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1.

Let V be the set of integers 1, 2, ..., v and S(v) the symmetric group
on V Put C=(1, 2, \ldots, v) . Let W(v) be the set of all subgroups of S(v)
of odd orders containing C .

A complete asymmetric digraph A whose set of vertices is V is also
called a tournament. We identify a digraph with its adjacency matrix.
We also identify a permutation with its matrix representation.

Let A and B be two tournaments of order v . Then B is equivalent to
A if there exists a permutation matrix P such that B=P^{t}AP , where t

denotes the transposition. This is a true equivalence relation. If B=A,

then P is called an automorphism of A. The set G(A) of all aut0-
morphisms of A forms a group, the automorphism group of A.

A tournament A is called cyclic if G(A) contains C. Let A be a
cyclic tournament of order v . We may regard the first row vector O(1) of
A as the out-neighborhood of the vertex 1. Since A is cyclic, A is com-
pletely determined by O(1) . Put v=2k+1 and i^{*}=v-i+1 for 2\leqq i\leqq k

+1 . We call \{i, i^{*}\} a complementary pair for 2\leqq i\leqq k+1 . Choose one
element from each complementary pair. This procedure determines O(1)

and hence A. Thus there exist 2^{k} cyclic tournaments. Let C(v) be the
set of all cyclic tournaments of order v .

Let G be an element of W(v) and H the stabilizer of 1 in G . If we
want to construct a cyclic tournament A such that G(A) contains G, then
we have a restriction on the choice of elements from complementary pairs
imposed by H. Namely if i and j^{*} belong to the same orbit of H, then
both of i and j^{*} or none of them have to be chosen. If we do so, then we
see that every maximal element G of W(v) is of the form G=G(A) for
some element A of C(v) .

Let v=p be a prime and u(p) the odd portion of p-1, namely p-1=
2^{e}u(p) . Then G(p) denotes the metacyclic group of order pu(p) on V.
Since G(p) is maximal in W(p) , G(p)=G(A) for some tournament A of
order p.

In the present paper we show the following:
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(i) If any v-cycle of G(A) is a power of C, we can determine the
size of the equivalence class of A in C(v) ;

(ii) Any maximal element of W(v) is of the form G(p_{1})^{o}G(p_{2})^{o}\ldots

\circ G(p_{r}) , where v=p_{1}p_{2}\ldots p_{r} is a prime decomposition of v and \circ denotes the
Polya composition. For this see [1];

(iii) An element of W(v) of the largest order is uniquely (up to the
conjugacy in W(v)) determined by a certain linear order of odd primes;

and
(iv) Any element of W(v) is of the form G(A) for a certain element

A of C(v) .

2.

PROPOSITION 1. Let A and B be two equivalent cyclic tournaments
such that B=P^{t}AP, where P is a permutation matrix. Assume that any
v-cycle of G(A) is a power of C. Then P belongs to the normalizer
N(\langle C\rangle) of \langle C\rangle . Put N(\langle C\rangle)=\langle C\rangle N(v) , where N(v) is the stabilizer of
1 in N(\langle C\rangle) . Then N(v) is Abelian of order \varphi(v) , where \varphi denotes the
Euler totient function. Let \varphi(A) be the order of N(v)\cap G(A) . Then the
size of the equivalence class in C(v) to which A belongs equals \varphi(v)/\varphi(A) .

PROOF. We have that A=PBP^{t}=PC^{t}BCP^{t}=PC^{t}P^{t}APCP^{t} So
PCP^{t} belongs to G(A) . By assumption PCP^{t} is a power of C. The rest
is obvious.

REMARK 1. The assumption on G(A) in proposition 1 is satisfied, in
particular, if G(A)=\langle C\rangle or v is square-free. So for certain v it is pos-
sible to have a formula for the number of equivalence classes of cyclic
tournaments.

(i) If v is a Fermat prime, v=2^{m}+1 , then each equivalence class
has size v-1 and hence there exist 2^{2^{m}-1-m} classes.

(ii) If v and (v-1)/2=k are primes, then, since any tournament A
of order v such that G(A) has order vk is equivalent to the tournament of
quadratic residue (or non-residue) type ([2]), there exist (2^{k-1}-1/k)+1

classes.

3.

PROPOSITION 2. Let G be a maximal element of W(v) . Then G is
similar to G(p_{1})^{o}G(p_{2})^{o}\ldots\circ G(p_{r}) , where \circ denotes the Polya composition
and v=p_{1}p_{2}\ldots p_{r} is a prime decomposition.

PROOF. If v is a prime, then our assertion holds good by a theorem
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of Burnside ([4], (11.7)). So assume that v is not a prime. Since G con-
tains C, by a theorem of Schur ([4], (25.3)) G is imprimitive. Let M be a
maximal subgroup of G of index m containing G_{1} , the stabilizer of 1 in G .
Let core(M) denote the largest normal subgroup of G contained in M.
Then G/core(M) is a permutation group of degree m and of odd order
containing an m-cycle. Since M is maximal in G , by a theorem of Schur
([4], (25.3)) we have that m is a prime. Now we apply an induction argu-
ment with respect to the degree. For the rest we refer to ([3], 10.5.5).

REMARK 2. We notice that, under the assumption that G contains a
v -cycle, we have shown the solvability of G without invoking the Feit-
Thompson theorem.

4.

