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Abstract. The aim of this paper is to prove that for most classical
joint spectra as e . g . the Taylor spectrum, the Harte spectrum,
Slodkowski spectra, also left and right spectrum, the joint approximate
point spectrum, and some other spectroids, the geometric spectral radius
is the same and depends only upon a commuting n-tuple of operators. We
generalize also this result by showing that for all these spectra or sub-
spectra their convex envelopes coincide.

1. Definitions and notation

Let X be a complex Banach space. Denote by B(X) the algebra of
all continuous linear operators on X. Put B_{com}^{n}(X) for the set of all n-
tuples of commuting operators in B(X) and put B_{com}(X)= \bigcup_{n=1}^{\infty}B_{com}^{n}(X) , in

particular B(X) identified with B_{com}^{1}(X) is a subset of B_{com}(X) . Suppose
that to each n-tuple ( T_{1_{ }},\ldots , T_{n}) in B_{com}(X) there corresponds a subset
\sigma_{s}(T_{1_{ }}, \ldots . T_{n})\subset C^{n} . and consider the following axioms (it is a small
modification of axioms given by the second author in [11] ) .

(i) \sigma_{s}(T_{1}, \ldots , T_{n}) is a non-void compact subset of C^{n} , for all ( T_{1} ,

... . T_{n} ) \in B_{com}(X) ,

(ii) \sigma_{s}(T_{1_{ }}, \ldots . T_{n}) \subset\prod_{i=1}^{n}\sigma(T_{i}) , where \sigma(T) denotes the usual spectrum

of an operator T in B(X) , ( T_{1_{ }},\ldots, T_{n})\in B_{com}(X) . In particular, for a sin-
gle operator T we have

\sigma_{s}(T)\subset\sigma(T) .

The next axiom is the equality in the above formula
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(iii) \sigma_{s}(T)=\sigma(T)

for all T in B(X) .
Let p_{n,k} be a polynomial map from C^{n} to C^{k} . i . e . a map given by the

formula
p_{n,k}(z_{1}, \ldots, z_{n})=(p_{1}(z_{1_{ }},\ldots.z_{n}), \ldots, p_{k}(z_{1}, \ldots.z_{n})) ,

wher p_{i} are polynomials in n complex variables. Such a polynomial map
induces a map (denoted also by p_{n,k} ) from B_{com}^{n}(X) to B_{com}^{k}(X) given by
(T_{1_{ }}, \ldots . T_{n})arrow(p_{1} ( T_{1_{ }}, \ldots . T_{n} ), \ldots . p_{k}(T_{1_{ }}, \ldots . T_{n})) .
The fourth axiom is given as the equality

(iv) \sigma_{s}(p_{n,k}(T_{1}, \ldots.T_{n}))=p_{n,k}(\sigma_{s}(T_{1}, \ldots.T_{n}))\subset C^{k} .

for all polynomial maps p_{n,k} and all n-tuples ( T_{1}, \ldots.T_{n}) in B_{com}^{n}(X)n=1 ,
2, ... It is the most essential axioms concerning the map \sigma_{s} and it is
called the spectral mapping property.

The last axiom gives so called translation property of \sigma_{s} , it is a par-
ticular case of the axiom (iv).

(v) \sigma_{s}(T_{1}+\alpha_{1}I, \ldots.T_{n}+\alpha_{n}I)=\sigma_{s}(T_{1}, \ldots.T_{n})+(\alpha_{1}, \ldots _{?} \alpha_{n}) ,

for all n-tuples in B_{com}(X) and all points in C^{n} . n=1,2 , \ldots

DEFINITION. A (joint) spectrum on X is a map \sigma_{s} from B_{com}(X) to

subsets of \bigcup_{n=1}^{\infty}C^{n} satisfying axioms ( i )-(iv) , and consequently also the

axiom ( v) . A subspectrum is a map satisfying axioms ( i ) , ( ii) and
(iv). A spectroid is a map satisfying axioms ( i ) , ( ii) and ( v) .

Thus every spectrum is a subspectrum and every subspectrum is a
spectroid.

