On codimensions of maximal ideals in cohomology rings

Takashi NIWASAKI

(Received November 12, 1992)

1. Introduction

Throughout this paper, let G be a finite group, K a field of characteristic $p>0$, and M a finitely generated left $K G$-module. For the cohomology ring

$$
\mathrm{E}_{\sigma}(M)=\operatorname{Ext}_{\kappa 6}^{*}(M, M) \simeq \mathrm{H}^{*}\left(G, \operatorname{End}_{K}(M)\right)
$$

of M, Carlson [5,7] conjectured that if K is algebraically closed, then every maximal ideal in $\mathrm{E}_{G}(M)$ contains the kernel of the restriction map to some cyclic shifted subgroup. This conjecture was proved in [12] by using almost commutativity of restriction maps and cup products. Note that the conjecture implies a theorem of Avrunin and Scott [3] which associates the module varieties with the rank varieties. One of the purposes of this paper is to extend Carlson's conjecture as follows:

Theorem A. Assume that K is algebraically closed. Then, for a maximal ideal \mathfrak{M} in $\mathrm{E}_{G}(M)$, there exist a cyclic shifted subgroup U and a maximal ideal \mathfrak{R} in $\mathrm{E}_{U}(M)$ such that \mathfrak{M} contains $\operatorname{res}_{\bar{G}, U}^{-1}(\mathfrak{R})$.

Here $\operatorname{res}_{G, U}$ is the restriction map. Although there is another proof based on Carlson's conjecture as in [14], we give a proof by directly extending the original one as anounced in [12].

On the other hand, Carlson [5] showed that each simple $\mathrm{E}_{6}(M)$-module has finite dimension over K for an arbitrary field K. Another purpose of this paper is to prove the following theorem.

Theorem B. If S is a simple $\mathrm{E}_{G}(M)$-module, then $\operatorname{dim}_{K} S \leq \operatorname{dim}_{K} M$.
We shall prove Theorem B as follows. Suppose that M has a decomposition $M=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$ of $K G$-submodules. We regard $\mathrm{E}_{6}(M)$ as a matrix ring whose (i, j)-entry is $\operatorname{Ext}_{K G}^{*}\left(M_{j}, M_{i}\right)$. We shall show in Section 3 that we can interpret the Jacobson radical of $\mathrm{E}_{G}(M)$ by means of each entry by considering the functor $\operatorname{Ext}_{k G}^{*}(-, M)$ and its certain subfunctors. This argument follows Green's methods [10, Appendix] for Hom functors. In Section 4, we calculate the radical in the cyclic group case and give a
proof of Theorem B by using Theorem A.
Notation. For a ring $A, \operatorname{rad} A$ denotes the Jacobson radical of A. $\operatorname{Max}(A)$ denotes the set of maximal ideals of A. For an ideal I of A, set $\sqrt{I}=\left\{a \in A \mid a^{c} \in I\right.$ for some $\left.c>0\right\}$. This is only a subset unless A is commutative.

2. Maximal ideals and cup, res

In this section we give a proof of Theorem A. At first we recall some basic concepts. They are detailed in $[6,4]$.

Let K be the trivial $K G$-module, and H a subgroup of G. Then there are two graded ring homomorphisms

$$
\begin{array}{r}
\operatorname{cup}_{G, M}: \mathrm{E}_{G}(K) \longrightarrow \mathrm{E}_{G}(M) \\
\operatorname{res}_{G, H, M}: \mathrm{E}_{G}(M) \longrightarrow \mathrm{E}_{H}(M)
\end{array}
$$

which are induced from the inclusions $K \hookrightarrow \operatorname{End}_{K}(M)$ and $K H \hookrightarrow K G$, respectively. The former coincides with the cup product with the identity element of $\mathrm{E}_{G}(M)$. Evens [9] showed that $\mathrm{E}_{G}(K)$ is finitely generated as a K-algebra, and $\mathrm{E}_{H}(M)$ becomes a finitely generated $\mathrm{E}_{G}(K)$-module by $\mathrm{E}_{G}(K) \xrightarrow{\text { res }} \mathrm{E}_{H}(K) \xrightarrow{\text { cup }} \mathrm{E}_{H}(M)$.

On the other hand, if $p>2$, then the subalgebra $\mathrm{E}_{G}^{e v}(K)={ }_{n \geq 0} \operatorname{Ext}_{K G}^{2 n}(K$, K) is contained in the center of $\mathrm{E}_{G}(K)$, and $\rho^{2}=0$ for each odd degree homogeneous element ρ. So $\operatorname{Max}\left(\mathrm{E}_{G}(K)\right) \simeq \operatorname{Max}\left(\mathrm{E}_{G}^{\mathrm{ev}}(K)\right)$. If $p=2$, then $\mathrm{E}_{G}(K)$ itself is commutative. In both cases, we can treat $\mathrm{E}_{G}(K)$ as if it were a commutative noetherian graded ring, and can consider a'lying over' problem between $\mathrm{E}_{G}(K)$ and $\mathrm{E}_{H}(K)$.

