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Extension of local direct product structures
of normal complex spaces

Akihiro SAEKI
(Received April 23, 1991)

§ 0. Introduction

In [GM], Gémez-Mont defined foliations by curves on complex spaces.
Let X be a complex space of pure dimension # and non-singular in
codimension one, i.e. the singular locus Sing X is of codimension strictly
greater than one. X\SingX is a (not necessarily connected) complex
manifold of dimension #n. We consider a pair (%4, A), where A is an
analytic set in X of codimension strictly greater than one and containing
SingX and . is a holomorphic foliation of complex dimension one on
X\A. (Note that X\A is an #=-dimensional complex manifold.) Two
pairs (Fa, A), (¥ 4, A’) are said to be equivalent if there exists an ana-
lytic set B of X of codimension strictly greater than one which contains A
UA’, and if two foliations Falxws and Fa|xs on X\B coincide with each
other. A foliation . by curves on X is an equivalence class of such a
pair (¥4, A). Note that if X is normal and connected then X is pure
dimensional and non-singular in codimension one.

After Gomez-Mont’s definition, we may say that the “simplest” folia-
tion by curves on X is defined by a pair (%4, A) such that %4 is a direct
product, i.e. for an (z—1)-dimensional complex manifold M and a
Riemann surface S,

X\A=MXS

as complex manifolds.
In this parer, we confine our interest to the local case and investigate
the following problem :

PrOBLEM 0. 0.
Let X be a complex space and x%SX. Suppose that theve ave an open
neighborhood UCX of x, an analytic set A in U, a complex space V and
a Riemann surface W satisfying the following conditions :

a) wEA,

b) codimA>1 (in U) and
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c) UN\A=VXW (as complex spaces).
Then do therve exist an open neighborhood UsC U of x%, a complex space Vo
and a Riemann surface Wo with the following properties?
a) Us=VoX W (as complex spaces) and
B) the foliation on U defined by a) is identical with the vestriction to
Us of the foliation defined by c).

In § 3, we review holomorphic vector fields on complex spaces. In § 4,
Gomez-Mont’s results about foliations by curves are reviewed and
an application of our main theorem is given.

We recall the Open Mapping and the Riemann Extension
Theorem on complex spaces, which are of essential importance. (See e.g.
[G-R-2).)

OPEN MAPPING THEOREM 0. 1.
Let (X, x) be a reduced complex space, pEX and fET (X, Tx). If f
i1s not constant near p, then the map f . X—C is open at p.

A closed subset Z of a complex space X is called thin in X if every
point x€ X has an open neighborhood U such that ZN U is contained in a
nowhere dense analytic set A in U. For an integer k=1, we call Z thin
of ovder k if we can choose U and A for any x in such a way that the
inequality dim:A=dim.X — £ is satisfied at each point zEZ N U.

RIEMANN EXTENSION THEOREM 0. 2.
Let (X, 7 x) be a normal complex space, A a thin set in X and faE
T(X\A, 7 x). If fa is bounded near A or A is thin of ovder 2, then fa
has a unique holomorphic extension fET(X, 7 x).

§1. Statement of the main theorem

MAIN THEOREM 1. 0.
Problem 0.0 has an affirmative answer if and only if theve exist U, A, V
and W satisfying the following 1) and 2) as well as a), b) and c):
1) U is normal and
2) the projection ga: U\NA— W extends to U
i.e. there exists a Riemann surface W’, an open embedding i :
W—-W’ and a holomorphic mapping g:U—> W’ such that the fol-
lowing diagram commutes -
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ga
U\NA—— W
N N i
U——Ww’
g

From this theorem, we can easily deduce the following.

THEOREM 1. 1.
Let X be a normal complex space, %=X, d=1 an integer and U a con-
nected open meighborhood of x. Assume that A is an analytic set in U
containing xo and that satisfies one of the following conditions :

1) A is irreducible and of codimension strictly greater than one in
U.

