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0. Introduction.

Let us consider normed linear spaces (M, ||\cdot||_{M}) and (X, ||\cdot||_{X}) such
that M\subset X . We are interested in the following problem: When does the
space (M, ||\cdot||_{M}) possess a complete extension contained in the space X ?
More precisely, when does there exist a Banach space (Z, ||\cdot||_{Z}) satisfying
properties of Definition 1. 1 and Z\subset X.p The answer to this question is
established in Theorem 1. 2 and its consequence, Theorem 3. 3, which are
the main results of this paper. The complete extension of a linear normed
space provided by Theorem 1. 2 is said to be the inner completion, see
Definition 1. 3. The remaining part of this paper is devoted to some appli-
cations of the method of the inner completion. So in the section 2 we give
some examples of the inner completions which illustrate the action of
Theorem 1. 2. A particulary important case, as far as applications are
concerned, corresponding to the norm generated by an invertible linear
operator, is investigated in the section 3. The examples 3. 4 and 3. 5 show
that applying the method of the inner completion we are able to construct
the Sobolev spaces W_{p}^{k}(\Omega) and V_{p}^{k}(\Omega) without using the distribution the-
ory. Moreover, in view of the Theorem 3. 1 we can prove this way quite
easily some properties of the spaces W_{p}^{k}(\Omega) and V_{p}^{k}(\Omega) . Thus the method
of completion submitted here may be a useful tool in the theory of Sobolev
spaces. In the last section we give some theoretical applications of the
method of the inner completion. We prove nice theorems which concern
continuous linear operators of a Banach space into a Banach space. The
author wishes to thank Professor T. Lezanski for helpful remarks and
verification of this paper.
1. For any real (complex) linear spaces X and M, equipped with norms
||\cdot||_{X} and ||\cdot||_{M} respectively, such that \phi\neq M\subset X , we denote by [X, M] the
set of all x\in X for which there exists a sequence x_{n}\in M , n\in N , such that
(1. 1) ||x_{n}-x||_{X}arrow 0 as narrow\infty

and
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(1. 2) ||x_{n}-x_{m}||_{M}-0 as n, marrow\infty .

Obviously M\subset[X, M]\subset X and [X, M] is a linear subspace of X.

DEFINITION 1. 1. A linear space Z with a norm ||\cdot||_{Z} is said to be
complete extension of a linear space M with a norm ||\cdot||_{M} , if

(i) M is a dense subspace of (Z, ||\cdot||_{Z}) ;
(ii) ||x||_{M}=||x||_{Z} , for all x\in M ;
(iii) Z is a complete space.

The main result of this paper is the following

THEOREM 1. 2. Let X be a real (complex) Banach space with a norm
||\cdot||_{X} and M be its nonvoid linear subspace with a norm ||\cdot||_{M} , for which
there exists a constant \gamma>0 , such that

(1. 3) ||x||_{M}\geq\gamma||x||_{X} , x\in M

Then the following two conditions are equivalent

(i) for every sequence x_{n}\in M, n\in N, if ||x_{n}||_{X} -0 and ||x_{n}-x_{m}||_{M} -0
as n, marrow\infty then also ||x_{n}||_{M} -0 as narrow\infty :

(ii) there exists the unique norm ||\cdot|| -: [X, M]arrow R , such that the space
[X, M] equipped with the norm ||\cdot||

- is a complete extension of M
and ||x||-\geq\gamma||x||_{X} , x\in[X, M] .

PROOF. Assume that ( i) holds. Let x be any element of [X, M] .
Then there exists a sequence x_{n}\in M , n\in N , which has properties (1. 1)
and (1. 2) Hence |||x_{n}||_{M}-||x_{m}||_{M}|\leq||x_{n}-x_{m}||_{M}-0 as n, marrow\infty . So there
exists a limit \lim_{narrow\infty}||x_{n}||_{M} . If y_{n}\in M , n\in N , is any other sequence, such that
||y_{n}-x||_{X}-arrow 0 as narrow\infty and ||y_{n}-y_{m}||_{M}-0 as n, marrow\infty then setting z_{n}=x_{n}-

y_{n}\in M , n\in N , we get by (1. 1) and (1. 2) that

||z_{n}||_{X}\leq||x_{n}-x||_{X}+||y_{n}-x||_{X}arrow 0 as narrow\infty ,

as well as
||z_{n}-z_{m}||_{M}\leq||x_{n}-x_{m}||_{M}+||y_{n}-y_{m}||_{M}arrow 0 as n, marrow\infty .

So in view of ( i) |||x_{n}||_{M}-||y_{n}||_{M}|\leq||x_{n}-y_{n}||_{M}=||z_{n}||_{M}-0 as narrow\infty . This way
\lim_{narrow\infty}||x_{n}||_{M}=\lim_{narrow\infty}||y_{n}||_{M} and we can define on [X, M] a real functional ||\cdot||

-

by the equality

||x||_{\overline{M}}= \lim_{narrow\infty}||x_{n}||_{M} , x\in[X, M]

where x_{n}\in M , n\in N , is any sequence satisfying the properties (1. 1) and
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(1. 2). Obviously the functional ||\cdot|| - is a norm on the space [X, M] and
for every x\in[X, M]

||x||_{\overline{M}}\geq\gamma||x||_{X} and ||x|| -=||x||_{M} as x\in M .

