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Abstract.

The Fourier transform of linear operator on a general homogeneous
Banach space B in L^{1}(G) for locally compact abelian group G is defined
and characterized. It is proved that the Fourier transform of a linear
operator is an operator valued continuous function on \hat{G} , th dual group of
G, and vanishing at infinity. Convolution of function and operator is stud-
ied. Some linear operator on B is characterized as an integration of its
Fourier transform over \hat{G} .

1. Introduction and preliminaries

Throughout the paper let G be a locally compact as well as a \sigma-com-
pact abelian group, and let \overline{G} be its dual group. A homogeneous Banach
space B is a dense subspace of L^{1}(G) such that

(i) B is a Banach space under another norm ||||_{B} which is stronger
than L^{1}(G)-norm ||||_{1} .

(ii) The norm ||||_{B} is translation invariant and ||R_{x}f-f||_{B}arrow 0 as xarrow 0

in G where R_{x}f(y)=f(y-x) for all x and y in G.

Some special homogeneous Banach spaces are investigated in Larsen
[6], Lai 10]. For example, the spaces

A^{p}(G)=\{f\in L^{1}(G) : \hat{f}\in L^{p}(\hat{G}), 1\leq p\leq\infty\}

with norm ||f||_{A^{p}(G)}=||f||_{1}+||\hat{f}||_{p}

and A_{1,p}(G)=L^{1}\cap L^{p}(G) with norm ||f||=||f||_{1}+||f||_{p}

are homogeneous Banach spaces.
A homogeneous Banach space B may not admit multiplication by

character \gamma\in\hat{G} , and even if it does, it may not be isometry under the
norm ||||_{B} (see Reiter [15]). If for any \gamma\in\hat{G} , the operator

M_{\gamma} : f\in Barrow\gamma\cdot f\in B
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is closed on B, we call B an invariant homogeneous Banach space. In
order to define the Fourier transform of linear operators T in \mathscr{L}(B) , the
space of all linear operators on B, we will assume throughout that B is
invariant.

Let \mathscr{L}_{b}(B) be the space of bounded linear operators on B .
T\in \mathscr{L}_{b}(B) is said to be almost invariant if

\lim_{\chiarrow 0}||R_{x}T-TR_{x}||=0

where the norm is the uniform norm of \mathscr{L}_{b}(B) .
In [1] and [2], DeLeeuw investigated the harmonic analysis for almost

invariant operators on B in the case of G=T the circle group and
Tewari and Madan [16] in the case of compact group G . Recently, Yu
[17] considered the homogeneous Banach space B\subset L^{1}(G) for G=R. All
of these works have partially shown that some basic properties on har-
monic analysis hold for operator T\in \mathscr{L}_{b}(B) . Essentially, DeLeeuw
defines the Fourier transform of T\in \mathscr{L}_{b}(B) for G=T by

\hat{T}(n)f=\frac{1}{2\pi}\int_{-\pi}^{\pi}e^{-1nx}R_{-\chi}TR_{x}fdx , for f\in B

and proved some results as follows:

(a) \lim_{Narrow+\infty}\sum_{-N}^{N}(1-\frac{|n|}{N+1})\hat{T}(n)f=Tf in B .

Moreover if T is an almost invariant operator on B, then

\sum_{-N}^{N}(1-\frac{|n|}{N+1})\overline{T}(n)arrow T uniformly in \mathscr{L}_{b}(B) .

(b) |n \lim_{1arrow+\infty}||\hat{T}(n)f||_{B}=0 for any f\in B .

If T\in \mathscr{L}_{b}(B) is almost invariant, then

\lim_{|n|arrow+\infty}||\overline{T}(n)||=0 in \mathscr{L}_{b}(B) .

(c) For any bounded regular measure \mu\in M(T) and T\in \mathscr{L}_{b}(B) , the
convolution

( \mu*T)f=\int_{-\pi}^{\pi}R_{x}TR_{-x}fd\mu(x) for f\in B

is well defined, and \mu*T\in \mathscr{L}_{b}(B) such that

(\mu*T)^{-}(n)f=\overline{\mu}(n)\overline{T}(n)f for all f\in B .



Some properties of Fourier transfom for operators on homogeneous Banach spaces 261

In this paper we will treat these results for operators on B\subset L^{1}(G)

with locally compact abelian group G . It is a new approach different
from the Fourier analysis for functions in L^{1}(G) .