1) A is of codimension strictly greater than d in U.
If there ave a complex space V and a bounded open polydisk W of dimen-
sion d satisfying UNA=V X W, then we can choose an open neighborhood
UsC U of %, an open complex subspace Vi of V and an open polydisk WoC
W such that therve exists a complex space Vo with an open embedding ¢:. Vi
C Vo making the following diagram commute

U\A= VXW
U U

U\A= VX W,
N N ¢ X idw,
U= VoX W,

§ 2. Proof of the theorems

First, we prove Theorem 1.0. The proof progresses in several steps.
We adopt the notations in Problem 0.0 and Theorem 1.0. We may assume
that U is connected. The first step is the following observation.

LEMMA 2. 0.

Under the condition 1), the condition 2) is equivalent to the following :
2) W is a domain in C.

PrROOF. Assume that U, A, V and W satisfy 1) and 2). Let g:
U— W’ be an extension of the projection ga: U\A— W and wo= W’ the
image of xo by g. Taking an open coordinate neighborhood BC W’ of wy,
Ui=g¢g Y(B)CU is an open neighborhood of x. Considering ¢i=glv, as ¢
e 7 x(U,), the open mapping theorem tells us that ¢:: Ui—B is open and
that we can shrink the neighborhood of xo so that 2)’, as well as a), b), c)
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and 1), is satisfied. Conversely, suppose that there exist U, A, V and W
satisfying 1) and 2). Regarding ga: UNA—W as g<=cox(U\A), ga
extends to g& 7 x(U) by Riemann extension theorem. The open mapping
theorem assures us that the image ¢g(U) is a Riemann surface, thus 2)
holds. =

LEmMMA 2. 1.
Let g: U=W’ be an extension of ga: UNA—=W, wo=g(x0) and consider
that W=g(U\A)CW’. Then wee WCW’.

ProOF. By Lemma 2.0, we may assume that W is a domain in C
and that ga€ 7 x(U\A). Then the extension ¢ is considered as g€ x(U)
and uniquely determined. Suppose that wo&= W. Then ¢ '(wo) would be
contained in the analytic set A. But ¢ '(wo) is an analytic set in U of
codimension =1 whereas codimA >1. This is a contradiction. =

Thus we can assume that
i) U is normal and connected,
ii) there exists a closed embedding ¢: U<D, where D=DyX...X Dy
is a bounded open polydisk in C" centred at ¢ (x)=0€C",
iii) W is a bounded open disk in C centred at 0 and
iv) w=g(x)=0€C.

Furthermore, we have the following

LEMMA 2.2.
The extension g of ga: UNA—W is a holomorphic map onto W :
g: U-W.

ProoF. By the open mapping theorem, g(U)C C is open. Since
WCg(U)C the closure of W in C
and W is a bounded open disk in C, W =g(U)=W holds. =
V’=g¢7'(0) is an analytic set in U and x< V’. Considering it as a com-
plex space with the reduced induced structure, we denote by &: Vo— V’
the normalization of V’. For any complex space (Z, 7 z), we denote the
underlying topological space by sp(Z2).

LEMMA 2. 3.
The continuous map &: sp (Vo)—sp(V’) subordinate to the morphism & :
Vo— V'’ is a homeomorphism.

PrOOF. The isomorphism U\A=V X W induces V\A=Vx{0}=V
and V’ is the closure of V in U (with the reduced induced structure).
Since U is normal and connected and A is a thin analytic set in U, Us=
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U\A is normal and connected. W is an open disk in C and we can
deduce that V'\A==V is also normal and connected. This means that E:
§(V\NA)>V'\A is biholomorphic and that & V’\A) is connected.
Since, as analytic sets in U, codimV’=1 and codimA>1, V’NA is a thin
analytic set in the complex space V’. It follows that & Y(V’NA)=
Vo\é(V'\A) is a thin analytic set in V, and that £'(V’\A) is an open
dense complex subspace of V,. Thus the normalization V; is connected

and the continuous map &: sp (V5)—sp(V’) subordinate to the morphism
§: Vo— V7 is a homeomorphism. =

By Lemma 2.3, vo=&'(x) is uniquely determined. This allows us to
assume

V) there exists a closed embedding 7: Voo E , where E=F,X... X Ep,

is a bounded open polydisk in C™ centred at 7 (v0)=0&C™.

