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0, Introduction

In this paper, from a general viewpoint, we construct surfaces in P^{2}\cross

P^{1} and P^{1}\cross P^{1}\cross P^{1} defined over R having topologically extremal prop-
erties. Precisely we show that for each pair of positive integers (d, r)
(resp. (d , e , r )) there exists an M-surface A in P^{2}\cross P^{1} (resp. P^{1}\cross P^{1}\cross

P^{1}) of degree (d, r) (resp. ( d , e , r )) such that the projection Aarrow P^{1} has
the maximal number of real critical points (Theorem 0.1 and Corollary
0.5). Also, we show the existence of M-surfaces in (P^{2}\#(-P^{2}))\cross P^{1} ,
(Corollary 0.6). Furthermore, the construction of M-surfaces in P^{3} by O.
Ya. Viro [V1] is explained by a similar argument as that of this paper
(Theorem 0.7).

Harnack [H] pointed out that the number of components in the real
locus of a curve in P^{2} of degree d defined over R does not exceed 1+(1/
2)(d-1)(d-2) and, for each d , there exists a non-singular curve in P^{2}

of degree d defined over R, the real locus of which has exactly 1+(1/2)(d
-1)(d-2) components.

Hilbert, in his famous 16th problem, proposed to investigate
topological restrictions for hypersurfaces in P^{n} of fixed degree defined
over R, especially for n=2,3. Amount of papers are devoted to this
problem (see [G1], [V2], [W]). For instance, non-singular real curves in
P^{2} of degree \leq 7 and surfaces in P^{3} of degree \leq 4 are classified topological-
ly. To establish such classification, we first find some restrictions on
topological invariants. Second, for a fixed degree, we construct real
hypersurfaces of given degree, invariants of which are permitted by the
ristrictions. Then, such as Harnack’s result, it is the first step of the
study to obtain an uniform estimate on real hypersurfaces of given degree
and to show the sharpness of the estimate.

On the other hand, we may regard a real algebraic function as a 1
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-parameter family of hypersurfaces defined over R. Thus, it is natural to
proceed to investigate topological restrictions for hypersurfaces in P^{n}XP^{1}

of fixed degree defined over R, considered as one-parameter families of
hypersurfaces in P^{n} . and the projection to P^{1} of the hypersurfaces.

Now let A\subset P^{n}\cross P^{1} be a real hypersurface of degree (d, r) , that is,
the zer0-locus of a polynomial \Sigma_{i=0}^{r}F_{i}(X_{0}, \ldots, X_{n})\lambda^{r-ii}\mu , where F_{i}(0\leq i\leq

r) is a real homogeneous polynomial of degree d .
Consider the projection \varphi:Aarrow P^{1} . Then our main object \overline{1}S the topol-

ogy of real locus A_{R} of A and singularities of the restriction \varphi_{R} : A_{R}

arrow RP^{1} of \varphi to A_{R} .
We denote by P_{t}(X, K) the Poincar\’e series of a topological space X

over a field K with indeterminate t , and by s(f) the number of critical
points of a function f:Xarrow R from an n-dimensional manifold to a 1
-dimensional manifold.

It is known that, if A\subset P^{n}\cross P^{1} is non-singular, then the
diffeomorphism type of A is determined by the degree (d, r) and n. For
example, we see, for any K,

P_{1}(A, K)=\{

and
\chi(A)=(n+

\chi(A) , ( n : even),
4n-\chi(A) , ( n : odd),

1)(1-d)^{n}r+2( \frac{(1-d)^{n+1}-1}{d}+n+1) ,

where \chi(A)=P_{-1}(A, K) is the Euler characteristic of A, (see 1.6).
We call the hypersurface A generic if A is non-singular and \varphi :

Aarrow P^{1} has only non-degenerate critical points.
If A is generic, then s(\varphi)=(n+1)(d-1)^{n}r , (see 1.6).
By Harnack-Thom’s inequality ([G1], [T]), and the fact that a critical

point of \varphi_{R} is necessarily a critical point of \varphi , we have an uniform esti-
mate:

(0.0) \{

P_{1}(A_{R} ; Z/2)\leq P_{1}(A;Z/2) ,
s(\varphi_{R}) \leq s(\varphi) .

Remark that the right hand sides depend only on (n:d, r) .
In this paper, from a general viewpoint, we show the following

THEOREM 0. 1. For n=1,2 and for each (d, r) , the estimate (0.0)
is sharp {with respect to the usual real structure of P^{n}\cross P^{1} ), that is, there
exists a generic real hypersurface of P^{n}\cross P^{1} , invariant under the complex
conjugation, of degree (d, r) , attaining both equalities in (0.0).

Notice that the estimate (0.0) is reduced to
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\{

P_{1}(A_{R} ; Z/2)\leq 2+2(d-1)(r-1) ,
s(\varphi_{R}) \leq 2d(r-1) ,

for n=1 , and to

\{

P_{1}(A_{R} ; Z/2)\leq 3+d^{2}+3(d-1)^{2}(r-1) ,
s(\varphi_{R}) \leq 3(d-1)^{2}r ,

for n=2.
To consider togather with the number of real critical points of the

projection is an essential idea of this paper. (See the proof of Theorem
0.3 in \S 3, which implies Theorem 0.1.)

In the case r=1 , Theorem 0.1 is proved in [I]. (See also Example
2.3.2.).

A finer result is obtained in the case n=1 . For A\subset P^{1}\cross P^{1}- we denote
by \pi : A– P^{1} the projection to the first component.

PROPOSITION 0. 2. For non-singular real curves A\subset P^{1}\cross P^{1} of
degree (d, e) such that both \varphi , \pi have only non-degenerate critical points,
there exists the sharp estimate:

\{

P_{1}(A_{R} ; Z/2)\leq 2+2(d-1)(e-1) ,
s(\varphi_{R})\leq 2(d-1)e , s(\pi_{R})\leq 2d(e-1) .

We omit the proof of Proposition 0.2. (See \S 4 for the method to con-
struct M-curves with special properties.)

Hereafter we concentrate to the case n=2 .
Now let us formulate a general theorem which implies Theorem 0.1.

For notions and notations, see \S \S 1 and 2.
Let S be compact connected M-surface and, L be a real holomorphic

very ample line bundle over S(see 2.6 and 1.9).
Denote by g the genus of zer0-locus of a transverse section of L (see

1.0).
Let SO, s_{1} , \ldots , Sr be M-section of L (see 2.7). Consider the following

condition (^{*}) :
(^{*}i) (s_{i})_{0} and (s_{j})_{0} intersect in \langle c_{1}(L)^{2}. [S]\rangle points in S_{R} , (0\leq i<j\leq

r) ,
(^{*}ii) The real locus of (s_{i}s_{j})_{0}=(s_{i})_{0}\cup(s_{j})_{0} has 2g empty ovals, (see

2.9), (0\leq i<j\leq r) ,
(^{*}iii) The ratio s_{j}s_{k}/s_{i}^{2} has a constant sign on the union of interiors of

g-empty ovals of (s_{j})_{0} , (0\leq i<j<k\leq r) .

Remark that s_{j}s_{k}/s_{i}^{2} : (S-(s_{i}s_{j}s_{k})_{0})_{R}- R –0 is well-defined.
We denote by P_{1}^{1} (or simply by P^{1} ) the real complex curve (P^{1}. \tau_{1}) ,
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where \tau_{1} is the compex conjugation (see 2.3). Let [\lambda : \mu] be the homoge-
neous coordinate of P_{1}^{1} .

THEOREM 0. 3. Let S be a compact connected M-surface with H_{1}(S :
Z/2)=0 and H_{0}(S_{R;}Z/2)\cong Z/2 , L be a real holomorphic very ample line
bundle with given M-sections So, \ldots , s_{r} of L satisfying the condition (^{*}) .
Then, A\subset S\cross P_{1}^{1} defifined by

\sum_{i=0}^{r}\epsilon_{i}\lambda^{r-ii}\mu s_{i}(x)=0

is an M-manifold with (r-1)g empty ovals and each critical point of \varphi :
Aarrow P_{1}^{1} is non-degenerate and real, for some real numbers \epsilon_{0} , \epsilon_{1} , \ldots , \epsilon_{r}

with 1=\epsilon_{0}\gg|\epsilon_{1}|\gg\ldots\gg|\epsilon_{r}|>0 .

REMARK 0. 4: (1) For the existence of M-sections satisfying (^{*}) ,
see \S 4, Theorem 4.0.

(2) The assumption on the topology of S is essential for our costruc-
tion. See also Lemma 2.5.

(3) We regard \lambda and \mu as sections of \mathscr{O}_{P_{1}^{1}}(1) , and s=\Sigma\epsilon_{i}\lambda^{r-ii}\mu s_{i} as a
section of L_{r}=\xi^{*}L\cdot \phi^{*}\mathscr{O}_{P_{1}^{1}}(r) , where \emptyset:S\cross P_{1}^{1}arrow P_{1}^{1} , and \xi:S\cross P_{1}^{1}arrow S the
projections respectively. Then we have A=(s)_{0} and that s is an M-sec-
tion. For a transverse section s of L_{r} (see 1.3), denote by \varphi:Aarrow P_{1}^{1} .
Then, associated to s , there is a natural section of Hom ( TA, \varphi^{*}TP_{1}^{1} ) in-
duced from the tangent map of \varphi . Theorem 0.3 states that this section is
also an M-section.

(4) Since (^{*}i) implies that (s_{i})_{0} and (s_{j})_{0} , (i\neq j) , intersect transver-
sely, the condition (^{*}) is preserved by small perturbation of So, \ldots , Sr in
the space of real sections of L.

Setting S=P^{1}\cross P^{1}(=P_{1}^{1}\cross P_{1}^{1}) and L=\mathscr{O}_{P}1(d)\cdot \mathscr{O}P1(e) over S, we see
Theorem 0.3 implies

COROLLARY 0. 5. For non-singular real surfaces A\subset P^{1}\cross P^{1}\cross P^{1} of
degree {degree (d, e, r) such that \varphi : Aarrow P^{1} has only non-degenerate criti-
cal points, there exists the sharp estimate:

\{

P_{1}(A_{R} ; Z/2)\leq 6der-4de-4er-4rd+4d+4e+4r,
s(\varphi_{R}) \leq r(6de-4d-4e+4) .

Let S\subset P^{2}\cross P^{1} be a generic real surface of degree (1, 1) . Then S is
the blowing up of P^{2} along a real point in P^{2} . (see Example 2. 3. 2). We
denote it by P^{2}\#(-P^{2}) .

We call a surface A\subset(P^{2}\#(-P^{2}))\cross P^{1}\subset P^{2}\cross P^{1}XP^{1} of degree (d, e ,
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r) , if A is the zer0-locue of a transverse section of \mathscr{O}_{P^{2}}(d)\mathscr{O}_{P^{1}}(e)\mathscr{O}_{P^{1}}(r)|S

\cross P^{1} .

COROLLARY 0. 6. For non-singular real surfaces A\subset(P^{2}\#(-P^{2}))\cross P^{1}

of degree (d, e, r) such that \varphi : Aarrow P^{1} has only non-degenerate critical
point, there exists the sharp estimates :

\{

P_{1}(A_{R;}Z/2)\leq 3r(2d^{2}+4de-5d-3e+3)-2(2d^{2}+4de-5d-3e) ,

s(\varphi_{R}) \leq 3r(2d^{2}+4de-5d-3e+3) .

