On cyclic tournaments

Noboru ITO
(Received January 30, 1991)

1.

Let V be the set of integers $1,2, \ldots, v$ and $S(v)$ the symmetric group on V. Put $C=(1,2, \ldots, v)$. Let $W(v)$ be the set of all subgroups of $S(v)$ of odd orders containing C.

A complete asymmetric digraph A whose set of vertices is V is also called a tournament. We identify a digraph with its adjacency matrix. We also identify a permutation with its matrix representation.

Let A and B be two tournaments of order v. Then B is equivalent to A if there exists a permutation matrix P such that $B=P^{t} A P$, where t denotes the transposition. This is a true equivalence relation. If $B=A$, then P is called an automorphism of A. The set $G(A)$ of all automorphisms of A forms a group, the automorphism group of A.

A tournament A is called cyclic if $G(A)$ contains C. Let A be a cyclic tournament of order v. We may regard the first row vector $O(1)$ of A as the out-neighborhood of the vertex 1 . Since A is cyclic, A is completely determined by $O(1)$. Put $v=2 k+1$ and $i^{*}=v-i+1$ for $2 \leqq i \leqq k$ +1 . We call $\left\{i, i^{*}\right\}$ a complementary pair for $2 \leqq i \leqq k+1$. Choose one element from each complementary pair. This procedure determines $O(1)$ and hence A. Thus there exist 2^{k} cyclic tournaments. Let $C(v)$ be the set of all cyclic tournaments of order v.

Let G be an element of $W(v)$ and H the stabilizer of 1 in G. If we want to construct a cyclic tournament A such that $G(A)$ contains G, then we have a restriction on the choice of elements from complementary pairs imposed by H. Namely if i and j^{*} belong to the same orbit of H, then both of i and j^{*} or none of them have to be chosen. If we do so, then we see that every maximal element G of $W(v)$ is of the form $G=G(A)$ for some element A of $C(v)$.

Let $v=p$ be a prime and $u(p)$ the odd portion of $p-1$, namely $p-1=$ $2^{e} u(p)$. Then $G(p)$ denotes the metacyclic group of order $p u(p)$ on V. Since $G(p)$ is maximal in $W(p), G(p)=G(A)$ for some tournament A of order p.

In the present paper we show the following :
(i) If any v-cycle of $G(A)$ is a power of C, we can determine the size of the equivalence class of A in $C(v)$;
(ii) Any maximal element of $W(v)$ is of the form $G\left(p_{1}\right)^{\circ} G\left(p_{2}\right)^{\circ} \ldots$ ${ }^{\circ} G\left(p_{r}\right)$, where $v=p_{1} p_{2} \ldots p_{r}$ is a prime decomposition of v and ${ }^{\circ}$ denotes the Polya composition. For this see [1];
(iii) An element of $W(v)$ of the largest order is uniquely (up to the conjugacy in $W(v)$) determined by a certain linear order of odd primes ;
and
(iv) Any element of $W(v)$ is of the form $G(A)$ for a certain element A of $C(v)$.

2.

Proposition 1. Let A and B be two equivalent cyclic tournaments such that $B=P^{t} A P$, where P is a permutation matrix. Assume that any v-cycle of $G(A)$ is a power of C. Then P belongs to the normalizer $N(\langle C\rangle)$ of $\langle C\rangle$. Put $N(\langle C\rangle)=\langle C\rangle N(v)$, where $N(v)$ is the stabilizer of 1 in $N(\langle C\rangle)$. Then $N(v)$ is Abelian of order $\varphi(v)$, where φ denotes the Euler totient function. Let $\varphi(A)$ be the order of $N(v) \cap G(A)$. Then the size of the equivalence class in $C(v)$ to which A belongs equals $\varphi(v) / \varphi(A)$.

Proof. We have that $A=P B P^{t}=P C^{t} B C P^{t}=P C^{t} P^{t} A P C P^{t}$. So $P C P^{t}$ belongs to $G(A)$. By assumption $P C P^{t}$ is a power of C. The rest is obvious.