By the isomorphisms &' (V\A)=V\A=>V x{0}~V, we consider that V
CTVhi.e. an open complex subspace. Let Y=VoX W, Ys=V X W and o
=(1,0)€Y. By v), we have

v )  there exists a closed embedding [ =npXidy: Y=VoXW o EXW
and 1(3)=0.

Y4 is an open complex subspace of Y and isomorphic to Us=U\A by @a:
U3 Ya=VXW. We claim the following lemma, which completes the
proof of our main theorem 1. 0.

LEMMA 2. 4.

There exists an isomorphism @ : USY such that the folowing digram com-
mutes :

@4

Ui—5Y,

N N

U Y.
P

The rest of this section is devoted to the proof of Lemma 2.4 For each ;
=1,...,m, we define a holomorphic map ¢a;: Us—E; by
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@A
U= Ya= VXW

Since U, is normal and E; is a bounded open disk in C, @a4; extends, as in
Lemma 2.2, to a holomorphic map ¢;: U—E; by Riemann extension theo-
rem. ¢;’s and g define a holomorphic map ®: U—EX W which makes
the following diagrams commute :

® P
U—FEXW U—EXW
qu\j Q\J’
E; W

We remark the following

LEMMA 2.5.
The morphism ®: U—E X W factors through the closed complex subspace
Y, i.e. there exists a uniquely determined morphism @ . U—Y such that
the following diagram commutes :

P
U—Y

o\ o I
EXW

Furthermore, the restriction of @ to the open complex subspace Us=U\AC
U is identical with the isomorphism @a: Us>Ya, i.e. the following dia-
gram is commutative

Usi—>Ya

N N
U—Y.
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PrROOF.  Since these complex spaces are reduced because of their nor-
mality, we have only to show the subordinate continuous map ®: sp(U)—
sp(E X W) factors through sp(Y), i.e. ®(sp(U))Csp(Y). But, considered
as ,€ET(U, 7 x) and g€ T(U, 2 x), they are the extensions of @ 4;E
(U, @ x) and ga€T(Ua, x), respectively. Since ga’s and ga define the
morphism @a: Us3Y4, the image ®(sp(U)) is contained in sp(Y), which
is the closure of sp(Ya) in sp(EX W). Thus ® factors through Y and the
latter statement is also proved. =

Let yu=@a': YaSUs For each k=1,....N, we can define a morphism
¢Ak . Ya— D, bY

Ya
Y. =, U, CU
e
Yar D
Dy

Var extends to Y: Y—D, as above. u’s define a unique morphism ¥ :
Y—D such that the following diagram commutes :

v
Y—D

%\ l
Dy
Similarly, we have the following lemma.

LEMMA 2. 6.
The morphism ¥ : Y—D factors through the closed complex subspace U, i.
e. there exists a uniquely determined morphism : Y—>U such that the
Jollowing diagram commutes :

v
Y—U

\I'\f .
D

Furthermore, the vestriction of  to the open complex subspace YaCY is
identical with the isomorphism ya: YaSUs, i.e. the following diagram is
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commutative :

Y

Vi Us

N N

Y —U.
¥

Considering the composite morphisms with the projections D—Ds’s, EX
W—E;s and EX W—W, we define ¢t».: U—D, and [;: Y—FE; by

¢ and I
U< D YOLEXW,
lk\l [J\l
Dy E;

for £=1,...N and j=1,...m+1. Here we set Env1=W and @r+1=g:
U_’Em+1.
By Lemma 2.5 and Lemma 2.6, we have two commutative diagrams

U Y.
C>¢Y R
D 4 EXW &

and the following statements hold:

L

(‘P.Q)IUA:‘IUA
(@ Plv,=1lv,

These mean that

(Y @)lu, = telu, (k=1,...,N)
and that

(@i ¥y, =1Ly, (j=1,..., m+1).
Since UsC U and Y.1CY is open dense, we can deduce that

Vet @ =tx (k=1,...,N)
and that

picv=1 (j=1,..., m+1).