Viro [V1] constructed M-surfaces in P^{3} . Unfortunately, only a
sketch of the construction is given in [VI]. Here, we can clarify the
Viro’s construction as a prototype of the proof of our Theorem 0.3. (On

the other hand, we have to remark that the constructions in this paper are
inspired by the original Viro’s construction.)

THEOREM 0. 7 (Viro). For non-singular real surfaces A in P^{3} of
degree d, there exists the sharp estimates:

P_{1}(A_{R;}Z/2)\leq d^{3}-4d^{2}+6d .

PROOF: Let X_{0} , X_{1} , X_{2} , X_{3} be homogeneous coordinates of P^{3} . Set
P^{2}=\{X_{3}=0\} , P^{1}=\{X_{2}=X_{3}=0\} and l=\{X_{0}=X_{1}=0\} . Let \varphi:P^{3}-larrow P^{1} be
a projection. Fix a tubular neighborhood U of l in P^{3} such that \overline{U}\cup P^{1}

is empty.
Observe that, for each d , there exist M-section So, ..., s_{d} of \mathscr{O}P^{2(0)} , \ldots ,

\mathscr{O}_{P^{2}}(d) near X_{2}^{0} , \ldots , X_{2}^{d} respectively such that (s_{i})_{0} and (s_{j})_{0} intersect in ij
points in RP^{2} , the real locus of (s_{i}s_{j})_{0} has (1/2)(/1)(i-2) (1/2)(;-1)(;
-2) empty ovals, (1\leq i<j<\leq d) , the ratio s_{j}s_{k}/s_{i}^{2} has constant sign on the
union of interiors of (1/2)(j-l)(j-2) empty ovals of (s_{j})_{0} , (1\leq i<j<k\leq

d) , and \varphi|(s_{i})_{0} has (i-1)i real critical points (0\leq i\leq d) . (For the con-
struction, see the proof of Proposition 4.0 in \S 4.) Naturally each s_{i} is
extended to a real section \tilde{s}_{i} of \mathscr{O}_{P^{3}}(i) , (0\leq i\leq d) .

Set

s= \sum_{i=0}^{d}\epsilon_{i}X_{2}^{d-i}\tilde{s}_{i}\in H^{0}(P^{3}, \mathscr{O}_{P^{3}}(d))_{R} ,

and set A=(s)_{0} . Take real numbers \epsilon_{0} , \ldots , \epsilon_{d} to be 1=\epsilon_{0}\gg|\epsilon_{1}|\gg\cdots\gg|\epsilon_{d}|>0

and of apropriate signs.
Now, \varphi_{R} : A_{R}arrow RP^{1} defines a vector field \xi’ over A_{R}-U , and \xi’ can

be extended to a C^{\infty} vector field \xi over A_{R} with finite singularities.
Denote by s^{+}(\xi) (resp. s^{-}(\xi) ) the sum of positive (resp. negative) in-

dices of singular points of \xi , and set t_{i}=\dim_{Z/2}H_{i}(A_{Rj}Z/2) , (i=1,2,3) .
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Then we see

s^{+}( \xi)\geq d+\frac{1}{3}d(d-1)(d-2) ,

s^{-}( \xi)\geq\frac{1}{3}(d+1)d(d-1)+\frac{1}{3}d(d-1)(d-2) .

Thus \chi(AR)=s^{+}(\xi)-s^{-}(\xi)\geq d-(1/3)(d+1)d(d-1) . On the other
hand t_{0}+t_{1}\geq 2+(1/3)(d-1)(d-2)(d-3) . Hence we have

P_{1}(A_{R;}Z/2)=t_{0}+t_{1}+t_{2}

=2(t_{0}+t_{2})-\chi(A_{R})

\geq d^{3}-4d^{2}+6d(=P_{1}(A;Z/2)) .

By Harnack-Thom’s inequality, all equalities hold.
Q. E. D.

To obtain exact uniform upper estimates as (0.0), we need several
standard results in complex geometry. We write down them in \S 1.
Notice that results in \S 1 play an important role also to construct real
algebraic manifolds with special properties in \S \S 3, 4.

In \S 2, we give preliminary on real geometry mainly to show Theorem
0.3. In general, to determine the topological type of a constructed real
algebraic manifold is a difficult and delicate problem. Usually, in a paper
on classical real algebraic geometry, this problem is left to the reader’s
intuition with the help of rough figures. In this paper, we try to give a
foundation to this problem as exactly and generally as possible.

We prove the main Theorem 0.3 in \S 3.
Sufficient conditions for the existence of a pair of M-sections satisfy-

ing (^{*}) are studied in \S 4 (Proposition 4.0 and Proposition 4.2). Also in
\S 4, we prove Theorem 0.1 and Corollaries 0.5, 0.6.

Recently, Viro introduced a powerful method of constructing real
plane curves. (See [V2].) It would be very interesting to apply this method
to our situation treated in this paper.

Throughout this paper, for vector bundles L, K and sections s , s’ . we
use the following abridgements: L\cdot K=L\otimes K , L^{d}=L\otimes\cdots\otimes L ( af -times), s
.s’=s\otimes s’ and s^{d}=s\otimes\cdots\otimes s (d-times).

The author would like to thank Professor Takashi Matsuoka for in-
forming the existence of the paper [P].

1. Preliminary: Complex geometry

(1.0) Let V be a compact complex manifold, \pi:Earrow V a holomor-
phic vector bundle and s:Varrow E be a holomorphic section. Set (s)_{0}=\{x\in
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V|s(x)=0\} .
We call s a transverse section if s:Varrow E is transverse to the zero

section \zeta\subset E , that is, for any x\in(s)_{0} , s_{*}T_{x}V+T_{s(\chi)}\zeta=T_{s(\chi)}E .
If s is transverse, then (s)_{0} is a complex submanifold of V and the

codimension of (s)_{0} is equal to the dimension of fibers of E .
Denote by H the complex vector space H^{0}(V, E) of totality of

holomorphic sections of E over V, and by PH=(H-0)/C^{*} the
projectification of H.

Set \mathscr{F}=\{(x, [s])\in V\cross PH|s(x)=0\} and consider the projection \Phi:\mathscr{F}

arrow PH . Then s is transverse if and only if \mathscr{F} is non-singular along
\Phi^{-1}([s]) and \Phi is submersive over [s] .

In particular, for transverse sections s , s’\in H , (s)_{0} and (s’)_{0} are
diffeomorphic, since PH minus critical point set of \Phi is connected.

(1.1) Let s\in H^{0}(V;E) be transverse. Set Z=(s)_{0} . Then we have
an exact sequence of complex vector bundles over Z :

0-arrow TZarrow TV|_{Z}arrow E|_{Z}arrow 0 .

Therefore c_{t}(TV|_{Z})=c_{t}(TZ)c_{t}(E|_{Z}) for Chern polynomials. Thus the
Chern classes of TZ are calculated by the formula (cf. [F])

c_{t}(TZ)= \frac{c_{t}(TV|_{Z})}{c_{t}(E|_{Z})} .

We also utilze the following (see [F], for instance):

LEMMA 1. 1. Set n=\dim V and k=rank E. Then, for any \alpha\in

H^{2(n-k)}(V, Z) ,

\langle\iota^{*}\alpha, [Z]\rangle=\langle\alpha, \iota_{*}[Z]\rangle=\langle\alpha\cdot c_{k}(E), [ V]\rangle ,

where \iota : Zarrow V is the inclusion.

(1.2) Let L be a holomorphic line bundle over a compact complex
manifold V of dimension n . Let Z be the zer0-locus of a transverse sec-
tion s of L and \chi(Z) denote the Euler characteristic of Z .

Lemma. We have

\chi(Z)=\langle\sum_{i+j=n-1}(-1)^{j}c_{i}(TV)c_{1}(L)^{j+1},[V]\rangle ,

where [ V]\in H_{2n}(V;Z) is the fundamental class of V.
In particular, if dim V=2, then

\chi(Z)=\langle c_{1}(TV)c_{1}(L)-c_{1}(L)^{2}, [ V]\rangle .
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Furthermore, if Z is connected, then the genus of Z

g(Z)=1+ \frac{1}{2}\langle c_{1}(L)^{2}-c_{1}(TV)c_{1}(L), [ V]\rangle .

PROOF OF LEMMA : By (1. 1),

c_{t}(TZ)=( \sum_{i}\iota^{*}c_{i}(TV)t^{i})/(1+\iota^{*}c_{1}(L)t) .

Then we see, c_{n-1}(TZ)=\iota^{*}\alpha , where

\alpha=\sum_{i+j=n-1}(-1)^{j}c_{i}(TV)c_{1}(L)^{j} .

By Lemma 1. 1,

\chi(Z)=\langle c_{n-1}(TZ), [Z]\rangle=\langle\iota^{*}\alpha, [Z]\rangle

=\langle\alpha, \iota_{*}[Z]\rangle=\langle\alpha\cdot c_{1}(L), [ V]\rangle .

(1.3) Let R be a compact non-singular curve of genus g. Denote by
\xi:V\cross R- V and \emptyset : V\cross Rarrow R the projections respectively.

Set L_{j}=\xi^{*}L\cdot\phi^{*}\mathscr{O}_{R}(j) over V\cross R for each j , where \mathscr{O}_{R}(j) means a
line bundle of degree j over R. Let A_{j}\subset VXR be the zer0-locus of a
transverse section s_{j} of L_{j} . Then, by Lemma 1. 2, \chi(A_{j})=\langle\rho, [ V]\rangle ,
where

\rho=jc_{n}(TV)+\sum_{i+k=n,k>0}((k+1)j+2g-2)c_{i}(TV)(-c_{1}(L))^{k} ,

as an element of H^{2n}(V;Z) .
For example, if dim V=2, then

\chi(A_{j})=\langle jc_{2}(TV)-(2j+2g-2)c_{1}( TV)c_{1}(L)+(3j+2g-2)c_{1}(L)^{2}, [ V]\rangle .

Furthermore, if R=P^{1} . then

\chi(A_{j})=\langle jc_{2}(TV)-(2j-2)c_{1}( TV)c_{1}(L)+(3j-2)c_{1}(L)^{2}. [ V]\rangle .

(1.4) Example. Let C, C’ and C’ be compact non-singular curves
of genus g, g’ and g’ respectively. Set V=C\cross C’\cross C’- and denote projec-
tions by p_{1} , p_{2} and p_{3} to C, C’ and C’ respectively.

Let A\subset V be the zer0-locus of a transverse section of L’=p_{1}^{*}\mathscr{O}c(d) .
p_{2}^{*}\mathscr{O}c’(d’)\cdot p_{3}^{*}\mathscr{O}c’(d’) . Then we have

\chi(A)=6(d-1)(d’-1)(d’-1)

+(2+4g’)(d-1)(d’-1)+(2+4g)(d’-1)(d’-1)
+(2+4g’)(d’-1)(d-1)
+(2+4g’g^{rr})(d-1)+(2+4g^{rr}g)(d’-1)+(2+4gg’)(d’-1)
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+6-4(g+g’+g’)+4(gg’+g’g’+g’g) .

