On geometric spectral radius of commuting n-tuples of operators

Muneo Сhō and Wiesław Żelazko
(Received October 25, 1990, Revised April 19, 1991)

Dedicated to Professor George Maltese on his 60th birthday

Abstract

The aim of this paper is to prove that for most classical joint spectra as e.g. the Taylor spectrum, the Harte spectrum, Slodkowski spectra, also left and right spectrum, the joint approximate point spectrum, and some other spectroids, the geometric spectral radius is the same and depends only upon a commuting n-tuple of operators. We generalize also this result by showing that for all these spectra or subspectra their convex envelopes coincide.

1. Definitions and notation

Let X be a complex Banach space. Denote by $B(X)$ the algebra of all continuous linear operators on X. Put $B_{\text {com }}^{n}(X)$ for the set of all n tuples of commuting operators in $B(X)$ and put $B_{\mathrm{com}}(X)=\bigcup_{n=1}^{\infty} B_{\mathrm{com}}^{n}(X)$, in particular $B(X)$ identified with $B_{\mathrm{com}}^{1}(X)$ is a subset of $B_{\mathrm{com}}(X)$. Suppose that to each n-tuple $\left(T_{1}, \ldots, T_{n}\right)$ in $B_{\text {com }}(X)$ there corresponds a subset $\sigma_{s}\left(T_{1}, \ldots, T_{n}\right) \subset \boldsymbol{C}^{n}$, and consider the following axioms (it is a small modification of axioms given by the second author in [11]).
(i) $\sigma_{s}\left(T_{1}, \ldots, T_{n}\right)$ is a non-void compact subset of \boldsymbol{C}^{n}, for all (T_{1}, $\left.\ldots, T_{n}\right) \in B_{\mathrm{com}}(X)$,
(ii) $\sigma_{s}\left(T_{1}, \ldots, T_{n}\right) \subset \prod_{i=1}^{n} \sigma\left(T_{i}\right)$, where $\sigma(T)$ denotes the usual spectrum of an operator T in $B(X),\left(T_{1}, \ldots, T_{n}\right) \in B_{\mathrm{com}}(X)$. In particular, for a single operator T we have

$$
\sigma_{s}(T) \subset \sigma(T) .
$$

The next axiom is the equality in the above formula

[^0](iii) $\quad \sigma_{s}(T)=\sigma(T)$
for all T in $B(X)$.
Let $p_{n, k}$ be a polynomial map from \boldsymbol{C}^{n} to \boldsymbol{C}^{k}, i. e. a map given by the formula
$$
p_{n, k}\left(z_{1}, \ldots, z_{n}\right)=\left(p_{1}\left(z_{1}, \ldots, z_{n}\right), \ldots, p_{k}\left(z_{1}, \ldots, z_{n}\right)\right)
$$
wher p_{i} are polynomials in n complex variables. Such a polynomial map induces a map (denoted also by $p_{n, k}$) from $B_{\text {com }}^{n}(X)$ to $B_{\text {com }}^{k}(X)$ given by $\left(T_{1}, \ldots, T_{n}\right) \longrightarrow\left(p_{1}\left(T_{1}, \ldots, T_{n}\right), \ldots, p_{k}\left(T_{1}, \ldots, T_{n}\right)\right)$.
The fourth axiom is given as the equality
(iv) $\sigma_{s}\left(p_{n, k}\left(T_{1}, \ldots, T_{n}\right)\right)=p_{n, k}\left(\sigma_{s}\left(T_{1}, \ldots, T_{n}\right)\right) \subset \boldsymbol{C}^{k}$,
for all polynomial maps $p_{n, k}$ and all n-tuples $\left(T_{1}, \ldots, T_{n}\right)$ in $B_{\mathrm{com}}^{n}(X) n=1$, $2, \ldots$. It is the most essential axioms concerning the map σ_{s} and it is called the spectral mapping property.

The last axiom gives so called translation property of σ_{s}, it is a particular case of the axiom (iv).

$$
\text { (v) } \sigma_{s}\left(T_{1}+\alpha_{1} I, \ldots, T_{n}+\alpha_{n} I\right)=\sigma_{s}\left(T_{1}, \ldots, T_{n}\right)+\left(\alpha_{1}, \ldots, \alpha_{n}\right),
$$

for all n-tuples in $B_{\text {com }}(X)$ and all points in $\boldsymbol{C}^{n}, n=1,2, \ldots$
Definition. A (joint) spectrum on X is a map σ_{s} from $B_{\text {com }}(X)$ to subsets of $\bigcup_{n=1}^{\infty} C^{n}$ satisfying axioms (i)-(iv), and consequently also the axiom (v). A subspectrum is a map satisfying axioms (i), (ii) and (iv). A spectroid is a map satisfying axioms (i), (ii) and (v).

