pi_{N}(\overline{x}_{N})=\pi\overline{\iota}(\overline{x}_{N})=\pi(\tilde{x}_{0})=x_{0}=\phi(x_{0},0)=\omega(0) .

Since the pair (\phi, N) has the lifting property, there exists b^{*}\in ]0,1 ] and a
lift-homotopy H:[0, b^{*}]\cross[0, \tau] -arrow M of \phi|\{x_{0}\}\cross \mathfrak{t}0

,\tau J along c and T Then
H(0, \tau)=\omega(\tau)=\phi(x_{0}, \tau)=y . Let \tilde{H} : [0, b^{*}]\cross[0, \tau] -arrow\tilde{M} be the lift of H
with \tilde{H}(0, \tau)=\overline{y} .

Since \tilde{H}(0, t)=\tilde{\omega}(\tau) and for all t\in[0, \tau]

\pi\overline{H}(0, t)=H(0, t)=\omega(t)=\pi\overline{\omega}(t) ,

the unique path lifting property of covering maps implies that \tilde{H}(0, t)=

\tilde{\omega}(t) for all t\in[0, \tau] . Hence \tilde{H}(0,0)=\tilde{\omega}(0)=\tilde{x}_{0}=\tilde{\iota}\overline{c}_{N}(0) . Next note that
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\pi\overline{H}(s, 0)=H(s, 0)=c(s)=\pi_{N}\tilde{c}_{N}(s)=\pi\tilde{\iota}\tilde{c}N(s) for all s\in[0, b^{*}] . By the
unique path lifting property, it follows that \tilde{H}(s, 0)=\tilde{\iota}\tilde{c}_{N}(s) for all s\in[0 ,
b^{*}] . Note that \overline{H}(\{s\}\cross[0, \tau]) is contained in some orbit of \overline{\phi} . This
implies that

D\tilde{H}(s, \tau)=D\tilde{H}(s, 0)=D\iota^{-}\tilde{c}_{N}(s)=D_{N}\tilde{c}_{N}(s)=\overline{c}(s)\in Int\hat{T}

Hence \tilde{H}(s, \tau)\in Int\tilde{T} and H(s, \tau)\in IntT for all s\in[0, b^{*}] . Therefore
b^{*}=1 and H(1, \tau)=z . It follows that z=H(1, \tau)\in O^{+}(c(1))\subset Sat(N) ,

which contradicts Lemma 5.1. \square

By Lemma 5.2 and Theorem 2.1, we conclude that N is radiant, and
that if n-1\geqq 2 then D_{N}(\overline{N})=R^{n-1}-\{\hat{z}\} , and if n-1=1 then D_{N}(\overline{N})=]-\infty ,

\overline{z} [ or] \hat{z} , +\infty[ .

LEMMA 5. 3. If n-1\geqq 2 , then Sat(iV)\cap T =T-\{z\} . If n-1=1,

then Sat(iV)\cap T is a connected component of T-\{z\} .

PROOF: We treat only the case n-1\geqq 2 and omit the proof for the
case n-1=1 . It is clear that Sat(N)\cap T\subset T -\{z\} . Conversely take w\in

T-\{z\} and put \overline{w}=(\pi|_{\tilde{T}})^{-1}(w)\in\overline{T} and \hat{w}=D(\tilde{w})\in\hat{T} Choose a curve \hat{c} :
[0, 1]arrow Int \overline{T}-\{\overline{z}\} such that \overline{c}(0)=\overline{y} and \overline{c}(1)=\hat{w} . By the similar argu-
ment as in Lemma 5.2, we see that w\in Sat(N) . Therefore T-\{z\}\subset Sat

(N) . \square

By Lemma 5.3, we see that the orbit O(z) of z is proper, which
implies that L^{+}(z)\subset\overline{O(z)}-O(z) if O(z) is not compact. Furthermore, we
have the following.

LEMMA 5. 4. The orbit O(z) is a closed orbit.