(1.5) In (1.3), denote by \varphi:A_{j}arrow R the projection to R . Set \mu=

Hom(TA_{j}, \varphi T*R) .
Then \langle c_{n}(\mu), [A_{j}]\rangle=\langle\eta, [ V]\rangle , where

\eta=(-1)^{n}j\sum_{i+k=n}(k+1)c_{i}(TV)(-c_{1}(L))^{k} .

as an element of H^{2n}(VjZ) .
For example, if dim V=2 , then

\langle c_{2}(\mu), [A_{j}]\rangle=j\langle c_{2}(TV)-2c_{1}(TV)c_{1}(L)+3c_{1}(L)^{2}, [V]\rangle .

(1.6) Set V=P^{n} . Then we have

LEMMA. Let A be a non-singular hypersurface of P^{n}\cross P^{1} of degree
(d, r) . Then,

(1) \chi(A)=\langle c_{n}(TA), [A]\rangle is equal to

(n+1)(1-d)^{n}r+2( \frac{(1-d)^{n+1}-1}{d}+n+1) .

(2) H_{i}(A\cdot, Z) is torsion free (0\leq i\leq 2n) , and

rank H_{i}(A;Z)=\{

0, if i is odd and\neq n ,
2, if i is even and \neq 0 , n , 2n ,
1, if i=0 or 2n ,

rank H_{n}(A;Z)=\{
\chi(A)-2(n-1) , if n in even,
2n-\chi(A) , if n in odd.

(3)

P_{1}(A;K)=\{
\chi(A) , if n is even,
4n-\chi(A) , if n is odd,

for any fifietd L.
(4) If \varphi : Aarrow P^{1} has only isolated critical points, then,

s( \varphi)=\sum_{x\in A}\mu_{x}(\varphi)=\langle c_{n}(Hom ( TA, \varphi^{*}TP^{1} )), [A]\rangle

=(n+1)(d-1)^{n}r ,

where \mu_{x}(\varphi) is the Milnor number of \varphi at x.

PROOF: A is the zer0-locus of a transverse section of of L_{r} , where
L=\mathscr{O}_{P^{n}}(d) and R=P^{1} . Using (1.3) and the equality c_{t}(TP^{n})=(1+at)^{n+1} .

where a\in H^{2}(P^{n} ; Z) is the Poincar\’e dual of a hyperplane, we have (1).

By the Lefschetz hyperplane theorem ([GH]) ,
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H_{i}(A;Z)\cong H_{i}(P^{n}\cross P^{1} : Z) , H^{i}(A;Z)\cong H^{i}(P^{n}\cross P^{1} ; Z) ,

for i\leq n-1 . By Poincar\’e duality, we have (2).
(3) follows from (2), and (4) follows fron (1.5).

Q. E. D.
(1.7) In (1.3), set V=P^{1}\cross P^{1} . R=P^{1} and L=\mathscr{O}P^{1(d)}\cdot \mathscr{O}_{P^{1}}(e) , (resp. V

=P^{2}\#(-P^{2}) , R=P^{1} and L=\mathscr{O}_{P^{2}}(d)\mathscr{O}_{P^{1}}(e)|V) .
Then, for a non-singular surface A\subset V\cross P^{1} , of degree (d, e, r) , we

have

\chi(A)=6der-4de-4er-4rd+4d+4e+4r .
(resp. 3r(2d^{2}+4de-5d-3e+3)-2(2d^{2}+4de-5d-3e) ).

If \varphi:Aarrow P^{1} has only isolated critical points, then we have, by (1.5),

s(\varphi)=r(6de-4d-4e+4) .
(resp. 3r(2d^{2}+4de-5d-3e+3) ).

(1.8) Let K be a field. Then it is easy to verify that, if A is compact
complex surface with H_{1}(A;K)=0 , then P_{t}(A;K)=P_{-t}(A;K) , and P_{1}(A ;
K)=P_{-1}(A:K)=\chi(A) .

For example, in (1.7), we see H_{1}(A;Z/2)=0 , using the Lefschetz
hyperplane theorem ([GH]), and P_{1}(A;Z/2)=\chi(A) .

(1.9) Let L be a holomorphic line bundle over a compact complex
manifold V.

L is called very ample if e ; Varrow PH^{0}(V;L)^{V} is well-defined and an
embedding, where PH^{0}(V:L)^{V} is the projective space of hyperplanes in
H^{0}(V;L) and e is defined by e(x)=\{s\in H^{0}(V;L)|s(x)=0\} , (x\in V) .

L is called ample if L^{d} is very ample for some d>0 .
The following is clear:

LEMMA. If L is ample, then L_{j}=\xi^{*}\mathscr{L}\cdot \phi^{*}\mathscr{O}_{P^{1}}(j) is an ample line
bundle over V\cross P^{1} , (j=1,2, \ldots) .

(1.10) For the connectivity of a zer0-locus (s)_{0} , we need

LEMMA. Let V be connected of dimension \geq 2 and L be ample {see
1.9). Then (s)_{0} is connected, for any s\in H^{0}(V;L) .

PROOF: First, suppose L is very ample. Then (s)_{0}\cong e(V)\cap h for
some hyperplane h of PH^{0}(V;L)^{V} Since V is connected, (s)_{0} is also con-
nected by the Lefschetz hyperplane theorem ([GH]). If L is ample, them
L^{d} is very ample for some d>0 . Then (s^{d})_{0} is connected. Therefore,
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(s)_{0} is connected.
(1.11) Next, we prepare Lemmata of Bertini type on perturbations of

sections.
Let V and L be as in (1.9). Let s , s’\in H^{0}(V;L) . Denote the singu-

lar locus of (s)_{0} by Sing(s)_{0} .

LEMMA. If (s’)_{0} is non-singular at each point of (Sing(s)_{0})\cap(s’)_{0}

and (s’)_{0} is transverse to (s)_{0} in a neighborhood of (s)_{0}\cap(s’)_{0} minus (Sing
(s)_{0})\cap(s’)_{0} , then (s+\epsilon s’)_{0} is non-singular for suffiffifficientty small \epsilon\in C-0 .

PROOF: Suppose, for each i\in N , there are an \epsilon_{i}\in C with 0<|\epsilon_{i}|<1/

i and an x_{i}\in V such that x_{i}\in Sing(s+\epsilon_{i}s’)_{0} . Taking subsequence, we may
suppose x_{i}arrow x_{0}\in V as iarrow\infty .

Set
Y=\{(x, \epsilon)\in V\cross C|x\in Sing(s+\epsilon s’)_{0}\} .

Then Y is an analytic subset of V\cross C and (x_{0},0)\in\overline{Y-Y\cross 0} . by the
curve slelction lemma [M], there exists a real analytic cutve c(t)=(x(t) ,
\epsilon(t)) , (t\in[-\delta, 0]) such that c(0)=(x_{0},0) , \epsilon(t) is not identically zero and
that x(t)\in Sing(s+\epsilon(t)s’)_{0} .

We regard s and s’ as functions in a neighborhood of xo and take a
system of local coordinates X_{1} , \ldots , X_{n} at #0. Then we have

(1) s(x(t))+\epsilon(t)s’(x(t))=0 ,
(\partial(s+\epsilon(t)s’)/\partial X_{j})(x(t))=0 , (1 \leq j\leq n) .

Hence we have
0=d(s(x(t))+\epsilon(t)s’(x(t))/dt=(d\epsilon/dt)\cdot s’(x(t)) .

Since d\epsilon/dt\neq 0 , we have s’(x(t))=0 for t\in(-\delta, 0] , taking \delta smaller if
necessary. Hence x(t)\in(s)_{0}\cap(s’)_{0} , and x_{0}\in(Sing(s)_{0})\cap(s’)_{0} by (1).

If x(t)\in Sing(s)_{0})\cap(s’)_{0} , for sufficiently small t , then, by (1), x(t)\in

Sing(s’)_{0} , and x_{0}\in Sing(s’)_{0} .
If there is an arbitrarily small t_{0}\neq 0 such that x(t_{0}) does not belong to

(Sing(s)_{0})\cap(s’)_{0} , then by (1), (s’)_{0} is not transverse to (s)_{0} at x(t_{0})\in(s)_{0}\cap

(s’)_{0} .
In any case, we are led to a contradiction.
(1.12) Set L_{j}=\xi^{*}L\cdot \phi^{*}\mathscr{O}_{P^{1}}(j) . Recall that [\lambda:\mu] is the homogeneous

coordinate of P^{1} . Then (\lambda)_{0}=V\cross\{[0:1]\} .

LEMMA. Let s , s’ and s’\in H^{0}(V\cross P^{1} ; L_{j-1}) be transverse sections.
Then we have the followings:

(1) If (s’)_{0} is transverse to (\lambda)_{0} and to (s)_{0} at each point of (s)_{0}\cap(s’)_{0}
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\cap(\lambda)_{0} , then (\lambda s+\epsilon\mu s’)_{0} is non-singular for suffiffifficientty small \epsilon\neq 0 .
(2) If (s)_{0} is transverse to (\lambda)_{0} , then, for suffiffifficientty small \epsilon\neq 0 , there

exists \delta_{0}>0 such that, for each \delta\in C with |\delta|\leq\delta_{0} , (\lambda s+\epsilon\mu s’)_{0} is transverse
to (\lambda-\delta\mu)_{0} .

(3) If (s’)_{0} is transverse to (\lambda)_{0} , then, for suffiffifficientty small \delta\neq 0 , there
exists \epsilon_{0}>0 such that, for each \epsilon\in C with |\epsilon|\leq\epsilon_{0} , (\lambda s+\epsilon\mu s’)_{0} is trans
verse to (\lambda-\delta\mu)_{0} .

(4) If (s’)_{0}\cap(\lambda)_{0} is transverse to (s’)_{0}\cap(\lambda)_{0} in (\lambda)_{0} , then (\lambda s+\epsilon\mu s’)_{0} is
transverse to (\mu s’)_{0} in V\cross P^{1} for suffiffifficientty small \epsilon\neq 0 on (\lambda s+\epsilon\mu s’)_{0}\cap

(\mu s’)_{0}\cap(\lambda)_{0}=(s’)_{0}\cap(s’)_{0}\cap(\lambda)_{0} .

PROOF: (1) Notice that Sing(\lambda s)_{0}=(s)_{0}\cap(\lambda)_{0} and Sing(\mu s’)_{0}=(s’)_{0}\cap(\mu)_{0} .
(\mu s’)_{0} is non-singular near Sing(\lambda s)_{0}\cap(\mu s’)_{0}=(s)_{0}\cap(s’)_{0}\cap(\lambda)_{0} and (\mu s’)_{0} is
transverse to (\lambda s)_{0}-((s)_{0}\cap(\lambda)_{0}) near (s)_{0}\cap(\lambda)_{0} . Thus, we can apply
Lemma 1.11 to \lambda s and \mu s’ as s and s’ respectively

(2) Assume that there exist sequences (\epsilon_{i}) of non-zero complex num-
bers and (\delta_{ij}) of complex numbers and (x_{ij}) of points of V respectively
such that \epsilon_{i}arrow 0 as iarrow\infty , \delta_{ij}arrow 0 as jarrow\infty and that x_{ij} is a singular point of
(\lambda s+\epsilon_{i}\mu s’)_{0}\cap(\lambda-\delta_{ij}\mu)_{0} . Then there exists a sequence (x_{i}) of points in V
such that x_{i} is a singular point of (\lambda s+\epsilon_{i}\mu s’)_{0}\cap(\lambda)_{0}=(s’)_{0}\cap(\lambda)_{0} . This is a
contradiction.

