Toeplitz and Hankel operators on Bergman one space

K. R. M. Attele
(Received February 21, 1991)

Abstract

This note provides necessary and sufficient conditions for Toeplitz and Hankel operators with harmonic symbols to boundedly map the Bergman one space to the Lebesgue one space.

1 Introduction

We begin by recalling some standard notations and definitions. Let $d A$ denote the Lebesgue area measure on the unit disc D of the complex plane C. For $1 \leq p<\infty$ and for a Lebesgue measurable function $f: D \rightarrow C$, let

$$
\|f\|_{p}=\left(\int|f|^{p} d A\right)^{\frac{1}{p}} .
$$

Here and elsewhere unless otherwise stated all integrals are taken over the unit disc. For $1 \leq p<\infty$, the Bergman space L_{a}^{p} is the set of all those analytic functions $f: D \rightarrow C$ such that $\|f\|_{p}<\infty$. As usual the space of bounded analytic functions will be denoted by H^{∞} and the subspace of functions vanishing at the origin will be denoted by H_{0}^{∞}.

The Bergman space L_{a}^{2} is of course a functional Hilbert space, and the reproducing kernel at a point $w \in D$ is

$$
\begin{equation*}
k_{w}(z)=\pi^{-1}(1-\bar{w} z)^{-2}, z \in D . \tag{1}
\end{equation*}
$$

There is an explicit formula for the orthogonal projection (Bergman projection) P from the Lebesgue space $L^{2}(D, d A)$ onto the Bergman space L_{a}^{2} :

$$
\begin{equation*}
p(g)(z)=\int g(w)(1-\bar{w} z)^{-2} \frac{d A(w)}{\pi}, g \in L^{2}(D, d A) \tag{2}
\end{equation*}
$$

[^0]and for all $z \in D$. The integral in equation (2) makes sense when $g \in$ $L^{p}(D, d A)$ for all $1 \leq \mathrm{p}<\infty$ so we can use (2) to define P on $L^{p}(D, d A)$ for $1 \leq p<\infty$. Then $P: L^{p}(D, d A) \rightarrow L_{a}^{p}$ is bounded for $1<p<\infty$ (this was first proved by Zaharjuta and Judovic ; Axler ([3], Theorem 1.10) gives a proof using the Schur criterion for boundedness) and unbounded for $p=1$. However, we may note that there are bounded projections from $L^{1}(D, d A)$ onto $L_{a}^{1}([7]$, Theorem 1 (iv)).
\[

$$
\begin{aligned}
& \text { For } v \in L^{1}(D, d A) \text { and } f \in H^{\infty} \text { let } \\
& T_{v}(f)=P(v f) \text { and } \\
& H_{v}(f)=(I-P)(v f)=v f-P(v f) .
\end{aligned}
$$
\]

Since P does not map $L^{1}(D, d A)$ into L_{a}^{1} boundely ; it is of interest to find the necessary and sufficient conditions on v, so that the Toeplitz operator $T_{v}: L_{a}^{1} \rightarrow L_{a,}^{1}$, respectively, the Hankel operator $H_{v}: L_{a}^{1} \rightarrow L^{1}(D, d A)$ as densely defined operators (H^{∞} is dense in L_{a}^{1}) are bounded.

The main result of section 3, Proposition 8, characterizes Toeplitz operators with real-valued harmonic symbols which are bounded on L_{a}^{1}. Proposition 10 in section 4 provides necessary and sufficient conditions for a Hankel operator with a conjugate analytic symbol to boundedly map L_{a}^{1} into $L^{1}(D, d A)$.

In a 1972 paper Stegenga [8] characterized bounded Toeplitz operators on the Hardy space H^{1} in the case when the symbol is either a realvalued function or the conjugate of an analytic function. In a more recent paper Cima and Stegenga [4] proved that the Hankel operator $H_{f}: H^{1}$ $\rightarrow H^{1}$, with an analytic symbol f (see their paper for the definition of this Hankel operator and other details) is bounded if and only if

$$
\begin{equation*}
\sup _{I} \frac{(\log |I|)^{2}}{|I|} \int_{S(I)}\left|f^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d A(z)<\infty . \tag{3}
\end{equation*}
$$

Here I denotes a subarc of the unit circle, $|I|$ is the arc-length measure of I, and $S(I)$ is the Carleson square with I as the base. We may note that the condition on f^{\prime} in Proposition 10 can be viewed in the form of (3), provided that the Carleson square $S(I)$ is replaced by the "half" Carleson square $=\{z \in S(I):|z| \leq 1-|I| / 2\}$.

Throughout this note the letter c will be used as a generic notation for a constant.

2 Bloch space and dual of L_{a}^{1}

An analytic function $f: D \rightarrow C$ is called a Bloch function if $\sup _{z \in D}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)<\infty$. Let B denote the space of Bloch functions. For
$f \in B$, the Bloch norm $\|f\|_{B}$ is defined by

$$
\begin{equation*}
\|f\|_{B}=|f(0)|+\sup _{z \in D}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right) . \tag{4}
\end{equation*}
$$

For $f \in B$, it follows by integration that

$$
\begin{equation*}
|f(z)-f(0)| \leq \frac{1}{2}\|f-f(0)\|_{B} \log \left(\frac{1+|z|}{1-|z|}\right), \quad z \in D \tag{5}
\end{equation*}
$$

so $f \in L_{a}^{p}$ for $0<p<\infty$. A very useful property of Bloch functions is the Möbius invariance of the Bloch norm, more precisely, if $f \in B$ then

$$
\begin{equation*}
\left\|f \circ \phi_{w}-f(w)\right\|_{B}=\|f-f(0)\|_{B} \tag{6}
\end{equation*}
$$

for every Möbius map ϕ_{w} (to recall the definition of ϕ_{w} see (7)).
The dual of L_{a}^{1} can be identified with the Bloch space B. There are many versions of this identification in the literature ; see for example [1], Theorem 2.4; [3], Theorem 2.6 or [5], Lemma 5.1. Here we include an identification with the pairing that will be used in this note.

