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Extension of local direct product structures
of normal complex spaces

Akihiro SAEKI
(Received April 23, 1991)

\S 0. Introduction

In [GM], G\’omez-Mont defined foliations by curves on complex spaces.
Let X be a complex space of pure dimension n and non-singular in
codimension one, i . e . the singular locus SingX is of codimension strictly
greater than one. X\backslash SingX is a (not necessarily connected) complex
manifold of dimension n . We consider a pair (\mathscr{F}_{A}, A) , where A is an
analytic set in X of codimension strictly greater than one and containing
SingX and \mathscr{F}_{A} is a holomorphic foliation of complex dimension one on
X\backslash A . (Note that X\backslash A is an n-dimensional complex manifold.) Two
pairs (J_{A}^{}, A) , (\mathscr{F}_{A’}, A’) are said to be equivalent if there exists an ana-
lytic set B of X of codimension strictly greater than one which contains A
\cup A’ . and if two foliations \mathscr{F}_{A}|_{X\backslash B} and \mathscr{F}_{A’}|_{X\backslash B} on X\backslash B coincide with each
other. A foliation \mathscr{F} by curves on X is an equivalence class of such a
pair (J_{A}^{\Gamma}, A) . Note that if X is normal and connected then X is pure
dimensional and non-singular in codimension one.

After G\’omez-Mont’s definition, we may say that the “simplest” folia-
tion by curves on X is defined by a pair (\mathscr{F}_{A}, A) such that \mathscr{F}_{A} is a direct
product, i . e . for an (n-1)-dimensional complex manifold M and a
Riemann surface S,

X\backslash A\simeq M\cross S

as complex manifolds.
In this parer, we confine our interest to the local case and investigate

the following problem:

PROBLEM0.0.
Let X be a complex space and x_{)}\in X . Suppose that there are an open
neighborhood U\subset X of x_{J} , an analytic set A in U , a complex space V and
a Riemann surface W satisfying the following conditions:

a) x_{)}\in A ,
b) codimA>1 (in U) and



336 A. Saeki

c) U\backslash A\simeq V\cross W (as complex spaces).
Then do there exist an open neighborhood U_{0}\subset U of x), a complex space V_{0}

and a Riemann surface W_{0} with the following properties ?
\alpha) U_{0}\simeq V_{0}\cross W_{0} (as complex spaces) and
\beta) the foliation on U defifined by \alpha) is identical with the restriction to

U_{0} of the foliation defifined by c ).

In \S 3, we review holomorphic vector fields on complex spaces. In \S 4,
G\’omez-Mont’s results about foliations by curves [GM] are reviewed and
an application of our main theorem is given.

We recall the Open Mapping Theorem and the Riemann Extension
Theorem on complex spaces, which are of essential importance. (See e. g .
[G-R-2].)

OPEN MAPPING THEOREM0.1.
Let (X, \mathscr{O}_{X}) be a reduced complex space, p\in X and f\in\Gamma(X, \mathscr{O}_{X}) . lff
is not constant near p , then the map f : Xarrow C is open at p .

A closed subset Z of a complex space X is called thin in X if every
point x\in X has an open neighborhood U such that Z\cap U is contained in a
nowhere dense analytic set A in U. For an integer k\geqq 1 , we call Z thin
of order k if we can choose U and A for any x in such a way that the
inequality \dim_{z}A\leqq\dim_{z}X-k is satisfied at each point z\in Z\cap U .

RIEMANN EXTENSION THEOREM0.2.
Let (X^{ \mathscr{O}},X) be a normal complex space, A a thin set in X and f_{A}\in

\Gamma(X\backslash A, \mathscr{O}_{X}) . If f_{A} is bounded near A or A is thin of order 2, then f_{A}

has a unique holomorphic extension f\in\Gamma(X, \mathscr{O}_{X}) .