We denote by \mathscr{L}(B) the space of all linear operators on B , and let
\mathscr{L}s(B) be the space of \mathscr{L}(B) with the strong operator topology \sigma(\mathscr{L}(B) ,
B) induced from B. Define a subspace of \mathscr{L}_{b}(B) by

\mathscr{L}_{S}^{1}(B)=\{T\in \mathscr{L}_{b}(B):\int_{G}||TR_{x}f||_{B}dx<+\infty, f\in B\}

namely the space of strongly right translated itegrable operators on B.
Evidently,

\mathscr{L}_{\overline{s}(B)\subset \mathscr{L}_{b}(B)\subset \mathscr{L}_{S}(B)\subset_{\mathscr{L}’(B)}}^{1/}

and \mathscr{L}_{S}^{1}(B)\neq \mathscr{L}_{b}(B) except G is compact.

For example if T\in \mathscr{L}_{b}(B) is translation invariant, that is, TR_{x}=R_{x}T .

then T\not\in \mathscr{L}_{s}^{1}(B) except G is compact. In fact,

\int_{G}||TR_{x}f||_{B}dx=\int_{G}||TR_{x}Tf||_{B}dx=\int_{G}||Tf||_{B}dx=||Tf||_{B}\mathcal{A}(G)<\infty iff \lambda(G)<\infty ,

that is, only G is compact.
We will explore some basic properties for harmonic analysis on

\mathscr{L}_{S}^{1}(B) . It is different in comparison with L^{1}(G) . In Section 2, we will
prove that the Fourier transform of T\in \mathscr{L}_{s}^{1}(B) is an operator-valued con-
tinuous function on \hat{G} which vanishes at infinity. This result extends the
DeLeeuw’s result shown by (b). In Section 3, we introduce a positive ker-
nel in L^{1}(G) and show that for any T\in \mathscr{L}_{S}^{1}(B) , there exists a net of opera-
tors in L^{1}(G)*\mathscr{L}_{S}^{1}(B) which converges to \acute{1}^{\urcorner} in \mathscr{L}_{S}^{1}(B) ; so that \mathscr{L}_{S}^{1}(B) is an
essential L^{1}(G)-module under convolution. This is a generalization of the
result (a). The Fourier transform for convolution of function and opera-
tor becomes the pointwise product of functions. This extends the result
(c) to \mathscr{L}_{S}^{1}(B) for locally compact abelian group G. Every operator T\in
\mathscr{L}_{s}^{1}(B) can be represented by the integration of its Fourier transform if it
is strongly integrable over \hat{G} . Finally we show that the bounded regular
measure algebra M(G) is embedded as a subspace of the multiplier space
for \mathscr{L}_{S}^{1}(B) .

2. Fourier transform for linear operators on B.

If T\in \mathscr{L}_{S}^{1}(B) , then TR_{(\cdot)}f\in L^{1}(G,B) for any f\in B . One can easily
show that the mappings:

xarrow TR_{-x}f . f\in B

and F:xarrow(-x, \gamma)TR_{-x}f , \gamma\in\overline{G} and f\in B
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are continuous, and that

\int_{G}||F(x)||_{B}dx=\int_{G}||TR_{-X}f||_{B}dx<+\infty .

This shows that the integration

\int_{G}(-x,\gamma)TR_{-x}fdx for all f\in B

is well defined. Thus it incurs the following definition.

DEFINITION. For T\in \mathscr{L}_{S}^{1}(B) , define

\hat{T}(\gamma)f=\int_{G}(-x,\gamma)TR_{-x}fdx for \gamma\in\hat{G} and f\in B , (2.1)

and call \hat{T} the Fourier transform of T
By difinition, \overline{T} is a mapping from \hat{G} to \mathscr{L}_{s}(B) . It is remarkable that

if T=I, the identity operator on B, then \hat{I}(\gamma)f(0)=\hat{f}(\gamma) . But I\not\in \mathscr{L}_{S}^{1}(B)

except G is compact since otherwise (2.1) can not make sense for Boch-
ner integral (see Diestel and Uhl [3] in detail, cf. also Lai [11-14] and
Dunford and Schwartz [4] ) .

