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Toeplitz and Hankel operators on Bergman
one space
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Abstract

This note provides necessary and sufficient conditions for Toeplitz and
Hankel operators with harmonic symbols to boundedly map the Bergman
one space to the Lebesgue one space.

1 Introduction

We begin by recalling some standard notations and definitions. Let
dA denote the Lebesgue area measure on the unit disc D of the complex
plane C. For 1\leq p<\infty and for a Lebesgue measurable function f:Darrow C,

let

||f||_{p}=( \int|f|^{p}dA)^{\frac{1}{p}}

Here and elsewhere unless otherwise stated all integrals are taken over
the unit disc. For 1\leq p<\infty , the Bergman space L_{a}^{p} is the set of all those
analytic functions f : Darrow C such that ||f||_{p}<\infty . As usual the space of
bounded analytic functions will be denoted by H^{\infty} and the subspace of
functions vanishing at the origin will be denoted by H_{0}^{\infty} .

The Bergman space L_{a}^{2} is of course a functional Hilbert space, and
the reproducing kernel at a point w\in D is

k_{w}(z)=\pi^{-1}(1-\overline{w}z)^{-2} . z\in D . (1)

There is an explicit formula for the orthogonal projection (Bergman pr0-
jection) P from the Lebesgue space L^{2} (D, dA) onto the Bergman space
L_{a}^{2} :

p(g)(z)= \int g(w)(1-\overline{w}z)^{-2}\frac{dA(w)}{\pi} , g\in L^{2} (D, dA) (2)
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280 K. R. M. Attele

and for all z\in D . The integral in equation (2) makes sense when g\in

L^{p} (D , dA) for all 1\leq p<\infty so we can use (2) to define P on L^{p} (D, dA) for
1\leq p<\infty . Then P:L^{p}(D, dA)arrow L_{a}^{p} is bounded for 1<p<\infty (this was first

proved by Zaharjuta and Judovicj\vee Axler ([3], Theorem 1. 10) gives a
proof using the Schur criterion for boundedness) and unbounded for p=1 .
However, we may note that there are bounded projections from L^{1} (D, dA)

onto L_{a}^{1} ([7], Theorem 1 (iv)).

For v\in L^{1} (D, dA) and f\in H^{\infty} let
T_{v}(f)=P(vf) and
H_{v}(f)=(I-P)(vf)=vf-P(vf) .

Since P does not map L^{1} (D , dA) into L_{a}^{1} boundely; it is of interest to find
the necessary and sufficient conditions on v , so that the Toeplitz operator
T_{v} : L_{a}^{1}arrow L_{a}^{1} , respectively, the Hankel operator H_{v} : L_{a}^{1}arrow L^{1} (D , dA) as
densely defined operators ( H^{\infty} is dense in L_{a}^{1}) are bounded.

The main result of section 3, Proposition 8, characterizes Toeplitz
operators with real-valued harmonic symbols which are bounded on L_{a}^{1}.
Proposition 10 in section 4 provides necessary and sufficient conditions for
a Hankel operator with a conjugate analytic symbol to boundedly map L_{a}^{1}

into L^{1} (D, dA).
In a 1972 paper Stegenga [8] characterized bounded Toeplitz opera-

tors on the Hardy space H^{1} in the case when the symbol is either a real-
valued function or the conjugate of an analytic function. In a more recent
paper Cima and Stegenga [4] proved that the Hankel operator H_{f} : H^{1}

arrow H^{1} . with an analytic symbol f (see their paper for the definition of this
Hankel operator and other details) is bounded if and only if

\sup_{I}\frac{(\log|I|)^{2}}{|I|}\int_{S(I)}|f’(z)|^{2}\log\frac{1}{|z|}dA(z)<\infty . (3)

Here I denotes a subarc of the unit circle, |I| is the arc-length measure of
I , and S(I) is the Carleson square with I as the base. We may note that
the condition on f’ in Proposition 10 can be viewed in the form of (3),

provided that the Carleson square S(I) is replaced by the “half” Carleson
square \{z\in S(I):|z|\leq 1-|I|/2\} .

Throughout this note the letter c will be used as a generic notation
for a constant.