\S 1. Statement of the main theorem

MAIN THEOREM1.0.
Problem 0. 0 has an affirmative answer if and only if there exist U , A , V
and W satisfying the following 1) and 2) as well as a), b ) and c):

1) U is normal and
2) the projection g_{A} : U\backslash A- W extends to U

i . e . there exists a Riemann surface W ’. an open embedding i :
Warrow W ’ and a holomorphic mapping g:Uarrow W ’ such that the fol-

lowing diagram commutes :
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g_{A}

U\backslash A-W

\cap \cap i .

U-W’

g

From this theorem, we can easily deduce the following.

THEOREM1.1.
Let X be a normal complex space, x_{)}\in X , d\geqq 1 an integer and U a con-
nected open neighborhood of x). Assume that A is an analytic set in U
containing x) and that satisfies one of the following conditions:

I) A is irreducible and of codimension strictly greater than one in
U.

II) A is of codimension strictly greater than d in U.
If there are a complex space V and a bounded open polydisk W of dimen-
sion d satisfying U\backslash A\simeq V\cross W . then we can choose an open neighborhood
U_{0}\subset U of x), an open complex subspace V_{1} of V and an open polydisk W_{0}\subset

W such that there exists a complex space V_{0} with an open embedding \iota : V_{1}

\subset V_{0} making the following diagram commute:

U\backslash A\simeq\cup V\cross W\cup

U_{0}\backslash A\simeq V_{1}\cross W_{0}

\cap \cap \iota\cross id_{W_{0}}

U_{0}\simeq V_{0}\cross W_{0}

\S 2. Proof of the theorems

First, we prove Theorem 1. 0. The proof progresses in several steps.
We adopt the notations in Problem 0. 0 and Theorem 1. 0. We may assume
that U is connected. The first step is the following observation.

LEMMA2.0.
Under the condition 1), the condition 2) is equivalent to the following:

2)’ W is a domain in C .

PROOF. Assume that U, A, V and W satisfy 1) and 2). Let g :
Uarrow W’ be an extension of the projection g_{A} : U\backslash A- W and w_{0}\in W

’ the
image of xo by g. Taking an open coordinate neighborhood B\subset W ’ of w_{0} ,
U_{1}=g^{-1}(B)\subset U is an open neighborhood of xo . Considering g_{1}=g|_{U_{1}} as g_{1}

\in \mathscr{O}_{X}(U_{1}) , the open mapping theorem tells us that g_{1} : U_{1}arrow B is open and
that we can shrink the neighborhood of xo so that 2 )’ r, as well as a ), b), c)
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and 1), is satisfied. Conversely, suppose that there exist U, A, V and W
satisfying 1) and 2)’. Regarding g_{A} : U\backslash A- W as g_{A}\in \mathscr{O}x(U\backslash A) , g_{A}

extends to g\in \mathscr{O}_{X}(U) by Riemann extension theorem. The open mapping
theorem assures us that the image g(U) is a Riemann surface, thus 2)
holds. \blacksquare

LEMMA2.1.
Let g:Uarrow W ’ be an extension of g_{A} : U\backslash A- W w_{0}=g(x_{0}) and consider
that W=g(U\backslash A)\subset W ’ Then w_{0}\in W\subset W ’.

PROOF. By Lemma 2. 0, we may assume that W is a domain in C
and that g_{A}\in_{\mathscr{O}x}(U\backslash A) . Then the extension g is considered as g\in \mathscr{O}_{X}(U)

and uniquely determined. Suppose that w_{0}\not\in W . Then g^{-1}(w_{0}) would be
contained in the analytic set A. But g^{-1}(w_{0}) is an analytic set in U of
codimension \leqq 1 whereas co\dim A>1 . This is a contradiction. \blacksquare

Thus we can assume that
i) U is normal and connected,
ii) there exists a closed embedding \iota : U_{arrow>}^{-}D , where D=D_{1}\cross\ldots\cross D_{N}

is a bounded open polydisk in C^{N} centred at \iota(x_{)})=0\in C^{N}-

iii) W is a bounded open disk in C centred at 0 and
iv) w_{0}=g(x_{1})=0\in C .