If G is compact, then \mathscr{L}_{S}^{1}(B)=\mathscr{L}_{b}(B) and the identity operator I\in

\mathscr{L}_{s}^{1}(B) has Fourier transform

[ \hat{I}(\gamma)f](y)=[\int_{G}((-x,\gamma)R_{-x}fdx](y) , y\in G

= \int_{G}(-x,\gamma)R_{-x}f(y)dx

= \int_{G}(-x,\gamma)f(x+y)dx

= \int_{G}(y,\gamma)(-x-y,\gamma)f(x+y)dx

= \int_{G}(y,\gamma)(-z,\gamma)f(z)dz

=(y,\gamma)\hat{f}(\gamma) .

As y=0, [\hat{I}(\gamma)f](0)=\hat{f}(\gamma) .
The following proposition follows immediately by calculation.

PROPOSITION 2. 1. For \varphi\in L^{1}(G)\cap L^{\infty}(G) , the multiplication operator
T_{\varphi} on L^{1}(G) , defined by T_{\varphi}f=\varphi*f (resp. T_{\varphi}f=\varphi\cdotf) for f\in L^{1}(G) , has
Fourier transform :

[\overline{T}_{\varphi}(\gamma)f](y)=(y,\gamma)\hat{\varphi}(\gamma)\hat{f}(\gamma)

(resp. [ \hat{T}_{\varphi}(\gamma)f](y)=(y,\gamma)\varphi(y)\hat{f}(\gamma) ).
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The following theorem is essential in this section. It was partly
shown in [17, Theorem 3.3] in the case G=R. But the proof is not
available for a general LCA group. Whence we need a rigorous proof for
LCA group G\neq R which we state and prove as in the following theorem.

THEOREM 2. 2. Let T\in \mathscr{L}_{S}^{1}(B) . Then \hat{T} ( \cdot ) : \overline{G}arrow \mathscr{L}_{s}(B) is a bounded
continuous function such that

||\hat{T}(\gamma)f||_{B}\leqq||TR_{(\cdot)}f||_{1,B} for any \gamma\in\hat{G}

where ||g||_{1,B}= \int_{G}||g(x)||_{B}dx for g\in L^{1}(G,B) . Moreover \hat{T}\in C_{0}(\hat{G}, \mathscr{L}_{s}(B)) .

PROOF. For any \gamma_{1},\gamma_{2} in \hat{G} , f\in B and T\in \mathscr{L}_{s}^{1}(B) we have

|| \hat{T}(\gamma_{1})f-\hat{T}(\gamma_{2})f||_{B}=||\int_{G}[(-x,\gamma_{1})TR_{-\chi}f-(-x,\gamma_{2})TR_{-X}f]dx||_{B}

\leqq\int_{G}|(-x.\gamma_{1}-\gamma_{2})-1|||TR_{-x}f||_{B}dx

\leqq\int_{G}2||TR_{-x}f||_{B}dx .
<+\infty .

It follows from the dominated convergence theorem that

\lim_{\gamma_{1}arrow 2},||\hat{T}(\gamma_{1})f-\hat{T}(\gamma_{2})f||_{B}\leq\int_{G},\lim_{1^{arrow\gamma_{2}}}|(-x,\gamma_{1}-\gamma_{2})-1|||TR_{-x}f||_{B}dx=0 ,

and

|| \hat{T}(\gamma)f||_{B}=||\int_{G}(-x,\gamma)TR_{-\chi}fdx||_{B}

\leq\int_{G}||TR_{-x}f||_{B}dx

=||TR_{(\cdot)}f||_{1,B} for all \gamma\in\hat{G} .
Hence \overline{T} : \hat{G}arrow \mathscr{L}_{S}(B) is a bounded continuous function. It remains to
show that \hat{T} vanishes at infinity with value in \mathscr{L}_{S}(B) . We have only to
show that for any \epsilon>0 and f\in B , there exists a compact subset K in \hat{G}

such that
||\hat{T}(\gamma)f||_{B}<\epsilon whenever \gamma\in\hat{G}\backslash K .