Proposition 1. Let $f \in B$. Then the pairing

$$
\langle g, f\rangle=\int g(z) \bar{f}^{\prime}(z)\left(1-|z|^{2}\right) d A(z), g \in L_{a}^{1}
$$

defines a bounded linear functional on L_{a}^{1}. Furthermore, given $\psi \in\left(L_{a}^{1}\right)^{*}$, there exists $f \in B$, unique up to a constant, such that

$$
\begin{aligned}
& \psi(g)=\langle g, f\rangle g \in L_{a}^{1} \text { and } \\
& \frac{1}{10}\|f\|_{B} \leq\|\psi\| \leq\|f\|_{B},
\end{aligned}
$$

where $\|\boldsymbol{\psi}\|$ is the operator norm of ψ.

3 Bounded Toeplitz operators

In Lemma 2 we note a formula for a "differentiating" kernel in L_{a}^{2}. The corollary following the lemma is used to evaluate an integral during the course of the proof of Proposition 8 .

Lemma 2. Let $h \in L_{a}^{2}, w \in D$ and $l_{w}(z)=2 \pi^{-1} z(1-\bar{w} z)^{-3}, z \in D$. Then

$$
h^{\prime}(w)=\int h \bar{l}_{w} d A
$$

Proof. Let $h \in L_{a}^{2}$ and let k_{w} be the reproducing kernel (1) in L_{a}^{2}. Write

$$
h(w)=\int h \bar{k}_{w} d A
$$

and differentiate.
Corollary 3. If $h \in L_{a}^{2}$ then

$$
\begin{aligned}
\int h\left|l_{w}\right|^{2} d A & =\frac{h^{\prime}(w) 2 w}{\pi\left(1-|w|^{2}\right)^{3}} \\
+\frac{h(w)}{\pi} & \left(\frac{6|w|^{2}}{\left(1-|w|^{2}\right)^{4}}+\frac{2}{\left(1-|w|^{2}\right)^{3}}\right)
\end{aligned}
$$

Proof. Note that $\int h\left|l_{w}\right|^{2} d A=\int h l_{w} \bar{l}_{w} d A$ and apply Lemma 2.
The estimation given below of the integral in Lemma 4 is standard; the calculations presented will also be used in other instances. See [9], Lemma 4.2.2, page 53 and Lemma 4.2.8, page 57, for more general versions of Lemmas 4 and 5.

Lemma 4. Let $w \in D$. Then

$$
\int|1-\bar{w} z|^{-3} d A(z) \leq 2 \pi(1+|w|)\left(1-|w|^{2}\right)^{-1}
$$

Proof. Let $\phi_{w}: D \rightarrow D$ be the Möbius map

$$
\begin{equation*}
\phi_{w}(t)=(w-t)(1-\bar{w} t)^{-1}, t \in D . \tag{7}
\end{equation*}
$$

We change the variable in the integral by writing $z=\phi_{w}(t)$. Then

$$
\begin{gather*}
(1-\bar{w} z)=\left(1-|w|^{2}\right)(1-\bar{w} t)^{-1} \text { and } \tag{8}\\
d A(z)=\left|\phi_{w}^{\prime}(t)\right|^{2} d A(t)=\left(1-|w|^{2}\right)^{2}|1-\bar{w} t|^{-4} d A(t)
\end{gather*}
$$

so

$$
\begin{aligned}
\int|1-\bar{w} z|^{-3} d A(z) & =\left(1-|w|^{2}\right)^{-1} \int\left|\phi_{w}(t) \| w-t\right|^{-1} d A(t) \\
& \leq\left(1-\left|w^{2}\right|\right)^{-1} \int|w-t|^{-1} d A(t)
\end{aligned}
$$

Integrating over the disc with center w and radius ($1+|w|$) (so this disc contains D) and using polar coordinates with the pole at w, we obtain

$$
\int|w-t|^{-1} d A(t) \leq 2 \pi(1+|w|)
$$

Result follows.
The following lemma essentially shows that the hyperbolic derivative
of a function in L_{a}^{2} is projected back to itself by the Bergman projection.
Lemma 5. Let $g \in L_{a}^{2}$ with $g(0)=g^{\prime}(0)=0$. Then

$$
P\left(\left(1-|w|^{2}\right)(\bar{w})^{-1} g^{\prime}(w)\right)(z)=g(z), \quad z \in D
$$

where P is the Bergman projection defined in (2).
Proof. Writing $g(w)=\sum_{n=0}^{\infty} a_{n} w^{n}$ and $w=r e^{i \theta}, 0 \leq \theta<2 \pi$, and doing a standard integration involving orthogonal functions, we have