Thus every spectrum is a subspectrum and every subspectrum is a spectroid.

Examples of spectra : the Taylor spectrum σ_{T} ([3], [4], [5], [6], [8], [9], [11]), the Harte spectrum σ_{H} ([4], [5], [7], [11]), the double sequence or Slodkowski spectra $\sigma_{s, j, k}, j, k=0,1,2, \ldots$ ([6], Slodkowski denotes these spectra by $\sigma_{\pi, j} \cup \sigma_{\delta, k}$). By the way, Slodkowski in [6] proved that all these spectra $\sigma_{s, j, k}$ are different only in the Hilbert space situation (dim $(\Re)=\infty)$. It is not known, whether every infinite dimensional Banach space has an infinite family of different spectra. Examples of subspectra which is not spectra: the left spactrum σ_{1} and the right spectrum σ_{r} ([5], [77, [11]), the joint approximate point spectrum σ_{π} and the joint defect spectrum σ_{δ} ([5], [7], [11]), many kinds of essential spectra ([5]). Examples of spectroids which are not subspectra: the commutant spectrum σ ' and the bicommutant spectrum $\sigma^{\prime \prime}$ ([5], [7], [11]). All spectroids in above
examples are difined on all Banach spaces. There are some relations among the above spectroids. For instance we have (by the definition of the Harte spectrum)

$$
\begin{equation*}
\sigma_{H}=\sigma_{1} \cup \sigma_{r} \tag{1}
\end{equation*}
$$

in the sense that for each n-tuple $\left(T_{1}, \ldots, T_{n}\right)$ in $B_{\text {com }}(X)$ it is

$$
\sigma_{H}\left(T_{1}, \ldots, T_{n}\right)=\sigma_{1}\left(T_{1}, \ldots, T_{n}\right) \cup \sigma_{r}\left(T_{1}, \ldots, T_{n}\right) .
$$

Also

$$
\begin{equation*}
\sigma_{s, 0,0}=\sigma_{n} \cup \sigma_{\delta}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{\pi} \subset \sigma_{1} . \tag{3}
\end{equation*}
$$

For a spectroid σ_{s} and an n-tuple $\left(T_{1}, \ldots, T_{n}\right)$ in $B_{\text {com }}(X)$ we define the geometric spectral radius of $\left(T_{1}, \ldots, T_{n}\right)$ relative to σ_{s} by the formula

$$
\begin{equation*}
r_{\sigma_{s}}\left(T_{1}, \ldots, T_{n}\right)=\max \left\{|z|: z \in \sigma_{s}\left(T_{1}, \ldots, T_{n}\right)\right\} \tag{4}
\end{equation*}
$$

where $|z|=\left|\left(z_{1}, \ldots, z_{n}\right)\right|=\left(\sum_{i=1}^{n}\left|z_{i}\right|^{2}\right)^{1 / 2}$. We have choosen the term " geometric spectral radius" in order to distinguish it from the "algebraic spactral radius" considered in the paper [1] in the case when X is a Hilbert space.

The main result of this paper states that the geometric spectral radius relative to a spectrum is in fact independent of this spectrum and equals to the geometric spectral radius of the joint approximate point spectrum as well as to the spectral radii of some other spectroids (we omit in the sequel the word "geometric"). Using this result we will show that the convex envelopes of all spectra as well as of some subspectra coincide. This is a more general result. Our result says that for all spectra and some other spectroids the set conv $\sigma_{s}\left(T_{1}, \ldots, T_{n}\right)$ does not depend upon σ_{s} for a given n-tuple $\left(T_{1}, \ldots, T_{n}\right) \in B_{\text {com }}(X)$.

2. Theorems on spectral radii and convex envelopes

Our main result reads as follows.
Theorem 1. Let X be a complex Banach space and let σ_{0} be a spectrum on X. Then for any n-tuple (T_{1}, \ldots, T_{n}) of commuting operators in $B(X)$ we have

$$
\begin{equation*}
r_{\sigma_{0}}\left(T_{1}, \ldots, T_{n}\right)=r_{\sigma_{\pi}}\left(T_{1}, \ldots, T_{n}\right), \tag{5}
\end{equation*}
$$

in particular, $r_{\sigma_{0}}\left(T_{1}, \ldots, T_{n}\right)$ does not depend upon σ_{0}. The proof will follow Lemma 2 and Proposition 3.