EXAMPLES OF SPECTRA: the Taylor spectrum \sigma_{T}([3], [4] , [5], [6], [8],
[9], [11] ) , the Harte spectrum \sigma_{H}([4], [5], [7], [11]) , the double sequence
or Slodkowski spectra \sigma_{s,j,k} , j , k=0,1,2 , \ldots ([6], Slodkowski denotes
these spectra by \sigma_{\pi,j}\cup\sigma_{8,k} ). By the way, Slodkowski in [6] proved that
all these spectra \sigma_{s,j,k} are different only in the Hilbert space situation (dim
(\mathfrak{R})=\infty) . It is not known, whether every infinite dimensional Banach
space has an infinite family of different spectra. Examples of subspectra
which is not spectra: the left spactrum \sigma_{1} and the right spectrum \sigma_{r}([5] ,
[7], [11] ) , the joint approximate point spectrum \sigma_{\pi} and the joint defect
spectrum \sigma_{\delta}([5], [7], [11]) , many kinds of essential spectra ([5]). Exam-
ples of spectroids which are not subspectra: the commutant spectrum \sigma

’

and the bicommutant spectrum \sigma

” ( [5], [7], [11] ) . All spectroids in above
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examples are difined on all Banach spaces. There are $ome relations
among the above spectroids. For instance we have (by the definition of
the Harte spectrum)

(1) \sigma_{H}=\sigma_{1}\cup\sigma_{r}

in the sense that for each n-tuple ( T_{1_{ }},\ldots , T_{n}) in B_{com}(X) it is
\sigma_{H}(T_{1_{ }},\ldots T_{n})=\sigma_{1}(T_{1_{ }}, \ldots . T_{n})\cup\sigma_{r}(T_{1_{ }}, \ldots . T_{n}) .

Also

(2) \sigma_{s,0,0}=\sigma_{n}\cup\sigma_{\delta} ,

and

(3) \sigma_{\pi}\subset\sigma_{1} .

For a spectroid \sigma_{s} and an n-tuple ( T_{1} , ... . T_{n}) in B_{com}(X) we define
the geometric spectral radius of ( T_{1}, \ldots T_{n}) relative to \sigma_{s} by the formula

(4) r_{\sigma_{s}}(T_{1}, \ldots T_{n})=\max\{|z|:z\in\sigma_{s}(T_{1}, \ldots.T_{n})\} ,

where |z|=|(z_{1_{ }}, \ldots , z_{n})|=(\sum_{i=1}^{n}|z_{i}|^{2})^{1/2} . We have choosen the term “ geomet-

ric spectral radius ” in order to distinguish it from the “ algebraic spactral
radius ” considered in the paper [1] in the case when X is a Hilbert space.

The main result of this paper states that the geometric spectral radius
relative to a spectrum is in fact independent of this spectrum and equals to
the geometric spectral radius of the joint approximate point spectrum as
well as to the spectral radii of some other spectroids (we omit in the
sequel the word “ geometric ” ). Using this result we will show that the
convex envelopes of all spectra as well as of some subspectra coincide.
This is a more general result. Our result says that for all spectra and
some other spectroids the set conv \sigma_{s}(T_{1}, \ldots rT_{n}) does not depend upon \sigma_{s}

for a given n-tuple ( T_{1_{ }},\ldots.T_{n})\in B_{com}(X) .

2. Theorems on spectral radii and convex envelopes

Our main result reads as follows.

THEOREM 1. Let X be a complex Banach space and let \sigma_{0} be a spec-
lrum on X. Then for any n-tuple ( T_{1_{ }},\ldots.T_{n}) of commuting operators in
B(X) we have

(5) r_{\sigma_{0}}(T_{1_{ }}, \ldots . T_{n})=r_{\sigma_{\pi}}(T_{1_{ }}, \ldots . T_{n}) ,
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in particular, r_{\sigma_{0}}(T_{1_{ }}, \ldots . T_{n}) does not depend upon \sigma_{0} .
The proof will follow Lemma 2 and Proposition 3.

LEMMA 2. Let X be a complex Banach space and \sigma_{0} be a subspectrum
on X. Let ( T_{1}, \ldots.T_{n}) be in B_{com}(X) . Then there exists an operator T_{0}

such that r_{\sigma_{0}}(T_{1}, \ldots T_{n})=r_{\sigma_{0}}(T_{0}) and r_{\sigma_{s}}(T_{0})\leq r_{\sigma_{s}}(T_{1}, \ldots T_{n}) for any
subspectrum \sigma_{s} .