Moreover, from (1. 1) and (1. 2) it follows that for any fixed n\in N , the
sequence x_{n}-x_{m}\in M , m\in N , satisfies the following properties

||(x_{n}-x_{m})-(x_{n}-x)||_{X}arrow 0 as marrow\infty

and

||(x_{n}-x_{m})-(x_{n}-x_{k})||_{M}arrow 0 as m, karrow\infty .

Hence by the definition of the norm ||\cdot||
- we derive an equality

(1. 4) \lim_{narrow\infty}||x_{n}-x||_{\overline{M}}=\lim_{narrow\infty}(\lim_{marrow\infty}||x_{n}-x_{m}||_{M})=0 .

From this and by the arbitrari ness of x\in[X, M] it follows that M is a
dense subspace of the space [X, M] with the norm ||\cdot|| -. Now we shall
prove completeness of this space. Let y_{n}\in[X, M] , n\in N , be any
sequence, such that

(1. 5) ||y_{n}-y_{m}||_{\overline{M}}arrow 0 as n , marrow\infty .

From density of M we conclude that there exists a sequence x_{n}\in M , n\in

N, such that

(1. 6) \lim_{narrow\infty}||x_{n}-y_{n}||_{\overline{M}}=0 .

Hence and by (1. 5) we have

||x_{n}-x_{m}||_{M}\leq||x_{n}-y_{n}||_{\overline{M}}+||y_{n}-y_{m}||_{\overline{M}}+||y_{m}-x_{m}||_{\overline{M}}arrow 0

as n , marrow\infty . This and the inequality (1. 3) give

||x_{n}-x_{m}||_{X} \leq\frac{1}{\gamma}||x_{n}-x_{m}||_{M}arrow 0 as n , marrow\infty .

Thus in view of completeness of the space X we conclude that there exists
x\in X such that ||x_{n}-x||x-0 as narrow\infty . This way the sequence x_{n}\in M ,
n\in N , satisfies the properties (1. 1) and (1. 2) so x\in[X, M] and the
equality (1. 4) holds which together with (1. 6) leads to

||y_{n}-x||_{\overline{M}}\leq||y_{n}-x_{n}||_{\overline{M}}+||x_{n}-x||_{\overline{M}}arrow 0 as narrow\infty .

This proves completeness of the space [X, M] normed by ||\cdot||_{\overline{M}} . Suppose
now that the space [X, M] equipped with another norm ||\cdot||_{\overline{\overline{M}}} is also a com-
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plete extension of the space M. Then the norms ||\cdot||
- and ||\cdot||_{\overline{\overline{M}}} are equiva-

lent, because of the invertible linear operator theorem of S. Banach, [cf. 1,
7]. Thus the real functional f defined by f(x)=||x|| -

-||x||_{\overline{\overline{M}}} for every x\in

[X, M] is continuous on the space [X, M] normed by ||\cdot||_{\overline{M}} . Moreover, f
vanishes on the dense subset M of [X, M] so f(x)=0 and hence ||x|| -=||x||_{\overline{\overline{M}}}

for every x\in[X, M] . This completes the proof of ( i)\Rightarrow(ii) .
Assume now that ( ii) holds. Then for any sequence x_{n}\in M , n\in N

satisfying (1. 2) and

(1. 7) ||x_{n}||_{X}arrow 0 as narrow\infty

there exists x\in[X, M] such that

||x_{n}-x||_{X} \leq\frac{1}{\gamma}||x_{n}-x||_{\overline{M}}arrow 0 as narrow\infty

in view of completeness of the space X. This together with (1. 7) gives
x=0, so ||x_{n}||_{M} -0 as narrow\infty . In this way we have proved the theorem.

DEFINITION 1. 3. The space ([X, M], ||\cdot|| -) mentioned in the above
theorem is said to be the inner completion of the space (M, ||\cdot||_{M}) into the
space (X, ||\cdot||_{X}) .

2. This section we devote to some direct applications of Theorem 1. 2.
We start with the following theorem which is related to the well known K.
Friedrichs theorem, [cf. 3, 7].

THEOREM 2. 1. Let H be a real (complex) Hilbert space with the
inner product (\cdot, \cdot)_{H} , M be its nonempty linear subspace and A:Marrow H a
linear operator such that

(2. 1) (Ax, y)_{H}=(x, Ay)_{H}

and

(2. 2) (Ax, x)_{H}\geq\gamma^{2}(x, x)_{H}

for all x, y\in M, where \gamma>0 is some real constant. Then there exists a

Hilbert space H’ with the inner product (\cdot, \cdot)_{H’} such that

(i) M\subset H’\subset H and M is a dense subset of the space (H’. ||\cdot||_{H’}) :
(ii) (x, y)_{H’}=(Ax, y)_{H} for all x, y\in M :
(iii) (x, x)_{H’}\geq\gamma^{2}(x, x)_{H} for every x\in H’

PROOF. Denoting by ||x||_{M}^{2}=(Ax, x)_{H} , x\in M we see that the func-
tional ||\cdot||M:Marrow R is a norm on the space M. Moreover, it follows from
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(2. 2) that

||x||_{M}^{2}=(Ax, x)_{H}\geq\gamma^{2}(x, x)_{H}=\gamma^{2}||x||_{H}^{2}

for all x\in M . Let x_{n}\in M , n\in N , be an arbitrary sequence such that
||x_{n}||_{H}arrow 0 and ||x_{n}-x_{m}||_{M}-arrow 0 as n , marrow\infty .