2 Bloch space and dual of L_{a}^{1}

An analytic function f:Darrow C is called a Bloch function if
\sup_{z\in D}|f’(z)|(1-|z|^{2})<\infty . Let B denote the space of Bloch functions. For
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f\in B , the Bloch norm ||f||_{B} is defined by

||f||_{B^{=|f(0)|+u}}s_{P^{|f’(z)|(1-|z|^{2})}}z\in . (4)

For f\in B , it follows by integration that

|f(z)-f(0)| \leq\frac{1}{2}||f-f(0)||_{B}\log(\frac{1+|z|}{1-|z|}) , z\in D , (5)

so f\in L_{a}^{p} for 0<p<\infty . A very useful property of Bloch functions is the
M\"obius invariance of the Bloch norm, more precisely, if f\in B then

||f\circ\phi_{w}-f(w)||_{B}=||f-f(0)||_{B} (6)

for every M\"obius map \phi_{w} (to recall the definition of \phi_{w} see (7)).
The dual of L_{a}^{1} can be identified with the Bloch space B. There are

many versions of this identification in the literature; see for example [1],
Theorem 2. 4; [3], Theorem 2. 6 or [5], Lemma 5. 1. Here we include an
identification with the pairing that will be used in this note.

PROPOSITION 1. Let f\in B . Then the pairing

\langle g, f\rangle=\int g(z)\overline{f}’(z)(1-|z|^{2})dA(z) , g\in L_{a}^{1}

defines a bounded linear functional on L_{a}^{1} . Furthermore, given \psi\in(L_{a}^{1})^{*} .
there exists f\in B , unique up to a constant, such that

\psi(g)=\langle g, f\rangle g\in L_{a}^{1} and
\frac{1}{10}|\int||_{B}\leq||\psi||\leq|\psi||_{B} ,

where ||\psi|| is the operator norm of \psi.

3 Bounded Toeplitz operators

In Lemma 2 we note a formula for a “differentiating” kernel in L_{a}^{2}. The
corollary following the lemma is used to evaluate an integral during the
course of the proof of Proposition 8.

LEMMA 2. Let h \in L_{a}^{2}, w\in D and l_{w}(z)=2\pi^{-1}z(1-\overline{w}z)^{-3} . z\in D .
Then

h’(w)= \int h\overline{l}_{w} dA.

PROOF. Let h\in L_{a}^{2} and let k_{w} be the reproducing kernel (1) in L_{a}^{2} .
Write
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h(w)= \int h\overline{k}_{w} dA

and differentiate. \square

COROLLARY 3. If h\in L_{a}^{2} then

\int h|l_{w}|^{2}dA=\frac{h’(w)2w}{\pi(1-|w|^{2})^{3}}

+ \frac{h(w)}{\pi}(\frac{6|w|^{2}}{(1-|w|^{2})^{4}}+\frac{2}{(1-|w|^{2})^{3}}) .

PROOF. Note that \int h|l_{w}|^{2}dA=\int hl_{w}\overline{l}_{w} dA and apply Lemma 2. \square

The estimation given below of the integral in Lemma 4 is standard;
the calculations presented will also be used in other instances. See [9],

Lemma 4. 2. 2, page 53 and Lemma 4. 2. 8, page 57, for more general ver-
sions of Lemmas 4 and 5.

LEMMA 4. Let w\in D . Then

\int|1-\overline{w}z|^{-3}dA(z)\leq 2\pi(1+|w|)(1-|w|^{2})^{-1} .

PROOF. Let \phi_{w} : Darrow D be the M\"obius map

\phi_{w}(t)=(w-t)(1-\overline{w}t)^{-1} . t\in D . (7)

We change the variable in the integral by writing z=\phi_{w}(t) . Then

(1-\overline{w}z)=(1-|w|^{2})(1-\overline{w}t)^{-1} and (8)
dA(z)=|\phi_{w}’(t)|^{2}dA(t)=(1-|w|^{2})^{2}|1-\overline{w}t|^{-4} dA(t),

so

\int|1-\overline{w}z|^{-3}dA(z)=(1-|w|^{2})^{-1}\int|\phi_{w}(t)||w-t|^{-1} dA(t)

\leq(1-|w^{2}|)^{-1}\int|w-t|^{-1} dA(t).

Integrating over the disc with center w and radius (1+|w|) (so this disc
contains D) and using polar coordinates with the pole at w , we obtain

\int|w-t|^{-1} dA(t)\leq 2\mbox{\boldmath $\pi$}(l+|w|).