$$
\begin{aligned}
\int\left|g^{\prime}(w)\right|^{2}\left(1-|w|^{2}\right)^{2} d A(w) & =2 \pi \sum_{0}^{\infty} n^{2}\left|a_{n}\right|^{2} \int_{0}^{1} r^{2 n-1}\left(1-r^{2}\right)^{2} d r \\
& =2 \pi \sum_{n=1}^{\infty} \frac{n}{(n+1)(n+2)}\left|a_{n}\right|^{2} \\
& \leq 2 \pi \sum_{1}^{\infty} \frac{\left|a_{n}\right|^{2}}{n+1}=2 \int|g|^{2} d A
\end{aligned}
$$

so, clearly the function $\left(1-|w|^{2}\right)(\bar{w})^{-1} g^{\prime}(w), w \in D$ is in $L^{2}(D, d A)$. Fix $z \in$ D. Then

$$
\begin{aligned}
& P\left(\left(1-r^{2}\right) \sum_{n=1}^{\infty} n a_{n} r^{n-2} e^{n i \theta}\right)(z) \\
& =\pi^{-1} \int_{0}^{1} \int_{0}^{2 \pi}\left(1-r^{2}\right)\left(\sum_{n=1}^{\infty} n a_{n} r^{n-2} e^{n i \theta}\right)\left(\sum_{n=0}^{\infty}(n+1) r^{n} e^{-n i \theta} z^{n}\right) r d r d \theta \\
& =2 \int_{0}^{1} \sum_{n=1}^{\infty} n(n+1) a_{n} z^{n} r^{2 n-1}\left(1-r^{2}\right) d r \\
& =g(z)
\end{aligned}
$$

as desired.
Let $\frac{\partial}{\partial z}$ denote the usual operator (defined on continuously differentiable functions on D)

$$
\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left\{\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right\}
$$

If f is an analytic function on D, it immediately follows from CauchyRiemann equations that

$$
\frac{\partial f}{\partial \bar{z}}=0 \text { and } \frac{\partial \bar{f}}{\partial \bar{z}}=\bar{f}^{\prime}
$$

On several occasions, we will make use of the following application of Green's theorem.

Lemma 6. Let u be a (complex-valued) continuously differentiable function on D. Suppose both u and $\frac{\partial u}{\partial \bar{z}}\left(1-|z|^{2}\right)$ are integrable on D.

Then

$$
\int \frac{\partial}{\partial \bar{z}}\left(u(z)\left(1-|z|^{2}\right)\right) d A(z)=0
$$

Proof. Let $0<r<1$ and $r D=\{z \in D:|z|<r\}$. Apply Green's theorem to $u(z)\left(r^{2}-|z|^{2}\right)$ on $r D$ to obtain

$$
\begin{aligned}
& \int_{r_{D}} \frac{\partial}{\partial \bar{z}}\left(u(z)\left(r^{2}-|z|^{2}\right)\right) d A(z)=0, \text { i. e., } \\
& \int_{r_{D}} \frac{\partial u}{\partial \bar{z}}\left(r^{2}-|z|^{2}\right) d A(z)-\int_{r_{D}} u(z) z d A(z)=0
\end{aligned}
$$

Notice that for $z \in r D,\left|\frac{\partial u}{\partial \bar{z}}\right|\left(r^{2}-|z|^{2}\right) \leq\left|\frac{\partial u}{\partial \bar{z}}\right|\left(1-|z|^{2}\right)$. Let $r \rightarrow 1$ - and apply Lebesgue Dominated Convergence Theorem to get

$$
\int \frac{\partial u}{\partial \bar{z}}\left(1-|z|^{2}\right) d A(z)-\int u(z) z d A(z)=0
$$

which is the desired result.
We now prove a simple necessary condition for a Toeplitz operator T_{v} with a harmonic symbol to be bounded on L_{a}^{1}.

Lemma 7. Let $v \in L^{1}(D, d A)$ be a real-valued harmonic function on D and suppose that the Toeplitz operator $T_{v}: L_{a}^{1} \rightarrow L_{a}^{1}$ is bounded. Then v is the real part of a Bloch function. Thus in particular $v \in L^{p}(D, d A)$ for all $0<p<\infty$.

Proof. Since $T_{v}: L_{a}^{1} \rightarrow L_{a}^{1}$ is bounded,

$$
f \rightarrow \int T_{v}(f) d A, f \in L_{a}^{1}
$$

is a bounded linear functional on L_{a}^{1} so by the Hahn-Banach theorem can be extended to a linear functional on $L^{1}(D, d A)$. Identifying the dual of $L^{1}(D, d A)$ as $L^{\infty}(D, d A)$ we have

$$
\int T_{v}(f) d A=\int f \bar{g} d A, \quad f \in L_{a}^{1}
$$

for some $g \in L^{\infty}(D, d A)$. The left-hand side integral is $\pi T_{v}(f)(0)$, which is $\int v f d A$ for $f \in H^{\infty}$, so

$$
\int v f d A=\int f \bar{g} d A
$$

$$
\begin{align*}
& =\int P(f) \bar{g} d A \\
& =\int f \overline{P(g)} d A, \quad f \in H^{\infty} \tag{9}
\end{align*}
$$

In deducing the last integral we used the orthogonality of the Bergman projection on $L^{2}(D, d A)$. Pick an analytic function h such that $v=h$ $+\bar{h}$. Then $h \in L_{a}^{1}([3]$, Theorem 1.21) and

$$
\int v f d A=\int f \bar{h} d A, \quad f \in H_{0}^{\infty} .
$$

Hence from (9)

$$
\int f \bar{h} d A=\int f \overline{P(g)} d A, \quad f \in H_{0}^{\infty} .
$$

Replacing f by $f(z)=z^{n}, n=1,2, \ldots$ we deduce that h and $P(g)$ differ at most by a constant. However, $P(g) \in B\left([5]\right.$, Theorem $\left.\mathrm{V}^{\prime}\right)$, so the result follows.