PROOF. If r_{\sigma_{0}}(T_{1}, \ldots , T_{n})=0 , we can put T_{0}=0 . We assume that
r_{\sigma_{0}}(T_{1}, \ldots T_{n})>0 . choose z^{(0)}\in\sigma_{0}(T_{1}, \ldots T_{n}) such that |z^{(0)}|=r_{\sigma_{0}}(T_{1} , \ldots .
T_{n}) . Consider the orthogonal projection of C^{n} onto C , given by the for-

mula P(z)= \frac{1}{|z^{(0)}|}\sum_{i=1}^{n}z_{i}\cdot\overline{z}_{i}^{(0)} for z=(z_{1_{ }},\ldots, z_{n}) . It projects a ball centered

at origin, with any radius r onto a disk centered at origin with the same
radius and |P(z^{(0)})|=r_{\sigma_{0}}(T_{1}, \ldots jT_{n}) . Put T_{0}=P(T_{1}, \ldots.T_{n}) . By the spec-
tral mapping property (iv) and the above property of P, it follows that T_{0}

has the desired properties.

PROPOSITION 3. With the same notation as in Lemma 2, if for any
single operator T, \partial\sigma(T)\subset\sigma_{0}(T) , then r_{\sigma_{\pi}}(T_{1_{ }},\ldots T_{n})=r_{\sigma_{0}}( T_{1_{ }},\ldots.T_{n}) .

PROOF. By Lemma 2, we have that there exists an operator T_{0} and
r_{\sigma_{0}}(T_{1}, \ldots T_{n})=r_{\sigma_{0}}(T_{0})\leq r(T_{0})=r_{\sigma_{\pi}}(T_{0})\leq r_{\sigma_{\pi}}(T_{1_{ }}, \ldots . T_{n}) . Applying
Lemma 2 to \sigma_{\pi} , there exists an operator T_{\pi} such that r_{\sigma_{\pi}}(T_{1} , ... , T_{n})=

r_{\sigma_{\pi}}(T_{\pi}) and r_{\sigma_{s}}(T_{\pi})\leq r_{\sigma_{s}}(T_{1_{ }}, \ldots . T_{n}) for any subspectrum \sigma_{s} . Then we
have

r_{\sigma_{\pi}}(T_{1_{ }}, \ldots . T_{n})=r_{\sigma_{\pi}}(T_{\pi})=r(T_{\pi})=r_{\sigma_{0}}(T_{\pi})\leq r_{\sigma_{0}}(T_{1}, \ldots.T_{n})

and hence r_{\sigma_{\pi}}(T_{1_{ }}, \ldots . T_{n})=r_{\sigma_{0}}(T_{1_{ }},\ldots T_{n}) .
The common value of the left hand side of (5) we denote from now on

by r(T_{1}, \ldots.T_{n}) . From Proposition 7 in [1], it follows that for every
commuting n-tuple of operators the algebraic spectral radius is not smal-
ler than the geometric one (in the case when X is a Hilbert space). It is
not known whether both radii coincide, for all commuting n-tuples.

For ( T_{1}, \ldots.T_{n})\in B_{com}(X) , let A be a commutative closed subalgebra
of B(X) containing the operators I, T_{1} , \ldots . T_{n} . Th\‘en the point z=(z_{1},

\ldots

z_{n})\in C^{n} is in \sigma_{A}(T_{1}, \ldots.T_{n}) if and only if for all S_{1} , \ldots . S_{n} in A

\sum_{i=1}^{n}S_{i}(T_{i}-z_{i})\neq I .

PROPOSITION 4. For the commutant and bicommutant spectra we have
r_{\sigma} ( T_{1}, \ldots-T_{n})=r_{\sigma} ( T_{1_{ }},\ldots T_{n})=r(T_{1}, \ldots.T_{n}) ,
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where ( T_{1}, \ldots.T_{n})\in R_{om}(X) .