Result follows. \square

The following lemma essentially shows that the hyperbolic derivative
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of a function in L_{a}^{2} is projected back to itself by the Bergman projection.

LEMMA 5. Let g\in L_{a}^{2} with g(0)=g’(0)=0 . Then

P((1-|w|^{2})(\overline{w})^{-1}g’(w))(z)=g(z) , z\in D ,

where P is the Bergman projection defined in (2).

PROOF. Writing g(w)=\Sigma_{n=0}^{\infty}a_{n}w^{n} and w=re^{i\theta} . 0\leq\theta<2\pi , and doing

a standard integration involving orthogonal functions, we have

\int|g’(w)|^{2}(1-|w|^{2})^{2}dA(w)=2\pi\sum_{0}^{\infty}n^{2}|a_{n}|^{2}\int_{0}^{1}r^{2n-1}(1-r^{2})^{2}dr

=2 \pi\sum_{n=1}^{\infty}\frac{n}{(n+1)(n+2)}|a_{n}|^{2}

\leq 2\pi\sum_{1}^{\infty}\frac{|a_{n}|^{2}}{n+1}=2\int|g|^{2} dA,

so, clearly the function (1-|w|^{2})(\overline{w})^{-1}g’(w) , w\in D is in L^{2} (D, dA). Fix z\in

D. Then
P((1-r^{2})\Sigma_{n=1}^{\infty}na_{n}r^{n-2}c^{ni\theta})(z)

= \pi^{-1}\int_{0}^{1}\int_{on=1}^{2\pi}(1-r^{2})(\Sigma^{\infty}na_{n}r^{n-2}e^{ni\theta})(\sum_{n=0}^{\infty}(n+1)r^{n}e^{-ni\theta}z^{n})rdrd\theta

=2 \int_{0}^{1}\sum_{n=1}^{\infty}n(n+1)a_{n}z^{n}r^{2n-1}(1-r^{2})dr

=g(z)

as desired.
\square

Let \frac{\partial}{\partial z} denote the usual operator (defined on continuously

differentiate functions on D)

\frac{\partial}{\partial\overline{z}}=\frac{1}{2}\{\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\} .

If f is an analytic function on D, it immediately follows from Cauchy-

Riemann equations that

\frac{\partial f}{\partial\overline{z}}=0 and \frac{\partial\overline{f}}{\partial\overline{z}}=\overline{f}
’

On several occasions, we will make use of the following application of

Green’s theorem.

LEMMA 6. Let u be a (complex-valued) continuously differentia te

function on D. Suppose both u and \frac{\partial u}{\partial\overline{z}}(1-|z|^{2}) are integrable on D .
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Then

\int\frac{\partial}{\partial\overline{z}}(u(z)(1-|z|^{2}))dA(z)=0 .

PROOF. Let 0<r<1 and rD=\{z\in D:|z|<r\} . Apply Green’s the0-
rem to u(z)(r^{2}-|z|^{2}) on rD to obtain

\int_{rD}\frac{\partial}{\partial\overline{z}}(u(z)(r^{2}-|z|^{2}))dA(z)=0 , i . e. ,

\int_{rD}\frac{\partial u}{\partial\overline{z}}(r^{2}-|z|^{2})dA(z)-\int_{rD}u(z)zdA(z)=0 .

Notice that for z\in rD , | \frac{\partial u}{\partial\overline{z}}|(r^{2}-|z|^{2})\leq|\frac{\partial u}{\partial\overline{z}}|(1-|z|^{2}) . Let r– 1-and apply
Lebesgue Dominated Convergence Theorem to get

\int\frac{\partial u}{\partial\overline{z}}(1-|z|^{2})dA(z)-\int u(z)zdA(z)=0 ,

which is the desired result. \square

We now prove a simple necessary condition for a Toeplitz operator
T_{v} with a harmonic symbol to be bounded on L_{a}^{1} .

LEMMA 7. Let v\in L^{1} (D , dA) be a real-valued harmonic function on
D and suppose that the Toeplitz operator T_{v} : L_{a}^{1}arrow L_{a}^{1} is bounded. Then v
is the real part of a Bloch function. Thus in particular v\in L^{p} (D , dA) for
all 0<p<\infty .