Remark 1. The assumption on $G(A)$ in proposition 1 is satisfied, in particular, if $G(A)=\langle C\rangle$ or v is square-free. So for certain v it is possible to have a formula for the number of equivalence classes of cyclic tournaments.
(i) If v is a Fermat prime, $v=2^{m}+1$, then each equivalence class has size $v-1$ and hence there exist $2^{2 m-1-m}$ classes.
(ii) If v and $(v-1) / 2=k$ are primes, then, since any tournament A of order v such that $G(A)$ has order $v k$ is equivalent to the tournament of quadratic residue (or non-residue) type ([2]), there exist $\left(2^{k-1}-1 / k\right)+1$ classes.
3.

Proposition 2. Let G be a maximal element of $W(v)$. Then G is similar to $G\left(p_{1}\right)^{\circ} G\left(p_{2}\right)^{\circ} \ldots{ }^{\circ} G\left(p_{r}\right)$, where ${ }^{\circ}$ denotes the Polya composition and $v=p_{1} p_{2} \ldots p_{r}$ is a prime decomposition.

Proof. If v is a prime, then our assertion holds good by a theorem
of Burnside ([4], (11.7)). So assume that v is not a prime. Since G contains C, by a theorem of Schur ([4], (25.3)) G is imprimitive. Let M be a maximal subgroup of G of index m containing G_{1}, the stabilizer of 1 in G. Let core (M) denote the largest normal subgroup of G contained in M. Then $G / \operatorname{core}(M)$ is a permutation group of degree m and of odd order containing an m-cycle. Since M is maximal in G, by a theorem of Schur ([4], (25.3)) we have that m is a prime. Now we apply an induction argument with respect to the degree. For the rest we refer to ([3], 10.5.5).

REMARK 2. We notice that, under the assumption that G contains a v-cycle, we have shown the solvability of G without invoking the FeitThompson theorem.

4.

Let P be the set of all odd primes. We introduce a new order in P as follows : $p \gg q$ if and only if $(q u(q))^{p-1}>(p u(p))^{q-1}$.

LEMMA 1. \gg is a linear order.
PROOF. If $p \neq q$, then $(q u(q))^{p-1} \neq(p u(p))^{q-1}$. Now assume that $p \gg q$ and $q \gg r$. Then we have that $(q u(q))^{p-1}>(p u(p))^{q-1}$ and $(r u(r))^{q-1}>$ $(q u(q))^{r-1}$. So it follows that $(q u(q))^{(p-1)(r-1)}>(p u(p))^{(q-1)(r-1)}$ and that $(r u(r))^{(q-1)(p-1)}>(q u(q))^{(r-1)(p-1)}$. Hence we have that $(r u(r))^{p-1}>$ $(p u(p))^{r-1}$, namely $p \gg r$.

REMARK 3. The following is the sequence of odd primes under 100 in the increasing order using $\gg: 3,7,5,11,13,19,23,31,29,17,43,37,47,41$, 59, 67, 61, 71, 79, 83, 73, 89, 97.

PROPOSITION 3. Let G be an element of $W(v)$ of the largest order. Then $G=G\left(p_{1}\right)^{\circ} G\left(p^{2}\right)^{\circ} \ldots{ }^{\circ} G\left(p_{r}\right)$, where $v=p_{1} p_{2} \ldots p_{r}$ is a prime decomposition such that $p_{1} \geqq p_{2} \geqq \ldots \geqq p_{r}$.

Proof. The case $r=1$ is trivial. Assume that $r=2$. Then the orders of $G\left(p_{1}\right)^{\circ} G\left(p_{2}\right)$ and $G\left(p_{2}\right)^{\circ} G\left(p_{1}\right)$ are equal to $p_{1} u\left(p_{1}\right)\left(p_{2} u\left(p_{2}\right)\right)^{p_{1}}$ and $p_{2} u\left(p_{2}\right)\left(p_{1} u\left(p_{1}\right)\right)^{p_{2}}$ respectively. So if $p_{1} \gg p_{2}$, then the order of $G\left(p_{1}\right)^{\circ} G\left(p_{2}\right)$ is larger than that of $G\left(p_{2}\right)^{\circ} G\left(p_{1}\right)$. Now assume that $r \geqq 3$ and put $v=$ $p_{1} p_{2} z$. Then by an induction argument on r it is sufficient to compare the orders of $G_{1}=G\left(p_{1}\right)^{\circ} G\left(p_{2}\right)^{\circ} G(z)$ and $G_{2}=G\left(p_{2}\right)^{\circ} G\left(p_{1}\right)^{\circ} G(z)$, where $G(z)=$ $G\left(p_{3}\right)^{\circ} \ldots{ }^{\circ} G\left(p_{r}\right)$. In particular, we may assume that $p_{1} \neq p_{2}$. Let $g(z)$ denote the order of $G(z)$. Now the orders of G_{1} and G_{2} are equal to $p_{1} u\left(p_{1}\right)\left(p_{2} u\left(p_{2}\right) g(z)^{p_{2}}\right)^{p_{1}}$ and $p_{2} u\left(p_{2}\right)\left(p_{1} u\left(p_{1}\right) g(z)^{p_{1}}\right)^{p_{2}}$ respectively. So exact-
ly as in the case where $r=2$, we see that the order of G_{1} is larger than that of G_{2}.