Then |||x_{n}||_{M}-||x_{m}||_{M}|\leq||x_{n}-x_{m}||_{M}-arrow 0 as n , marrow\infty , so there exists a limit
a= \lim_{narrow\infty}||x_{n}||_{M} and by (2. 1)

0= \lim_{narrow\infty}(\lim_{marrow\infty}||x_{n}-x_{m}||_{M}^{2})=\lim_{narrow\infty}(\lim_{marrow\infty}(A(x_{n}-x_{m}), x_{n}-x_{m})_{H})

= \lim_{narrow\infty}(\lim_{marrow\infty}(||x_{n}||_{M}^{2}+||x_{m}||_{M}^{2}-2{\rm Re}(Ax_{n}, x_{m})_{H}))=2a^{2} ,

because of |(Ax_{n}, x_{m})_{H})|\leq||Ax_{n}||_{H}||x_{m}||_{H}-0 for every fixed n\in N as marrow\infty .
Hence a=0 and by virtue of Theorem 1. 2 the space [H, M] normed by
||\cdot||_{\overline{M}} is a complete extension of the space M with the norm ||\cdot||_{M} . Thus
setting H’=[H, M] we see that M\subset H’\subset H and M is dense in the space
H’- Since

||x+y||_{M}^{2}+||x-y||_{M}^{2}=2||x||_{M}^{2}+2||y||_{M}^{2} ,

for all x , y\in M , then taking limits in both sides of this equality we get

||x+y|| \frac{2}{M}+||x+y||\frac{2}{M}=2||x||\frac{2}{M}+2||y||\frac{2}{M} ,

for all x , y\in H’ Hence setting for any x, y\in H’

(x, y)_{H’}= \frac{1}{4}(||x-y||\frac{2}{M}-||x-y||\frac{2}{M})

if H is a real space, or

(x, y)_{H’}= \frac{1}{4}(||x+y||\frac{2}{M}-||x-y||\frac{2}{M}+i||x+iy||\frac{2}{M}-i||x-iy||\frac{2}{M}) ,

if H is a complex space, we state, that (\cdot,\cdot)_{H’} is an inner product on the
space H’. Moreover, for any x , y\in M

(x, y)_{H’}=(Ax, y)_{H}

and for every x\in H’

(x, x)_{H’}=||x|| \frac{2}{M}\geq\gamma^{2}||x||_{H}^{2}=\gamma^{2}(x, x)_{H} ,

and this ends the proof.
Let C^{\infty}(\Omega) denote the class of all real (complex) functions infinitely

many times differentible on \Omega and let C_{0}^{\infty}(\Omega) denote its subclass consisting
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of functions with compact support included in the domain \Omega . By L^{p}(\Omega, \mu)

we denote the space of all real (complex) \mu-measureable functions f
defined on the domain \Omega such that

||f||_{p}=( \int_{\Omega}|f|^{p}d\mu)^{1/p} as 1\leq p<\infty

and

||f||_{\infty}= \sup esst\in\Omega|f(t)| as p=\infty .

By \mu_{m} we mean the m-dimensional Lebesgue measure.

EXAMPLE 2. 2. Let \Omega\subset R be an open interval with a finite length
\mu_{1}(\Omega) , M=C_{0}^{\infty}(\Omega) and X=C(\Omega)i . e . the space of all bounded continuous
functions on \Omega normed in the usual way by ||\cdot||_{\infty} . Setting for every x\in M ,
||x||_{M}=||x^{r}||_{1} , we see that the functional ||\cdot||_{M} is a norm on the space M and

||x||_{M}=||x’||_{1}=Var_{\Omega}(x)\geqq||x||_{\infty} ,

if x\in M . Assume that x_{n}\in M , n\in N , is an arbitrary sequence satisfying
(1. 1) with x=0 and (1. 2). Then Var_{\Omega}(x_{n}-x_{m})=||x_{n}’-x_{m}’||_{1}=||x_{n}-x_{m}||_{M}arrow 0

as n , m - \infty . Hence, in view of completeness of the space of all func-
tions defined on \overline{\Omega} with bounded variation and vanishing at the initial
point of the interval \overline{\Omega}, there exists a function x such that Var_{\Omega}(x)<\infty and
Var_{\Omega}(x_{n}-x)arrow 0 as n -arrow\infty . But Var_{\Omega}(x_{n}-x)\geq||x_{n}-x||_{\infty} , so by (1. 1) x=0
and ||x_{n}||_{M}=||x_{n}’||_{1}=Var_{\Omega}(x_{n})arrow 0 as narrow\infty . Therefore, by virtue of The-
orem 1. 2 the space ([X, M], ||\cdot||_{\overline{M}}) is the inner completion of the space (M,
||\cdot||_{M}) into C(\Omega) . In fact [X, M] coincides with the space of all absolutely
continuous functions on \Omega vanishing at the initial point of the interval \overline{\Omega},

EXAMPLE 2. 3. Let us denote by \Delta=\{z\in C:|z|<1\} the unit disk and
by T=\{z\in C:|z|=1\} the unit circle. Let X=L^{1}(T, \mu_{1}) be a real space
and M=\{{\rm Re} f_{1T}:f\in \mathscr{P}_{-}\} where \mathscr{P} is the class of all complex polynomials
vanishing at 0. Let us associate with any function f\in X an analytic func-
tion f_{\Delta} : \Deltaarrow C as follows

f_{\Delta}(z)= \frac{1}{2\pi}\int_{T}f(u)\frac{u+z}{u-z}|du| . z\in\Delta .