PROOF. We use the following well known relations

(6) \sigma_{\pi}(T_{1}, \ldots.T_{n})\subset\sigma’(T_{1}, \ldots.T_{n})\subset\sigma’(T_{1}, \ldots.T_{n})\subset\sigma_{A}(T_{1}, \ldots T_{n}) ,

where A=A(T_{1} , ... . T_{n}) is the smallest closed subalgebra of B(X)
containing the operators T_{1} , \ldots . T_{n} . Similarly as Lemma 2 we find a T_{0}

in A with r(T_{0})=r_{\sigma_{A}} ( T_{0})=r_{\sigma_{A}}(T_{1}, \ldots.T_{n}) . We cannot use Theorem 1,
since \sigma_{A} is not always a spectroid; it is defined only on k-tuples of opera-
tors belonging to A. Thus there is Zo \in\sigma(T_{0}) with r(T_{0})=|z_{0}| . Clearly
Zo \in\partial\sigma(T_{0}) and so z_{0}\in\sigma_{\pi}(T_{0}) . Since T_{0}=P(T_{1}, \ldots T_{n}) for some projec-
tion P, we infer by the spectral mapping property of \sigma_{\pi} that z_{0}=P(z_{1} , \ldots

z_{n}) for some (z_{1}, \ldots, z_{n})\in\sigma_{\pi}(T_{1}, \ldots.T_{n}) . We have |z_{0}| \leq(\sum_{i=1}^{n}|z_{i}|^{2})^{1/2} and so
|z_{0}|\leq r_{\sigma_{\pi}}(T_{1}, \ldots , T_{n}) . Together with relation (6) we obtain the conclusion.

For any commutative closed subalgebra A of B(X) with identity we
denote the set of all non-zero multiplicative linear functionals on A by
\mathfrak{M}(A) . Then by Theorem 1 and relation (6) we obtain the following

COROLLARY 5. For any commuting n-tuple of operators ( T_{1}, \ldots T_{n})

in B_{com}(X) the spectral radius r(T_{1}, \ldots T_{n}) is given by the following for-
mula

r(T_{1}, \ldots.T_{n})=mm\{(\sum_{i=1}^{n}|f(T_{i})|^{2})^{1/2} : f\in \mathfrak{M}(A)\} ,

where A is any closed commutative subalgebra of B(X) containing the
operators I, T_{1} , \ldots . T_{n} . In particular it can be the algebra A(T_{1}, \ldots.T_{n})

used in the proof of Proposition 4.

PROPOSITION 6. For any n-tuple ( T_{1}, \ldots T_{n}) in B_{com}(X) we have

r_{\sigma_{\delta}}(T_{1}, \ldots T_{n})=r_{\sigma_{r}}(T_{1}, \ldots.T_{n})=r(T_{1}, \ldots T_{n}) .

PROOF. Using a well known relation \sigma_{8}(T_{1}, \ldots.T_{n})\subset\sigma_{r}(T_{1}, \ldots.T_{n}) we
obtain

(7) r_{\sigma_{\delta}}(T_{1}, \ldots T_{n})\leq r_{\sigma_{r}}(T_{1}, \ldots T_{n})

for all n -tuples ( T_{1}, \ldots.T_{n}) in B_{com}(X) . The conclusion follows now from
Proposition 3 and the well known fact that for a single operator T we
have \partial\sigma(T)\subset\sigma_{8}(T) .

PROPOSITION 7. For any n-tuple ( T_{1}, \ldots-T_{n}) in R_{om}(X) we have

r_{\sigma_{1}}(T_{1}, \ldots.T_{n})=r(T_{1}, \ldots T_{n}) .
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The proof follows immediately from the formulas (1) and (3).
It can be easily seen that for many so called essential spectra their

geometrical spectral radius is smaller for some commuting n-tuples of
operators than the radius r .

We shall consider now the convex envelopes for some spectroids. We
say that a spectroid \sigma_{s} is in the class \Sigma_{0} if for every ( T_{1}, \ldots.T_{n}) in
B_{com}(X) we have

(8) r_{\sigma_{s}}(T_{1}, \ldots.T_{n})=r(T_{1}, \ldots.T_{n}) .

By the above results the class \sum_{0} contains all spectra as well as certain
subspectra (\sigma_{\pi}, \sigma_{\delta}, \sigma_{r}, \sigma_{1}) and certain spectroids (\sigma’. \sigma’) .

Our result reads as follows.

THEOREM 8. Let \sigma_{1} and \sigma_{2} be spectroids of the class \Sigma_{0} . Then for
eve\eta commuting n-tuple of operators ( T_{1}, \ldots.T_{n}) we have

conv \sigma_{1}(T_{1}, \ldots T_{n})=conv\sigma_{2}(T_{1}, \ldots.T_{n}) .