We are ready to prove the main theorem of this section.
Proposition 8. Let v be a real-valued harmonic function in $L^{1}(D$, $d A$). Then the Toeplitz operator $T_{v}: L_{a}^{1} \rightarrow L_{a}^{1}$ is bounded if and only if

$$
\sup _{D}|v|<\infty \text { and } \sup _{z \in D}|\nabla(v)(z)|\left(1-|z|^{2}\right) \log \frac{1}{1-|z|^{2}}<\infty .
$$

Proof. Suppose $T_{v}: L_{a}^{1} \rightarrow L_{a}^{1}$ is bounded. If $g \in B$ with $g(0)=g^{\prime}(0)=$ 0 then $g^{\prime}(w)(\bar{w})^{-1}\left(1-|w|^{2}\right), w \in D$ is bounded and so there exists a constant c such that

$$
\begin{align*}
& \left|\int T_{v}(f)(w) \bar{g}^{\prime}(w) w^{-1}\left(1-|w|^{2}\right) d A(w)\right| \leq c\|f\|_{1}\|g\|_{B} \text {, i. e., } \\
& \left|\int P(v f)(w) \bar{g}^{\prime}(w) w^{-1}\left(1-|w|^{2}\right) d A(w)\right| \leq c\|f\|_{1}\|g\|_{B}, \quad f \in H^{\infty} . \tag{10}
\end{align*}
$$

Using Fubini's theorem and Lemma 5, we have

$$
\left|\int v f \bar{g} d A\right| \leq c\|f\|_{1}\|g\|_{B}, f \in H^{\infty} \text { and } g \in B \text { with } g(0)=g^{\prime}(0)=0 .
$$

The use of Fubini's theorem in (10) is justified since both f and $g^{\prime}(w) w^{-1}(1$ $-\bar{w} z$), $w \in D$ are bounded, $|v(z)-v(0)| \leq c \log (1-|z|)^{-1}, z \in D$ (Lemma 7 and use inequality (5)) and $\log (1-|z|)|1-\bar{w} z|^{-2},(z, w) \in D \times D$ is integrable over $D \times D$, which can be verified by a direct calculation. Moreover, for $f \in H^{\infty}$ and $g \in B$

$$
\begin{aligned}
\left|\int v f \overline{\left(g(0)+g^{\prime}(0) z\right)} d A\right| & \\
& =\left|\int P(v f) \overline{\left(g(0)+g^{\prime}(0) z\right)} d A\right| \\
& \leq\left\|T_{V}\right\|\|f\|_{1}\left\|g(0)+g^{\prime}(0) z\right\|_{\infty} \\
& \leq c\|f\|_{1}\|g\|_{B} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left|\int v f \bar{g} d A\right| \leq c\|f\|_{1}\|g\|_{B}, \quad f \in H^{\infty} \text { and } g \in B \tag{11}
\end{equation*}
$$

To deduce that v is bounded, we replace f and g by suitable kernel functions: fix $w \in D$ and put $f(z)=g(z)=z(1-\bar{w} z)^{-3}, z \in D$ in (11). Then the $\|g\|_{B} \leq c\left(1-|w|^{2}\right)^{-3}$ and the $\|f\|_{1}$ is estimated in Lemma 4, so

$$
\left.\left|\int v(z)\right| z\right|^{2}|1-\bar{w} z|^{-6} d A(z) \mid \leq c\left(1-|w|^{2}\right)^{-4}
$$

or as in the notation of Lemma 2,

$$
\begin{equation*}
\left.\left(1-|w|^{2}\right)^{4}\left|\int v\right| l_{w}\right|^{2} d A \mid \leq c \tag{12}
\end{equation*}
$$

Now let $h \in L_{a}^{2}$ be an analytic function such that $v=h+\bar{h}$. Then by Lemma 7, $h^{\prime}(w)\left(1-|w|^{2}\right)$ is bounded. Taking real parts in the formula for $\left(1-|w|^{2}\right)^{4} \int h\left|l_{w}\right|^{2} d A$ in Corollary 3 and using (12) we deduce that v is bounded.

Replacing f by $z f$ in (11) and noting that $\|z f\|_{1} \leq\|f\|_{1}$ we have

$$
\begin{equation*}
\left|\int v z f \bar{g} d A\right| \leq c\|f\|_{1}\|g\|_{B}, \quad f \in H^{\infty} \text { and } g \in B \tag{13}
\end{equation*}
$$

Applying Lemma 6 for the function $u=v f \bar{g}$ (Lemma 7 is used to verify that the hypothesis of Lemma 6 is satisfied) and using the CauchyRiemann equations, we deduce that

$$
\begin{equation*}
\int \frac{\partial v}{\partial \bar{z}} f \bar{g}\left(1-|z|^{2}\right) d A=\int v z f \bar{g} d A-\int v f \bar{g}^{\prime}\left(1-|z|^{2}\right) d A \tag{14}
\end{equation*}
$$