Setting for every x\in M , ||x||_{M}=|||f_{1T}|||_{1} , where f\in \mathscr{P} and x={\rm Re} f_{1T} we see
that the functional ||\cdot||_{M} is a norm on the space M and ||x||_{M}\geq||x||_{1} , if x\in M .
Assume that x_{n}\in M , n\in N , is an arbitrary sequence satisfying (1. 1) with
x=0 and (1. 2). Then there exist polynomials f_{n}\in \mathscr{P} such that ({\rm Re} f_{n})_{|T}=
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\chi_{n} , n\in N , and by completenes of X there exists x\in X for which
(2. 3) ||({\rm Im} f_{n})_{|T}-x||_{1}arrow 0 as narrow\infty .

By Poisson formula, (1. 1) and (2. 3) we get for every z\in\Delta the following
equalities \lim_{narrow\infty}{\rm Im}(f_{n}(z))=\lim_{narrow\infty}{\rm Re}((({\rm Im} f_{n})_{|T})_{\Delta})(z)={\rm Re}(x_{\Delta})(z) and
\lim_{narrow\infty}{\rm Im}((x_{n})_{\Delta})(z)=0 . From this and by the equality {\rm Im}(f_{n}(z))={\rm Im}((x_{n})_{\Delta})

(z) , z\in\Delta , it follows that {\rm Re}(x_{\Delta})(z)=0 for all z\in\Delta . Hence and by the
properties of Poisson integral [cf. 4] we obtain finally that x=0a. e . on T
So ||x_{n}||_{M}-, 0 as narrow\infty and by virtue of Theorem 1. 2 the space ([X, M] ,
||\cdot||_{\overline{M}}) is the inner completion of the space (M, ||\cdot||_{M}) into L^{1}(T, \mu_{1}) . More
over, from M. Riesz theorem [cf. 6,4] and H\"older inequality

\bigcup_{1<p<\infty}L^{p}(T, \mu_{1})\subset[X, M]\subset L^{1}(T. \mu_{1}) .

In fact [X M]={\rm Re} H^{1}(\Delta) where H^{1}(\Delta) is Hardy space.

3. Now we shall consider a special case of the inner extension when the
norm ||\cdot||_{M} is generated by an invertible linear operator. More precisely,
let X and Y be real (complex) linear spaces equipped with norms ||\cdot||_{X}

and ||\cdot||_{Y} , respectively. Let M be a nonvoid linear subspace of X and A :
Marrow Y an invertible linear operator. Then the real functional ||\cdot||_{A}

defined for every x\in M by

(3. 1) ||x||_{A}=||Ax||_{Y}

is a norm on M.

THEOREM 3. 1. Suppose ( Y, ||\cdot||_{Y}) is a real (complex) Banach space,
M is a real (complex) linear space and A:Marrow Y an invertible linear
operator. If a space (Z, ||\cdot||_{Z}) is a complete extension of the space (M, ||\cdot||_{A})

then A has the unique continuous extension \tilde{A}:Z – Y which is an isomor-
phic isometry of (Z, ||\cdot||_{Z}) onto the closed subspace (\overline{A(M)}, ||\cdot||_{Y}) of the
space ( Y, ||\cdot||_{Y}) . Moreover, the space (Z, ||\cdot||_{Z}) possesses the following prop-
erties:

(i) is reflexive if the space ( Y, ||\cdot||_{Y}) is reflexive;
(ii) is uniformly convex if the space ( Y, ||\cdot||_{Y}) is uniformly convex:
(iii) is separable if the space ( Y, ||\cdot||_{Y}) is separable;
(iv) is a Hilbert space if ( Y, ||\cdot||_{Y}) is a Hilbert space;
(v) for every real (complex) linear and bounded functional f defined on

Z there exists a linear functional g\in Y^{*} such that f(x)=g(\tilde{A}x) for all
x\in Z ;

(vi) if \overline{A(M)}=Y then the conjugate space Z^{*} is isomorphic and isometric
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with the conjugate space Y^{*} .

PROOF. Since M is a dense subset of the space (Z, ||\cdot||_{Z}) and ( Y_{r}.
||\cdot||_{Y}) is complete, the linear operator A:Marrow Y. bounded in view of (3.

1), has the unique continuous extension \tilde{A}:(Z, ||\cdot||_{Z})arrow (Y. ||\cdot||_{Y}). Hence,

by density of M in the space (Z, ||\cdot||_{Z}) and by (3. 1) we get for every x\in Z

(3. 2) ||x||_{Z}=||\tilde{A}x||_{Y} .