Since Gand\hat{G} are \sigma-compact and the B-valued function F=TR_{(\cdot)}f\in L^{1}(G ,
B) , thus for any \epsilon>0 there exists a simp-le function
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F_{n}(x)= \sum_{i=1}^{n}s_{i}\chi_{E_{i}}(x)

such that
\int_{G}||F_{n}(x)-F(x)||_{B}dx<\epsilon/2 (1)

where s_{i}\in B , E_{i}\subset G is measurable with Haar measure |E_{i}|<\infty and \chi_{E}

denotes the characteristic function of E . Next for any \gamma\in\hat{G}

|| \overline{T}(\gamma)f||_{B}=||\int_{G}(-x,\gamma)TR_{-\chi}fdx||_{B}

\leqq||\int_{G}(-x,\gamma)[F(x)-F_{n}(x)]dx||_{B}+||\int_{G}(-x,\gamma)F_{n}(x)dx||_{B}

\leqq\int_{G}||F(x)-F_{n}(x)||_{B}dx+||\sum_{i=1}^{n}s_{i}\int_{G}(-x,\gamma)\chi_{E_{i}}(x)dx||_{B} (2)

Since \chi_{E_{t}}\in L^{1}(G),\overline{\chi}_{E_{i}}\in C_{0}(\overline{G}) for each i . Thus there is a compact set K_{i}\subset

\hat{G} such that
|\hat{\chi}_{E_{i}}(\gamma)|<\epsilon/2(n||s_{i}||_{B}) for \gamma\in\overline{G}\backslash K_{i} .

Let K= \bigcup_{i=1}^{n}K_{i} (note that \hat{G} is \sigma-compact). Then K is compact and

\sum_{i=1}^{n}||s_{1}||_{B}|\overline{x}_{E_{i}}(\gamma)|<\epsilon/2 (3)

Substituting (1) and (3) into (2), we obtain that
||\hat{T}(\gamma)f||_{B}<\epsilon for \gamma\in\hat{G}\backslash K .

This proves that \overline{T}(\cdot)\in C_{0}(\overline{G},\mathscr{L}_{S}(B)) . \square

After this theorem, an open problem arises naturally that
Question: Does the set \mathscr{L}_{s}^{1}(B\hat{)}of all Fourier transform for \mathscr{L}_{s}^{1}(B) be

dense of first category in C_{0}(\hat{G}, \mathscr{L}_{s}(B))?

3. Convolution of functions and operators.

It is known that any homogeneous Banach space B\subset L^{1}(G) is also a
Segal algebra with convolution as the ring multiplication (see Reiter [15]),

thus B is a dense ideal of L^{1}(G) . We will define the convolution of func-
tions on G and linear operators T in \mathscr{L}_{S}^{1}(B) as follows.

Denote M(G) the space of all bounded regular measures on G. Note
that B\subset L^{1}\subset M(G) and L^{1}(G) is equivalent to the absolutely continuous
part of M(G) . So for any measure \mu\in M(G) there is a density function h

\in L^{1}(G) such that d\mu(x)=h(x)dx .

DEFINITION. The convolution of \mu\in M(G) and T\in \mathscr{L}_{S}^{1}(B) is defined
by
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( \mu*T)f=\int_{G}TR_{x}fd\mu(x) for f\in B . (3. 1)

In particular, if h\in L^{1}(G) , then define

(h*T)f= \int_{G}h(x)TR_{x}fdx , f\in B . (3.2)

Since the mapping x\in G- TR_{x}f is continuous, (3.1) implies that

||( \mu*T)f||_{B}\leqq\int_{G}||TR_{x}f||_{B}d|\mu|(x)

\leqq||\mu||||T||||f||_{B} for all f\in B

and ||\mu*T||\leq||\mu||||T||

where ||\mu|| is the total variation of \mu\in M(G) on G. It follows that the
convolution \mu*T defines an element of \mathscr{L}_{S}^{1}(B) . Indeed

\int_{G}(\mu*T)R_{x}fdx=\int_{G}\int_{G}TR_{y}R_{x}fd\mu(y)dx

= \int_{G}(\int_{G}TR_{x+y}fdx)d\mu(y)

and \int_{G}||(\mu*T)R_{x}f||_{B}dx\leq||\mu||\int_{G}||TR_{z}f||dz<+\infty .

If G is compact and T=I is the identity operator on B, then

( \mu*I)f=\int_{G}R_{x}fd\mu(x)=\mu*f .

From Lai [7, Theorem 1], we see that the Segal algebra A^{p}(G)(p\leq

1) has an approximate identity which is also the bounded approximate
identity for L^{1}(G) and whose Fourier transform has compact support in \hat{G} .
Such approximate idntity is not uniform bounded in A^{p}(G)-norm. Thus it
incurs us to assume a net \{e_{a}(\cdot)\}_{\alpha\in\Lambda} of functions e_{a}\in L^{1}(G) satisfying the
following conditions

(A1) For each x\in G , e_{a}(x)\geq 0 with ||e_{a}||_{1}=1 for all \alpha .
(A2) For any \epsilon>0 and any symmetric compact neighborhood V of

identity in G, there is an \alpha_{0}\in\Lambda such that \int_{c\backslash V}e_{a_{0}}(x)dx<\epsilon .
(A3) For each \alpha\in\Lambda,\hat{e}_{a}\in L^{1}(\hat{G}) .