Furthermore, we have the following

LEMMA2.2.
The extension g of g_{A} : U\backslash A- W is a holomorphic map onto W :

g : Uarrow W

PROOF. By the open mapping theorem, g(U)\subset C is open. Since
W\subset g(U)\subset the closure of W in C

and W is a bounded open disk in C , W’=g(U)=W holds. \blacksquare

V’=g-1(0) is an analytic set in U and x_{0}\in V
’ Considering it as a com-

plex space with the reduced induced structure, we denote by \xi:V_{0}arrow V
’

the normalization of V’ For any complex space (Z, \mathscr{O}_{Z}) , we denote the
underlying topological space by sp(Z) .

LEMMA2.3.
The continuous map \xi:sp ( V_{0})arrow\Phi(V ’ ) subordinate to the morphism \xi :
V_{0}arrow V

’ is a homeomorphism.

PROOF. The isomorphism U\backslash A\simeq V\cross W induces V’\backslash A\simeq V\cross\{0\}\simeq V

and V’ is the closure of V in U (with the reduced induced structure).
Since U is normal and connected and A is a thin analytic set in U, U_{A}=
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U\backslash A is normal and connected. W is an open disk in C and we can
deduce that V’\backslash A\simeq V is also normal and connected. This means that \xi :
\xi^{-1}(V’\backslash A)arrow V’\backslash A is biholomorphic and that \xi^{-1}(V’\backslash A) is connected.
Since, as analytic sets in U, codim V’=1 and co\dim A>1 , V’\cap A is a thin
analytic set in the complex space V_{-}

’ It follows that \xi^{-1}(V’\cap A)=

V_{0}\backslash \xi^{-1}(V’\backslash A) is a thin analytic set in V_{0} and that \xi^{-1}(V’\backslash A) is an open
dense complex subspace of V_{0} . Thus the normalization V_{0} is connected
and the continuous map \xi : sp ( V_{0})arrow sp(V’) subordinate to the morphism
\xi:V_{0}arrow V

’ is a homeomorphism. \blacksquare

By Lemma 2. 3, v_{0}=\xi^{-1}(x_{0}) is uniquely determined. This allows us to
assume

v) there exists a closed embedding \eta:V_{0-}-E , where E=E_{1}\cross\ldots\cross E_{m}

is a bounded open polydisk in C^{m} centred at \eta(v_{0})=0\in C^{m} .
By the isomorphisms \xi^{-1}(V’\backslash A)\simeq V’\backslash A\simeq V\cross\{0\}\simeq V . we consider that V
\subset V_{0}i . e . an open complex subspace. Let Y=V_{0}\cross W , Y_{A}=V\cross W and \mathcal{Y}0

=(v_{0}, O)\in Y By v), we have
v) ’ there exists a closed embedding I=\eta\cross id_{w} : Y=V_{0}\cross W\subset_{arrow}E\cross W

and I(y_{0})=0 .
Y_{A} is an open complex subspace of Y and isomorphic to U_{A}=U\backslash A by \varphi_{A} :
U_{Aarrow}\sim Y_{A}=V\cross W . We claim the following lemma, which completes the
proof of our main theorem 1. 0.

L_{EMMA}2.4 .
There exists an isomorphism \varphi : U_{arrow}^{\sim}Y such that the folowing digram com-
mutes:

\varphi_{A}

U_{A}\simarrow Y_{A}

\cap \cap

Uarrow Y\sim

\varphi

The rest of this section is devoted to the proof of Lemma 2. 4. For each j
=1,\ldots,m , we define a holomorphic map \varphi_{Aj} : U_{A}arrow E_{j} by
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\varphi_{A}

I=\eta\cross id_{W} .