Lemma 2. Let X be a complex Banach space and σ_{0} be a subspectrum on X. Let $\left(T_{1}, \ldots, T_{n}\right)$ be in $B_{\mathrm{com}}(X)$. Then there exists an operator T_{0} such that $r_{\sigma_{0}}\left(T_{1}, \ldots, T_{n}\right)=r_{\sigma_{0}}\left(T_{0}\right)$ and $r_{\sigma_{s}}\left(T_{0}\right) \leq r_{\sigma_{s}}\left(T_{1}, \ldots, T_{n}\right)$ for any subspectrum $\sigma_{\text {s. }}$.

PROOF. If $r_{\sigma_{0}}\left(T_{1}, \ldots, T_{n}\right)=0$, we can put $T_{0}=0$. We assume that $r_{\sigma_{0}}\left(T_{1}, \ldots, T_{n}\right)>0$. choose $z^{(0)} \in \sigma_{0}\left(T_{1}, \ldots, T_{n}\right)$ such that $\left|z^{(0)}\right|=r_{\sigma_{0}}\left(T_{1}, \ldots\right.$, $\left.T_{n}\right)$. Consider the orthogonal projection of \boldsymbol{C}^{n} onto \boldsymbol{C}, given by the formula $P(z)=\frac{1}{\left|z^{(0)}\right|} \sum_{i=1}^{n} z_{i} \cdot \bar{z}_{i}^{(0)}$ for $z=\left(z_{1}, \ldots, z_{n}\right)$. It projects a ball centered at origin, with any radius r onto a disk centered at origin with the same radius and $\left|P\left(z^{(0)}\right)\right|=r_{\sigma_{0}}\left(T_{1}, \ldots, T_{n}\right)$. Put $T_{0}=P\left(T_{1}, \ldots, T_{n}\right)$. By the spectral mapping property (iv) and the above property of P, it follows that T_{0} has the desired properties.

Proposition 3. With the same notation as in Lemma 2, if for any single operator $T, \partial \sigma(T) \subset \sigma_{0}(T)$, then $r_{\sigma_{\pi}}\left(T_{1}, \ldots, T_{n}\right)=r_{\sigma_{0}}\left(T_{1}, \ldots, T_{n}\right)$.

Proof. By Lemma 2, we have that there exists an operator T_{0} and $r_{\sigma_{0}}\left(T_{1}, \ldots, T_{n}\right)=r_{\sigma_{0}}\left(T_{0}\right) \leq r\left(T_{0}\right)=r_{\sigma_{\pi}}\left(T_{0}\right) \leq r_{\sigma_{\pi}}\left(T_{1}, \ldots, T_{n}\right)$. Applying Lemma 2 to σ_{π}, there exists an operator T_{π} such that $r_{\sigma_{\pi}}\left(T_{1}, \ldots, T_{n}\right)=$ $r_{\sigma_{\pi}}\left(T_{\pi}\right)$ and $r_{\sigma_{s}}\left(T_{\pi}\right) \leq r_{\sigma_{s}}\left(T_{1}, \ldots, T_{n}\right)$ for any subspectrum σ_{s}. Then we have

$$
r_{\sigma_{\pi}}\left(T_{1}, \ldots, T_{n}\right)=r_{\sigma_{\pi}}\left(T_{\pi}\right)=r\left(T_{\pi}\right)=r_{\sigma_{0}}\left(T_{\pi}\right) \leq r_{\sigma_{0}}\left(T_{1}, \ldots, T_{n}\right)
$$

and hence $r_{\sigma_{\pi}}\left(T_{1}, \ldots, T_{n}\right)=r_{\sigma_{0}}\left(T_{1}, \ldots, T_{n}\right)$.
The common value of the left hand side of (5) we denote from now on by $r\left(T_{1}, \ldots, T_{n}\right)$. From Proposition 7 in [1], it follows that for every commuting n-tuple of operators the algebraic spectral radius is not smaller than the geometric one (in the case when X is a Hilbert space). It is not known whether both radii coincide, for all commuting n-tuples.