Thus \tilde{A} is an isomorphic and isometric operator of (Z, ||\cdot||_{Z}) onto the
closed subspa\underline{ce(\tilde{A}}(Z) , ||\cdot||_{Y}) of the space ( Y, ||\cdot||_{Y}) . Furthermore,
\tilde{A}(Z)=\tilde{A}(\overline{M})=\tilde{A}(M)=\overline{A(M)} . Since the space A(Z) is closed in the space
(Y, ||\cdot||_{Y}) , it follows from (3, 2) and the corresponding properties preserved
by closed subspaces that the properties (i)-(vi) hold.

EXAMPLE 3. 2. Let X=L^{2}(\Omega, \mu) and Y=L^{p}(\Omega, \mu) be real (complex)
spaces, where 2\leq p\leq\infty and 0<\mu(\Omega)<\infty . X is a Hilbert space with the
usual inner product (\cdot, \cdot) . Assume \{e_{n}\in X:n\in N\} is any fixed orthonor-
mal basis of X, \gamma_{n}\in R(C) , n\in N , is any sequence such that \inf\{|\gamma_{n}| : n\in

N\}=\gamma>0 and \sigma:Narrow N is an injective mapping. Setting M=1in(c_{1}, c_{2},\ldots)

and defining a linear operator A:Marrow Y by equalities Ac_{n}=\gamma_{n}c_{\sigma(n)} , n\in

N, we get by H\"older inequality the following estimate

||x||_{A}=||Ax||_{Y}=||Ax||_{p} \geq|\Omega|^{1/p-1/2}||Ax||_{2}=|\Omega|^{1/p-1/2}(\sum_{i=1}^{\infty}|\gamma_{i}|^{2}|(x, c_{i})|^{2})^{1/2}

\geq\gamma|\Omega|^{1/p-1/2}(\sum_{i=1}^{\infty}|(x, c_{i})|^{2})^{1/2}=\gamma|\Omega|^{1/p-1/2}||x||_{2} ,

for every x\in M . Assume now x_{n}\in M , n\in N , is any sequence such that
||x_{n}||_{2}arrow 0 and ||x_{n}-x_{m}||_{M}=||Ax_{n}-Ax_{m}||_{p}arrow 0 as n, marrow\infty . Since ( Y, ||\cdot||_{p})

is complete, there exists y\in Y such that

(3. 3) ||Ax_{n}-y||_{p}arrow 0 as narrow\infty

and simultaneously

||Ax_{n}-y||_{2}arrow 0 as narrow\infty .

Thus if k\not\in\sigma(N) then obviously (c_{k}, y)= \lim_{narrow\infty}(c_{k}, Ax_{n})=0 . Otherwise there

exists j\in N such that k=\sigma(j) and
|(c_{k}, Ax_{n})|=|(c_{\sigma(j)}, \sum_{i=1}^{\infty}\gamma_{i}(x_{n}, c_{i})c_{\sigma(i)})|=|\gamma_{j}||(x_{n}, c_{j})|\leq|\gamma_{j}|||x_{n}||_{2}arrow 0 as n

arrow\infty , so (c_{k}, y)= \lim_{narrow\infty}(c_{k}, Ax_{n})=0 . Hence (c_{k}, y)=0 for all k\in N and this

gives that y=0 . From this and by (3. 3) we obtain ||x_{n}||_{A}=||Ax_{n}||_{p}arrow 0 as n
arrow\infty . Then by virtue of Theorem 1. 2 the space ([X, M], ||\cdot||_{\overline{M}}) is the
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inner completion of the space (M, ||\cdot||_{A}) into L^{2}(\Omega, \mu) . Moreover, if fol-
lows from Theorem 3. 1 that the space ([X, M], ||\cdot||_{\overline{M}}) is reflexive and is a
Hilbert space whenever p=2 , because the space Y is [cf. 7]. If addition-
ally we assume, for example, that \Omega\subset R is an interval and \mu=\mu_{1} then it is
also uniformly convex and separable, because the space Y has analogous
properties [cf. 2].

In the follwing theorem we get a sufficient condition to complete the
space (M, ||\cdot||_{A}) in the space (X, ||\cdot||_{X}) .

THEOREM 3. 3. Suppose (X, ||\cdot||_{X}) , ( Y, ||\cdot||_{Y}) are real ( complex)
Banach spaces, M is a nonvoid linear subspace of X and A:Marrow Ya
linear operator such that for every x\in M

(3. 4) ||x||_{A}=||Ax||_{Y}\geq\gamma||x||_{X},

where \gamma is some positive constant. If S is a dense subset of the conjugate
space Y^{*} such that for every functional f\in S and every sequence x_{n}\in M, n
\in N,

(3. 5) \lim_{narrow\infty}f(Ax_{n})=0 as \lim_{narrow\infty}||x_{n}||_{X}=0

then there exist the unique norm ||\cdot||A on the space [X, M] and the unique
linear bounded operator \tilde{A}:[XM]arrow Y such that.

(i) the space ([X, M], ||\cdot||x) is a complete extension of the space (M,
||\cdot||_{A}) ;

(ii) ||\tilde{A}x||_{Y}=||x||A\geq\gamma||x||_{X} for eve\eta x\in[X, M] :
(iii) \tilde{A}x=Ax as x\in M.