Since U_{A} is normal and E_{j} is a bounded open disk in C , \varphi Aj extends, as in
Lemma 2. 2, to a holomorphic map \varphi_{j} : Uarrow E_{j} by Riemann extension the0-
rem. \varphi_{j} ’s and g define a holomorphic map \Phi:Uarrow E\cross W which makes
the following diagrams commute:

\Phi \Phi

Uarrow E\cross W

g\backslash \downarrow W

We remark the following

L_{EMMA}2.5 .
The morphism \Phi:Uarrow E\cross W factors through the closed complex subspace
Y i . e . there exists a uniquely determined morphism \varphi : Uarrow Y such that
the following diagram commutes:

\varphi

Uarrow Y

\Phi\backslash \Gamma IE\cross W

Furthermore, the restriction of \varphi to the open complex subspace U_{A}=U\backslash A\subset

U is identical with the isomorphism \varphi_{A} : U_{Aarrow}^{\sim}Y_{A} , i . e . the following dia-
gram is commutative :

\varphi_{A}

U_{A}\simarrow Y_{A}

\cap \cap

Uarrow Y
\varphi
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PROOF. Since these complex spaces are reduced because of their nor-
mality, we have only to show the subordinate continuous map \Phi:sp(U)arrow

sp(E\cross W) factors through sp(Y) , i . e . \Phi(sp(U))\subset sp(Y) . But, considered
as \varphi_{j}\in\Gamma(U, \mathscr{O}x) and g\in\Gamma(U, \mathscr{O}x) , they are the extensions of \varphi_{Aj}\in

\Gamma(U_{A}, \mathscr{O}_{X}) and g_{A}\in\Gamma(U_{A}, \mathscr{O}_{X}) , respectively. Since \varphi_{Aj} ’s and g_{A} define the
morphism \varphi_{A} : U_{Aarrow}^{\sim}Y_{A} , the image \Phi(sp(U)) is contained in sp(Y) , which
is the closure of sp(Y_{A}) in sp(E\cross W) . Thus \Phi factors through Y and the
latter statement is also proved. \blacksquare

Let \psi_{A}=\varphi_{A}^{-1} : Y_{A}arrow U_{A}\sim . For each k=1,\ldots,N , we can define a morphism
\psi_{Ak} : Y_{A}arrow D_{k} by

\psi_{A}

\iota .

\psi_{Ak} extends to \psi_{k} : Yarrow D_{k} as above, \psi_{k} ’s define a unique morphism \Psi :
Yarrow D such that the following diagram commutes:

\Psi

Yarrow D

\psi\searrow\downarrow D_{k}

Similarly, we have the following lemma.

LEMMA2.6.
The morphism \Psi:Yarrow D factors through the closed complex subspace U, i .
e . there exists a uniquely determined morphism \psi:Yarrow U such that the
following diagram commutes :

\psi

Yarrow U

\Psi\backslash \prime D\iota .

Furthermore, the restriction of \psi to the open complex subspace Y_{A}\subset Y is
identical with the isomorphism \psi_{A} : Y_{A}arrow U_{A}\sim , i . e . the following diagram is
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commutative :
\psi_{A}

Y_{A}\simarrow U_{A}

\cap \cap

Y- U .
\psi

Considering the composite morphisms with the projections D— D_{k}
’ s , E\cross

Warrow E_{j} ’s and E\cross W-arrow W. we define \iota_{k} : Uarrow D_{k} and I_{j} : Yarrow E_{j} by

\iota Iand
U^{c}arrow D Yc_{-}, E\cross W .