Remark 4. Though G is unique up to the conjugacy in $S(v)$, there may exist many inequivalent A 's such that $G(A)=G$.

5.

Let $O(i)$ denote the out-neighborhood of $i, 1 \leqq i \leqq v$.
Lemma 2. Let A be a cyclic tournament of order v such that the out-neighborhood $O(1)$ of the vertex 1 consists of $2,3, \ldots, k$, where $v=2 k$ +1 . Then $G(A)=\langle C\rangle$.

Proof. It is enough to notice that $O(1) \cap O(i)$ contains $k-i+1$ vertices for $1 \leqq i \leqq k+1$, which implies that the stabilizer of 1 in $G(A)$ is trivial.

Remark 5. We remark that we have $G(A)=\langle C\rangle$ for most cyclic tournaments A.

Lemma 3. Let X and Y be elements of $W(v)$ such that X contains Y properly. Let $X(1)$ and $Y(1)$ be the stabilizers of 1 in X and Y respectively. Then $X(1)$ and $Y(1)$ have distinct orbit decompositions on $V-\{1\}$.

Proof. We apply an induction argument on the order v. If v is a prime, then, by a theorem of Burnside [4,11.7], $X(1)$ and $Y(1)$ are semiregular on $V-\{1\}$ and $X(1)$ contains $Y(1)$ properly. So the assertion is obvious. If v is not a prime, then, by a theorem of Schur $[4,25.3] X$ is imprimitive. Let D be a non-trivial block and $X(D)$ and $Y(D)$ the global stabilizers of D in X and Y respectively. Since Y contains C, $Y(D)$ is transitive on $D . \quad X(1)$ and $Y(1)$ are the stabilizers of 1 in $X(D)$ and $Y(D)$ respectively. Then by induction hypothesis the orbit decomposition of $Y(1)$ is a proper refinement of that of $X(1)$ on $D-\{1\}$.

Proposition 4. Let W be an element of $W(v)$. Then there exists a cyclic tournament A of order v such that $W=G(A)$.

Proof. In $\S 1$ we described a procedure to construct a cyclic tournament A° such that $G\left(A^{\circ}\right)$ contains W. Now assume that $G\left(A^{\circ}\right)$ contains W properly. Let $G\left(A^{\circ}\right)(1)$ and $W(1)$ be the stabilizers of 1 in $G\left(A^{\circ}\right)$ and W respectively. Then by Lemma 3 the orbit decomposition of $V-\{1\}$ by $W(1)$ is a proper refinement of that by $G\left(A^{\circ}\right)(1)$. So by the procedure
described in $\S 1$ we can construct a cyclic tournament $A^{\circ \circ}$ such that $G\left(A^{\circ \circ}\right)$ contains W and $G\left(A^{\circ}\right)$ contains $G\left(A^{\circ \circ}\right)$ properly. We may repeat this process. So eventually we obtain a cyclic tournament A such that $G(A)=W$.

References

[1] M. Goldberg and J. W. Moon, On the composition of two tournaments. Duke Math. J. 37 (1970), 323-332.
[2] E. C. JOHNSEN, Skew-Hadamard Abelian group difference sets. J. Algebra 4 (1966), 388-402.
[3] W.R. Scott, Group Theory. Prentice-Hall, 1964.
[4] H. Wielandt, Finite permutation groups. Academic Press, 1964.
Department of Mathematics Meijo University
Nagoya-Tenpaku, Japan 468