We call this net \{e_{a}(\cdot)\}_{\alpha\in\Lambda} a positive kernel of L^{1}(G) .

For example if G=R, the functions defined by



266 Hang-Chin Lai and Cheng-Hsiang Chen

e_{a}(x)=\{
\frac{2}{\pi}\frac{\sin^{2}(\alpha x/2)}{\alpha x^{2}} if x\neq 0

0 if x=0
(3.3)

for \alpha>0 (see Katznelson [5, p. 124]), form a positive kernel in L^{1}(R) .
In fact, the net \{e_{a}\}_{\alpha\in R}+defifined by (3.3) is evidently satisfying the

condition (A1). For (A2) we choose V=\{x:|x|<\delta\} for any \delta>0 , then

\lim_{aarrow+\infty}\int_{|x|\geq\delta}e_{a}(x)dx=0 .

While (A3), because the Fourier transform of the function

\varphi_{a}(\gamma)=\{

\frac{1}{2\pi}(1-\frac{|\gamma|}{\alpha}) for |\gamma|\leqq\alpha

0 for |\gamma|>\alpha

is given by

\hat{\varphi}_{a}(-x)=\int_{R}\varphi_{a}(\gamma)e^{i\gamma x}d\gamma=\int_{-a}^{a}\frac{1}{2\pi}(1-\frac{|\gamma|}{\alpha})e^{i\gamma x}d\gamma

= \frac{2}{\pi}\frac{\sin^{2}(\alpha x/2)}{\alpha x^{2}}=e_{a}(x)

and e_{a}\in L^{1}(G) , it follows that \varphi_{a}(\gamma)=\hat{e}_{a}(\gamma)\in L^{1}(\hat{G}) .
Actually this positive kernel of L^{1}(G) is also an approximate identity

for the group algebra L^{1}(G) .

PROPOSITION 3. 1. The positive kernel \{e_{a}\} of L^{1}(G) plays an approxi-
mate identity for L^{1}(G) .

PROOF. For f\in L^{1}(G) , the continuity of translation operator on
L^{1}(G) implies that for any \epsilon>0 there exists a symmetric compact neigh-
borhood V of identity 0 in G such that

||R_{y}f-f||_{1}<\epsilon/2 whenever y\in V .

To this V, there is an \alpha_{0}\in I such that

\int_{c\backslash V}e_{ao}(y)dy<\epsilon/4||f||_{1} ,

It follows that

||e_{a_{0}}*f-f||_{1} \leqq\int_{V}||R_{y}f-f||_{1}e_{a_{0}}(y)dy+\int_{c\backslash V}||R_{y}f-f||_{1}e_{a_{0}}(y)dy

< \frac{\epsilon}{2}+2||f||_{1}\cdot\epsilon/4||f||_{1}

=\epsilon .
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Hence \{e_{a}\} is an approximate identity for L^{1}(G) . \square

The following theorem is essential in this section. Part of this the0-
rem was shown by [17, Theorem 3.4 to 4.1] only in the case G=T. the
circle group. We prove here by a general formation for a LCA group.

THEOREM 3. 2.
(1) \mathscr{L}_{S}^{1}(B) is an essential L^{1}(G)-module under convolution, so that

L^{1}(G)*\mathscr{L}_{S}^{1}(B)=\mathscr{L}_{S}^{1}(B) .

(2) For any h\in L^{1}(G) and T\in \mathscr{L}_{S}^{1}(B) ,

(h*T)^{\wedge}=\hat{h}\hat{T} in C_{0}(\hat{G}^{ },\mathscr{L}_{S}(B)) .

(3) For any T\in \mathscr{L}_{s}^{1}(B) , there exists a net of operators T_{a} in \mathscr{L}_{S}^{1}(B) such
that

\int_{\overline{G}}\hat{T}_{a}(\gamma)fd\gammaarrow Tf in B for all f\in B .

(4) If \hat{T}(\cdot)f\in L^{1}(\hat{G},B) for any f\in B, then \int_{\hat{G}}\overline{T}(\gamma)fd\gamma=Tf .
(5) If \hat{T}(\gamma)f=0 for all \gamma\in\hat{G} and f\in B, then T=0.