PROOF. Since T_{v} : L_{a}^{1}arrow L_{a}^{1} is bounded,

f arrow\int T_{v}(f)dA , f\in L_{a}^{1}

is a bounded linear functional on L_{a}^{1} so by the Hahn-Banach theorem can
be extended to a linear functional on L^{1} (D, dA). Identifying the dual of
L^{1} (D, dA) as L^{\infty}(D, dA) we have

\int T_{v}(f)dA=\int f\overline{g}dA , f\in L_{a}^{1}

for some g\in L^{\infty}(D, dA). The left-hand side integral is \pi T_{v}(f)(0) , which is
\int vfdA for f\in H^{\infty} . so

\int vfdA=\int f\overline{g}dA
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= \int P(f)\overline{g}dA

= \int f\overline{P(g)}dA, f\in H^{\infty} (9)

In deducing the last integral we used the orthogonality of the Berg-
man projection on L^{2} (D , dA). Pick an analytic function h such that v=h
+\overline{h}. Then h\in L_{a}^{1} ([3], Theorem 1. 21) and

\int vfdA=\int f\overline{h}dA , f\in H_{0}^{\infty} .

Hence from (9)

\int f\overline{h}dA=\int f\overline{P(g)}dA , f\in H_{0}^{\infty}

Replacing f by f(z)=z^{n} , n=1,2,\ldots we deduce that h and P(g) differ at
most by a constant. However, P(g)\in B([5], Theorem V’), so the result
follows. \square

We are ready to prove the main theorem of this section.

PROPOSITION 8. Let v be a real-valued harmonic function in L^{1}(D ,

dA). Then the Toeplitz operator T_{v} : L_{a}^{1}arrow L_{a}^{1} is bounded if and only if

\sup_{D}|v|<\infty and suz\in B|\nabla(v)(z)|(1-|z|^{2})\log\frac{1}{1-|z|^{2}}<\infty .

PROOF. Suppose T_{v} : L_{a}^{1}arrow L_{a}^{1} is bounded. If g\in B with g(0)=g’(0)=
0 then g’(w)(\overline{w})^{-1}(1-|w|^{2}) , w\in D is bounded and so there exists a constant
c such that

| \int T_{v}(f)(w)\overline{g}’(w)w^{-1}(1-|w|^{2})dA(w)|\leq c||f||_{1}||g||_{B} , i . e. ,

| \int P(vf)(w)\overline{g}’(w)w^{-1}(1-|w|^{2})dA(w)|\leq c||f||_{1}||g||_{B} , f\in H^{\infty} (10)

Using Fubini’s theorem and Lemma 5, we have

| \int vf\overline{g}dA|\leq c||f||_{1}||g||_{B} , f\in H^{\infty} and g\in B with g(0)=g’(0)=0 .

The use of Fubini’s theorem in (10) is justified since both f and g’(w)w^{-1}(1

-\overline{w}z) , w\in D are bounded, |v(z)-v(0)|\leq c\log(1-|z|)^{-1} . z\in D (Lemma 7 and
use inequality (5)) and \log(1-|z|)|1-\overline{w}z|^{-2} . (z, w)\in D\cross D is integrable
over D\cross D , which can be verified by a direct calculation. Moreover, for
f\in H^{\infty} and g\in B
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| \int vf\overline{(g(0)+g’(0)z)}dA|

=| \int P(vf)\overline{(g(0)+g’(0)z)}dA|

\leq||T_{v}||||f||_{1}||g(0)+g’(0)z||_{\infty}

\leq c||f||_{1}||g||_{B} .

Thus

| \int vf\overline{g}dA|\leq c||f||_{1}||g||_{B} , f\in H^{\infty} and g\in B . (11)

To deduce that v is bounded, we replace f and g by suitable kernel func-
tions: fix w\in D and put f(z)=g(z)=z(1-\overline{w}z)^{-3} . z\in D in (11). Then the
||g||_{B}\leq c(1-|w|^{2})^{-3} and the ||f||_{1} is estimated in Lemma 4, so

| \int v(z)|z|^{2}|1-\overline{w}z|^{-6}dA(z)|\leq c(1-|w|^{2})^{-4} .