PROOF: Consider the case n-1\geqq 2 . Suppose that O(z) is not a
closed orbit. Then there exists a point z_{1}\in L^{+}(z)(\subset\overline{O(z)}-O(z)\subset L^{+}(x_{0})) .
Take a sufficiently small (n-1)-disk T_{1} in M such that z_{1}\in IntT_{1} and T_{1}

is transverse to \phi . Since Lemma 5.3 is valid for z_{1} , it follows that Sat(N)
\cap T_{1}=T_{1}-\{z_{1}\} . This implies that O(z) cannot approach z_{1} , a contradicts
tion. This argument is valid for the case n-1=1 , too. \square

LEMMA 5. 5. L^{+}(x_{0})=O(z) .

PROOF: By Lemmas 5.3 and 5.4, we can conclude that L^{+}(x_{0}) is the
union of some isolated closed orbits. Since L^{+}(x_{0}) is connected, it follows
that L^{+}(x_{0})=O(z) . \square

Now consider the holonomy g along the closed orbit O(z) . Since
L^{+}(x_{0})=O(z) , the similarity transformation g of R^{n-1} must be contracting.



392 T Nishimori

We can take a compact tubular neighborhood W of O(z) such that \partial W is
transverse to \phi . Then the closed oriented similarity manifold \partial W is
isomorphic to N(g):=(R^{n-1}-\{O\})/\langle g\rangle , where \langle g\rangle is the cyclic group
generated by g . Note that if n-1=1 then N(g)=N^{-1}(r, -)\cup N^{1}(r, +)

(where r\in]0,1[ is the similitude ratio of g), that if n-1=2 then N(g)=
N^{2}(\exp\Gamma) (where we take \alpha_{0}\in C with g(x)=\exp(\alpha_{0})x and let \Gamma=\{\mu\cdot\alpha_{0}+\nu .
2\pi\sqrt{-1}:\mu , \nu\in Z\}) , and that if n-1\geqq 3 then N(g)=N^{n-1}\{id\}*\langle g\rangle) .

LEMMA 5. 6. For all x\in N, the positive semi-Orbit O^{+}(x) intersects
\partial W exactly once.

PROOF: Clearly any orbit of \phi intersects \partial W at most once. Since
L^{+}(x_{0})=O(z) , the positive semi-0rbit O^{+}(x_{0}) intersects \partial W . We may sup-
pose that y=\phi(x_{0}, \tau)\in\partial W . Take a point x\in N arbitrarily and consider a
curve c:[0, 1]arrow N such that c(0)=x_{0} and c(1)=x . By the lifting property
of (\phi, N) , we can lift \phi|\{x_{0}\}\cross Io

, \tau J along c and \partial W . This implies that O^{+}(x)

\cap\partial W\neq\emptyset . \square

For x\in N , denote by f(x) the intersecting point of O^{+}(x) and \partial W .
Since the subset f(N) :=\{f(x) : x\in N\} of \partial W is connected, open and
closed, it is one of the connected component of \partial Wr If n-1\geqq 2 , then
f(N)=\partial W . Furthermore the obtained map f:Narrow f(N)(\subset\partial W) is an
isomorphism between the closed oriented similarity manifolds N and f(N) .
Therefore N is isomorphic to N(g) .

Now repeat the same argument as above for the negative side of N.
Then L^{-}(x_{0}) is a closed orbit of \phi and its holonomy h is expanding in this
case. Furthermore the contracting similarity transformation h^{-1} : R^{n-1}arrow

R^{n-1} determines the transverse similarity structure of the boundary \partial V of
a small compact tubular neighborhood V of L^{-}(x_{0}) . Since one of the con-
nected components of \partial V is isomorphic to N, it follows that h^{-1}=g . If
n-1\geqq 2 , then we have the following decomposition of M :

M=V\cup(N\cross[-1,1])\cup W .

By using this decomposition, we see that \phi is isomorphic to the contrac-
tion flow \phi_{g} .

If n-1=1 , then we see that \phi has exactly an even number of closed
orbits, whose holonomies are g or g^{-1} . Furthermore we have the similar
decomposition as in the case n-1\geqq 2 . Thus we see that \phi is isomorphic
to the generalized contraction flow \phi_{(r,\nu)} for some r>0 and \iota/\in Z . This
completes the proof of Theorem 4.5.
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