\iota_{k\backslash \downarrow}D_{k} I_{j}\backslash \downarrow E_{j}

for k=1,\ldots,N and j=1,\ldots,m+1 . Here we set E_{m+1}=W and \varphi_{m+1}=g :
Uarrow E_{m+1} .
By Lemma 2.5 and Lemma 2.6, we have two commutative diagrams

I r,UY\varphi\sim
\iota

E\cross W\Phi

and the following statements hold:

(\Psi\cdot\varphi)|_{U_{A}}=\iota|_{U_{A}}

(\Phi\cdot\psi)|_{Y_{A}}=I|_{Y_{A}}

These mean that

(\psi_{k}\cdot\varphi)|_{U_{A}}=\iota_{k}|_{U_{A}} (k=1,\ldots,N)

and that
(\varphi_{j}\cdot\psi)|_{Y_{A}}=I_{j}|_{Y_{A}} (j=1,\ldots, m+1) .

Since U_{A}\subset U and Y_{A}\subset Y is open dense, we can deduce that

\psi_{k}\cdot\varphi=\iota_{k}
(k=1,\ldots, N)

and that

\varphi_{j}\cdot\psi=I_{j} (j=1,\ldots, m+1) .

Thus
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\psi\cdot\varphi=id_{U}

and

\varphi\cdot\psi=id_{Y} .

Lemma 2. 4 is proved and the proof of the theorem is completed.

Though we introduced the nornalization \xi:V_{0}arrow V
’ the following

holds:

REMARK2.7.

V_{0->}\sim V
’ and U_{arrow}^{\sim}V’\cross W as complex spaces.

Now we prove Theorem 1. 1.

PROOF of THEOREM 1. 1.

Let X, xo, U, A, V and W be as stated in Theorem 1. 1. In case that the
condition II) is satisfied, the statement directiy follows from Theorem 1. 0.
Suppose that A satisfies the condition I). We proceed by induction on the
dimension d of W. Assume d\geqq 2 and W=W_{1}\cross\ldots\cross W_{d} , where each W_{j} is
a bounded open disk in C centred at O\in C . We denote by gj : U\backslash Aarrow W_{j}

the composite map U\backslash Aarrow W\sim followed by Warrow W_{j} , for each j=1,\ldots , d .
As in Lemma 2. 2, these holomorphic maps extend to U, which we also
call g_{j} : Uarrow W_{j} . Let V_{j}=g_{j}^{-1}(0) . By theorem 1. 0 and the above remark,
we may assume U\simeq V_{j}\cross W_{j} . Note V_{j}’ s are connected normal complex
spaces. In the complex space V_{j} , co\dim_{x_{0}}A\cap V_{j}\geqq 1 . We claim that
co\dim_{x_{0}}A\cap V_{j}>1 for some j . By the irreducibility of A, co\dim_{x_{0}}A\cap V_{j}

=1 implies that A is contained in V_{j} . If co\dim_{x_{0}}A\cap V_{k}=1 for k\neq j , then
A is contained in V_{j}\cap V_{k} . However, as we see in the following, if A is
contained in V_{j}\cap V_{k} , then codim x_{0}A\cap V_{j}>1 in V_{j} , Let Z=V\cross

II i\neq j , i\neq kW_{i} . Since U\backslash A\simeq Z\cross W_{j}\cross W_{k} , A\neq V_{j}\cap V_{k} . Note the following

LEMMA2.8.
V_{j}\cap V_{k} is irreducible.

From this lemma and the irreducibility of A, we deduce that A is thin in
V_{j}\cap V_{k} . Since V_{j}\cap V_{k} itself is thin in V_{j} , co\dim_{x_{0}}A\cap V_{j}>1 in V_{j} . Thus
there exists j such that co\dim_{xo}A\cap V_{j}>1 in V_{j} and by induction hypoth-
eses V_{j} is a direct product at x_{0} . \blacksquare
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PROOF of LEMMA 2. 8.