PROOF. Let x_{n}\in M , n\in N , be an arbitrary sequence such that ||x_{n}||_{X}

arrow 0 as narrow\infty and ||x_{n}-x_{m}||_{A}arrow 0 as n , marrow\infty . Hence ||Ax_{n}-Ax_{m}||_{Y}arrow 0

as n , marrow\infty . Since ( Y, ||\cdot||_{Y}) is complete, there exists y\in Y such that
(3. 6) ||Ax_{n}-y||_{Y}arrow 0 as narrow\infty .

This way for any functional f\in S\subset Y^{*}

|f(Ax_{n})-f(y)|=|f(Ax_{n}-y)|\leq||f||_{Y}*||Ax_{n}-y||_{Y}arrow 0 as narrow\infty ,

from which in view of (3. 5) we get f(y)=0. Since S is dense in Y^{*} , so y
=0 and by (3- 6) we get ||x_{n}||_{A}=||Ax_{n}||_{Y}arrow 0 as narrow\infty . Then using TheO-
rems 1. 2 and 3. 1 we obtain the theorem.

Now we shall give some examples which are applications of TheO-
rems 3. 1 and 3. 3. To this end we introduce a few notations. For any
finite set \mathscr{A} and space X we denote by X^{\mathscr{H}} the family of all mappings of
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\mathscr{A} into X (Cartesian product). If X=L^{p}(\Omega, \mu) , where 1<p<\infty is any

fixed constant, then setting for every f=(f_{a})_{a\in \mathscr{H}}\in X^{\mathscr{H}}

||f|| \swarrow,p^{=(\int_{\Omega a\in \mathscr{H}}\mu}\sum|f_{a}|^{2})^{p/2}d^{1/p}

we set that (X^{\mathscr{H}}, ||\cdot||_{dp}) is a complete space. For any m\in N and k\in

N\cup\{0\} we set

\mathscr{A}(m, k)=\{\alpha=(\alpha_{1}, \alpha_{2},\ldots, \alpha_{m}) _{:} _{\alpha_{i}=0},1,2_{ },\ldots, 1\leq i\leq m, |\alpha|=\sum_{i=1}^{m}\alpha_{i}=k\}

and D^{a}= \frac{\partial|\alpha|}{\partial t_{1}^{a_{1}}\partial t_{2}^{az}\ldots\partial t_{m^{m}}^{a}} . whenever \alpha\in \mathscr{A}(m, k) .

E XAMPLE 3. 4. Let \Omega be an open subset of R^{m} , X=L^{p}(\Omega, \mu_{m}) , \mathscr{A}=

\mathscr{A}(m, k)\cup \mathscr{A}(m, 0) , Y=X^{\mathscr{H}}, and M=\{f\in C^{\infty}(\Omega):D^{a}f\in X, \alpha\in \mathscr{A}\} , where
m, k\in N and 1<p<\infty are any fixed constants. The space Y equipped
with a norm ||\cdot||_{Y} , where

||f||_{Y}=||(fa)_{a\in 4(m,k)}||_{4(m,k),p}+||f_{(0,0,\cdots,0)}||_{p}

for every f=(f_{a})_{\alpha\in \mathscr{H}}\in Y , is a Banach space. Setting for any x\in M

Ax=(D^{a}x)_{a\in \mathscr{H}}

we see that A:Marrow Y is a linear operator and

||x||_{A}=||Ax||_{Y}=||(D^{a}x)_{a\in \mathscr{H}(m,k)}||_{d(m,k),p}+||D^{(0,0,\cdots,0)}x||_{p}\geq||x||_{p} .

Moreover, if f=(f_{a})_{a\in d}\in S=(C_{0}^{\infty}(\Omega))^{\mathscr{H}} and x_{n}\in M , n\in N , is a sequence
such that ||x_{n}||_{p}arrow 0 as n - \infty then integrating by parts we obtain

| \int\sum_{\Omega a\in \mathscr{H}}f_{a}D^{a}x_{n}d\mu_{m}|=|\int_{\Omega a\in \mathscr{H}}\Sigma(-1)^{|a|}D^{a}f_{a}x_{n}d\mu_{m}|\leq

(\Sigma(\mu_{m}(suppf_{a}))^{1-1/p}||D^{a}f_{a}||_{\infty})||x_{n}||_{p}a\in \mathscr{H}arrow 0 as narrow\infty

where supp g denotes the support of a function g. The standard proof

shows that the conjugate space ( Y^{*}, ||\cdot||_{Y}*) is homeomorphic with the

space Y_{*}=(L^{q}(\Omega, \mu_{m}))\swarrow normed by ||\cdot||_{p’,q} , where \frac{1}{p}+\frac{1}{q}=1 . Since S is a

dense subset of ( Y_{*}, ||\cdot||_{x_{-},q}’) then by virtue of Theorem 3, 3 the space ([X,

M] , ||\cdot|| -) is the inner completion of the space (M, ||\cdot||_{A}) into L^{p}(\Omega, \mu_{m}) .
Moreover, it follows from Theorem 3. 1 that the space ([X, M], ||\cdot||_{\overline{A}}) is
reflexive and separable, because the space Y is such. Since M is also
dense in the Sobolev space ( W_{p}^{k}(\Omega), ||\cdot||_{W_{p}^{k}(\Omega)}) , cf. [5] and ||x||_{A}=||x||_{W_{p}^{k}(\Omega)} for
every x\in M , the spaces ([X, M], ||\cdot|| -) and ( W_{p}^{k}(\Omega), ||\cdot||_{W_{\rho}^{k}(\Omega)}) are isometric
and isomorphic. But what is important, the space ([X, M], ||\cdot|| -) is con-
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structed without the distribution theory.