PROOF. Fix an n-tuple ( T_{1}, \ldots, T_{n})\in B_{com}(X) and take any closed ball
B(z^{(0)}, r)\subset C^{n} . with center z^{(0)}=(z_{1}^{(0)}, \ldots, z_{n}^{(0)}) and radius r , which con-
tains \sigma_{1}(T_{1}, \ldots.T_{n}) . Applying the translation property ( v) to the
spectroid \sigma_{1} we obtain

\sigma_{1}(T_{1^{-}}z_{1}^{(0)}\cdot I, \ldots.T_{n}- z_{n}^{(0)}\cdot I)\subset B(0, r) .

Thus r ( T_{1}- z_{1}^{(0)}\cdot I, \ldots.T_{n}- z_{n}^{(0)}\cdot I)\leq r and so
(9) \sigma_{2}(T_{1}- z_{1}^{(0)}\cdot I_{ \ldots-},T_{n}- z_{n}^{(0)}\cdot I)\subset B(0, r) .

Applying again the translation property (v) to the spectrum \sigma_{2} we obtain
by (9)

\sigma_{2}(T_{1}, \ldots T_{n})\subset B(z^{(0)}, r) .

We have shown that any ball B(z^{(0)}, r) containing \sigma_{1}(T_{1} , ... ’
T_{n}) must

also contain \sigma_{2}(T_{1,\ldots-}T_{n}) . Using an obvious fact, that the convex enve-
lope of a compact set in C^{n} equals to the intersection of all closed balls
containing this set, we obtain

\sigma_{2}(T_{1}, \ldots.T_{n})\subset conv\sigma_{1}(T_{1}, \ldots.T_{n}) .

Interchanging the role of \sigma_{1} and \sigma_{2} we obtain an opposite inclusion. The
conclusion follows.

Let S be a compact set in C^{n} , its convex envelope conv S is also
compact and equals to the convex envelope of all its extreme points.
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Moreover these extreme points must belong to S . For a spectroid \sigma_{s} on a
Banach space X and for ( T_{1_{ }},\ldots, T_{n})\in B_{com}(X) denote by E_{\sigma_{s}}(T_{1_{ }}, \ldots . T_{n})

the set of all extreme points of the set \sigma_{s}(T_{1}, \ldots.T_{n})(=extreme points of
conv \sigma_{s}(T_{1_{ }},\ldots T_{n})) . Under this notation we have

COROLLARY 9. Let \sigma_{1} and \sigma_{2} be spectroids of the class \Sigma_{0} . Then for
every commuting n-tuple of operators ( T_{1}, \ldots. T_{n}) we have

E_{\sigma_{1}}(T_{1}, \ldots T_{n})=E_{\sigma_{2}}(T_{1}, \ldots.T_{n}) ,

in particular the set E_{\sigma_{s}}(T_{1_{ }}, \ldots . T_{n}) depends only upon T_{1} , \ldots-T_{n} and is
independent of \sigma_{s} whenever it belongs to \Sigma_{0} .

In defining our geometrical spectral radius we were using the Eu-
clidean norm in C^{n} However, our theorem 8 implies that we can use any
other norm, for instance an l_{p} -norm. Thus we have

COROLLARY 10. Suppose we have on each C^{n} a norm || ||_{n} (it is autO-
matically equivalent to the Euclidean norm) and we define spectral radius
\rho_{\sigma}(T_{1}, \ldots.T_{n}) of a commuting n-tuple of operators as the minimal radius
r, such that the ball \{z\in C^{n} : ||z||_{n}\leq r\} contains \sigma(T_{1_{ }},\ldots T_{n}) . Then for
each spectroid \sigma in \sum_{0} the spectral radius \rho_{\sigma}(T_{1} , ... . T_{n}) does not depend
upon \sigma.

The authors are grateful to Professor Stefan Rolewicz for calling their
attention to an error in the first draft of this paper. We are also grateful
to the referee for some simplications of the proofs.

This work was done during the second author’s stay in Joetsu in Sep-
tember 1990, he expresses his gratitude to Joetsu University of Education
for granting him excellent working conditions.

Added in proof. The problem of Bunce mentioned before the proposi-
tion 7 was racently solved in positive by V. Miiller and A. Soltysiak
“ Spectral radius formula for commuting Hilbert space operators.”
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