PROOF. (1) Let \{e_{a}\} be a positive kernel of L^{1}( G) . For any
T\in \mathscr{L}_{S}^{1}(B) , define the operator T_{a} by

T_{a}=e_{a}*T for all \alpha .

Then T_{a}\in \mathscr{L}_{S}^{1}(B) will converge to T in \mathscr{L}_{S}^{1}(B) . To claim this fact, we
proceed from

(e_{a}*T)f-Tf= \int_{G}e_{a}(x)T(R_{x}f-f)dx for f\in B ,

then obtain that

||(e_{a}*T)f-Tf||_{B} \leq||T||\int_{G}||R_{x}f-f||_{B}e_{a}(x)dx .

Since ||R_{x}f-f||_{B}arrow 0 as xarrow 0 , thus for \epsilon>0 , there is a symmetric compact
neighborhood V of 0 in G such that ||R_{x}f-f||_{B}<\epsilon/2||T|| whenever x\in V .
For this V there is an \alpha_{0}\in I such that

\int_{c\backslash V}e_{a}(x)dx<\epsilon/2||T|| whenever \alpha\succ\alpha_{0} .

It follows that for \alpha\succ\alpha_{0} ,
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||T_{a}f-Tf||_{B} \leq||T||(\int_{c\backslash V}+\int_{V}+)<\epsilon .

Hence \{ T_{a}\} converges to T in \mathscr{L}_{S}^{1}(B) . Therefore \mathscr{L}_{s}^{1}(B) is an essential
L^{1}-module and hence

L^{1}(G)*\mathscr{L}_{S}^{1}(B)=\mathscr{L}_{S}^{1}’(B) .

(2) For any h\in L^{1}(G) and T\in \mathscr{L}_{s}1(B) , h*T\in \mathscr{L}_{s}^{1}-(B) . Thus (h*
T)R_{(\cdot)}f is continuous on G for any f\in B , and so it is strongly measurable
(see Dunford and Schwartz [4]) and

\int_{G}||(h*T)R_{y}f||_{B}dy\leq||h||_{1}||TR_{(\cdot)}f||_{1,B}<+\infty .

It follows that

(h*T)^{-}( \gamma)f=\int_{G}(-x,\gamma)(h*T)R_{-x}fdx

= \int_{G}(-x,\gamma)[\int_{G}( TR_{z}R_{-X}f)h(z)dz]dx

= \int_{G}[\int_{G}(-x,\gamma)TR_{z-x}fdx]h(z)dz

= \int_{G}(-z,\gamma)[\int_{G}(-w,\gamma)TR_{-w}fdw]]h(z)dz

= \int_{G}(-z,\gamma)h(z)dz\cdot\hat{T}(\gamma)f

=\hat{h}(\gamma)\hat{T}(\gamma)f for all f\in B .

Hence (h*T)^{-}=\hat{h}\not\subset\overline{T} in C_{0}(\overline{G},\mathscr{L}_{S}(B)) .
(3) Let \{e_{a}\}_{\alpha\in\Lambda} be a positive kernel of L^{1}(G) . From (1), for any T\in

\mathscr{L}_{s}^{1}(B) , one has a net of operators T_{a}=e_{a}*T in \mathscr{L}_{S}^{1}(B) which converges to
T Since

\int_{\overline{G}}\overline{T}_{a}(\gamma)fd\gamma=\int_{\overline{G}}\overline{e}_{a}(\gamma)\overline{T}(\gamma)fd\gamma

= \int_{\hat{G}}\hat{e}_{a}(\gamma)[\int_{G}(-x,\gamma)TR_{-x}fdx]d\gamma

= \int_{G}[\int_{\overline{G}}(-x,\gamma)\hat{e}_{a}(\gamma)d\gamma]TR_{-x}fdx

= \int_{G}e_{a}(-x)TR_{-X}fdx

= \int_{G}e_{a}(x)TR_{x}fdx

=(e_{a}*T)f ,

it follows from (1) that (e_{a}*T)f-arrow Tf . Consequently
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\int_{\overline{G}}\hat{T}_{a}(\gamma)fd\gammaarrow Tf in B for all f\in B .