(3) Assume that there exist sequences (\delta_{i}) of non-zero complex num-
bers and (\epsilon_{ij}) of complex numbers and (x_{ij}) of points of V respectively
such that \delta_{i}arrow 0 as iarrow\infty , \epsilon_{ij}arrow 0 as jarrow\infty and that x_{ij} is a singular point of
(\lambda s+\epsilon_{ij}\mu s’)_{0}\cap(\lambda-\delta_{i}\mu)_{0} . Then there exists a sequence (x_{i}) of points in V
such that x_{i} is a singular point of (\lambda s)_{0}\cap(\lambda-\delta_{i}\mu)_{0}=(s)_{0}\cap(\lambda-\delta_{i}\mu)_{0} . Thus
there exists a singular point of (s)_{0}\cap(\lambda)_{0} . This is a contradiction.

(4) is clear because (\lambda s+\epsilon\mu s’)_{0}\cap(\lambda)_{0}=(s’)_{0}\cap(\lambda)_{0} is transverse to (\mu s’)_{0}

\cap(\lambda)_{0}=(s’)_{0}\cap(\lambda)_{0} in (\lambda)_{0}=V\cross\{[0 : 1] \} .
(1.13) Let s , s’\in H^{0}(V\cross P^{1} : L_{j-1}) be transverse sections.

LEMMA. Assume dim V\geq 2 , L is ample and (s’)_{0} is transverse to (\lambda)_{0}

and to (s)_{0} at each point of (s)_{0}\cap(s’)_{0}\cap(\lambda)_{0} . If H_{1}(V:K)\cong H_{1}((s)_{0} ; K)=0

for some fifietd K, then H_{1}((\lambda s+\epsilon\mu s’)_{0} ; K)=0 for suffiffifficientty small \epsilon\neq 0 .

PROOF: Let us denote H_{i}(\tau ; K) by H_{i}(\circ ) , (\lambda s+\epsilon\mu s’)_{0} by A_{\epsilon} and (s)_{0}

by A. Then A_{0}=(\lambda s)_{0}=(s)_{0}\cup(\lambda)_{0} . Denote (s)_{0}\cap(\lambda)_{0} by A’ .
Step 1: Since L is ample, H_{0}(V)\cong H_{0}(A’)\cong K by Lemma 1.10. Using

the homology exact sequence for (A, A’) and the assumption H_{1}(A)=0 ,
we have H_{1}(A_{0})\cong H_{1}(A_{0}, A)\cong H_{1}(A, A’) . Furthermore, using the homology
exact sequence for (A, A’) , we have H_{1}(A, A’)=0 . Hence H_{1}(A_{0})=0 .
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Step 2: Set
M=\{(x, [\lambda:\mu], \epsilon)\in V\cross P^{1}\cross D_{\epsilon_{0}}|(x, [\lambda:\mu])\in A_{\epsilon}\} ,

where D_{\epsilon 0}=\{\epsilon\in C||\epsilon|\leq\epsilon_{0}\} for some \epsilon_{0}>0 . Denote by \varphi:Marrow D_{\epsilon 0} the pr0-

jection.
Take \epsilon_{0} sufficiently small such that A_{0^{=\varphi}}^{-1}(0) is a deformation

retract of M, \varphi:M-A_{0}arrow D_{\epsilon 0} is a fibration with fiber F\cong A_{\epsilon},(\epsilon\in D_{\epsilon_{0}}-0) ,

and that M is an oriented 2(n+1)-dimensional C^{\infty} manifold with boundary
\partial M . This is guaranteed by Lemma 1. 11. Then \partial M is a deformation
retract of M-A_{0} . By Lefshetz duality, H_{2}(M, \partial M)\cong H^{2n}(M)\cong H^{2n}(A_{0})\cong

K. By Step 1, H_{1}(M)\cong H_{1}(A_{0})=0 . Hence H_{1}(\partial M)\cong 0 or K.
Consider the homology exact sequence

0- H_{1}(F)arrow H_{1}(M-A_{0})\varphi_{*}arrow H_{1}(D_{\epsilon_{0}}-0)arrow H_{0}(F)arrow H_{0}*(\iota M-A_{0}) ,

for the fibering \varphi . Since L is ample, L_{j} is also ample, by Lemma 1.9.
Then H_{0}(F)\cong H_{0}(A_{\epsilon})\cong K by Lemma 1. 10. Thus \iota_{*} is injective and \varphi_{*} is
surjective. Therefore H_{1}(M-A_{0})\cong H_{1}(\partial M)\cong K and \varphi_{*} is an isomorphism.
Hence H_{1}(A_{\epsilon})\cong H_{1}(F)=0 for any \epsilon\in D_{\epsilon_{0}}-0 .

(1.14) We also need a result on approximations (Proposition 1.18).

Let L be a very ample holomorphic line bundle on V. Set H=H^{0}(V :
L) and PH=(H-O)/C^{*} . Assume dim PH\geq 1 . Set

\mathscr{F}=\{(x, [s])\in V\cross PH|s(x)=0\} .

LEMMA. \mathscr{F} is non-singular.

PROOF: Since L is very ample, e:Varrow PH^{V} is an embedding (see
1.9).

Pick up the non-singular quadratic hypersurface

Q=\{(I, [s])\in PH^{V}\cross PH|[s]\in I\} .

Then, the projection Qarrow PH^{V} is submersive, and e\cross idPH : V\cross

PHarrow PH^{V}\cross PH is transverse to Q. Thus \mathscr{F}=(e\cross id_{PH})^{-1}Q is non-singu-
lar.

(1.15) Denote by \Phi:Zarrow PH the projection to PH and by C the criti-
cal-locus of \Phi . Set D=\Phi(C)\subset PH and \rho=\Phi|C . Define C’ to be the locus
of points of C, at which \rho is not an immersion, and set

D’= { [s]\in D|[s]\in\rho(C’) or \#\rho^{-1}[s]\geq 2 }.

LEMMA. We have
(1) For (x, [s])\in Z , (x, [s])\in C if and only if x is a singular point of
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the zerO-locus (s)_{0} .
(2) C is non-singular, and dimC=\dim PH-1 .
(3) \rho is an immersion at (x, [s])\in C if and only if x is an ordinary

double point of (s)_{0} .
(4) \dim D’\leq\dim PH-2 .

PROOF. Take (x_{0}, [s_{0}])\in Z .
Let {So,S_{1} , ...,s_{N} } be a basis of H;\dim PH=N , and X_{0} , X_{1} , ..., X_{N} be

the homogeneous coordinates of PH associated to {So,S_{1_{ }}, \ldots ,s_{N} }. We may
assume s_{N}(x_{0})\neq 0 . Take a trivialization of L|U over a neighborhood U of
xo such that s_{N}|U\equiv 1 . Over U_{0}=\{x_{0}\neq 0\}\subset PH , set y_{j}=X_{j}/X_{0} . Then Z\cap U

\cross U_{0} is defined by

-y_{N}=s_{0}+ \sum_{j=1}^{N-1}y_{j}s_{j} ,

and \Phi|(Z\cap U\cross U_{0}) is defined by

y_{j}\circ\Phi=y_{j} , (1\leq j\leq N-1) , -y_{N} \circ\Phi=s_{0}+\sum_{j=1}^{N-1}y_{j}s_{j} .

Set f_{j}=\partial(-y_{N}\circ\Phi)/\partial x_{i},(1\leq i\leq n) , where \{x_{1}, \ldots, x_{n}\} is a system of coor-
dinates at xo , deleting U if necessary. Since f_{i}(x, [s])=(\partial s/\partial x_{i})(x) , for each
(x, [s])\in Z\cap U\cross U_{0} , we have (1).

Since e:Varrow PH^{V} is an immersion, the N\cross n-matrix
((\partial s_{j}/\partial x_{i})(x))_{0\leq j\leq N-1,1\leq i\leq n} is of rank n . Furthermore (\partial f_{i})/(\partial y_{j})=(\partial s_{j})/(\partial x_{i}) ,
(1\leq i\leq n, 1\leq j\leq N-1) , and ((\partial s_{0})/(\partial x_{i}))(x_{0})=0 , (1\leq i\leq n) , if (x_{0}, [s_{0}])\in C\cap

U\cross U_{0} .
Thus f=(f_{1}, \ldots, f_{n}):Z\cap U\cross U_{0}arrow C^{n} is an immersion at each point of

C . Hence C is non-singular and \dim C=\dim Z-n=N-1 . This show (2).
Notice that \rho is an immersion at (x_{0}, [s_{0}])\in C if and only if

(f_{1}, \ldots, f_{n}, y_{1}\circ\Phi, \ldots, y_{N}\circ\Phi)

is an immersion at (x_{0}[s_{0}]) . This condition is equivalent to the n\cross

n-matrix
((\partial^{2}s_{0}/\partial x_{i}\partial x_{k})(x_{0}))_{1\leq i,k\leq n}

is regular, that is, x_{0} is an ordinary double point of (s_{0})_{0} . Thus we have
(3).

For each (x, [s])\in C-C’ . T\rho(T_{(\chi,[S])}C) is identified with the hyper-
plane e(x)=\{[s’]\in PH|s’(x)=0\} . Since e is injective, for any disjoint x , x’
\in V with (x, [s]) , (x’. [s])\in\rho^{-1}[s]-C’ . T\rho(T_{(x,[s])}C) and T\rho(T_{(x’,[s])}C) are
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disjoint, so are transverse. Therefore \{[s]\in D-\rho(C’)|\#\rho^{-1}[s]\geq 2\} is a
proper analytic set of D-\rho(C’) . Hence we have dim D’\leq\dim C-1=N

-2. This shows (4).
(1.16) A hypersurface A\subset V\cross P^{1} is called generic if A is non-singu-

lar and the projection \varphi:Aarrow P^{1} has only non-degenerate critical points.
A holomorphic map a:P^{1}arrow PH , H=H^{0}(V, L) , is called a Lefschetz

family if Z_{a}=(id_{V}\cross a)^{-1}\mathscr{F} is non-singular in V\cross P^{1} and the projection \varphi :
Z_{a}arrow P^{1} has only and at most one non-degenerate critical point in each
fiber, (see 1.(4).

If a is a Lefschetz family, then Z_{a}\subset V\cross P^{1} is generic.

LEMMA. a is a Lefschetz family if and only if a is transverse to D
-D’ and a(P^{1})\cap D’=\emptyset .

PROOF. Notice that Z_{a} is the fiber product of \Phi : \mathscr{F}arrow PH and a :
P^{1}arrow PH . Thus Z_{a} is non-singular if and only if \Phi and a are transverse.
This condition is also equivalent to that \rho and a are transverse. Under
this condition, \varphi has only and at most one non-degenerate critical point in
each fiber if and only if a(P^{1})\cap D’=\emptyset .