or as in the notation of Lemma 2,

(1-|w|^{2})^{4}| \int v|l_{w}|^{2}dA|\leq c . (12)

Now let h\in L_{a}^{2} be an analytic function such that v=h+\overline{h}. Then by
Lemma 7, h’(w)(1-|w|^{2}) is bounded. Taking real parts in the formula for
(1-|w|^{2})^{4} \int h|l_{w}|^{2} dA in Corollary 3 and using (12) we deduce that v is

bounded.
Replacing f by zf in (11) and noting that ||zf||_{1}\leq||f||_{1} we have

| \int vzf\overline{g}dA|\leq c||f||_{1}||g||_{B} , f\in H^{\infty} and g\in B . (13)

Applying Lemma 6 for the function u=vf\overline{g} (Lemma 7 is used to verify
that the hypothesis of Lemma 6 is satisfied) and using the Cauchy-
Riemann equations, we deduce that

\int\frac{\partial v}{\partial\overline{z}}f\overline{g}(1-|z|^{2})dA=\int vzf\overline{g}dA-\int vf\overline{g}’(1-|z|^{2})dA . (14)

Since we now know that v is bounded; from (13) and (14) we have

| \int\frac{\partial v}{\partial\overline{z}}f\overline{g}(1-|z|^{2})dA|\leq c||f||_{1}||g||_{B} , f\in H^{\infty} and g\in B . (15)

Write v=h+\overline{h} for some h\in L_{a}^{2} . Then\frac{\partial v}{\partial\overline{z}}=\overline{h}’ Fix w\in D and as before

we replace f and g by suitable kernel functions ,\cdot let f(z)=(1-\overline{w}z)^{-3} , z\in D

and g(z)=\log(1-\overline{w}z) , z\in D . Then the ||g||_{B}\leq 2 and the ||f||_{1} is estimated in
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Lemma 4, therefore, from (15)

| \int h’(z)\log(1-\overline{w}z)(1-w\overline{z})^{-3}(1-|z|^{2})dA(z)|\leq c(1-|w|^{2})^{-1} . (16)

But then for f\in L_{a}^{1}(D, (1-|z|^{2})dA) ,

2 \pi^{-1}\int f(z)(1-w\overline{z})^{-3}(1-|z|^{2})dA(z)=f(w) , w\in D (17)

([7], Theorem 1 (iv)). Since h\in B (Lemma 7), the hypothesis of (17) is
trivially satisfied by h’ . so from (16) it follows that

h’(w)\log(1-|w|^{2})(1-|w|^{2}) , w\in D

is bounded as desired.
Conversely, suppose v is a real-valued harmonic function on D such

that both v and |\nabla(v)(z)|(1-|z|^{2})\log(1-|z|^{2}) are bounded. Fix f\in H^{\infty} and
g\in B . Then equation (14) still holds and we may rewrite it as:

\int vzf\overline{g}dA=\int\frac{\partial v}{\partial\overline{z}}f\overline{g}(1-|z|^{2})dA+\int vf\overline{g}’(1-|z|^{2})dA . (18)

Note that | \nabla v|=\frac{1}{2}|h’| where v=h+\overline{h} and h is analytic. A1so\frac{\partial v}{\partial\overline{z}}=\overline{h}’

Now to estimate the second integral in (18), use the hypothesis on |\nabla v|

and the standard point estimate for a Bloch function g(5) :
|g(z)|\leq|g(0)|+||g-g(0)||_{B}\log(1-|z|)^{-1}

\leq||g||_{B}(1+\log(1-|z|)^{-1}) , z\in D .

Then from (18)

| \int v\overline{f}\overline{g}dA|\leq c||f||_{1}||g||_{B} , (19)

where \tilde{f} is the function zf. Since v\tilde{f}\in L^{2} (D, dA), g\in L_{a}^{2} and P is the
orthogonal projection from L^{2} (D, dA) onto L_{a}^{2}, the integral in (19) is

equal to \int P(v\tilde{f})\overline{g}dA , so

| \int T_{v}(\tilde{f})\overline{g}dA|\leq c||f||_{1}||g||_{B} . (20)