(4) Let \hat{T}(\cdot)f\in L^{1}(\overline{G},B) for any f\in B . Since the positive kernel \{e_{a}\}

of L^{1}(G) is an approximate identity for L^{1}(G) , thus for any h\in L^{1}(G) ,

||(e_{a}*h-h)]|_{\infty}=||\hat{e}_{a}\hat{h}-\hat{h}||_{\infty}

\leq||e_{a}*h-h||_{1}

arrow 0 ,

so \overline{e}_{a}(\gamma)-arrow 1 for almost all \gamma\in\hat{G} . Now for T\in \mathscr{L}_{S}^{1}(B) and f\in B , we have

\int_{\overline{G}}||\overline{e}_{a}(\gamma)\hat{T}(\gamma)f||_{B}d\gamma\leq\int_{\hat{G}}||\overline{T}(\gamma)f||_{B}d\gamma<\infty .

Applying the dominated convergence theorem, we obtain

\lim_{a}\int_{\overline{G}}\hat{e}_{a}(\gamma)\overline{T}(\gamma)fd\gamma=\int_{\overline{G}}\overline{T}(\gamma)fd\gamma .

Consequently, by (3) we get

\int_{\overline{G}}\hat{T}(\gamma)fd\gamma=Tf .

(5) The result follows immediately from (4). \square

4. Remark on multiplier property for \mathscr{L}_{S}^{1}(B) .

A multiplier for a topological algebra A is a continuous linear opera-
tor T on A which commutes with the ring multiplication, that is, for a,b
\in A ,

T(a\cdot b)=a\cdot Tb .

In 1952, Wendel proved that the space of multipliers for L^{1}(G) is
isometrically isomorphic to the measure algebra M(G) . For the general
theory of multipliers one can refer to Larsen [6], while various characteri-
zation for multipliers one can consult Lai [8-12], Lai and Chang [14] and
their cited references.

An equivalent definition of multiplier for L^{1}(G) is that one calls a
function \varphi on \hat{G} a multiplier (function) for L^{1}(G) if \varphi\overline{f}\in L^{1}(G)^{\wedge} whenever
f\in L^{1}(G) . It turns to discuss the multipliers for \mathscr{L}_{S}^{1}(B) . We call a func-
tion \varphi on \hat{G} a multiplier for \mathscr{L}_{S}^{1}(B) if \varphi\overline{T}\in \mathscr{L}_{S}^{1}(B)^{\wedge}\subset C_{0}(\overline{G},\mathscr{L}_{S}(B)) when-
ever T\in \mathscr{L}_{S}^{1}(B) . From Theorem 3.2 (2), we can prove that for every \mu\in

M(G) , one has
\hat{\mu}\overline{T}=(\mu*T)^{\wedge}\in \mathscr{L}_{S}^{1}(B)^{\wedge} for all T\in \mathscr{L}_{S}^{1}(B)
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where \hat{\mu}(\gamma)=\int_{G}(-x,\gamma)d\mu(x) for \gamma\in\hat{G} is the Fourier-Stieltjes transform of
\mu\in M(G) . Hence each \mu\in M(G) defines a linear map.

\phi_{\mu} : \mathscr{L}_{s}^{1}(B)arrow \mathscr{L}_{S}^{1}(B) by \phi_{\mu}(T)=\mu*T

and \phi_{\mu}(T)^{\wedge}=\overline{\mu}\hat{T} for all T\in \mathscr{L}_{S}^{1}(B) .
This operator \phi_{\mu} on \mathscr{L}_{s}^{1}(B) is a multiplier (operator) for \mathscr{L}_{s}^{1}(B) . Actu-
ally the set \mathscr{M}(\mathscr{L}_{s}^{1}(B)) of all multipliers for \mathscr{L}_{S}^{1}(B) is larger than M(G) .
Thus we conclude that

PROPOSITION 4. 1. The measure algebra M(G) is embedded as a sub-
space in the multiplier space \mathscr{M}(\mathscr{L}_{S}^{1}(B)) of \mathscr{L}_{S}^{1}(B) . That is, M(G)\subset

\mathscr{M}(\mathscr{L}_{S}^{1}(B)) . If G is a compact abelian group, then the identity operator I\in

\mathscr{L}_{s}^{1}(B) and
[(\mu*I)^{\wedge}(\gamma)f](0)=\hat{\mu}(\gamma)\hat{f}(\gamma)

for all \gamma\in G and f\in B .

REMARK. To characterize the multiplier space \mathscr{M}(\mathscr{L}_{s}^{1}(B)) as a func-
tion space is still open.
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