(1.17) LEMMA. There exists a proper algebraic subset B’\subset H^{r+1}(=H

\cross\cdots\cross H ( r+1- times) ) such that, for any (s_{0}, \ldots, s_{r})\in H^{r+1}-B’- if \Sigma_{i=0}^{r}

\lambda^{r-ii}\mu s_{i}=0 , then (\lambda, \mu)=(0,0) in C^{2} .

PROOF: Set

B= \{(so, \ldots, s_{r},\cdot[\lambda:\mu])\in H^{r+1}\cross P^{1}|\sum_{i=0}^{r}\lambda r-i\mu s_{i}=0i\} .

Then B is of codimension N+1 in H^{r+1}\cross P^{1} , where N=\dim PH . Set
B’=p(B) , where p:H^{r+1}\cross P^{1}arrow H^{r+1} is the projection. Then B’ is of
codimension N\geq 1 .

(1.18) For an s=(s_{0}, \ldots, s_{r})\in H^{r+1}-B’- define a(s):P^{1}arrow PH by

a(s)([ \lambda:\mu])=[\sum_{i=0}^{r}\lambda r-i\mu s_{i}]i .

PROPOSITION. There exists a proper algebraic subset B’\subset H^{r+1} such
that, for any s\in H^{r+1}-B’ . a(s) is a Lefschetz family (see 1.16).

PROOF: Define \alpha:(H^{r+1}-B’)\cross P^{1}arrow PH by \alpha(s, [\lambda:\mu])=a(s)([\lambda:\mu]) .
Then \alpha is a submersion. We see codim \alpha^{-1}D’\geq 2 and codim \beta\alpha^{-1}D’\geq 1 ,

where \beta:(H^{r+1}-B’)\cross P^{1}arrow H^{r+1}-B’ is the projection.
We pick up R=\alpha^{-1}(D-D’)\subset(H^{r+1}-B’)\cross P^{1} and set
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B’=Zariski closure of (\beta(C(\beta|R))\cup\beta\alpha^{-1}D’)\cup B’

in H^{r+1} . where C(\beta|R) is the critical locus of \beta|R .
To complete the proof of Proposition 1.18, it sufficies to show the

following

LEMMA. a(s) is a Lefschetz family if and only if s\in H^{r+1}-B’ is a
regular value of \beta|R and s does not belong to \beta\alpha^{-1}D’

PROOF: s\in H^{r+1}-B’ is a regular value of \beta|R if and only if, for any
[\lambda: \mu]\in P^{1} . (\alpha, \beta):(H^{r+1}-B’)\cross P^{1}arrow PH\cross(H^{r+1}-B’) is transverse to (D
-D’)\cross\{s\} at (s, [\lambda: \mu]) . This is equivalent to that \alpha|\{s\}\cross P^{1} is transverse
to D-D’ Further, s\not\in\beta\alpha^{-1}(D’) means a(s)(P^{1})\cap D’=\emptyset .

By Lemma 1.16, we have Lemma 1.18. This completes the proof of
Proposition 1.18.

2. Preliminary: Real geometry

(2.1) A real structure on a complex manifold V is an anti-holomorphic
involution \tau:Varrow V The pair ( V. \tau) is called a real complex manifold.
Two real complex manifolds ( Vr \tau) , ( V’\tau’) are called isomomphic if
there is an isomorphism \sigma:Varrow V’ of complex manifolds satisfying \sigma\circ\tau=

\tau’\circ\sigma(cf. [S]) .
(2.2) Let ( V. \tau ) be a real complex manifold. We denote by V_{R} or

RV the space V^{\tau} of fixed points of \tau in V. and call it the real locus of
V(with respect to \tau). Then V_{R} is a real analytic submanifold of V and
\dim_{R}V_{R}=\dim c V. provided V_{R}\neq\emptyset .

DEFINITION: A real complex manifold ( V, \tau) is called an M-manifold
if P_{1}(V_{R} ; Z/2)=P_{1}(V;Z/2)(cf. [G1]). An M-manifold ( V. \tau) of dimension
1 (resp. 2) is called an M- curve (resp. an M-su?face).

(2.3) Here we give some fundamental examples.

EXAMPLE: (1) The number of equivalence classes of real structures on
P^{n} is one if n is even and two if n is odd. (See [F], p. 240.)

The anti-holomorphic involution \tau’ : P^{2m+1_{-}}P^{2m+1}d\underline{efifined}b\underline{y}\tau’[X_{0} :
X_{1} :... : X_{2i} : X_{2i+1} :... : X_{2m} : X_{2m+1} ] =[-\overline{X_{1}} : \overline{X_{0}} :... : - X_{2i+1} : X_{2i} :... :
-\overline{X_{2m+1}}:\overline{X_{2m}}] gives the structure not equivalent to the usual structure
defined by the complex conjugation (P^{2m+1}-\tau_{2m+1}) . We often write P_{0}^{2m+1}=

(P^{2m+1}. \tau’) and P_{1}^{2m+1}=(P^{2m+1}. \tau_{2m+1}) .
Then P^{2m} and P_{1}^{2m+1} are M-manifolds, but P_{0}^{2m+1} is not an M-mani-

odd.
(2) Let \{\lambda F+\mu G|[\lambda: \mu]\in P_{1}^{1}\} be a pencil of real plane cirves in P^{2} of
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degree d . (This corresponds to the case r=1 in Theorem 0.1.) Then A=
(\lambda F+\mu G)_{0}\subset P^{2}\cross P_{1}^{1} is non-singular if and only if (F)_{0} and (G)_{0} intersect
transversely in P^{2} . If A is non-singular, then A is diffeomorphic to

P^{2}\#(-P^{2})\#\cdots\#(-P^{2}) ,
–

d^{2}-times

where - P^{2} means P^{2} with the reverse orientation. In this case, if (F)_{0}

and (G)_{0} intersect in k-points in RP^{2} , (0\leq k\leq d^{2}, k\equiv d, mod. 2) , then RA
is diffeomorphic to \#_{1+k}RP^{2} . Hence, A is an M-surface, that is, P_{1}(RA :
Z/2)=3+d^{2} if and only if k=d^{2} .

(2.4) From properties of Poincar\’e series, we easily see

LEMMA. Let ( V, \tau) , ( V’, \tau’) be M-manifolds. Then ( V Ll V’ , \tau\coprod\tau’ )
and ( V\cross V’-\tau\cross\tau’) are also M-manifolds.

Example. P_{1}^{1}\cross P_{1}^{1} , P^{2}\cross P_{1}^{1} and P_{1}^{1}\cross P_{1}^{1}\cross P_{1}^{1} are all M-manifolds.
(2.5) We need the following

LEMMA. Let ( V, \tau) be a connected compact M-surface. Then the
followings are equivalent :

(1) \chi(V)+\chi(V_{R})=4 .
(2) H_{2}(V;Z/2)\cong H_{1}(V_{R} ; Z/2) .
(3) H_{1}(V;Z/2)=0 and H_{0}(V_{R} ; Z/2)\cong Z/2 .

PROOF : First remark that V_{R}\neq\emptyset .
Set b_{i}=\dim_{Z/2}H_{i}(V;Z/2) and b_{i}’=\dim_{Z/2}H_{i}(V_{R},\cdot Z/2) . Then, by the

Poincar\’e duality,

\chi(V)=1-b_{1}+b_{2}-b_{3}+1=4+2b_{2}-P_{1}(V, Z/2)=P_{1}(V. Z/2)-4b_{1} ,
\chi(V_{R})=b_{\acute{0}}-b_{\acute{1}}+b_{\acute{2}}=P_{1}(V_{R}, Z/2)-2b_{\acute{2}}=4b_{\acute{0}}-P_{1}(V_{R}, Z/2) .

Since V is an M-surface, P_{1}(V_{R}, Z/2)=P_{1}(V, Z/2) . Therefore
\chi(V)+\chi(V_{R})=4+2(b_{2}-b_{\acute{2}})=4(b_{1}+b_{\acute{0}}) .

Hence (1), (2) and (3) are equivalent in each other.
(2.6) Let \pi:Earrow V be a holomorphic vector bundle over a real com-

plex manifold ( V. \tau). A real structure of \pi is a real structure T:Earrow E

of E as a complex manifold (see (2.1)) such that \pi\circ T=\tau^{\circ}\pi and that the
ristriction T_{x} : E_{x}arrow E_{\tau(x)} to each fiber (x\in V) is anti-linear.

We call the triple E= ( \pi : T. \tau) a real holomorphic vector bundle.
(See [A]).

For example, \mathscr{O}_{P^{n}}(r)=\mathscr{O}_{P^{n}}(1)^{r} is a real holomorphic line bundle over
(P^{n}. \tau_{n}) , where \mathscr{O}P^{n(1)} is the tautological line bundle over P^{n} .



68 G. Ishikawa

Notice that the restriction \pi_{R} : E_{R}arrow V_{R} to the real locus of \pi is an
usual real vector bundle.

A holomorphic section s\in H^{0}(V. E) of E is called a real section if T
\circ s^{\circ}\tau^{-1}=s , that is, s\in H^{0}(V, E)_{R} with respect to the anti-linear involution
of H^{0}(V. E) defined by sarrow T\circ s^{\circ}\tau^{-1} .

For example, H^{0}(P^{n}, \mathscr{O}_{P^{n}}(d))_{R} is identified with the space of real
homogeneous polynomials of (n+1)-variables of degree d .

(2.7) Our main object to construct is a real transverse section s of
which zer0-locus (s)_{0} has topologically extremal properties.

DEFINITION: A holomorphic section s of real holomorphic vector bun-
dle over a real complex manifold ( V, \tau) is an M-section if s is transverse
and real, and the zer0-locus (s)_{0}\subset V togather with the real structure
\tau|(s)_{0} is an M manifold.

(2.8) Discussions in (1.11)-(1.18) can be applied in the situation that
V is a real complex manifold and L is a real holomorphic line bundle.

For instance, B’ in Proposition 1.18 can be taken invariant under the
complex conjugation. Thus we have

PROPOSITION. There exists a proper algebraic subset B\subset H_{R}^{r+1} such
that, for any s\in H_{R}^{r+1}-B , a(s):P^{1}arrow PH is a Lefshetz family, and a(s) is
equivariant under the complex conjugations of P^{1} and PH respectively.

(2.9) Let V be a real complex manifold of dimension n(see2.1) , and
C\subset V be a real hypersurface possibly with singularities. A non-singular
component E of C_{R}\subset V_{R} is called an oval (resp. an empty oval) if there
exists a C^{\infty} embedding i:D^{n}arrow V_{R} of an n-dimension ball D^{n} such that
i(\partial D^{n})=E(and that i(intD^{n})\cap C_{R} is empty). In any case, i(intD^{n}) is
called the interior of E.

We apply this definition also to a component of a subset in a C^{\infty}

manifold.
(2.10) Let W be a compact C^{\infty}-manifold of dimension n possibly with

boundary \partial W . Denote by y the coordinate function of R. Let f : W\cross

Rarrow R be a C^{\infty}-function and i:D^{n}arrow W-\partial W\cross 0 be a C^{\infty}-embedding
Assume that i(\partial D^{n})\subset f^{-1}(0)\cap W\cross 0 , f^{-1}(0) and W\cross 0 are transverse

along i(\partial D^{n}) and that f<0 in i(int D^{n}) .
Let g be a positive C^{\infty} function in a neighborhood of i(D^{n}) in W\cross R .