It is not hard to see that P(\overline{z}g)\in B . In fact a direct calculation shows
that, if g(z)=\Sigma_{0}^{\infty}a_{n}z^{n} . z\in D then P(\overline{z}g)(w)=\Sigma_{1}^{\infty}a_{n}w^{n-1} , w\in D . Thus

| \int T_{v}(\tilde{f})(z)z\overline{g}(z)dA(z)|=|\int T_{v}(\overline{f})\overline{P(\overline{z}g)}dA|
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\leq c||f||_{1}||g||_{B}\leq c||f||_{1}||P(\overline{.z}g)||_{B}(from(20)) (22)(21)

By an application of Lemma 6 to u=T_{v}(\tilde{f})\overline{g} and the estimate in (21)
show that

| \int T_{v}(\tilde{f})(z)g’(z)(1-|z|^{2})dA(z)|\leq c||f||_{1}||g||_{B}

\leq c||\tilde{f}||_{1}||g||_{B} ,

whence |\langle T_{v}(\tilde{f}), g\rangle|\leq c||f||_{1}||g||_{B} . The pairing \langle , \rangle was defined in Proposi-
tion 1. Therefore, for f\in H_{0}^{\infty}

|\langle T_{v}(f), g\rangle|\leq||f||_{1}||g||_{B} .

Since the dual of L_{a}^{1} is the Bloch space (Proposition 1), it follows that for
f\in H_{0}^{\infty}

||T_{v}(f)||_{1}\leq c||f||_{1} .

Thus T_{v} : L_{a}^{1}arrow L_{a}^{1} is bounded. \square

4 Bounded Hankel operators

Let f\in L^{1} (D, dA) and g\in H^{\infty} . Let us recall the definition of H_{f}(g) :
H_{f}(g)=(I-P)(fg)=fg-P(fg) .

Using g=P(g) , we get the following well-known formula for a Hankel
operator:

H_{f}(g)(z)= \int\frac{f(z)-f(w)}{(1-\overline{w}z)^{2}}g(w)\frac{dA(w)}{\pi} for almost all z\in D . (23)

Formula (23) for a Hankel operator suggests that we investigate the
growth of

\int\frac{|f(z)-f(w)|}{|1-\overline{w}z|^{2}}dA(w) . (24)

Lemma 9 provides a growth condition for (24) when f\in B .

LEMMA 9. Let f\in B . Then there exists a constant c such that

\int\frac{|f(z)-f(w)|}{|1-\overline{w}z|^{2}}dA(z)\leq c||f-f(0)||_{B}\log^{2}\frac{c}{(1-|w|^{2})} , w\in D .

PROOF. Let us change the variable in the integral by writing z=
\phi_{w}(t) (see (7) for the definition of \phi_{w}(t) and also (8)):

\int\frac{|f(z)-f(w)|}{|1-\overline{w}z|^{2}}dA(z)=\int\frac{|f\circ\phi_{w}(t)-f(w)|}{|1-\overline{w}t|^{2}}dA(t) . (25)
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From (5) and (6)

|f\circ\phi_{w}(t)-f(w)|=|f\circ\phi_{w}(t)-f\circ\phi_{w}(0)|

\leq||f\circ\phi_{w}-f\circ\phi_{w}(0)||_{B}\log(1-|t|)^{-1}

=||f-f(0)||_{B}\log(1-|t|)^{-1} .

Thus from (25)

\int\frac{|f(z)-f(w)|}{|1-\overline{w}z|^{2}}dA(z)\leq||f-f(0)||_{B}\int\frac{-1og(1-|t|)}{|l-t\overline{w}|^{2}}dA(t)

=2 \pi||f-f(0)||_{B}\int_{0}^{1}\frac{-1og(1-t)}{(1-t^{2}|w|^{2})}tdt

\leq 2\pi||f-f(0)||_{B}\int_{0}^{1}\frac{-1og(1-t)}{(1-t|w|)}dt .

Put g(x)= \int_{0}^{1}-\log(1-t)(1-tx)^{-1}dt , 0\leq x<1 . Then

|g’(x)| \leq\int_{0}^{1}-\log(1-t)(1-tx)^{-2}dt .

View (1-tx)^{-2}dt as x^{-1}d(1-tx)^{-1} and evaluate the improper integral by
doing an integration by parts, to get

|g’(x)|\leq-\log(1-x)x^{-1}(1-x)^{-1} . 0<x<1 .
Since-\log(1-x)x^{-1} is an increasing function of x on 0<x<1 we have, for
0<x<1

|g’(x)|\leq\{
4 \log 2 if 0<x \leq\frac{1}{2}

-2 \log(1-x)(1-x)^{-1}
if otherwise.