Let P be the set of all odd primes. We introduce a new order in P as
follows: p\gg q if and only if (qu(q))^{p-1}>(pu(p))^{q-1} .

LEMMA 1. \gg is a linear order.

PROOF. If p\neq q , then (qu(q))^{p-1}\neq(pu(p))^{q-1} Now assume that p\gg q

and q\gg r . Then we have that (qu(q))^{p-1}>(pu(p))^{q-1} and (ru( r))^{q-1}>

(qu(q))^{r-1} . So it follows that (qu(q))^{(p-1)(r-1)}>(pu(p))^{(q-1)(r-1)} and that
(ru(r))^{(q-1)(p-1)}>(qu(q))^{(r-1)(p-1)} . Hence we have that ( ru ( r))^{p-1}>

(pu(p))^{r-1} . namely p\gg r .

REMARK 3. The following is the sequence of odd primes under 100
in the increasing order using\gg:3,7,5 , 11, 13, 19, 23, 31, 29, 17, 43, 37, 47, 41,
59, 67, 61, 71, 79, 83, 73, 89, 97.

PROPOSITION 3. Let G be an element of W(v) of the largest order.
Then G=G(p_{1})^{o}G(p^{2})^{o}\ldots\circ G(p_{r}) , where v=p_{1}p_{2}\ldots p_{r} is a prime decomposi-
tion such that p_{1}\geqq p_{2}\geqq\ldots\geqq p_{r}.

PROOF. The case r=1 is trivial. Assume that r=2. Then the
orders of G(p_{1})^{o}G(p_{2}) and G(p_{2})^{o}G(p_{1}) are equal to p_{1}u(p_{1})(p_{2}u(p_{2}))^{p_{1}} and
p_{2}u(p_{2})(p_{1}u(p_{1}))^{p_{2}} respectively. So if p_{1}\gg p_{2} , then the order of G(p_{1})^{o}G(p_{2})

is larger than that of G(p_{2})^{o}G(p_{1}) . Now assume that r\geqq 3 and put v=
p_{1}p_{2}Z . Then by an induction argument on r it is sufficient to compare the
orders of G_{1}=G(p_{1})^{o}G(p_{2})^{o}G(z) and G_{2}=G(p_{2})^{o}G(p_{1})^{o}G(z) , where G(z)=
G(p_{3})^{oo}\ldots G(p_{r}) . In particular, we may assume that p_{1}\neq p_{2} . Let g(z)
denote the order of G(z) . Now the orders of G_{1} and G_{2} are equal to
p_{1}u(p_{1})(p_{2}u(p_{2})g(z)^{p_{2}})^{p_{1}} and p_{2}u(p_{2})(p_{1}u(p_{1})g(z)^{p_{1}})^{p_{2}} respectively. So exact-
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ly as in the case where r=2, we see that the order of G_{1} is larger than
that of G_{2} .

REMARK 4. Though G is unique up to the conjugacy in S(v) , there
may exist many inequivalent A’s such that G(A)=G.

5.

Let O(i) denote the out-neighborhood of i , 1\leqq i\leqq v .

LEMMA 2 Let A be a cyclic tournament of order v such that the
out-neighborhood O(1) of the vertex 1 consists of 2, 3, ..., k, where v=2k
+1 . Then G(A)=\langle C\rangle .

PROOF. It is enough to notice that O(1)\cap O(i) contains k-i+1 ver-
tices for 1\leqq i\leqq k+1 , which implies that the stabilizer of 1 in G(A) is triv-
ial.

REMARK 5. We remark that we have G(A)=\langle C\rangle for most cyclic
tournaments A.

LEMMA 3. Let X and Y be elements of W(v) such that X contains
Y properly. Let X(1) and Y(1) be the stabilizers of 1 in X and Y
respectively. Then X(1) and Y(1) have distinct orbit decompositions on
V-\{1\} .

PROOF. We apply an induction argument on the order v . If v is a
prime, then, by a theorem of Burnside [4, 11.7], X(1) and Y(1) are semir-
egular on V-\{1\} and X(1) contains Y(1) properly. So the assertion is
obvious. If v is not a prime, then, by a theorem of Schur [4, 25.3] X is
imprimitive. Let D be a non-trivial block and X(D) and Y(D) the
global stabilizers of D in X and Y respectively. Since Y contains C ,
Y(D) is transitive on D. X(1) and Y(1) are the stabilizers of 1 in X(D)
and Y(D) respectively. Then by induction hypothesis the orbit decomp0-
sition of Y(1) is a proper refinement of that of X(1) on D-\{1\} .

PROPOSITION 4. Let W be an element of W(v) . Then there exists a

cyclic tournament A of order v such that W=G(A) .

PROOF. In \S 1 we described a procedure to construct a cyclic tourna-
ment A^{o} such that G(A^{o}) contains Wr Now assume that G(A^{o}) contains
W properly. Let G(A^{o})(1) and W(1) be the stabilizers of 1 in G(A^{o}) and
W respectively. Then by Lemma 3 the orbit decomposition of V-\{1\} by
W(1) is a proper refinement of that by G(A^{O})(1) . So by the procedure
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described in \S 1 we can construct a cyclic tournament A^{oo} such that
G(A^{oo}) contains W and G(A^{o}) contains G(A^{oo}) properly. We may
repeat this process. So eventually we obtain a cyclic tournament A such
that G(A)=W.
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