Since we now know that v is bounded ; from (13) and (14) we have

$$
\begin{equation*}
\left|\int \frac{\partial v}{\partial \bar{z}} f \bar{g}\left(1-|z|^{2}\right) d A\right| \leq c\|f\|_{1}\|g\|_{B}, \quad f \in H^{\infty} \text { and } g \in B \tag{15}
\end{equation*}
$$

Write $v=h+\bar{h}$ for some $h \in L_{a}^{2}$. Then $\frac{\partial v}{\partial \bar{z}}=\bar{h}^{\prime} . \quad$ Fix $w \in D$ and as before we replace f and g by suitable kernel functions ; let $f(z)=(1-\bar{w} z)^{-3}, z \in D$ and $g(z)=\log (1-\bar{w} z), z \in D$. Then the $\|g\|_{B} \leq 2$ and the $\|f\|_{1}$ is estimated in

Lemma 4, therefore, from (15)

$$
\begin{equation*}
\left|\int h^{\prime}(z) \log (1-\bar{w} z)(1-w \bar{z})^{-3}\left(1-|z|^{2}\right) d A(z)\right| \leq c\left(1-|w|^{2}\right)^{-1} \tag{16}
\end{equation*}
$$

But then for $f \in L_{a}^{1}\left(D,\left(1-|z|^{2}\right) d A\right)$,

$$
\begin{equation*}
2 \pi^{-1} \int f(z)(1-w \bar{z})^{-3}\left(1-|z|^{2}\right) d A(z)=f(w), w \in D \tag{17}
\end{equation*}
$$

([7], Theorem 1 (iv)). Since $h \in B$ (Lemma 7), the hypothesis of (17) is trivially satisfied by h^{\prime}, so from (16) it follows that

$$
h^{\prime}(w) \log \left(1-|w|^{2}\right)\left(1-|w|^{2}\right), \quad w \in D
$$

is bounded as desired.
Conversely, suppose v is a real-valued harmonic function on D such that both v and $|\nabla(v)(z)|\left(1-|z|^{2}\right) \log \left(1-|z|^{2}\right)$ are bounded. Fix $f \in H^{\infty}$ and $g \in B$. Then equation (14) still holds and we may rewrite it as :

$$
\begin{equation*}
\int v z f \bar{g} d A=\int \frac{\partial v}{\partial \bar{z}} f \bar{g}\left(1-|z|^{2}\right) d A+\int v f \bar{g}^{\prime}\left(1-|z|^{2}\right) d A \tag{18}
\end{equation*}
$$

Note that $|\nabla v|=\frac{1}{2}\left|h^{\prime}\right|$ where $v=h+\bar{h}$ and h is analytic. Also $\frac{\partial v}{\partial \bar{z}}=\bar{h}^{\prime}$. Now to estimate the second integral in (18), use the hypothesis on $|\nabla v|$ and the standard point estimate for a Bloch function g (5):

$$
\begin{aligned}
|g(z)| & \leq|g(0)|+\|g-g(0)\|_{B} \log (1-|z|)^{-1} \\
& \leq\|g\|_{B}\left(1+\log (1-|z|)^{-1}\right), \quad z \in D .
\end{aligned}
$$

Then from (18)

$$
\begin{equation*}
\left|\int v \tilde{f} \bar{g} d A\right| \leq c\|f\|_{1}\|g\|_{B} \tag{19}
\end{equation*}
$$

where \tilde{f} is the function $z f$. Since $v \tilde{f} \in L^{2}(D, d A), g \in L_{a}^{2}$ and P is the orthogonal projection from $L^{2}(D, d A)$ onto L_{a}^{2}, the integral in (19) is equal to $\int P(v \tilde{f}) \bar{g} d A$, so

$$
\begin{equation*}
\left|\int T_{v}(\tilde{f}) \bar{g} d A\right| \leq c\|f\|_{1}\|g\|_{B} \tag{20}
\end{equation*}
$$

It is not hard to see that $P(\bar{z} g) \in B$. In fact a direct calculation shows that, if $g(z)=\sum_{0}^{\infty} a_{n} z^{n}, z \in D$ then $P(\bar{z} g)(w)=\sum_{1}^{\infty} a_{n} w^{n-1}, w \in D$. Thus

$$
\left|\int T_{v}(\tilde{f})(z) z \bar{g}(z) d A(z)\right|=\left|\int T_{v}(\tilde{f}) \overline{P(\bar{z} g)} d A\right|
$$

$$
\begin{align*}
& \leq c\|f\|_{1}\|P(\bar{z} g)\|_{B}(\text { from }(20)) \tag{21}\\
& \leq c\|f\|_{1}\|g\|_{B} . \tag{22}
\end{align*}
$$

By an application of Lemma 6 to $u=T_{v}(\tilde{f}) \bar{g}$ and the estimate in (21) show that

$$
\begin{aligned}
\left|\int T_{\nu}(\tilde{f})(z) g^{\prime}(z)\left(1-|z|^{2}\right) d A(z)\right| & \leq c\|f\|_{1}\|g\|_{B} \\
& \leq c\|\tilde{f}\|_{1}\|g\|_{B},
\end{aligned}
$$

whence $\left|\left\langle T_{v}(\tilde{f}), g\right\rangle\right| \leq c\|f\|_{1}\|g\|_{B}$. The pairing \langle,$\rangle was defined in Proposi-$ tion 1. Therefore, for $f \in H_{0}^{\infty}$

$$
\left|\left\langle T_{v}(f), g\right\rangle\right| \leq\|f\|_{1}\|g\|_{B} .
$$

Since the dual of L_{a}^{1} is the Bloch space (Proposition 1), it follows that for $f \in H_{0}^{\infty}$

$$
\left\|T_{v}(f)\right\|_{1} \leq c\|f\|_{1} .
$$

Thus $T_{v}: L_{a}^{1} \rightarrow L_{a}^{1}$ is bounded.