Thus



Extension of local divect product structures
of normal complex spaces 343

Yvep=1idy
and
@ Y=1dy.
Lemma 2. 4 is proved and the proof of the theorem is completed.

Though we introduced the nornalization &: Vi— V”, the following
holds :

REMARK 2.7.
VoSV and USV'X W as complex spaces.
Now we prove Theorem 1. 1.

PROOF of THEOREM 1. 1.

Let X, x, U, A, V and W be as stated in Theorem 1.1. In case that the
condition II) is satisfied, the statement directiy follows from Theorem 1. 0.
Suppose that A satisfies the condition I). We proceed by induction on the
dimension d of W. Assume d=2 and W=W;X...X W4, where each W; is
a bounded open disk in C centred at 0= C. We denote by g;: U\A— W,
the composite map U\A W followed by W—W,, for each j=1,..., d.
As in Lemma 2.2, these holomorphic maps extend to U, which we also
call g;: U—W,. Let Vi=g;' (0). By theorem 1.0 and the above remark,
we may assume U=V;X W,. Note Vs are connected normal complex
spaces. In the complex space V;, codimx, ANV;=1. We claim that
codimx, AN V;>1 for some j. By the irreducibility of A, codimx, ANV,
=1 implies that A is contained in V;. If codimx, AN Ve=1 for k=+j, then
A is contained in V;N V.. However, as we see in the following, if A is
contained in V,;N Vi, then codimx, ANV;>1 in Vi, Let Z=V X
[Tis), i+r Wi Since UNA=Z X W;X Wi, A+ V;N Ve. Note the following

LEMMA 2. 8.
Vi Vi is trrveducible.

From this lemma and the irreducibility of A, we deduce that A is thin in
Vi Vi Since V;N Vi itself is thin in Vj, codimx, AN V;>1in V,;. Thus
there exists j such that codimx, AN V;>1in V; and by induction hypoth-
eses V; is a direct product at x,. ™
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ProoF of LEMMA 2. 8.

Note that V;N VeN(U\A) is an open dense complex subspace of V;N Vi
and that V;N ViaN(U\A)=Z is a connected normal complex space. Let
&: Zo— V;N Vi be the normalization of V;N V. Then, as in Lemma 2. 3,
the underlying continuous map & : sp(Zo)—sp(V;N V%) is a homeomorphism
and V;N V. is irreducible. =

§ 3. Holomorphic vector fields

Let X be an arbitrary complex space. A holomorphic vector field A
on an open complex subspace UCX is, by definition, a ¢ v-valued deriva-
tion of Z v over C, i.e. a morphism of sheaves of C-vector spaces on U
satisfying the following condition :

For any open VCU, C-linear map
A=AV): ou(V)=a (V)
satisfies
(3-0) Af 9)=fNg)+A(f)g  for all f, g€ (V).

We denote by ®x the sheaf of germs of holomorphic vector fields on X,
which has a natural structure of # x-module. Moreover, ®x is a coherent
7 x-module. Let pX and UCX an open neighbourhood of p. Assume
that U has a closed embedding i: U<D, where D is a domain in cV.
Let # be the 2 p-ideal defining U. For any germ A,E8x, », there exists a
germ A»E@p, » of holomorphic vector field on D at p=i(p) such that

(3-1) Ap(7p)C I »
and the following diagram commutes :

Ap
Opp——Cb,»p

(3-2)

Ox,p————Cx,p

Ap

Conversely, any germ A,E®p, » of holomorphic vector field on D at p sat-
isfying (3-1) determines such a germ A,E@x, » of holomorphic vector field
on X at p that makes the diagram (3-2) commute.