LEMMA. For any \epsilon_{0} and \delta with 0<\delta_{0}\ll\epsilon_{0}\ll 1 , the hypersu\uparrow face A in
W\cross R defifined by y(y+\epsilon_{0}f)+\delta_{0}g=0 has an empty oval in a neighborhood
of i(D^{n}) in W\cross R.
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PROOF: The hypersurface y+\epsilon f=0 is non-singular for sufficiently
small \epsilon on each compact subset of W\cross R .

Let us consider the equation y+\epsilon f(i(x), y)=0 , for (x, y, \epsilon)\in D^{n}\cross R\cross

R. Then, by the implicite function theorem, there exsists a unique C^{\infty}

map-germ \varphi:(D^{n}\cross R, D^{n}\cross 0)arrow R such that \varphi(x, \epsilon)+\epsilon f(i(x), \varphi(x, \epsilon))=0 as
germ at D^{n}\cross 0 in D^{n}\cross R and that \varphi(x, 0)=0 for any x\in D^{n} . We see, for
some \epsilon_{0}>0 , \varphi(x, \epsilon)=0 , (x\in\partial D^{n}. \epsilon\in[-\epsilon_{0}, \epsilon_{0}]) , and (\partial\varphi/\partial\epsilon)(x, \epsilon)>0 , (x\in int

D^{n} . \epsilon\in[0, \epsilon_{0}]) .
Define by \alpha:D^{n}\cross[0, \epsilon_{0}]arrow W\cross R by \alpha(x, \epsilon)=(i(x), \varphi(x, \epsilon)) . Then \alpha is

a local diffeomorphism of (int D^{n} ) \cross[0, \epsilon_{0}] . Since \varphi(x, \epsilon) is an increasing
function with respect to \epsilon , we see \alpha is diffeomorphism of (int D^{n} ) \cross[0, \epsilon_{0}]

onto the image.
We can take \epsilon_{0} sufficiently small such that g is defined and positive

on \alpha(D^{n}\cross[0, \epsilon_{0}]) .
Define \delta:\alpha(D^{n}\cross[0, \epsilon_{0}])arrow R by \delta=y(y+\epsilon_{0}f)/(-g) . Then

\alpha^{*}\delta(x, \epsilon)=\epsilon(\epsilon_{0}-\epsilon)\cdot\alpha^{*}(f^{2}/g)(x, \epsilon) .

Thus \alpha^{*}\delta(x, \epsilon)=0 if and only if (x, \epsilon)\in\partial(D^{n}\cross[0, \epsilon_{0}]) . Furthermore
\alpha^{*}\delta>0 in int(D^{n}\cross[0, \epsilon]) . Then, for sufficiently small \delta_{0}>0 , there exist a
diffeomorphism \{\alpha^{*}\delta\geq\delta_{0}\}\cong D^{n+1} . Set

E=\{y(y+\epsilon_{0}f)+\delta_{0}g=0\}\cap\alpha(D^{n}\cross[0, \epsilon_{0}]) .

Then E\cong\{\alpha^{*}\delta=\delta_{0}\}\cong\partial D^{n+1} and E is an empty oval.

REMARK: (1) In the proof of Lemma 2.10, the mapping \beta : D^{n}arrow W

\cross R defind by \beta(x)=\alpha(x, \epsilon_{0}) , (x\in D^{n}) , is an embedding.
(2) We apply Lemma 2.10 to study a manifold of type \lambda(\lambda s+\epsilon_{0}\mu s’)

+\delta_{0\mu}^{2}s’=0 in the proof of Theorem 0.3 in \S 3. On a domain where s\neq 0 ,
\mu\neq 0 , set y=\lambda/\mu , f=s’/s and g=s’/s . Then the equation is reduced to
y(y+\epsilon_{0}f)+\delta_{0}g=0 , which is treated in Lemma 2.10.

(3) This Lemma is also utilized implicitely in \S 4, in the case n=2.
(2.11) Now, we recall the Poincar\’e-Hopf-Pugh formula.
Let M be a compact C^{\infty} manifold of dimension n with boundary \partial M .
A tangent vector \xi to M at a point xO of M is external if df_{x_{0}}(\xi) is

positive for some C^{\infty} function f defined in a neighborhood U of xO such
that f^{-1}(0)=\partial M\cap U , f takes negative values in (M-\partial M)\cap U and df|\partial M

\cap U does not vanish.
Let v:\partial M-arrow TM|\partial M be a C^{\infty} section over \partial M to the tangent bundle

TM .
Assume that (a): for each x_{0}\in\partial M , v(x_{0})\neq 0 .
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First set M_{0}=M . Next set
M_{1}’= {x\in\partial M|v(x) is external},

and set M_{1}=\overline{M_{1}’} , and \partial M_{1}=M_{1}-M_{\acute{1}} .
Inductively, if M_{k} is a C^{\infty} manifold with boundary \partial M_{k} , (k\geq 0) , then

set

M_{k+1}’= {x\in\partial M_{k}|v(x) is external w. r . t . M_{k} },
M_{k+1}=M_{k+1}’ and \partial M_{k+1}=M_{k+1}-M_{k+1}’ .

Assume that (b): M_{k} is a C^{\infty} manifold with boundary \partial M_{k} , ( k=1,2 , \ldots , n
-1) .

LEMMA ([P]). Let v satisfy two assumptions (a), (b) stated in above.
Then for any C^{\infty} extension w:Marrow TM with isolated singularities, we have

(c): indw = \sum_{i=0}^{n}(-1)^{i}\chi(M_{i}) .

REMARK: (0) We adopt the following definition of index of a vector
field: Let x_{0}\in M be an isolated singular point of w . Take a system of
coordinates x_{1} , \ldots , x_{n} centered at xo , and write locally

w(x)=a_{1}(x)(\partial/\partial x_{1})+\cdots+a_{n}(x)(\partial/\partial x_{n}) .

Then define ind_{x_{0}}w=\deg_{0}(-a) , where a=(a_{1_{ }},\ldots,a_{n}) , and set ind w=
\sum ind_{x_{0}}w , where the sum runs over isolated singular points xo of w .

(1) If \partial M is empty, then (c) is the Poincar\’e-Hopf formula.
(2) For a C^{\infty} vector field w over M with only isolated singular points,

there exists a non-negative C^{\infty} function f:Uarrow R on a collar of (M, \partial M)

with the following properties: ( i) f^{-1}(0)=\partial M . ( ii) For any sufficiently
small \epsilon>0 , w|f^{-1}(\epsilon) satisfies two assumptions (a), (b).

(2.12) Let W be a compact C^{\infty} manifold with boundary, W’ be a
compact submanifold of codimension 1 of W with \partial W’=\partial W\cap W’ and
W’ be a compact submanifold of codimension 1 of W’ with \partial W’=\partial W’\cap

W’
A compact C^{\infty} manifold \tilde{W} with boundary is called a modification of

W along ( W’. W’) if \tilde{W} is constructed as follows: First, consider the dis-
joint union of closures of connected components of W-W’ Second,
attach a [0, 1]-bundle over a tubular neighborhood U of W’ in W’
Third, make its corner smooth.

Then, remark that \chi(\tilde{W})=\chi(W)+\chi(W’)-\chi(W’) .
(2.13) In the situation of (1.12), further assume V and L are real
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and s , s’\in H^{0}(V\cross P_{1}^{1} ; L_{j-1})_{R} . Identify V with (\lambda)_{0}=V\cross\{[0:1]\} .

LEMMA. Assume that (s)_{0} is transverse to V and that (s)_{0} , (s’)_{0} and
V are in general position along V\cap(s)_{0}\cap(s’)_{0} . For real numbers \delta_{0} and

\epsilon_{0} with 0\leq|\epsilon_{0}|\ll\delta_{0}\ll 1 , set \tilde{V}_{R}=(\lambda s+\epsilon_{0}\mu s’)_{0}\cap V_{R}\cross[-\delta_{0}, \delta_{0}] , wAere [-\delta_{0} ,
\delta_{0}]=\{[\lambda : _{\mu}]\in RP_{1}^{1}|-\delta\leq\lambda/\mu\leq\delta_{0}\} . Then \tilde{V}_{R} is diffeomorphic to a

modifification of V_{R} along ( V_{R}\cap(s)_{0}, V_{R}\cap(s)_{0}\cap(s’)_{0}) .

PROOF: Since (s)_{0} is transverse to V_{R} , R(\lambda s)_{0} is transverse to R(\lambda

\pm\delta_{0}\mu)_{0} for a sufficiently small \delta>0 . Therefore R(\lambda s+\epsilon_{0}\mu s’)_{0} is trans-
verse to R(\lambda\pm\delta_{0}\mu)_{0} for a sufficiently small \epsilon_{0} relatively to \delta_{0} , and then,

\tilde{V}_{R} is a C^{\infty} manifold of dimension n with boundary.
Set y=\lambda/\mu on V_{R}\cross[-\delta_{0}, \delta_{0}] . Then \tilde{V}_{R} is defined by ys+\epsilon_{0}s’=0 .
Take a point p\in V_{R}\subset V_{R}\cross[-\delta_{0}, \delta_{0}] . There are three cases: ( i) p\in

V_{R}\cap(s)_{0}\cap(s’)_{0} , ( ii)p\in V_{R}\cap(s)_{0}-(s’)_{0} and (iii) p\in V_{R}-(s)_{0}\cup(s’)_{0} .
In the case ( i ) , (resp. ( ii )), since V_{R} , R(s)_{0} and R(s’)_{0} are in general

point at p, (resp. V_{R} and R(s)_{0} are transversal at p), there is a system of
local coordinates y;x_{1} , \ldots , x_{n} of V_{R}\cross RP_{1}^{1} centered at p such that s=x_{1} ,
s’=x_{2} , (resp. S/s’=x_{1} ), with respect to a local trivization of L and \mathscr{O}_{P^{1}}(1) .
Then, locally, \tilde{V}_{R} is defined by yx_{1}+\epsilon_{0}x_{2}=0 , (resp. yx_{1}+\epsilon_{0}=0). Take a
small ball B with center p in V_{R} and set

W=V_{R}\cap B , W’=(s)_{0}\cap W . W’=(s’)_{0}\cap W’

Then \tilde{V}_{R}\cap B\cross[-\delta_{0}, \delta_{0}] is diffeomorphic to a modification of W

along ( W’-W’) , (resp. ( W’, \emptyset )).
In the case (iii), the projection maps \tilde{V}_{R}\cap B\cross[-\delta_{0}, \delta_{0}] to V_{R}\cap B

diffeomorphically. By the compactness of V_{R} , we can glue togather the
above diffeomorphisms, and we have required result.

(2.14) Disjoint points p_{1} , \ldots , p_{m} , considered with order, of a
(topological) circle are called cyclic if m\leq 2 or, for each i , (1\leq i\leq m) , an
arc from p_{i} to p_{i+1} does not contain other points than p_{i} , p_{i+1} .

Disjoint non-void sets P_{1} , \ldots , P_{m} of a circle are called cyclic if, for any
choice of p_{i}\in P_{i} , (1 \leq i\leq m) , p_{1} , \ldots , p_{m} are cyclic.