Note that V_{j}\cap V_{k}\cap(U\backslash A) is an open dense complex subspace of V_{j}\cap V_{k}

and that V_{j}\cap V_{k}\cap(U\backslash A)\simeq Z is a connected normal complex space. Let
\xi:Z_{0}arrow V_{j}\cap V_{k} be the normalization of V_{j}\cap V_{k} . Then, as in Lemma 2. 3,

the underlying continuous map \xi:sp(Z_{0})arrow sp(V_{j}\cap V_{k}) is a homeomorphism

and V_{j}\cap V_{k} is irreducible. \blacksquare

\S 3. Holomorphic vector fields

Let X be an arbitrary complex space. A holomorphic vector field \lambda

on an open complex subspace U\subset X is, by definition, a \mathscr{O}_{U} -valued deriva-
tion of \mathscr{O}_{U} over C , i . e . a morphism of sheaves of C-vector spaces on U

satisfying the following condition:

For any open V\subset U , C-linear map
\lambda=\lambda(V):\mathscr{O}_{U}(V)arrow \mathscr{O}_{U}(V)

satisfifies
(3-0) \lambda(fg)=f\cdot\lambda(g)+\lambda(f)\cdot g for all f . g\in \mathscr{O}_{U}(V) .

We denote by \Theta_{X} the sheaf of germs of holomorphic vector fields on X,

which has a natural structure of \mathscr{O}_{X} -module. Moreover, \Theta_{X} is a coherent
\mathscr{O}x -module. Let p\in X and U\subset X an open neighbourhood of p. Assume
that U has a closed embedding i:U_{-}^{-},D , where D is a domain in C^{N}

Let \mathscr{I} be the \mathscr{O}_{D} -ideal defining U. For any germ \lambda_{p}\in\Theta_{X,p} , there exists a
germ \Lambda_{p}\in\Theta_{D,p} of holomorphic vector field on D at p=i(p) such that

(3-1) \Lambda_{p}(_{\mathscr{I}p})\subset_{\mathscr{I}p}

and the following diagram commutes:
\Lambda p

\mathscr{O}_{D} , p^{-\mathscr{O}_{D}} , p

(3-2) \downarrow
\downarrow

\mathscr{O}x , p^{-\mathscr{O}_{X}} , p

\lambda_{p}

Conversely, any germ \Lambda_{p}\in\Theta_{D,p} of holomorphic vector field on D at p sat-
isfying (3-1) determines such a germ \lambda_{p}\in\Theta_{X,p} of holomorphic vector field
on X at p that makes the diagram (3-2) commute.

We denote by T_{p}X the (analytic) Zariski tangent space, i . e . a tangent
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vector v\in T_{p}X is a C-valued derivation of \mathscr{O}x , p over C . There is a
natural injective C-linear map T_{p}Xarrow T_{p}D , by which we consider T_{p}X\subset

T_{p}D :
T_{p}X=\{v\in T_{p}D|v(\mathcal{J}p)=0\} .

Any germ \lambda_{p}\subset\Theta_{x,p} of holomorphic vector field determines canonically a
unique tangent vector \lambda_{p}(p)\in T_{p}X such that the following diagram com-
mutes:

\lambda_{p}

\lambda_{p}(p)

This defines an \mathscr{O}_{X,p}-module homomorphism \Theta_{\chi,p}arrow T_{p}X . Note that it is
not necessarily surjective. (e . \mathfrak{g} . at 0\in\{y^{2}-x^{3}=0\}. ) Let U\subset X an open
complex subspace and x\in U . The composite C-linear mapping

\Gamma(U, \Theta_{X})arrow\Theta_{X,x}arrow T_{X}X

is defined, and the image of \lambda\in\Gamma(U, \Theta_{X}) by this mapping is called the
value of \lambda at x and denoted by \lambda(x) . For any open U\subset X and
\lambda\in\Gamma(U, \Theta_{X}) , \{x\in U|\lambda(x)=0\} is a well-defined analytic set in U.

On holomorphic vector fields on complex spaces, the following the0-
rem is fundamental (see e . g . [F] pp. 91-92.):

THEOREM3.3.