For $\left(T_{1}, \ldots, T_{n}\right) \in B_{\text {com }}(X)$, let A be a commutative closed subalgebra of $B(X)$ containing the operators I, T_{1}, \ldots, T_{n}. Thèn the point $z=\left(z_{1}, \ldots\right.$, $\left.z_{n}\right) \in \boldsymbol{C}^{n}$ is in $\sigma_{A}\left(T_{1}, \ldots, T_{n}\right)$ if and only if for all S_{1}, \ldots, S_{n} in A

$$
\sum_{i=1}^{n} S_{i}\left(T_{i}-z_{i}\right) \neq I .
$$

Proposition 4. For the commutant and bicommutant spectra we have

$$
r_{\sigma}\left(T_{1}, \ldots, T_{n}\right)=r_{\sigma^{\prime}}\left(T_{1}, \ldots, T_{n}\right)=r\left(T_{1}, \ldots, T_{n}\right),
$$

where $\left(T_{1}, \ldots, T_{n}\right) \in B_{\text {com }}(X)$.
Proof. We use the following well known relations

$$
\begin{equation*}
\sigma_{\pi}\left(T_{1}, \ldots, T_{n}\right) \subset \sigma^{\prime}\left(T_{1}, \ldots, T_{n}\right) \subset \sigma^{\prime \prime}\left(T_{1}, \ldots, T_{n}\right) \subset \sigma_{A}\left(T_{1}, \ldots, T_{n}\right), \tag{6}
\end{equation*}
$$

where $A=A\left(T_{1}, \ldots, T_{n}\right)$ is the smallest closed subalgebra of $B(X)$ containing the operators T_{1}, \ldots, T_{n}. Similarly as Lemma 2 we find a T_{0} in A with $r\left(T_{0}\right)=r_{\sigma_{A}}\left(T_{0}\right)=r_{\sigma_{A}}\left(T_{1}, \ldots, T_{n}\right)$. We cannot use Theorem 1, since σ_{A} is not always a spectroid; it is defined only on k-tuples of operators belonging to A. Thus there is $z_{0} \in \sigma\left(T_{0}\right)$ with $r\left(T_{0}\right)=\left|z_{0}\right|$. Clearly $z_{0} \in \partial \sigma\left(T_{0}\right)$ and so $z_{0} \in \sigma_{\pi}\left(T_{0}\right)$. Since $T_{0}=P\left(T_{1}, \ldots, T_{n}\right)$ for some projection P, we infer by the spectral mapping property of σ_{π} that $z_{0}=P\left(z_{1}, \ldots\right.$, z_{n}) for some $\left(z_{1}, \ldots, z_{n}\right) \in \sigma_{\pi}\left(T_{1}, \ldots, T_{n}\right)$. We have $\left|z_{0}\right| \leq\left(\sum_{i=1}^{n}\left|z_{i}\right|^{2}\right)^{1 / 2}$ and so $\left|z_{0}\right| \leq r_{\sigma_{\pi}}\left(T_{1}, \ldots, T_{n}\right)$. Together with relation (6) we obtain the conclusion.

For any commutative closed subalgebra A of $B(X)$ with identity we denote the set of all non-zero multiplicative linear functionals on A by $\mathfrak{M}(A)$. Then by Theorem 1 and relation (6) we obtain the following

COROLLARY 5. For any commuting n-tuple of operators (T_{1}, \ldots, T_{n}) in $B_{\mathrm{com}}(X)$ the spectral radius $r\left(T_{1}, \ldots, T_{n}\right)$ is given by the following formula

$$
r\left(T_{1}, \ldots, T_{n}\right)=\max \left\{\left(\sum_{i=1}^{n} \mid f\left(T_{i}\right)^{2}\right)^{1 / 2}: f \in \mathfrak{M}(A)\right\},
$$

where A is any closed commutative subalgebra of $B(X)$ containing the operators I, T_{1}, \ldots, T_{n}. In particular it can be the algebra $A\left(T_{1}, \ldots, T_{n}\right)$ used in the proof of Proposition 4.

Proposition 6. For any n-tuple $\left(T_{1}, \ldots, T_{n}\right)$ in $B_{\mathrm{com}}(X)$ we have

$$
r_{\sigma_{\delta}}\left(T_{1}, \ldots, T_{n}\right)=r_{\sigma_{r}}\left(T_{1}, \ldots, T_{n}\right)=r\left(T_{1}, \ldots, T_{n}\right) .
$$

Proof. Using a well known relation $\sigma_{\delta}\left(T_{1}, \ldots, T_{n}\right) \subset \sigma_{r}\left(T_{1}, \ldots, T_{n}\right)$ we obtain

$$
\begin{equation*}
r_{\sigma_{\delta}}\left(T_{1}, \ldots, T_{n}\right) \leq r_{\sigma_{r}}\left(T_{1}, \ldots, T_{n}\right) \tag{7}
\end{equation*}
$$

for all n-tuples $\left(T_{1}, \ldots, T_{n}\right)$ in $B_{\text {com }}(X)$. The conclusion follows now from Proposition 3 and the well known fact that for a single operator T we have $\partial \sigma(T) \subset \sigma_{\delta}(T)$.