Thus for some constant c , |g’(x)|\leq c-c\log(1-x)(1-x)^{-1}.0<x<1 . Hence

|g(x)-g(0)| \leq cx+\frac{1}{2}\log^{2}(1-x) , 0\leq x<1 ,

from which the desired result follows. \square

PROPOSITION 10. For f\in L_{a}^{2}, the Hankel operator H_{f} : L_{a}^{1}arrow L^{1}(D ,
dA) is bounded if and only if

||f||_{LB}=_{Su,z\in B^{|f’(z)|(1-|z|^{2})\log\frac{1}{1-|z|^{2}}<\infty}} . (26)

Note that we do not assume f to be bounded.

PROOF. Suppose (26) holds. Then trivially ||f||_{B}<\infty . Fix h\in
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L^{\infty} (D, dA). We begin by showing that the function defined by:

H(w)= \int(f(z)-f(w))(1-w\overline{z})^{-2}h(z)dA(z) , w\in D

is a Bloch function. Indeed;

H’(w)(1-|w|^{2})= \int-f’(w)(1-|w|^{2})(1-w\overline{z})^{-2}h(z)dA(z)

+2(1-|w|^{2}) \int(f(z)-f(w))(1-w\overline{z})^{-3}\overline{z}h(z)dA(z)

=I_{1}(w)+2(1-|w|^{2})I_{2}(w) .

Now

\int|1-w\overline{z}|^{-2}dA(z)=\pi|w|^{-2}\log(1-|w|^{2})^{-1} . w\in D (27)

(the limit as warrow 0 of the right-hand side of (27) clearly exists); whence
by (26) I_{1} is bounded on D. To show that (1-|w|^{2})I_{2}(w) is bounded, it is
sufficient to show that (1-|w|^{2})^{2}I_{2}’(w) is bounded ([6], Theorem 5. 5).

Indeed

(1-|w|^{2})^{2}I_{2}’(w)=(1-|w|^{2}) \int-f’(w)(1-|w|^{2})(1-w\overline{z})^{-3}\overline{z}h(z)dA(z)

+3(1-|w|^{2})^{2} \int(f(z)-f(w))(1-w\overline{z})^{-4}\overline{z}^{2}h(z)dA(z)

=J_{1}(w)+J_{2}(w) .

Then from Lemma 4
|J_{1}|\leq 4\pi||f||_{B}||h||_{\infty}

and the fact that
|J_{2}|\leq c||f||_{B}||h||_{\infty}

follows from [2], Theorem 1(B) , see also equation (14), page 327 of the
same reference. Thus H is a Bloch function and

||H||_{B}\leq c||h||_{\infty} ,

so here the constant c depends on f.
In view of the following well-known identity (which also follows from

an application of Lemma 6)

\int g(w)w\overline{H}(w)dA(w)=\int g(w)\overline{H}’(w)(1-|w|^{2})dA(w) , g\in H^{\infty} (28)

we have
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| \int g(w)w\overline{H}(w)dA(w)|\leq c||g||_{1}||h||_{\infty} , g\in H^{\infty}

Applying Fubini’s Theorem

| \int(\int\frac{\overline{f}(z)-\overline{f}(w)}{(1-\overline{w}z)^{2}}g(w)wdA(w))\overline{h}(z)dA(z)|\leq c||g||_{1}||h||_{\infty} , g\in H^{\infty}-

So

| \int H_{f}(\tilde{g})\overline{h}dA|\leq c||\tilde{g}||_{1}||h||_{\infty} , g\in H^{\infty} and h\in L^{\infty}(D, dA),

where \tilde{g}=wg . Hence

\int|H_{f}(g)|dA\leq c||g||_{1} , g\in H_{0}^{\infty} .