Let X be an arbitrary complex space, p\in X and \lambda_{p}\in\Theta_{X,p} , If \lambda_{p}(p)\neq 0 then
there exist an open neighbourhood U\subset X of p , a representative vector fifield
\lambda_{U}\in\Gamma(U, \Theta_{X}) , a complex space V and an open disk W\subset C such that
(3-4) U\simeq V\cross W

and at any piont x\in U ,

(3-5) 0\neq\lambda_{U}(x)\in T_{X}W\subset T_{X}U .

Let p\in X . The C-dimension \dim_{c}T_{p}X is called the embedding dimen-
sion of X at p and denoted by em\dim_{p}X . On the other hand, the dimen-
sion of X at p is denoted by \dim_{p}X and satisfies \dim_{p}X=\dim \mathscr{O}x , p ,
where dim \mathscr{O}x , p is the Krull dimension of \mathscr{O}_{X} , p , It is well known that an
inequality \dim_{p}X\leqq em\dim_{p}X always holds and that p\in x is a regular
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point if and only if \dim_{p}X=em\dim pX . This fact and Theorem 3. 3. imply

the following corollary.

COROLLARY 3. 6.

Let p be a reduced point of a complex space X. Then the C-linear map
\Theta_{X,p}arrow T_{p}X is surjective if and only if p is a regular point of X .

\S 4. An application of the main theorem

G\’omez-Mont investigated holomorphic foliations by curves on complex
spaces and obtained the following result. (See [GM], p. 131, Theorem 5.)

THEOREM 4. 0 (G\’omez-Mont).

Let X be a normal complex sapace, \mathscr{F} a holomorphic foliation by curves on
X and \lambda a holomorphic vector fifield which is tangent to the leaves of \mathscr{F}

wherever it does not vanish. If \{x\in Y|\lambda(x)=0\} is of codimension strictly
greater than one, then for any holomorphic vector fifield \eta\in\Gamma(X, \Theta_{X}) which
is tangent to the leaves of \mathscr{F} wherever it does not vanish, there exists a

never-vanishing \alpha\in \mathscr{O}_{X}(X) such that \eta=\alpha\cdot\lambda .

From this and our main theorem, we can deduce the following prop0-

sition.

PROPOSITION 4. 1.

Let X be a normal complex space, p\in X , \mathscr{F} a foliation by curves on X
and \lambda\in\Gamma(X, \Theta_{X}) tangent to the leaves of \mathscr{F}. If \lambda(p)=0 and if the ana-
lytic set Z=\{x\in X|\lambda(x)=0\} is of codimension strictly greater than one then
we can never fifind an open neighbourhood U of p , an analytic set A in U

of codimension strictly greater than one and containing Z\cap U , a complex
space V and an open disk W\subset C such that U\backslash A\simeq V\cross W and that the
restriction of \mathscr{F} to U is identical with the foliation defifined by U\backslash A\simeq V\cross

W

PROOF. Assume that there were U, A, V and W satisfying the condi-
tions. Then, by our main theorem, there would exist U_{0} , V_{0} and W_{0} as
described in the theorem. Furthermore, shrinking U_{0} if necessary, we
may assume V_{0}\overline{\frac{\nu}{}}E , where E is a domain in C^{m} U_{0}=V_{0}\cross W_{0}c_{-},D=E\cross

W_{0} . Let w be a coordinate in W_{0} and \eta\in\Theta_{X}(U_{0}) the vector field defined
by \partial/\partial w\in\Theta_{D}(D) . \eta is a vector field tangent to the leaves of \mathscr{F} and never
vanishes on U_{0} . By the theorem of G\’omez-Mont, there should be a never-
vanishing holomorphic function \alpha\in\Gamma(U_{0}, \mathscr{O}_{X}) such that \lambda|_{Uo}=\alpha\cdot\eta But
since \lambda(p)=0 , we have a contradiction. \blacksquare
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