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1. Introduction

A weakly complex manifold means a smooth manifold whose tangent
bundle is stably equivalent to a complex vector bundle. Let M^{2n} be a
2n-dimensional closed weakly complex manifold and let \varphi:S^{1}\cross M^{2n}arrow

M^{2n} be a smooth semi-free S^{1}-action which preserves the complex struc-
ture. We denote this manifold by the pair (M^{2n}\varphi) . Let F(M^{2n}. \varphi)=F_{1}

\cup F_{2}\cup\cdots\cup F_{s} , where F_{i}(i=1,2, \cdots, s) is a fixed point set component. Each
F_{i} has an S^{1}-SMnvariant weakly complex structure. Then we have the fol-
lowing theorem by the Kamata’s formula [2].

THEOREM 1. Let k be a positive integer and let (M^{2n},-\varphi) be a weakly
complex semi-free S^{1}- manifold. Let dim_{C}F_{i}=n-2k (i=1, \cdots,s) . Then the
Chern number c_{1}^{n}[M^{2n}]\equiv 0 mod (2k)^{2k} .

Next in this paper we study, up to mod 2 bordism, those manifolds
with semi-free S^{1}-action with the property that all the components of the
fixed point set have the same complex codimension 2.

Let \mathscr{U}_{*} be the bordism ring of closed weakly complex smooth mani-
folds. It is known that the bordism ring \mathscr{U}* is generated by a set of
bordism classes \{[CP(k)], [H_{m,n}(C)];k\geq 1, n\geq m>1\} , where CP(k) is the
k dimensional complex projective space and H_{m,n}(C) is the Milnor hyper-
surface in CP(m)\cross CP(n) . For our purpose, we calculate a base of the
mod 2 weakly complex bordism ring \mathscr{U}_{*}\otimes Z_{2} . Let (n_{1},n_{2}, \cdots, n_{k}) be a
k-tuple of non negative integers. We denote by CP(n_{1}, n_{2}, \cdots, n_{k}) the
complex projective space bundle CP(\lambda_{1}\oplus\lambda_{2}\oplus\cdots\oplus\lambda_{k}) associated to the bun-
dle \lambda_{1}\oplus\lambda_{2}\oplus\cdots\oplus\lambda_{k} over CP(n_{1})\cross CP(n_{2})\cross\cdots\cross CP(n_{k}) , where \lambda_{i}(i=1,2 , \cdots ,

k) is the pullback of the canonical line bundle over the ith factor.
Now we define an ideal \mathscr{T} in \mathscr{U}_{*}\otimes Z_{2} as follows.
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\mathscr{T}= { [M^{2n}]\in \mathscr{U}_{*}\otimes Z_{2}|c_{1}^{n}[M^{2n}]\equiv 0 mod 2}.
Then we have the following

THEOREM 2. \mathscr{T} is the ideal generated by the set
\{[CP(1)], [CP(2)]^{2}, [H_{2,2}(C)], [CP(n_{1}, n_{2}, n_{3}, n_{4})]\} ,

where n_{1}+n_{2}+n_{3}+n_{4}\neq 1 .

The bordism ring \mathscr{U}*is a polynomial ring with a generator in each
dimension 2k, k>0 . We take x_{2^{j}}=[CP(2^{j})] as a ring generator of \mathscr{U}_{*}\otimes Z_{2}

in dimension 2^{j+1} . We consider suitable semi-free S^{1_{-}}actions on CP(1)\cross

CP(1) , H_{2.2}(C) and CP(n_{1}, n_{2}, n_{3}, n_{4}) , and then from above two theorems
we obtain the following

THEOREM 3. Suppose that the bordism class of a weakly complex
manifold M^{2n} is represented by a polynomial in \mathscr{U}_{*}\otimes Z_{2} which does not
involve any type of monomial factorized with (\chi_{2^{j_{1}}})^{\epsilon_{1}}(x_{2^{j_{2}}})^{\epsilon_{2}}\cdots(x_{2^{j\gamma}})^{\epsilon_{\gamma}}(x_{1})^{\theta} . \epsilon_{i}\geq

2 , \delta=0 or 1,j_{1}>j_{2}\cdots>j_{r}\geq 1 . Then there exists a weakly complex semi-free
S^{1}- manifold (N^{2n}, \varphi) wich salisfies F(N^{2n}\eta\varphi)=F_{1}\cup F_{2}\cup\cdots\cup F_{t} , dim_{C}F_{i}=n

-2 and [N^{2n}]=[M^{2n}] in \mathscr{U}_{*}\otimes Z_{2} if and only if
c_{1}^{n}[M^{2n}]\equiv 0 mod 2.