3. Non-linear systems of real sections

In the situation of Theorem 0.3, set Z=(s_{r})_{0} . Then Z\cong(s_{i})_{0} , (0\leq i\leq r) ,

by (0. 1). Set

s^{(j)}= \sum_{i=0}^{j}\epsilon_{i}s_{i}\lambda^{j-ii}\mu and A^{(j)}=(s^{(j)})_{0}\subset S\cross P_{1}^{1} ,

(0\leq i\leq r) . Then s^{(0)}=s_{0} . If we set s=s^{(j-1)} and s’=\mu^{j-1}s_{j} , then s , s’\in
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H^{0}(S, L_{j-1})_{R} and s^{(j)}=\lambda s+\epsilon_{j}\mu s’ , (1 \leq j\leq r) .
Using Lemma 1.12 iteratively, we can choose \epsilon_{i} , (1\leq i\leq r) , such that

each A^{(j)} is non-singular, and any critical points of \varphi^{(j)}=\phi|A^{(j\rangle} are not
on S\cross D_{\delta j} for some \delta_{j}>0 , (0\leq j\leq r) , where D_{8_{j}}=\{[\lambda : \mu]\in P^{1}||\lambda/\mu|\leq\delta_{j}\} ,
Furthermore, by Propositions 1.18 and 2.8, A^{(j)} , (0\leq j\leq r) , is generic in
the sense of (1.16), perturbing So, ..., Sr in H^{0}(S, L)_{R} if necessary. By
Remark 0.4.4, the condition (^{*}) does not change by a small perturbation.

Fix an orientation of RP^{1}\cong S^{1} . Then denote by \gamma_{l}^{(j)} the number of
real critical points of \varphi^{(j)}=\phi|A^{(j)} of index i , by t_{\iota}^{(j)} the dimension of
H_{i}(A\S^{j)} ; Z/2) over Z/2 and by e^{(j)} the number of empty ovals of A_{R}^{(j)} , (i=
1,2,3,\cdot 0\leq j\leq r) .

Identify H^{4}(S;Z) with Z by the fundamental class [S] of S .
By Lemmata 1.2 and 1.10, the genus g=g(Z) is equal to

1+(1/2)(c_{1}(L)^{2}-c_{1}(L)c_{1}(TS)) .

Consider the following inequality and equalities:

(A_{j}’) : \gamma f^{j)}\geq j(c_{1}(L)^{2}+2g-\chi(S_{R})) . (A_{j}) : \Lambda^{j\rangle}=j(c_{1}(L)^{2}+2g-\chi(S_{R})) .
(B_{j}’) : \gamma 6^{j)}+\gamma 4^{j)}\geq 2jg . (B_{j}) : \gamma b^{j)}+\gamma 4^{j)}=2jg .
(C_{j}) : s(\varphi_{R}^{(j)})=s(\varphi^{(j)}) . (D_{j}) : H_{1}(A^{(j)} ; Z/2)=0 .
(E_{j}’) : e^{(j)}\geq(j-1)g . (E_{j}) : e^{(j)}=(j-1)g .
(F_{j}’) : t_{0}^{(j)}+t_{2}^{(j)}\geq 2(j-1)g+2 . (F_{j}) : t_{0}^{(j)}+t_{2}^{(j)}=2(j-1)g+2 .
(HT_{j}):P_{1}(A_{R}^{(j)} ; Z/2)=P_{1}(A^{(j)} : Z/2) .

Clearly, we have (A_{0}) , (B_{0}) , ( C_{0}) , (D_{0}) and (HT_{0}) .
Further, we have the following implications:

LEMMA 3. 1.
(1) (A_{j}’)\ (B_{j}’)\Rightarrow(A_{j})\ (B_{j})\ (C_{j}) , (0\leq j\leq r) .
(2) (A_{j})\ (B_{j})\ (D_{j})\ (F_{j}’)\Rightarrow(F_{j})ae(HT_{j}) , (1 \leq j\leq r) .
(3) (E_{j}’)\ (F_{j})\Rightarrow(E_{j}) , (1\leq j\leq r) .
(4) (E_{j}’)\Rightarrow(F_{j}’) , (1\leq j\leq r) .

PROOF: (1): By (A_{j}’) and (B_{j}’) , we have
s(\varphi_{R}^{(j)})=\gamma A^{j)}+\gamma f^{j)}+\gamma 4^{j)}

\geq j(3c_{1}(L)^{2}-2c_{1}(L)c_{1}(TS)+4-\chi(S_{R})) .

By Lemma 2.5, we have 4-\chi(S_{R})=\chi(S)=c_{2}(TS) . Thus, by (1. 5),
the right hand side is equal to s(\varphi^{(j)}) . Since s(\varphi_{R}^{(j)})\leq s(\varphi^{(j)}) , we have ( C_{j}) ,
and therefore (A_{j}) and (B_{j}) at the same time.

(2) : By (A_{j}) , (B_{j}) and Lemma 2. 5, we see
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\chi(A_{R}^{(j)})=\gamma b^{j)}-\gamma f^{j)}+\gamma 4^{j)}

=j(-c_{1}(L)^{2}-c_{2}(TS)+4) .

Therefore, by (F_{j}’) , we have

P_{1}(A_{R}^{(j)} ; Z/2)=t_{0}^{(j)}+t_{1}^{(j)}+t_{2}^{(j)}

=2(t_{0}^{(j)}+t_{2}^{(j)})-\chi(A_{R}^{(j)})

\geq(3j-2)c_{1}(L)^{2}-(2j-2)c_{1}(L)c_{1}( TS)+jc_{2}(TS) .

By (1.3), the right hand side is equal to \chi(A^{(j)}) . By (D_{j}) and the
Poincar\’e duality, we see \chi(A^{(j)})=P_{1}(A^{(j)} ; Z/2) , (see (1.8)). On the other
hand, by Harnack-Thom’s inequality ([G1], [T]), P_{1}(A_{R}^{(j)} ; Z/2)\leq P_{1}(A^{(j)} ; Z/

2) , we have (HT_{j}) , and therefore (F_{j}) at the same time.
(3)\ (4) : If A_{R}^{(j)} has e^{(j)} empty ovals (and necessarily at least one

other components), we have
t_{0}^{(j)}+t_{2}^{(j)}\geq 2e^{(j)}+2 .

Therefore, (F_{j}) implies e^{(j)}\leq(j-1)g . Hence (E_{j}’)\ (F_{j}) implies (E_{j}) .
On the other hand, (E_{j}’) implies (F_{j}’) .

PROOF OF THEOREM 0. 3: To prove Theorem 0.3, that is, to show
(C_{r}) , (E_{r}) and (HT_{r}) , it is sufficient to show (A_{j}’) , (B_{j}’) , (D_{j}) and (E_{j}’) , (1
\leq j\leq r) , by Lemma 3. 1.

First we show (A_{j}’) and (B_{j}’) by the induction on j .
We consider the gradient of \varphi_{R} . Precisely, let w:A_{R}^{(j)}-arrow Hom(TA_{R}^{(j)} ,

TRP^{1}) be the section defined by w(x)=T_{x}\varphi_{R} , x\in A_{R}^{(j)} . By an identification

Hom(TA_{R}^{(j)}, TRP^{1})\cong T^{*}A_{R}^{(j)}\cong TA_{R}^{(j)} ,

we regard w as a vector field over A_{R}^{(j)} .
We see w does not tangent to A_{R}^{(j)}\cap S_{R}\cross\{p\} , for p=[0:1] , [1: \pm\delta_{j-1}] .

Set \tilde{N}=A(j)R\cap S_{R}\cross[-\delta_{j-1}, \delta_{j-1}] , where [-\delta_{j-1}, \delta_{j-1}]=\{[\lambda : \mu]\in RP^{1}|

-\delta_{j-1}\leq\lambda/\mu\leq\delta_{j-1}\} . Then by Lemma 2.13, \tilde{N} is diffeomorphic to a
modification of S_{R} along (S_{R}\cap(s)_{0}, S_{R}\cap(s)_{0}\cap(s’)_{0})=(R(s_{j-1})_{0}, R(s_{j-1})_{0}\cap

R(s_{j})_{0}) . Especially, \tilde{N} has disk components D_{1}’ , \ldots , D_{\acute{g}} corresponding to g
empty ovals of R(s_{j-1})_{0} .

Denote by D_{1} , \ldots , D_{g} the interiors of g-empty ovals of R(s_{j})_{0} in S_{R} .
Then, by Remark 2.10.1, there are open disk domains \tilde{D}_{1} , \ldots , \tilde{D}_{g} on \tilde{N}

corresponding to D_{1} , \ldots , D_{g} such that \tilde{D}_{i} and D_{i} have common boundary
(1\leq i\leq g) .

Set N= \tilde{N}-\bigcup_{l}^{q_{=1}}D_{\acute{i}}-\bigcup_{i=1}^{g}\tilde{D}_{i} . Then
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\chi(N)=\chi(\overline{N})-2g=\chi(S_{R})-c_{1}(L)^{2}-2g .

Since w is not tangent to \partial N , we see, by Lemma 2.11, ind w|N=\chi(N) .
Thus, there exist at least indw critical points of \varphi_{R}^{(j)} of index 1 on N.
Therefore, we have

\gamma_{1}^{(j)}-\gamma\{^{j-1)}\geq- indw
=c_{1}(L)^{2}+2g-\chi(S_{R}) .

On the other hald, there exist at least 2g critical points of \varphi_{R}^{(j)} of
index 0 or 2 on 2g-disks \tilde{N}-N . Therefore, we have

\gamma 6^{j)}+\gamma 4^{j)}-(\gamma b^{j-1)}+\gamma 4^{j-1)})\geq 2g .

Thus (A_{j-1}’) implies (A_{j}’) and (B_{j-1}’) implies (B_{j}’) .
Next we show (E_{j}’) . Since (E_{1}’) is clear, let j\geq 2 . Now set s=s^{(j-2)} ,

s’=\mu^{j-2}s_{j-1} and s’=\mu^{(j-2)}s_{j} . Then we have
s^{(j)}=\lambda(\lambda s+\epsilon_{j-1}\mu s’)+\epsilon_{j}\mu^{2}s’

Set y=\lambda/\mu , f=s’/s and g=s’/s in S\cross D_{\delta_{J-1}}-(\mu)_{0}\cup(s^{(j-2)})_{0} . Then A^{(j)} is
defined by y(y+\epsilon_{j-1}f)+\epsilon_{j}g=0 , (see Remark 2.10.2). Notice that (s^{(j-2)})_{0}

restricted to S equals to (s_{j-2})_{0} . On S_{R}-(s_{j-2})_{0} , we have fg=s_{j-1}s_{j}/s_{j-2}^{2} .
By Lemma 2.10 and (^{*}iii) , if we choose the sign of \epsilon_{j} , then (s^{(j)})_{0} has
g-empty ovals in S_{R}\cross[-\delta_{j-1}, \delta_{j-1}] . Therefore we see

e^{(j)}-e^{(j-1)}\geq g ,

(2\leq j\leq r) .
Thus we see (E_{j-1}’) implies (E_{j}’) .
Lastly, to see (D_{j}) , we remark that, by the assumption, H_{1}(S;Z/2)=

0 and therefore, by Lemma 1.13, (D_{j-1}) implies (D_{j}) .
Q. E. D.