It follows that H_{f} is bounded.
To prove the converse, suppose f\in L_{a}^{2} and

||H_{f}(g)||_{1}\leq c||g||_{1} , g\in H^{\infty}

Then

| \int H_{f}(g)\overline{h}dA|\leq c||g||_{1}||h||_{\infty} , g\in H^{\infty} and h\in L^{\infty}(D, dA). (29)

Let h\in H_{0}^{\infty} Then P(h3=0. Clearly for all g\in H^{\infty}\overline{f}g\in L^{2} (D, dA).
Recalling that P:L^{2}(D, dA)arrow L_{a}^{2} is the orthogonal projection;

\int H\overline{f}(g)hdA=\int\overline{f}ghda-\int P(\overline{f}g)hdA

= \int\overline{f}ghdA-\int\overline{f}g\overline{P(h\circ}dA

= \int\overline{f}ghdA . (30)

Likewise we can show that,

\int H_{f}(g)\overline{h}dA=0 , g and h\in H^{\infty} (31)

Replacing the function h in (30) by h(z)=z, writing \tilde{g} for the function
\tilde{g}(z)=zg(z) , z\in D and using (29) we have

| \int\overline{f}\tilde{g}dA|\leq c||g||_{1}\leq c||\hat{\dot{g}}||_{1} , i . e. ,

| \int\overline{f}\tilde{g}dA|\leq c||g||_{1} , g\in H_{0}^{\infty}
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Now by an argument similar to that of Lemma 7 we deduce that f\in B .
From (29) and (31) we have

| \int H_{f}(g)\overline{h}dA|\leq c||g||_{1} dist(A, H^{\infty}), g\in H^{\infty} (32)

and h\in L^{\infty}(D, dA), where dist (h, H^{\infty}) is the L^{\infty}(D , dA) distance from h to
H^{\infty}- Fix w\in D . Then dist(\overline{\log(1-\overline{w}z)}, H^{\infty})=2 dist(Im \overline{\log(1-\overline{w}z)} , H^{\infty} )
\leq 4\pi , so replacing h in (32) by the function \overline{\log(1-\overline{w}z)} , z\in D and using
(30) we have from (32)

| \int\overline{f}(z)g(z)\log(1-\overline{w}z)dA(z)|\leq c||g||_{1} , g\in H^{\infty}- (33)

Replacing g by zg in (33) and then using identity (28) (with of course f
instead of H), we have

| \int\overline{f}’(z)g(z)\log(1-\overline{w}z)(1-|z|^{2})dA(z)|\leq c||g||_{1} , g\in H^{\infty} .

Now since f\in B and the argument of \log(1-\overline{w}z) is bounded (independent

of w and z, and we may assume that neither w nor z is 0)

| \int\overline{f}’(z)g(z)\overline{\log(1-\overline{w}z)}(1-|z|^{2})dA(z)|\leq c||g||_{1} , g\in H^{\infty}

Put g(z)=(1-\overline{w}z)^{-3} . z\in D . Then by Lemma 4, ||g||_{1}\leq 4\pi(1-|w|^{2})^{-1} , so

| \int f’(z)\log(1-\overline{w}z)(1-w\overline{z})^{-3}(1-|z|^{2})dA(z)|\leq c(1-|w|^{2})^{-1} .

By (17) we get

f’(w)(1-|w|^{2})\log(1-|w|^{2})^{-1} . w\in D

to be bounded. \square

COROLLARY 11. Suppose v is a (complex-valued) harmonic function
on D such that both v and \frac{\partial v}{\partial\overline{z}}(1-|z|^{2})\log(1-|z|^{2}) are bounded on D .

Then the Toeplitz operator

T_{v} : L_{a}^{1}arrow L_{a}^{1}

is bounded.

PROOF. Write v=f+\overline{g} where f and g are integrable analytic func-
tions on D . Since v is bounded v\in L^{2} (D , dA), so f+\overline{g}(0)=P(v)\in L_{a}^{2} ; con-

sequently g\in L_{a}^{2} . Also the hypothesis on\frac{\partial v}{\partial\overline{z}} implies that g satisfy the
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hypothesis of Propostion 10, thus the Hankel operator

H\overline{g}:L_{a}^{1}arrow L^{1} (D, dA)

is bounded. Since v is bounded, M_{v} , the multiplication operator by v on
L_{a}^{1}arrow L^{1} (D , dA) is also bounded. Note that M_{v}=T_{v}+H_{v} and H_{v}=H_{g} .
Thus the Toeplitz operator

T_{v} : L_{a}^{1}arrow L_{a}^{1}

is bounded.
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