We denote by T»X the (analytic) Zariski tangent space, i.e. a tangent
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vector vE TpX is a C-valued derivation of Zx,» over C. There is a
natural injective C-linear map 7pX— T»D, by which we consider T,XC
TpD .

Ty X={vE TpD|v(.7,)=0}.

Any germ A,C®x, » of holomorphic vector field determines canonically a
unique tangent vector A»(p)E TpX such that the following diagram com-
mutes :

As(D) ‘

Czﬂx, p/mX, b

This defines an # x, p-module homomorphism @x, ,— 7,X. Note that it is
not necessarily surjective. (e.g. at 0€{y*—x*=0}.) Let UCX an open
complex subspace and x€U. The composite C-linear mapping

P( U, @X)“"@X,x_’ T X

is defined, and the image of AET'(U, ®x) by this mapping is called the
value of A at x and denoted by A(x). For any open UCX and
AET(U, Bx), {(x€ U|A(x)=0} is a well-defined analytic set in U.

On holomorphic vector fields on complex spaces, the following theo-
rem is fundamental (see e. g. pp. 91-92.) :

THEOREM 3. 3.

Let X be an arbitrary complex space, pEX and ApSOx, p, If As(p)*+0 then
there exist an open neighbourhood UCX of p, a representative vector field
AET(U, Bx), a complex space V and an open disk W C C such that

(3-4) U=V XW
and at any piont xE U,
(3-5) 0F=Av(x)E T W C T U.

Let p€X. The C-dimension dim .7,X is called the embedding dimen-
sion of X at p and denoted by emdim, X. On the other hand, the dimen-
sion of X at p is denoted by dim, X and satisfies dim,X=dim 7x, p,
where dim¢Zx, » is the Krull dimension of 7k, », It is well known that an
inequality dimp,X =emdim,X always holds and that p€X is a regular
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point if and only if dimpX=emdim,X. This fact and Theorem 3. 3. imply
the following corollary.

COROLLARY 3. 6.

Let p be a rveduced point of a complex space X. Then the C-linear map
Ox. p— TpX is surjective if and only if p is a regular point of X.

§4. An application of the main theorem

Goémez-Mont investigated holomorphic foliations by curves on complex
spaces and obtained the following result. (See [GM], p. 131, Theorem 5.)

THEOREM 4.0 (Gémez-Mont).

Let X be a normal complex sapace, ¥ a holomorphic foliation by curves on
X and A a holomorphic vector field which is tangent to the leaves of F
wherever it does not vanish. If {x€Y|A(x)=0} is of codimension strictly
greater than one, then for any holomorphic vector field 7E€T(X, Ox) which
is tangent to the leaves of 7 wherever it does not vanish, there exists a
never-vanishing a< 7 x(X) such that n=a+A.

From this and our main theorem, we can deduce the following propo-
sition.

PROPOSITION 4. 1.

Let X be a normal complex space, pEX, F a foliation by curves on X
and AET(X, Ox) tangent to the leaves of %. If Ap)=0 and if the ana-
Wtic set Z={xEX|A(x)=0} is of codimension strictly greater than one then
we can never find an open neighbourhood U of p, an analytic set A in U
of codimension strictly greater than one and containing ZN\U, a complex
space V and an open disk W CC such that UNA>=V XW and that the
restriction of 5 to U is identical with the foliation defined by U\A=V X
W.

PrROOF. Assume that there were U, A, V and W satisfying the condi-
tions. Then, by our main theorem, there would exist U, Vo and W, as
described in the theorem. Furthermore, shrinking U, if necessary, we
may assume VoE, where E is a domain in C". Us=VX Wo&D=EX
Wo. Let w be a coordinate in Wy and 7€0x(Ub) the vector field defined
by 0/0wE®n(D). 7 is a vector field tangent to the leaves of % and never
vanishes on Us. By the theorem of Gomez-Mont, there should be a never-
vanishing holomorphic function a€I'(Us, Zx) such that Als,=a+n But
since A(»)=0, we have a contradiction. =
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