EXAMPLE 3. 5. Let \Omega be an open subset of R^{m} , X=L^{p}(\Omega, \mu_{m}) , \mathscr{A}=

\bigcup_{l=0}^{k}\mathscr{A}(m, l) , Y=X^{\mathscr{H}}, and M=\{f\in C^{\infty}(\Omega):D^{a}f\in X, \alpha\in \mathscr{A}\} , where m, k\in N

and 1<p<\infty are any fixed constants. The space Y equipped with the
norm ||\cdot||_{Y} , where

||f||_{Y}= \sum_{t=0}^{k}||(f_{a})_{\alpha\in d(m,l)}||_{l(m,/),p}

for every f=(f_{a})_{a\in \mathscr{H}}\in Y. is a Banach space. Its conjugate space ( Y^{*} ,
||\cdot||_{Y}*) is homeomorphic with the space Y_{*}=(L^{q}(\Omega_{ },\mu_{m}))^{\mathscr{H}} normed by ||\cdot||d , q ’

where \frac{1}{p}+\frac{1}{q}=1 and S=(C_{0}^{\infty}(\Omega))^{\mathscr{H}} is a dense subset of ( ^{Y}*, ||\cdot||_{\mathscr{H},q}) . Setting

for any x\in M

Ax=(D^{a}x)_{a\in \mathscr{H}}

we show, similarly as in the previous example, that the space ([X, M] ,
||\cdot|| -) is the inner completion of the space (M, ||\cdot||_{A}) into L^{p}(\Omega, \mu_{m}) . More-
over, it follows from Theorem 3.1 that the space ([X, M], ||\cdot|| -) is reflexive
and separable. Since M is also dense in the Sobolev space ( V_{p}^{k}(\Omega) ,
||\cdot||_{V_{p}^{k}(\Omega)}) , [cf, 5] and ||x||_{A}=||x||_{V_{p}^{h}(\Omega)} for every x\in M , the spaces ([X, M] ,

||\cdot|| -) and ( V_{p}^{k}(\Omega), ||\cdot||_{V_{p}^{k}(\Omega)}) are isometric and isomorphic. But what is
important, the space ([X, M], ||\cdot|| -) is also in the previous example con-
structed without the distribution theory.

The above two examples show that Theorems 3. 1 and 3. 3 can be
useful tools in the theory of Sobolev spaces. As a matter of fact we have
proved in a quite easy way that Sobolev spaces W_{p}^{k}(\Omega) and V_{p}^{k}(\Omega) are
reflexive and separable. Moreover, in view of Theorem 3. 1 we are able
to find a representation of every continuous linear functional on these
spaces.

EXAMPLE 3. 6. Let \Omega\subset R be an open interval with a finite length
\mu_{1}(\Omega) , M=C_{0}^{\infty}(\Omega) , X=L^{1}(\Omega, \mu_{1}) , \mathscr{A}=\{0,1, \ldots,k\} and Y=(L^{p}(\Omega, \mu_{1}))\swarrow,

where 1<p<\infty and k is a nonegative integer. The space Y equipped
with a norm ( Y, ||\cdot||_{Y}) defined for every f=(f_{0}, f_{1}, \ldots, f_{k})\in Y by

||f||_{Y}=( \sum_{i=0}^{k}||f_{i}||_{p}^{p})^{1/p}

is a Banach space. Its conjugate space (Y^{*}, ||\cdot||_{Y}*) , is isomorphic and

isometric with space Y_{*}=(L^{q}(\Omega, \mu_{1}))^{\mathscr{H}}, \frac{1}{p}+\frac{1}{q}=1 , normed by ||\cdot||_{Y_{*}} , where
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||f||_{Y_{*}}=( \sum_{i=0}^{k}||f_{i}||_{q}^{q})^{1/q}

for every f=(fo, f_{1_{ }},\ldots, f_{k})\in(L^{q}(\Omega, \mu_{1}))\swarrow. Setting for any x\in M

Ax=(a_{0}D^{0}x, a_{1}D^{1}\chi_{ },\ldots, a_{k}D^{k}x) ,

where a_{0} , a_{1} , \ldots , a_{k} are any fixed real (complex) constants such that \sum_{i=0}^{k}|a_{i}|

>0 , we see that A:Marrow Y is a linear operator. Moreover, for every x\in
M

||Dx||_{p}\geq\mu_{1}(\Omega)^{-1/q}||Dx||_{1}\geq\mu_{1}(\Omega)^{-1/q}||x||_{\infty}\geq\mu_{1}(\Omega)^{-1/q-1}||\chi||_{1} ,

where \frac{1}{p}+\frac{1}{q}=1 , from which

||x||_{A}=||Ax||_{Y}=( \sum_{i=0}^{k}||a_{i}D^{i}x||_{p}^{p})^{1|p}\geq\frac{1}{k+1}\sum_{i=0}^{k}|a_{i}|||D^{i}x||_{p}

\geq\frac{\mu_{1}(\Omega)^{-1/q}}{k+1}(\sum_{i=0}^{k}|a_{i}|\mu_{1}(\Omega)^{-i})||x||_{1} .