Proposition 7. For any n-tuple $\left(T_{1}, \ldots, T_{n}\right)$ in $B_{\text {com }}(X)$ we have

$$
r_{\sigma_{1}}\left(T_{1}, \ldots, T_{n}\right)=r\left(T_{1}, \ldots, T_{n}\right) .
$$

The proof follows immediately from the formulas (1) and (3).
It can be easily seen that for many so called essential spectra their geometrical spectral radius is smaller for some commuting n-tuples of operators than the radius r.

We shall consider now the convex envelopes for some spectroids. We say that a spectroid σ_{s} is in the class \sum_{0} if for every $\left(T_{1}, \ldots, T_{n}\right)$ in $B_{\text {com }}(X)$ we have

$$
\begin{equation*}
r_{\sigma_{s}}\left(T_{1}, \ldots, T_{n}\right)=r\left(T_{1}, \ldots, T_{n}\right) \tag{8}
\end{equation*}
$$

By the above results the class \sum_{0} contains all spectra as well as certain subspectra ($\sigma_{\pi}, \sigma_{\delta}, \sigma_{r}, \sigma_{1}$) and certain spectroids $\left(\sigma^{\prime}, \sigma^{\prime \prime}\right)$.

Our result reads as follows.
THEOREM 8. Let σ_{1} and σ_{2} be spectroids of the class Σ_{0}. Then for every commuting n-tuple of operators $\left(T_{1}, \ldots, T_{n}\right)$ we have

$$
\operatorname{conv} \sigma_{1}\left(T_{1}, \ldots, T_{n}\right)=\operatorname{conv} \sigma_{2}\left(T_{1}, \ldots, T_{n}\right)
$$

Proof. Fix an n-tuple $\left(T_{1}, \ldots, T_{n}\right) \in B_{\text {com }}(X)$ and take any closed ball $B\left(z^{(0)}, r\right) \subset \boldsymbol{C}^{n}$, with center $z^{(0)}=\left(z_{1}^{(0)}, \ldots, z_{n}^{(0)}\right)$ and radius r, which contains $\sigma_{1}\left(T_{1}, \ldots, T_{n}\right)$. Applying the translation property (v) to the spectroid σ_{1} we obtain

$$
\sigma_{1}\left(T_{1}-z_{1}^{(0)} \cdot I, \ldots, T_{n}-z_{n}^{(0)} \cdot I\right) \subset B(0, r)
$$

Thus $r\left(T_{1}-z_{1}^{(0)} \cdot I, \ldots, T_{n}-z_{n}{ }^{(0)} \cdot I\right) \leq r$ and so

$$
\begin{equation*}
\sigma_{2}\left(T_{1}-z_{1}^{(0)} \cdot I, \ldots, T_{n}-z_{n}^{(0)} \cdot I\right) \subset B(0, r) \tag{9}
\end{equation*}
$$

Applying again the translation property (v) to the spectrum σ_{2} we obtain by (9)

$$
\sigma_{2}\left(T_{1}, \ldots, T_{n}\right) \subset B\left(z^{(0)}, r\right)
$$

We have shown that any ball $B\left(z^{(0)}, r\right)$ containing $\sigma_{1}\left(T_{1}, \ldots, T_{n}\right)$ must also contain $\sigma_{2}\left(T_{1}, \ldots, T_{n}\right)$. Using an obvious fact, that the convex envelope of a compact set in \boldsymbol{C}^{n} equals to the intersection of all closed balls containing this set, we obtain

$$
\sigma_{2}\left(T_{1}, \ldots, T_{n}\right) \subset \operatorname{conv} \sigma_{1}\left(T_{1}, \ldots, T_{n}\right)
$$

Interchanging the role of σ_{1} and σ_{2} we obtain an opposite inclusion. The conclusion follows.

Let S be a compact set in \boldsymbol{C}^{n}, its convex envelope conv S is also compact and equals to the convex envelope of all its extreme points.