4 Bounded Hankel operators

Let $f \in L^{1}(D, d A)$ and $g \in H^{\infty}$. Let us recall the definition of $H_{f}(g)$:

$$
H_{f}(g)=(I-P)(f g)=f g-P(f g) .
$$

Using $g=P(g)$, we get the following well-known formula for a Hankel operator:

$$
\begin{equation*}
H_{f}(g)(z)=\int \frac{f(z)-f(w)}{(1-\bar{w} z)^{2}} g(w) \frac{d A(w)}{\pi} \text { for almost all } z \in D . \tag{23}
\end{equation*}
$$

Formula (23) for a Hankel operator suggests that we investigate the growth of

$$
\begin{equation*}
\int \frac{|f(z)-f(w)|}{|1-\bar{w} z|^{2}} d A(w) . \tag{24}
\end{equation*}
$$

Lemma 9 provides a growth condition for (24) when $f \in B$.
Lemma 9. Let $f \in B$. Then there exists a constant c such that

$$
\int \frac{|f(z)-f(w)|}{|1-\bar{w} z|^{2}} d A(z) \leq c\|f-f(0)\|_{B} \log ^{2} \frac{c}{\left(1-|w|^{2}\right)}, \quad w \in D .
$$

Proof. Let us change the variable in the integral by writing $z=$ $\phi_{w}(t)$ (see (7) for the definition of $\phi_{w}(t)$ and also (8));

$$
\begin{equation*}
\int \frac{|f(z)-f(w)|}{|1-\bar{w} z|^{2}} d A(z)=\int \frac{\left|f \circ \phi_{w}(t)-f(w)\right|}{|1-\bar{w} t|^{2}} d A(t) . \tag{25}
\end{equation*}
$$

From (5) and (6)

$$
\begin{aligned}
\left|f \circ \phi_{w}(t)-f(w)\right| & =\left|f \circ \phi_{w}(t)-f \circ \phi_{w}(0)\right| \\
& \leq\left\|f \circ \phi_{w}-f \circ \phi_{w}(0)\right\|_{B} \log (1-|t|)^{-1} \\
& =\|f-f(0)\|_{B} \log (1-|t|)^{-1} .
\end{aligned}
$$

Thus from (25)

$$
\begin{aligned}
\int \frac{|f(z)-f(w)|}{|1-\bar{w} z|^{2}} d A(z) & \leq\|f-f(0)\|_{B} \int \frac{-\log (1-|t|)}{|1-t \bar{w}|^{2}} d A(t) \\
& =2 \pi\|f-f(0)\|_{B} \int_{0}^{1} \frac{-\log (1-t)}{\left(1-t^{2}|w|^{2}\right)} t d t \\
& \leq 2 \pi\|f-f(0)\|_{B} \int_{0}^{1} \frac{-\log (1-t)}{(1-t|w|)} d t
\end{aligned}
$$

Put $g(x)=\int_{0}^{1}-\log (1-t)(1-t x)^{-1} d t, 0 \leq x<1$. Then

$$
\left|g^{\prime}(x)\right| \leq \int_{0}^{1}-\log (1-t)(1-t x)^{-2} d t
$$

View $(1-t x)^{-2} d t$ as $x^{-1} d(1-t x)^{-1}$ and evaluate the improper integral by doing an integration by parts, to get

$$
\left|g^{\prime}(x)\right| \leq-\log (1-x) x^{-1}(1-x)^{-1}, \quad 0<x<1
$$

Since $-\log (1-x) x^{-1}$ is an increasing function of x on $0<x<1$ we have, for $0<x<1$

$$
\left|g^{\prime}(x)\right| \leq\left\{\begin{array}{cl}
4 \log 2 & \text { if } 0<x \leq \frac{1}{2} \\
-2 \log (1-x)(1-x)^{-1} & \text { if otherwise }
\end{array}\right.
$$

Thus for some constant $c,\left|g^{\prime}(x)\right| \leq c-c \log (1-x)(1-x)^{-1}, 0<x<1$. Hence

$$
|g(x)-g(0)| \leq c x+\frac{1}{2} \log ^{2}(1-x), \quad 0 \leq x<1
$$

from which the desired result follows.
Proposition 10. For $f \in L_{a}^{2}$, the Hankel operator $H_{f}: L_{a}^{1} \rightarrow L^{1}(D$, $d A$) is bounded if and only if

$$
\begin{equation*}
\|f\|_{L B}=\sup _{z \in D}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right) \log \frac{1}{1-|z|^{2}}<\infty . \tag{26}
\end{equation*}
$$