If now f=(f_{0}, f_{1_{ }},\ldots, f_{k})\in M\mathscr{H} and x_{n}\in M , n\in N , is a sequence such that
||x_{n}||_{1}arrow 0 as n -arrow\infty then integrating by parts we obtain

| \int\sum_{\Omega i=0}^{k}f_{i}(t)a_{i}D^{i}x_{n}(t)dt|=|\int\sum_{\Omega i=0}^{k}(-1)^{i}a_{i}D^{i}f_{i}(t)x_{n}(t)dt|\leq

( \sum_{i=0}^{k}|a_{i}|||D^{i}f_{i}||_{\infty})||x_{n}||_{1}arrow 0 as narrow\infty .

Since M_{\mathscr{H}} is a dense subset of Y_{*} , by virtue of Theorem 3. 3 the space
([X, M], ||\cdot||_{\overline{A}}) is the inner completion of the space (M, ||\cdot||_{A}) into L^{1}(\Omega, \mu_{1}) .
Moreover, it follows from Theorem 3. 1 that the space ([X, M], ||\cdot||_{A}) isreflexive, uniformly convex, separable and is aHilbert space whenever p
=2 , because of analogous properties of the space Y [cf. 2].
4. We end with giving some interesting corollaries of Theorem 3. 3
which concern linear operators of Banach spaces.

THEOREM 4. 1. Let (X, ||\cdot||_{X}) and ( Y, ||\cdot||_{Y}) be real ( complex)
Banach spaces, A:Xarrow Y a linear operator such that for every x\in X

||Ax||_{Y}\geq\gamma||x||_{Xf}

where \gamma is some positive constant. If S is a dense subset of the conjugatespace Y^{*} such that for every functional f\in S and eve\eta sequence x_{n}\in X, n
\in N,
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\lim_{narrow\infty}f(Ax_{n})=0 as \lim_{narrow\infty}||x_{n}||_{X}=0

then A is a linear homeomorphism of the space (X, ||\cdot||_{X}) onto the closed
subspace A(X) of the space ( Y, ||\cdot||_{Y}) .

P ROOF. Setting M=X and applying Theorem 3.3 we state that \{X ,
||\cdot||_{A}) is a complete space. Thus both norms ||\cdot||_{X} and ||\cdot||_{A} are equivalent,
because of the invertible linear operator theorem of S. Banach, [cf. 1, 7].
So there exists a positive constant C such that for every x\in X

\gamma||x||_{X}\leq||Ax||_{Y}=||x||_{A}\leq C||x||_{X} .

This ends the proof.

THEOREM 4. 2. Let (X ||\cdot||_{X}) and ( Y, ||\cdot||_{Y}) be real (complex) Banach
spaces. If A:Xarrow Y is a linear operator and S is a dense subset of the
conjugate space ( Y^{*}, ||\cdot||_{Y}*) such that for every functional f\in S and every
sequence x_{n}\in X, n\in N,

\lim_{narrow\infty}f(Ax_{n})=0 as \lim_{narrow\infty}||x_{n}||_{X}=0

then A is a bounded operator of the space (X, ||\cdot||_{X}) into the space ( Y, ||\cdot||_{Y}) .

PROOF. Setting Z=X\cross Y and ||(x, y)||_{Z}=||x||_{X}+||y||_{Y} for every (x, y)
\in Z we see that (Z, ||\cdot||_{Z}) is a Banach space. Let B:Xarrow Z be a linear
operator defined by Bx=(x, Ax) for every x\in X . Obviously

||Bx||_{Z}=||x||_{X}+||Ax||_{Y}\geq||x||_{X} , x\in X .

Assume f\in Z^{*} is any functional such that for all (x, y)\in Z , f((x, y))=
f_{X}(x)+f_{Y}(y) , where f_{X}\in X^{*} but f_{Y}\in S . From the assumption of TheO-
rem it follows for any sequence x_{n}\in X , n\in N , that \lim_{narrow\infty}f(Bx_{n})=\lim_{narrow\infty}f_{X}(x_{n})

+ \lim_{narrow\infty}f_{Y}(Ax_{n})=0 as \lim_{narrow\infty}||x_{n}||_{X}=0 . It is quite easy to show that the

conjugate space (Z^{*}, ||\cdot||_{Z}*) is homeomorphic with the space Z_{*}=X^{*}\cross Y^{*}

normed by ||\cdot||_{Z_{*}} , where ||(f, g)||_{Z_{*}}=||f||x*+||g||Y^{*} for all (f, g)\in Z_{*} . Since
X^{*}\cross S is a dense subset of the space (Z^{*}, ||\cdot||_{Z^{*}}) , by virtue of Theorem 4. 1
B is a linear homeomorphism of the space (X, ||\cdot||_{X}) onto the closed sub-
space B(X) of the space (Z, ||\cdot||_{Z}) . Hence there exists a constant C>1
such that ||Bx||_{Z}=||x||_{X}+||Ax||_{Y}\leq C||x||_{X} so ||Ax||_{Y}\leq(C-1)||x||_{X} for every x\in

X. This ends the proof.
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