REMARK. Let M^{2n}=CP(2^{j+1}-3,0,0,0)(j\geq 2, n=2^{j+1}) . M has such a
semi-free S^{1}-action as our thinking and c_{1}^{n}[M^{2n}]\equiv 0 mod 2.

I am grateful to the referee for his various suggestions, especially for
suggesting the conditions of Theorem 3.

2. An application of Kamata’s formula and some Chern numbers

Let (M^{2n}. \varphi) be a weakly complex manifold with semi-free S^{1_{-}}action.
Let F(M^{2n}-\varphi)=F_{1}\cup F_{2}\cup\cdots\cup F_{s} , where F_{i}(i=1,2, \cdots, s) is a fixed point set
component. Let \tau^{r} be the complex n^{r}-dimensional vector bundle which is
stably equivalent to the tangent bundle of M^{2n} and let \nu_{i} be the normal
bundle of F_{i} and let \tau_{i} be the stable tangent bundle of F_{i} . Then the total
Chern classes are expressed in the factored form as follows.

c( \tau’)=\prod_{i=1}^{n’}(1+\gamma_{i})

c(\nu_{i})=(1+\alpha f^{i)})(1+d^{i)})\cdots(1+\alpha l_{\iota}^{i)})

c(_{T_{i}^{r}})=(1+\beta f^{i)})(1+\beta 4^{i)})\cdots(1+\beta_{mt}^{(i)}) ,

where l_{i}=dim_{C}\nu_{i} and m_{i}=dim_{C}\tau_{i} . Then we have the following

PROPOSITION 1 (M. Kamata [2]). Let f(z_{1^{ }},\cdots, z_{n^{r}}) be a symmetric
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polynomial of degree n and let (M^{2n}-\varphi) be a weakly complex semi-free S^{1}-

manifold. Then
\langle f(\gamma 1^{ },\cdots, \gamma_{n’}),\sigma(M)\rangle=\sum_{i=1}^{s}\langle\frac{f(1+\alpha f^{i)},1+\alpha 4^{i)},\cdots,1+\alpha\downarrow_{i}^{i)},\beta f^{i)},\cdots,\beta_{m_{i}}^{(i)})}{(1+\alpha_{1}^{(i)})(1+\alpha 4^{i)})\cdots(1+\alpha\{_{i}^{i)})} ,^{\sigma(F_{i})\rangle} ,

where \sigma(M) and \sigma(F_{i}) are fundamental homology classes of M^{2n} and F_{i}

respectively.

Now we apply this formula to a weakly complex semi-free S^{1_{-}}mani-
fold whose every fixed point set component has same codimension.

PROOF OF THEOREM 1.
PROOF. c_{1}(M)=\gamma_{1}+\cdots+\gamma_{n’}(n’\geq n) . Applying Proposition 1 to f(z_{1} ,

\ldots , z_{n}’)=(z_{1}+\cdots+z_{n}^{r})^{n} . we have
c_{1}^{n}[M]=\langle f(\gamma_{1^{ }},\cdots, \gamma_{n’}), \sigma(M)\rangle

= \sum_{i=1}^{s}\langle\frac{f(1+\alpha_{1}^{1i)},1+\alpha 4^{i)},\cdots,1+\alpha 4_{k}^{i)},\beta f^{i)},\cdots,\beta_{n_{2k}}^{(i)})}{(1+\alpha f^{i)})(1+\alpha 4^{i)})\cdots(1+\alpha 4_{k}^{i)})}, \sigma(F_{i})\rangle

= \sum_{i=1}^{s}\langle\frac{(2k+\alpha_{1}^{(i)}+\cdots+\alpha 4_{k}^{i)}+\beta f^{i)}+\cdots+\beta_{n_{2k}}^{(i)})^{n}}{(1+\alpha_{1}^{(i)})(1+\alpha 4^{i)})\cdots(1+\alpha 4_{k}^{i)})}, \sigma(F_{i})\rangle

= \sum_{i=1}^{s}\langle(2k+c_{1}(\nu_{i})+c_{1}(\tau_{i}’))^{n}\sum_{j=0}^{2k}(-1)^{j}c_{j}(\nu_{i}), \sigma(F_{i})\rangle

\equiv 0 mod (2k)^{2k} ,

because dim_{C}F_{i}=n-2k(i=1, \cdots, s) . q. e . d.