Moreover these extreme points must belong to S. For a spectroid σ_{s} on a Banach space X and for $\left(T_{1}, \ldots, T_{n}\right) \in B_{\text {com }}(X)$ denote by $E_{\sigma_{s}}\left(T_{1}, \ldots, T_{n}\right)$ the set of all extreme points of the set $\sigma_{s}\left(T_{1}, \ldots, T_{n}\right)$ (=extreme points of conv $\sigma_{s}\left(T_{1}, \ldots, T_{n}\right)$). Under this notation we have

COROLLARy 9. Let σ_{1} and σ_{2} be spectroids of the class Σ_{0}. Then for every commuting n-tuple of operators $\left(T_{1}, \ldots, T_{n}\right)$ we have

$$
E_{\sigma_{1}}\left(T_{1}, \ldots, T_{n}\right)=E_{\sigma_{2}}\left(T_{1}, \ldots, T_{n}\right),
$$

in particular the set $E_{\sigma_{s}}\left(T_{1}, \ldots, T_{n}\right)$ depends only upon T_{1}, \ldots, T_{n} and is independent of σ_{s} whenever it belongs to Σ_{0}.

In defining our geometrical spectral radius we were using the Euclidean norm in \boldsymbol{C}^{n}. However, our theorem 8 implies that we can use any other norm, for instance an l_{p}-norm. Thus we have

Corollary 10. Suppose we have on each \boldsymbol{C}^{n} a norm $\|\cdot\|_{n}$ (it is automatically equivalent to the Euclidean norm) and we define spectral radius $\rho_{\sigma}\left(T_{1}, \ldots, T_{n}\right)$ of a commuting n-tuple of operators as the minimal radius r, such that the ball $\left\{z \in \boldsymbol{C}^{n}:\|z\|_{n} \leq r\right\}$ contains $\sigma\left(T_{1}, \ldots, T_{n}\right)$. Then for each spectroid σ in Σ_{0} the spectral radius $\rho_{\sigma}\left(T_{1}, \ldots, T_{n}\right)$ does not depend upon σ.

The authors are grateful to Professor Stefan Rolewicz for calling their attention to an error in the first draft of this paper. We are also grateful to the referee for some simplications of the proofs.

This work was done during the second author's stay in Joetsu in September 1990, he expresses his gratitude to Joetsu University of Education for granting him excellent working conditions.

Added in proof. The problem of Bunce mentioned before the proposition 7 was racently solved in positive by V. Miiller and A. Soltysiak "Spectral radius formula for commuting Hilbert space operators."

References

[1] J. BUNCE, Models for n-tuples of noncommuting operators, J. Funct. Anal. 57(1984), 21-30.
[2] M. CHO and T. HURUYA, On the spectral radius, Proc. Roy. Irish Acad. (A). 91 (1991), 39-44.
[3] M. CHÕ and M. TAKAGUCHI, Boundary of Taylor's joint spectrum for two commuting operators, Rev. Roum. Math. Pures Appl. 27(1982), 863-866.
[4] R. Curto, Connections between Harte and Taylor spectra, Rev. Roum. Math. Pures Appl. 31(1986), 203-215.
[5] R. HARTE, Invertiblility and singularity for bounded linear operators, Dekker 1988.
[6] Z. SKODKOWSKI, An infinite family of joint spectra, Studia Math. 61(1977), 239-255.
[7] Z. S KODKOWSKI and W. ŻELAZKO, On joint spectra of commuting families of operators, Studia Math. 50(1974), 127-148.
[8] F. -H. VASILESCU, A characterization of the joint spectrum in Hilbert spaces, Rev. Roum. Math. Pures Appl. 22(1977), 1003-1009.
[9] V. Wrobel, The boundary of Taylor's joint stectrum for commuting Banach space operators, Studia Math. 84 (1986), 105-111.
[10] W. ŻELAZKO, On a problem concerning joint approximate point spectra, Studia Math. 45(1973), 239-240.
[11] W. ŻELAZKO, An axiomatic approach to joint spectra I, Studia Math. 64(1979), 249 -261.
[12] W. ŻELAZKO, Banach algebras, Warszawa 1973.

Department of Mathematics Joetsu University of Education Joetsu, Niigata Prefecture 943 Japan
Mathematical Institute Polish Academy of Siences Poland

[^0]: This research was partially supported by Grant-in-Aid for Scientific Research, Japanese Mimistry of Education