Note that we do not assume f to be bounded.
Proof. Suppose (26) holds. Then trivially $\|f\|_{B}<\infty$. Fix $h \in$
$L^{\infty}(D, d A)$. We begin by showing that the function defined by :

$$
H(w)=\int(f(z)-f(w))(1-w \bar{z})^{-2} h(z) d A(z), \quad w \in D
$$

is a Bloch function. Indeed;

$$
\begin{aligned}
H^{\prime}(w)\left(1-|w|^{2}\right) & =\int-f^{\prime}(w)\left(1-|w|^{2}\right)(1-w \bar{z})^{-2} h(z) d A(z) \\
& +2\left(1-|w|^{2}\right) \int(f(z)-f(w))(1-w \bar{z})^{-3} \bar{z} h(z) d A(z) \\
& =I_{1}(w)+2\left(1-|w|^{2}\right) I_{2}(w)
\end{aligned}
$$

Now

$$
\begin{equation*}
\int|1-w \bar{z}|^{-2} d A(z)=\pi|w|^{-2} \log \left(1-|w|^{2}\right)^{-1}, \quad w \in D \tag{27}
\end{equation*}
$$

(the limit as $w \rightarrow 0$ of the right-hand side of (27) clearly exists); whence by (26) I_{1} is bounded on D. To show that $\left(1-|w|^{2}\right) I_{2}(w)$ is bounded, it is sufficient to show that $\left(1-|w|^{2}\right)^{2} I_{2}^{\prime}(w)$ is bounded ([6], Theorem 5.5). Indeed

$$
\begin{aligned}
\left(1-|w|^{2}\right)^{2} I_{2}^{\prime}(w) & =\left(1-|w|^{2}\right) \int-f^{\prime}(w)\left(1-|w|^{2}\right)(1-w \bar{z})^{-3} \bar{z} h(z) d A(z) \\
& +3\left(1-|w|^{2}\right)^{2} \int(f(z)-f(w))(1-w \bar{z})^{-4} \bar{z}^{2} h(z) d A(z) \\
& =J_{1}(w)+J_{2}(w)
\end{aligned}
$$

Then from Lemma 4

$$
\left|J_{1}\right| \leq 4 \pi\|f\|_{B}\|h\|_{\infty}
$$

and the fact that

$$
\left|J_{2}\right| \leq c\|f\|_{B}\|h\|_{\infty}
$$

follows from [2], Theorem 1(B), see also equation (14), page 327 of the same reference. Thus H is a Bloch function and

$$
\|H\|_{B} \leq c\|h\|_{\infty}
$$

so here the constant c depends on f.
In view of the following well-known identity (which also follows from an application of Lemma 6)

$$
\begin{equation*}
\int g(w) w \bar{H}(w) d A(w)=\int g(w) \bar{H}^{\prime}(w)\left(1-|w|^{2}\right) d A(w), \quad g \in H^{\infty} \tag{28}
\end{equation*}
$$

we have

$$
\left|\int g(w) w \bar{H}(w) d A(w)\right| \leq c\|g\|_{1}\|h\|_{\infty}, \quad g \in H^{\infty}
$$

Applying Fubini's Theorem

$$
\left|\int\left(\int \frac{\bar{f}(z)-\bar{f}(w)}{(1-\bar{w} z)^{2}} g(w) w d A(w)\right) \bar{h}(z) d A(z)\right| \leq c\|g\|_{1}\|h\|_{\infty}, \quad g \in H^{\infty}
$$

So

$$
\left|\int H_{f}(\tilde{g}) \bar{h} d A\right| \leq c\|\tilde{g}\|_{1}\|h\|_{\infty}, \quad g \in H^{\infty} \text { and } h \in L^{\infty}(D, d A),
$$

where $\tilde{g}=w g$. Hence

$$
\int\left|H_{F}(g)\right| d A \leq c\|g\|_{1}, \quad g \in H_{0}^{\infty} .
$$

It follows that H_{f} is bounded.
To prove the converse, suppose $f \in L_{a}^{2}$ and

$$
\left\|H_{f}(g)\right\|_{1} \leq c\|g\|_{1}, \quad g \in H^{\infty} .
$$

Then

$$
\begin{equation*}
\left|\int H_{f}(g) \bar{h} d A\right| \leq c\|g\|_{1}\|h\|_{\infty}, \quad g \in H^{\infty} \text { and } h \in L^{\infty}(D, d A) . \tag{2}
\end{equation*}
$$

Let $h \in H_{0}^{\infty}$. Then $P(\bar{h})=0$. Clearly for all $g \in H^{\infty}, \bar{f} g \in L^{2}(D, d A)$. Recalling that $P: L^{2}(D, d A) \rightarrow L_{a}^{2}$ is the orthogonal projection;

$$
\begin{align*}
\int H \bar{f}(g) h d A & =\int \bar{f} g h d a-\int P(\overline{f g}) h d A \\
& =\int \bar{f} g h d A-\int \bar{f} g \overline{P(\bar{h})} d A \\
& =\int \bar{f} g h d A . \tag{30}
\end{align*}
$$

Likewise we can show that,

$$
\begin{equation*}
\int H_{F}(g) \bar{h} d A=0, \quad g \text { and } h \in H^{\infty} . \tag{3}
\end{equation*}
$$

Replacing the function h in (30) by $h(z)=z$, writing \tilde{g} for the function $\tilde{g}(z)=z g(z), z \in D$ and using (29) we have

$$
\begin{aligned}
& \left|\int \bar{f} \tilde{g} d A\right| \leq c\|g\|_{1} \leq c\|\tilde{g}\|_{1}, \quad \text { i. e., } \\
& \left|\int \bar{f} \tilde{g} d A\right| \leq c\|g\|_{1}, \quad g \in H_{0}^{\infty} .
\end{aligned}
$$