Next we calculate some Chern numbers. Let M^{2n} be a weakly com-
plex manifold and let the total Chern class c(M) be expressed in the

factored form \prod_{i=1}^{n’}(1+\gamma_{i}) as mentioned above. We denote s_{k}(c_{1}(M) , \cdots , Cn

(M))= \sum_{i=1}^{n}\gamma_{i}k . and then we define the Chern number

s_{n}[M]=\langle s_{n}(c_{1}(M), \cdots, c_{n}(M)), \sigma(M)\rangle .

We call this number s-number, and simply often denote by s[M] .
This is a weakly complex bordism invariant and we have

PROPOSITION 2 (J. Milnor[6]). A weakly complex manifold M^{2n} may
be taken to be the 2n^{-} dimensional generator in \mathscr{U}_{*} if and only if

s[M]=\{ \pm 1\pm p
if n+1\neq p^{j} for any prime p

if n+1=p^{j} for some prime p and j>0
Now we obtain the following lemma (cf. Stong [5, p. 434, Lemma 3. 4]).

Lemma 1. For k\geq 2
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s[CP(n_{1}, n_{2}, \cdots, n_{k})]=\pm\{(-1)^{n-n_{1}}(\begin{array}{ll}n+k -2n_{1} \end{array})+\cdots+(-1)^{n-n_{k}}(\begin{array}{ll}n+k -2n_{k} \end{array})\} ,

where n=n_{1}+\cdots+n_{k} .

PROOF We put X=CP(n_{1}, n_{2^{ }},\cdots, n_{k}) , Y=CP(n_{1})\cross CP(n_{2})\cross\cdots\cross

CP(n_{k}) , and \lambda=\lambda_{1}\oplus\lambda_{2}\oplus\cdots\oplus\lambda_{k} . Let p:Xarrow Y be the projection and \xi

the canonical complex line bundle over X. We shall denote by a\in H^{2}(X :
Z) the characteristic class of \xi . The total Chern class of \lambda can be expres-

sed in the factored form \prod_{i=1}^{k}(1+l_{i}) . We set u_{i}=p^{*}(l_{i}) for i=1 , \cdots , k and let
v_{j} be the jth Chern class of \lambda , so v_{j} is the jth elementary symmetric func-
tion of u_{1} , \cdots , u_{k} . Then the total Chern class of X is given by

(2.1) c(X)=p^{*}((c(Y))( \sum_{j=0}^{k}(1-a)^{k-j}p^{*}(v_{j}))

= \prod_{i=1}^{k}(1+u_{i})^{n_{i}+1}\prod_{i=1}^{k}(1+u_{i}-a)

with relation

(2.2) \sum_{j=0}^{k}(-1)^{k-j}p^{*}(v_{j})a^{k-j}=0 .

Now, we denote the ith dual Chern class of \lambda by \overline{c}_{i}(\lambda) and we put s_{j}(\lambda)=

\sum_{i=1}^{k}l_{i}^{j}. Then, from Conner’s theorem [1, p. 293, (4.1)], we obtain the s -num-
ber of X as follows.

(2.3) s_{n+k-1}[X]= \pm(-1)^{k-1}\langle k\overline{c}_{n}(\lambda)+\sum_{j=1}^{n}(\begin{array}{ll}n+k -1j \end{array})s_{j}( \lambda)\overline{c}_{n-j}(\lambda), \sigma(Y)\rangle ,

where \sigma(Y) is the fundamental homology class of Y From this formula,
we obtain the desired result. q.e.d .

LEMMA 2.
(2.4) c_{1}^{n}[CP(n_{1}, n_{2}, n_{3}, n_{4})]=2^{6}d(d\in Z, d\neq 0) where n=n_{1}+\cdots+n_{4}+3 .

(2.5) c_{1}^{m+n-1}[H_{m,n}(C)]= \frac{2(m+n-1)!}{(m-1)!(n-1)!}m^{m-1}n^{n-1} .

(2.6) c_{1}^{n}[CP(2^{j_{1}}) \cross\cdots\cross CP(2^{jr})]=\frac{n!}{(2^{j_{1}})!\cdots(2^{j\gamma})!}(2^{j_{1}}+1)2^{j_{1}}\ldots(2^{j\gamma}+1)2^{j\gamma}-

where n=2^{j_{1}}+\cdots+2^{j\gamma} and j_{1}\geq j_{2}\geq\cdots\geq j_{r}\geq 0 .