4. Construction of M-curves in a surface

Let S be a compact real complex surface, K be a real holomorphic line
bundle and s be a real transverse section of K with zer0-locus C=(s)_{0} .

Consider the following condition (^{**}) :
(^{**}i):C\cong P_{1}^{1} and C^{2}=\langle c_{1}(K)^{2}, [S]\rangle>0 ,
(^{**}ii) : For any effective divisor \alpha on C of degree C^{2} with support in

C_{R} , there exists a real section s’ of K such that (s’)_{0}|C=\alpha .

PROPOSITION 4. 0. Let (S, K, s) satisfy the condition (^{**}) . Then, for
any positive integer d and for any non-negative integer r, there exist a
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system of M-section So, s_{1} , \ldots , Sr near s^{d} in H^{0}(S, K^{d})_{R} satisfying the con-
dition (^{*}) of Theorem 0. 3.

EXAMPLE 4. 1: (1) Set S=P^{2} and K=\mathscr{O}_{P^{2}}(1) . Let s be a real trans-
verse section of K. Then (^{**}) is satisfied. The construcion of an M-sec-
tion of K^{d}=\mathscr{O}_{P^{2}}(d) is just the Harnack’s one ([H], [G1]).

(2) Set S=P^{2} and K=\mathscr{O}_{P^{2}}(2) . Let C=(s)_{0} be a real ellipse. Then
(^{**}) is verified and Proposition 4.0 is reduced to Hilbert’s construction
([G1]).

(3) Let S\subset P^{3} be a real hyperboloid, that is, the image of P^{1}\cross P^{1} by
the Segre embedding. Set K=\beta P^{3(1)|S} and take a real hyperplane sec-
tion C on S. Then (^{**}) is satisfied. Especially, there exists an M-sec-
tion in H^{0}(S, K^{d})_{R} , for each d>0 ([G2]).

PROOF OF PROPOSITION 4. 0: By (^{**}i) and Lemma 1.2, we have

c_{1}(TS)c_{1}(K)-c_{1}(K)^{2}=2 .

Let Z\subset S be the zer0-locus of a transverse section of K^{d} . Then Z is
connected. In fact, by (^{**}ii) , there is a section s’=s\cdot s^{(2)}\cdots s^{(d)} of K^{d} such
that C^{(i)}=(s^{(i)})_{0}\cong P^{1} and C^{(i)} intersects to C=(s)_{0} transversely, (2\leq i\leq

d) . Then there exists a transverse section s^{rr} of K^{d} . which is a perturba-
tion of s’- and (s^{rr})_{0} is connected, (cf. (1.0)).

The genus g of Z equals to

1+(1/2)(c_{1}(K^{d})^{2}-c_{1}(K^{d})c_{1}(TS))=(1/2)d(d-1)C^{2}-(d-1) .

Remark that a real transverse section of K^{d} is an M-section if and
only if R(s)_{0} has 1+g connected components.

Set k=C^{2}>0 .
Take a sequence (P_{i,j}^{l})_{1\leq j\leq i\leq d,0\leq l\leq r} of disjoint k-points on C_{R} such that

P_{1,1}^{0} , P_{2,1}^{0} , P_{2,2}^{0} , P_{3,1}^{0} , P_{3,2}^{0} , \ldots , P_{d,1}^{0} , \ldots , P_{d,d}^{0} , P_{1,1}^{1} , \ldots , P_{d,d}^{1} , P_{1,1}^{2} , P_{1,1}^{r} , \ldots , P_{d,d}^{r}

are cyclic in the sence of (2.14).
By (^{**}ii) , for each i , j , l with 1\leq j\leq i\leq d,0\leq l\leq r , there exists s(i, j ,

l)\in H^{0}(S, K)_{R} such that (s(i, j, l))_{0}\cap C_{R}=P_{i,j}^{1} .
Set

u(1,l)=s+\epsilon_{1,1}s(1,1, l)\in H^{0}(S, K)_{R} ,

\epsilon_{1,1}\in R-O,0\leq l\leq r , and set inductively,

u(i, l)=u(i-1, l) \cdot s+\epsilon_{i,1}\prod_{j=1}^{i}s(i, j, l)\in H^{0}(S, K^{i})_{R} ,
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\epsilon_{i,\ell}\in R-0,2\leq i\leq d,0\leq l\leq r . If we choose the sign of \epsilon_{i,1} and take \epsilon_{i,1}

sufficiently small relatively to \epsilon_{i-1,l} and \epsilon_{d,1-1} , (1\leq i\leq d,0\leq l\leq r,\epsilon_{0,l}=\epsilon_{i,0}=

1) , then, we have, for each i, l,

(i) u(i, l) is a transverse section.
(ii) R(u(i, l))_{0} has 1+g_{i} connected components, where g_{i}=\Sigma_{j=2}^{i}\{(j

-1)k-1\} , and g_{i} empty ovals, on the union of interiors of which u(i, l)/s^{i}

has a constant sign.
We have, for (i, l)\neq(i’. l’) ,
(iii) R(u(i, l))_{0} and R(u(i_{}’l’))_{0} intersect transversely in ii’ k points

in S_{R} .
(iv) R(u(i, l)u(i’, l’))_{0} has g_{i}+g_{i’} empty ovals.
(v) On the union of interiors of empty ovals appearing in R(u(i, l))_{0} ,

u(i, l)/u(i’. l’) takes a constant sign.
Further, we have, for disjoint (i, l) , (i’. l’) and (i’, l’) ,
(vi) The ratio u(i, l)u(i’. l’)/u(i^{rr}. l’)^{2} takes a constant sign on the

union of interiors of empty ovals in R(u(i, l))_{0} .
Now, set s_{1}=u(d, l) , (0\leq l\leq r) . Then So, ..., Sr satisfy the condition

(^{*}) .
Q. E. D.

Next, we proceed to another situation: Let S be a compact real com-
plex surface, K and J be real holomorphic line bundles and s and t be
real transverse sections of K and J with zer0-loci C=(s)_{0} and D=(t)_{0}

respectively.
Consider the following condition (^{***}) :
(^{***}0)\dim cH^{0}(S, K)\geq 2 .
(^{***}i)C\cong P_{1}^{1} , D\cong P_{1}^{1} , and CD=\langle c_{1}(K)c_{1}(J), [S]\rangle=1 .
(^{***}ii) For any point p\in C_{R} , there exists a real section t’ of J such

that (t’)_{0}\cap C=\{p\} .

PROPOSITION 4. 2. Let (S, K, J, C, D) satisfy the condition (^{**_{*}*}) .
Then, for any positive integers d and e, and, for any non-negative integer
r, there exists a system of M-sections So, s_{1} , \ldots , Sr in H^{0}(S, K^{d}J^{e})_{R} satisfying
the condition (^{*}) of Theorem 0. 3.

EXAMPLE 4. 3: (1) Set S=P_{1}^{1}\cross P_{1}^{1} , K=p_{1}^{*}\mathscr{O}_{P^{1}}(1) and J=p_{2}^{*}\mathscr{O}_{P^{1}}(1) . Let
s and t be real transverse section of K and J respectively. Then, (^{***}) is
easily verified.

(2) Let S\subset P^{2}\cross P_{1}^{1} be a non-singular real surface of degree (1,1) . Set
K=\pi^{*}\mathscr{O}_{P^{2}}(1) and J=\varphi^{*}\mathscr{O}_{P^{1}}(1) , where \pi:Sarrow P^{2} and \varphi:Sarrow P_{1}^{1} are projec-
tions. Let s and t be real transverse sections of K and J respectively.
Then (^{***}) is satisfied. (For (^{***}ii) , notice that, for any line in RP^{2} not
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containing the base point of S as a pencil of lines, and, for any point on
the line, there exists a parameter defining a line through that point.)

PROOF OF PROPOSITION 4. 2: By (^{***}i) and (^{***}ii) , the zer0-locus of
a transverse section of K^{d}J^{e} is connected and of genus l+(d-l)(c-l).
By (^{***}0) , take s’\in H^{0}(S, K)_{R} such that (s)_{0}\cap(s’)_{0} is a finite set. Set Q=
R((s)_{0}\cap(s’)_{0})\subset C_{R} .

Let (P_{i,l})_{0\leq i\leq d,0\leq l\leq r} be a system of disjoint e-points of C_{R} . Assume

Q, P_{0,0} , P_{1,0} , P_{2,0} , \ldots , P_{d,0} , P_{0,1} , P_{1,1} , \ldots , P_{d,1} , P_{0,2} , \ldots , P_{d,2} , \ldots , P_{d,\gamma}

are cyclic on C_{R}\cong S^{1} in the sense of (2.14). For each i , l , by (^{***}ii) ,

take a real transverse section s(i, l) of J^{e} such that (s(i, l))_{0}\cap C_{R}=P_{i,1} .
Set

u(1, l)=s\cdot s(0, l)+\epsilon_{1,\ell}s’\cdot s(i, l) ,

and inductively set,

u(i, l)=s\cdot u(i-1, l)+\epsilon_{i,1}s’\cdot s(i, l) ,

(2\leq i\leq d) , where \epsilon_{i,1}\in R-0 .
Set s_{\ell}=u(d, l)\in H^{0}(S, L) , (0\leq l\leq r) . If we choose the sign of each

\epsilon_{i,l} and take \epsilon_{i,1} sufficiently small relatively to \epsilon_{i-1,1} and \epsilon_{d,1-1} , then we
see that the system SO, s_{1} , \ldots , Sr satisfies (^{*}) .

PROOF OF THEOREM 0. 1 AND COROLLARY 0. 5 :
Set S=P^{2} and L=\mathscr{O}_{P^{2}}(d) , (resp. S=P_{1}^{1}\cross P_{1}^{1} and L=p_{1}^{*}\mathscr{O}_{P^{1}}(d)p_{2}^{*}\mathscr{O}_{P^{1}}

(e)) .
Then S is a compact connected M-surface with H^{1}(S;Z/2)=0 and

H^{0}(S_{R} ; Z/2)\cong Z/2 , (see Example 2.3.1 and Lemma 2.4), and L is a real
holomorphic very ample vector bundle over S.

By Proposition 4.0 applied to Example 4.1.1 (resp. by Proposition
4.2 applied to Example 4.3.1), there exists a system of M-section So, \ldots ,

Sr of L satisfying (^{*}) , for r=0,1,2 , \ldots . Then, by Theorem 0.3, there
exists an M-surface A\subset S\cross P_{1}^{1} such that \varphi:Aarrow P_{1}^{1} has only non-degener-
ate real critical points. This means the existence of a generic surface A
attaining the equality in the estimate of Theorem 0.1, (resp. Corollary
0.5), which is obtained from the formula in (1.6), (resp. (1.7) and (1.8)).

Q. E. D.

PROOF OF COROLLARY 0. 6: Set K and J be as in Example 4.3.2. Set
L=K^{d}I^{e}- Then, L is very ample. Similarly to the above proof, we only
need to combine the results in (1.7), (1.8), Example 2.3.2, Example
4.3.2, Proposition 4.2 and Theorem 0.3.
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Q. E. D.
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