Now by an argument similar to that of Lemma 7 we deduce that $f \in B$.
From (29) and (31) we have

$$
\begin{equation*}
\left|\int H_{f}(g) \bar{h} d A\right| \leq c\|g\|_{1} \operatorname{dist}\left(h, H^{\infty}\right), g \in H^{\infty} \tag{32}
\end{equation*}
$$

and $h \in L^{\infty}(D, d A)$, where dist $\left(h, H^{\infty}\right)$ is the $L^{\infty}(D, d A)$ distance from h to H^{∞}. Fix $w \in D$. Then $\operatorname{dist}\left(\overline{\log (1-\bar{w} z)}, H^{\infty}\right)=2 \operatorname{dist}\left(\operatorname{Im} \overline{\log (1-\bar{w} z)}, H^{\infty}\right)$ $\leq 4 \pi$, so replacing h in (32) by the function $\log (1-\bar{w} z), z \in D$ and using (30) we have from (32)

$$
\left|\int \bar{f}(z) g(z) \log (1-\bar{w} z) d A(z)\right| \leq c\|g\|_{1}, \quad g \in H^{\infty} .
$$

Replacing g by $z g$ in (33) and then using identity (28) (with of course f instead of H), we have

$$
\left|\int \bar{f}^{\prime}(z) g(z) \log (1-\bar{w} z)\left(1-|z|^{2}\right) d A(z)\right| \leq c\|g\|_{1}, \quad g \in H^{\infty} .
$$

Now since $f \in B$ and the argument of $\log (1-\bar{w} z)$ is bounded (independent of w and z, and we may assume that neither w nor z is 0)

$$
\left|\int \bar{f}^{\prime}(z) g(z) \overline{\log (1-\bar{w} z)}\left(1-|z|^{2}\right) d A(z)\right| \leq c\|g\|_{1}, \quad g \in H^{\infty} .
$$

Put $g(z)=(1-\bar{w} z)^{-3}, \quad z \in D$. Then by Lemma 4, $\|g\|_{1} \leq 4 \pi\left(1-|w|^{2}\right)^{-1}$, so

$$
\left|\int f^{\prime}(z) \log (1-\bar{w} z)(1-w \bar{z})^{-3}\left(1-|z|^{2}\right) d A(z)\right| \leq c\left(1-|w|^{2}\right)^{-1}
$$

By (17) we get

$$
f^{\prime}(w)\left(1-|w|^{2}\right) \log \left(1-|w|^{2}\right)^{-1}, \quad w \in D
$$

to be bounded.
Corollary 11. Suppose v is a (complex-valued) harmonic function on D such that both v and $\frac{\partial v}{\partial \bar{z}}\left(1-|z|^{2}\right) \log \left(1-|z|^{2}\right)$ are bounded on D. Then the Toeplitz operator

$$
T_{v}: L_{a}^{1} \rightarrow L_{a}^{1}
$$

is bounded.
Proof. Write $v=f+\bar{g}$ where f and g are integrable analytic functions on D. Since v is bounded $v \in L^{2}(D, d A)$, so $f+\bar{g}(0)=P(v) \in L_{a}^{2}$; consequently $g \in L_{a}^{2}$. Also the hypothesis on $\frac{\partial v}{\partial \bar{z}}$ implies that g satisfy the
hypothesis of Propostion 10, thus the Hankel operator
$H \bar{g}: L_{a}^{1} \rightarrow L^{1}(D, d A)$
is bounded. Since v is bounded, M_{v}, the multiplication operator by v on $L_{a}^{1} \rightarrow L^{1}(D, d A)$ is also bounded. Note that $M_{v}=T_{v}+H_{v}$ and $H_{v}=H_{\bar{g}}$. Thus the Toeplitz operator

$$
T_{v}: L_{a}^{1} \rightarrow L_{a}^{1}
$$

is bounded.

References

[1] J. M. Anderson, J. Clunie, Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
[2] Sheldon Axler, The Bergman space, Bloch space, and the commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332.
[3] Sheldon AxLER, Bergman spaces and their operators, Surveys of some recent results on operator theory, Vol 1 (John B. Conway and Bernard B. Morrel, editors), Pitman research notes in mathematics series, No 171, Copublished in the U.S. with John Wiley, Inc, New York, 1988, pp 1-50.
[4] Joseph Cima and David Stegenga, Hankel operators on H^{p}, Analysis at Urbana 1, London Mathematical Society, Lecture note series, Vol 137 (Earl R. Berkson, N. T. Peck and J. Uhl, editors), Cambridge [U. K.]; New York: Cambridge University Press, 1989, pp 133-150.
[5] R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635.
[6] Peter L. Duren, Theory of H^{p} spaces, Academic Press, Now York, 1970.
[7] A. L. Shields and D. L. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
[8] David A. Stegenga, Bounded Toeplitz operators on H^{1} and applications of the duality between H^{1} and functions of bounded mean oscillation, Amer. J. Math. 98 (1976), 573-589.
[9] Kehe ZHU, Operator Theory in Function Spaces, Marcel Dekker, Inc, New York and Basel, 1990.

Current Address

Department of Mathematics
University of Chicago
Chicago, LL 60637
USA.

[^0]: ${ }^{\circ} 1980$ Mathematical Subject Classification (1985 Revision) Primary ; 47B35, 30C40 ;Secondary 47B38, 46A20.