PROOF OF (2.4). Let X=CP(n_{1}, n_{2}, n_{3}, n_{4})=CP(\lambda_{1}\oplus\lambda_{2}\oplus\lambda_{3}\oplus\lambda_{4}) , Y=
CP(n_{1})\cross CP(n_{2})\cross CP(n_{3})\cross CP(n_{4}) and let \lambda=\lambda_{1}\oplus\lambda_{2}\oplus\lambda_{3}\oplus\lambda_{4} . Let p:Xarrow Y

be the projection and let a\in H^{2}(XjZ) be the characteris tic class of the
canonical complex line bundle over X. Let v_{j}\in H^{2j}(Y;Z) be the jth
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Chern class of A . Then by the formula (2.1)

c(X)=p^{*}(c(Y))( \sum_{j=0}^{4}(1-a)^{4-j}p^{*}(v_{j})) .

Now c_{1}(X)=p^{*}(c_{1}(Y)+v_{1})-4a . Put b=c_{1}(Y)+v_{1} . Then
c_{1}^{n}[X]=\langle(p^{*}(b)-4a)^{n}. \sigma(X)\rangle

= \sum_{i=0}^{n}(-1)^{n-i}(\begin{array}{l}ni\end{array})4^{n-i}\langle(p^{*}(b^{i})a^{n-i}, \sigma(X)\rangle

= \sum_{i=0}^{n-3}(-1)^{n-i}(\begin{array}{l}ni\end{array})4^{n-i}\langle b^{i}, p_{*}(a^{n-i}\cap\sigma(X))\rangle

=2^{6}d . q . e . d .

PROOF OF (2.5). Let \xi_{m} and \xi_{n} be the canonical line budles over
CP(m) and CP(n) respectively. Let i:H_{m,n}(C) -arrow CP(m)\cross CP(n) be the
inclusion map and \nu be the normal bundle. Then c(\nu)=i^{*}(c(\xi_{m}\otimes\xi_{n}))\wedge ,
where \xi_{m}\otimes\xi_{n}\wedge is the outer tensor product of \xi_{m} and \xi_{n} . Since H^{*}(CP(m) ;
Z)\otimes H^{*}(CP(n);Z)\cong H^{*}(CP(m)\cross CP(n):Z) , we may identify c_{1}(\xi_{m}\otimes\xi_{n})\wedge

=\alpha+\beta , where \alpha=x_{m}\cross 1 and \beta=1\cross x_{n} , x_{k}=c_{1}(\xi_{k}) : the generator of
H^{2}(CP(k);Z) . On the other hand, i^{*}(\tau(CP(m)\cross CP(n)))=\tau(H_{m,n}(C))

\oplus\nu , therefore c_{1}(H_{m,n}(C))=i^{*}(c_{1}(CP(m)\cross CP(n))-c_{1}(\xi_{m}\otimes\xi_{n}))=i^{*}((m+1)\alpha\wedge

+(n+1)\beta-(\alpha+\beta))=i^{*}(m\alpha+n\beta) . Let \sigma_{1}=\sigma(CP(m)) and \sigma_{2}=\sigma(CP(n)) ,
then

c_{1}^{m+n-1}[H_{m,n}(C)]=\langle(i^{*}(m\alpha+n\beta)^{m+n-1}, \sigma(H_{m,n}(C))\rangle

=\langle(m\alpha+n\beta)^{m+n-1}\cup c_{1}(\xi_{m}\otimes\xi_{n}), \sigma(CP(m)\wedge\cross CP(n))\rangle

=\langle(m\alpha+n\beta)^{m+n-1}(\alpha+\beta), \sigma(CP(m))\cross\sigma(CP(n))\rangle

=\langle\{(\begin{array}{l}m+n-1m-l\end{array})(m\alpha)^{m-1}(n\beta)^{n}

+(\begin{array}{l}m+n-1m\end{array})(m\alpha)^{m}(n\beta)^{n-1}\}(\alpha+\beta) , \sigma_{1}\cross\sigma_{2}\rangle

=m^{m-1}n^{n-1}\{(\begin{array}{l}m+n-lm-1\end{array})n+ (\begin{array}{ll}m+n -1m \end{array})m\}\langle\alpha^{m}, \sigma_{1}\rangle\langle\beta^{n}. \sigma_{2}\rangle

= \frac{2(m+n-1)!}{(m-1)!(n-1)!}m^{m-1}n^{n-1} . q. e. d.

PROOF OF (2.6). Let M=CP(2^{j_{1}})\cross\cdots\cross CP(2^{j\gamma}) then the total Chern
class c(M)=c(CP(2^{j_{1}})\cross\cdots\cross CP(2^{j\gamma}))=c(CP(2^{j_{1}}))\cdots c(CP(2^{j\gamma}))=(1+\alpha_{1})^{2^{j_{1}+1}}

\ldots (1+\alpha_{r})^{2^{j_{\Gamma}+1}} where \alpha_{i}=1\cross\cdots\cross 1\cross xl(i)\cross 1\cross\cdots\cross 1 , l( i)=2^{j_{i}}(1\leq i\leq r) .
Therefore c_{1}(M)=(2^{j_{1}}+1)\alpha_{1}+\cdots+(2^{j\gamma}+1)\alpha_{r} . So we have the c_{1}^{n}[M] by the
multinomial theorem. q . e . d .
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3. A ring structure for \mathscr{U}_{*}\otimes Z_{2} and proofs of Theorem 2 and 3.

LEMMA 3. The following manifolds represent the indecomposable bor-
dism classes in the polynomial ring \mathscr{U}_{*}\otimes Z_{2} .

(1) H_{2,2}(C) ,
(2) CP(2^{j}) , j\geq 0 ,
(3) CP(2^{j}-4,0,0,0) , j\geq 3 ,
(4) CP(n-3,0,0, 0) , n\equiv 2 mod 4,
(5) CP(2^{p_{r}-1},2^{p_{r}-1}. n-2^{p_{r}}-3,0) , where n=2^{p_{1}}+\cdots+2^{p_{r- 1}}+2^{p_{r}} . r>1 , and

p_{1}>\cdots>p_{r}\geq 2 .
(6) CP(2,2q-2,2q-2,0) , q\geq 1 .
(7) CP(2^{2+j}. 2(q-2^{j}), 2(q-2^{j}), 0) , q=a_{0}+a_{1}2+\cdots+a_{s}2^{s} with a_{j}=0 for

some j.

PROOF. We denote such a manifold as described above by M. It is

known that s[CP(n)]=n+1 for n\geq 1 and s[H_{m,n}(C)]=-(\begin{array}{l}m+nm\end{array}) for 1<m
\leq n[6] . By these facts, Lemma 1 and [4, Chapter, 1, 2.6. Lemma.], we
obtain s[M]\equiv 1 mod 2 for (2), (4), (5), (6) and (7). For (1) and (3), s[M]\equiv 2

mod 4. Here we apply the Milnor theorem to the mod 2 weakly complex
bordism ring \mathscr{U}_{*}\otimes Z_{2} , and we obtain the results. q . e . d .

It is known that \mathscr{U}_{*}\otimes Z_{2} is a polynomial ring over Z_{2} with one gen-
erator in each even dimension. Let x_{2^{j}} be the class [CP(2^{j})] for j\geq 0

and let x_{3} be the class [H_{2,2}(C)] . Denote y_{n} be the class [CP(2^{j}-4,0,0,0)]

for n=2^{j}-1 , j\geq 3 and let Zn be the class [ CP(n_{1}, n_{2}, n_{3}, n_{4})] for n=n_{1}+

n_{2}+n_{3}+n_{4}+3\neq 2^{j} , 2^{j}-1 whose types are (5), (6) or (7) of Lemma 3. Then
we have the following proposition by Lemma 3.

LEMMA 4. \mathscr{U}_{*}\otimes Z_{2} is a polynomial ring over Z_{2} with the system of
generators

\{x_{3}, x_{2^{j}}(j\geq 0), y_{n}(n=2^{j}-1, j\geq 3), z_{n}(n\neq 2^{j}, 2^{j}-1)\} .

PROOF OF THEOREM 2.
ASSERTION 1. We define ideal \mathscr{T}_{1} in \mathscr{U}_{*}\otimes Z_{2} is generated by the set

\{x_{1}, x_{3}, (x_{2^{j}})^{2}(j\geq 1), y_{n}(n=2^{j}-1, j\geq 3), z_{n}(n\neq 2^{j}. 2^{j}-1)\} .

Then\mathscr{T}=\mathscr{T}_{1} .

PROOF. We have \mathscr{T}\supset \mathscr{T}_{1} from Lemma 2. If an element [M] is ch0-
sen from \mathscr{T}. then we express [M^{2n}]= \sum a_{i_{1}\cdots i_{r}}u_{i_{1}}\cdots u_{i_{r}} , where a_{i_{1}\cdots i\gamma}\in Z_{2} and
u_{i_{k}} is a generator of \mathscr{U}_{*}\otimes Z_{2} as described in Lemma 4. As c_{1}^{n}[M]\equiv 0 mod
2, the coefficients of \chi_{2^{J1}}\chi 2^{j_{2}}\ldots X2^{j\gamma(j_{1}}>j_{2}>\cdots>j_{r}\geq 1 ) are equal to 0 mod 2.
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Therefore [M]\in \mathscr{T}_{1} , hence \mathscr{T}\subset \mathscr{T}_{1} . Thus \mathscr{T}=\mathscr{T}_{1} . q . e . d .

ASSERTION 2. We can turn the generator (x_{2^{j}})^{2} of \mathscr{T}_{1} into y_{2^{j+1}}’=[CP

(2^{j+1}-3,0,0,0)] for j\geq 2 .

PROOF. The characteristic number s_{(2^{j},2^{j})}[CP(2^{j})\cross CP(2^{j})]=s_{2^{f}}[CP(2^{j})]

\cross s_{2^{j}}[CP(2^{j})]=(2^{j}+1)(2^{j}+1)\equiv 1 mod 2. On the other hand s_{(2^{j},2^{j})}[CP(2^{j+1}-

3 , 0, 0, 0)] \equiv c_{2}^{2^{j}}[CP(2^{j+1}-3,0,0,0)] mod 2. We set X=CP(2^{j+1}-3,0,0,0)]

By (2.1), c_{2}(X)\equiv u^{2}+au mod 2, where u=p^{*}(l_{1}) . For j\geq 2 ,
c_{2}^{2^{j}}(X)\equiv a^{2^{j}}u^{2^{\dot{j}}}

mod 2=a^{3}u^{2^{j+1}-3} because by (2.2) a^{4}=a^{3}u . Then S_{(2^{j},2^{j}\rangle}[X]\equiv\langle a^{3}\mathcal{U}^{2^{j+1}-3}-

\sigma(X)\rangle mod 2=\langle p^{*}(l_{1}^{2^{j+1}-3}), a^{3}\cap\sigma(X)\rangle=\langle t_{1}^{2^{j+1}-3}, p_{*}(a^{3}\cap\sigma(X)\rangle\equiv\langle l_{1}^{2^{j+1}-3}. \sigma(Y)\rangle

mod 2=1 , where Y=CP(2^{j+1}-3) . Hence we can turn the generator (x_{2^{j}})^{2}

into y_{2^{j+1}}’ for j\geq 2 . Therefore we obtain the Theorem 2 from these asser-
tions. q . e . d .

PROOF OF THEOREM 3.
Let \varphi_{1} : S^{1}\cross CP(n_{1}, n_{2}, n_{3}, n_{4}) - CP(n_{1}, n_{2}, n_{3}, n_{4}) be \varphi_{1}(\zeta, [u_{1}, u_{2}, u_{3}, u_{4}])=

[u_{1}, u_{2}, \zeta u_{3}, \zeta_{u4}] for any \zeta\in S^{1} and [u_{1}, u_{2}, u_{3},u_{4}]\in CP(n_{1}, n_{2}, n_{3}, n_{4}) . Let
\varphi_{2} : S^{1}\cross H_{2,2}(C)arrow H_{2,2}(C) be \varphi_{2}(\zeta, ([_{Zo} _{:} _{Z_{1}} _{:} _{Z_{2}}], [_{Wo}:_{W_{1}}:_{w_{2}]))=([_{Zo} } ,

[w_{0} : w_{1} : \overline{\zeta}w_{2}]) for any \zeta\in S^{1} and ([z_{0} : z_{1} : z_{2}], [ w_{0} : w_{1} : w_{2}])\in H_{2,2}(C) ,
where \overline{\zeta} is conjugate of \zeta . Then \varphi_{1} and \varphi_{2} are semi-free S^{1}-actions
whose fixed point sets are CP(\lambda_{1}\oplus\lambda_{2})\cup CP(\lambda_{3}\oplus\lambda_{4}) and CP(1)\cup CP(1)\cup

H_{1,1}(C) respectively. The dimension of those fixed point sets are complex
codimension 2. Moreover ( CP(1))^{2} has also natural diagonal semi-free
S^{1}-action whose fixed point set has complex codimension 2. So we obtain
the result from Theorem 1 and 2. q . e . d .
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