We recall the definition of shifted subgroups. Let $E=\left\langle x_{1}, x_{2}, \cdots, x_{n}\right\rangle$ be an elementary abelian p-subgroup of rank n of G. A set of linearly independent elements $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ in K^{n} defines a subgroup $\left\langle u_{1}, u_{2}, \cdots, u_{m}\right\rangle$ of the unit group of $K G$, where

$$
u_{i}=1+\sum_{j=1}^{n} \alpha_{i j}\left(x_{j}-1\right), \quad \alpha_{i}=\left(\alpha_{i 1} \cdots \alpha_{i n}\right)
$$

It is an elementary abelian p-group of rank m. Such a subgroup is called a shifted subgroup of G. In the case $m=1$, it is particularly called a cyclic shifted subgroup. We can define the restriction map from G to a shifted subgroup H as above. Evens' result also holds, that is, $\mathrm{E}_{H}(M)$ is finitely generated over $\mathrm{E}_{G}(K)$.

Let $U=\langle u\rangle$ be a cyclic group of order p. We choose the standard
elements

$$
\eta_{u} \in \operatorname{Ext}_{K U}^{1}(K, K), \quad \zeta_{u} \in \operatorname{Ext}_{K U}^{2}(K, K)
$$

corresponding to the generator u as in [6]. Then

$$
\mathrm{E}_{U}(K)= \begin{cases}K\left[\eta_{u}\right] & \text { if } p=2 \\ K\left[\zeta_{u}\right] \otimes_{K} \Lambda\left(\eta_{u}\right) & \text { otherwise }\end{cases}
$$

where $K\left[\zeta_{u}\right]$ is the polynomial ring and $\Lambda\left(\eta_{u}\right)$ is the exterior algebra. We define a maximal ideal \mathfrak{N}_{u} of $\mathrm{E}_{U}(K)$ by

$$
\mathfrak{N}_{u}= \begin{cases}\left(\eta_{u}-1\right) & \text { if } p=2 \\ \left(\zeta_{u}-1\right)+\operatorname{rad~}_{\mathrm{E}}(K) & \text { otherwise }\end{cases}
$$

Let $\mathfrak{C}=\{u \in K G \mid\langle u\rangle$ is a cyclic shifted subgroup $\}$, on which G acts by conjugation. We can define a map $\mathfrak{C} \cup\{1\} \rightarrow \operatorname{Max}\left(\mathrm{E}_{G}(K)\right)$ which maps u to $\operatorname{res}^{-1}\left(\mathfrak{N}_{u}\right)$, and 1 to the homogeneous maximal ideal $\mathrm{E}_{G}^{+}(K)$. The following is Carlson's version of Quillen's stratification theorem.

THEOREM 2.1 ([13, 6]). If K is algebraically closed, then the induced map $\mathfrak{C} / G \cup\{1\} \rightarrow \operatorname{Max}\left(\mathrm{E}_{G}(K)\right)$ is bijective.

For the remainder of this section, let H be a subgroup or a shifted subgroup of G. For convenience, we write ρ_{M} and ρ_{H} instead of $\operatorname{cup}_{G, M}(\rho)$ and $\operatorname{res}_{G, H}(\rho)$ respectively. Also for subsets of $\mathrm{E}_{G}(K)$, we use the same notation. When H is shifted, since the K-algebra inclusion $K H \hookrightarrow K G$ is not a Hopf algebra homomorphism, the diagram

is not commutative. However it is 'almost' commutative as follows :
THEOREM 2.2 ([12]). $\quad\left(\left(\rho^{p}\right)_{M}\right)_{H}=\left(\left(\rho^{p}\right)_{H}\right)_{M}$ for all $\rho \in \mathrm{E}_{G}(K)$.
To show Theorem A, we introduce some notation. Let

$$
\begin{aligned}
\mathrm{J}_{G}(M) & =\operatorname{Ker}\left(\operatorname{cup}: \mathrm{E}_{G}(K) \longrightarrow \mathrm{E}_{G}(M)\right), \\
\mathrm{V}_{G}(M) & =\left\{P \in \operatorname{Max}\left(\mathrm{E}_{G}(K)\right) \mid \mathrm{J}_{G}(M) \subset P\right\}, \quad \text { and } \\
\operatorname{Ker}_{G, H}(M) & =\operatorname{Ker}\left(\operatorname{res}: \mathrm{E}_{G}(M) \longrightarrow \mathrm{E}_{H}(M)\right) .
\end{aligned}
$$

Then $\mathrm{J}_{G}(M)$ is the annihilator of $\mathrm{E}_{G}(M)$, and its support $\mathrm{V}_{G}(M)$ is isomorphic to $\operatorname{Max}\left(\left(\mathrm{E}_{G}(K)\right)_{M}\right)$. We write V_{G} for $\mathrm{V}_{G}(K)=\operatorname{Max}\left(\mathrm{E}_{G}(K)\right)$. We note that
(1) $\left(\mathrm{E}_{G}^{\text {ev }}(K)\right)_{M}$ is contained in the center of $\mathrm{E}_{G}(M)$;
(2) $\operatorname{Ker}_{G, H}(M)$ is a homogeneous ideal contained in $\mathrm{E}_{G}^{+}(M)=\underset{n \geq 1}{\oplus}$ $\operatorname{Ext}_{k G}^{n}(M, M)$;
(3) $\mathrm{E}_{6}^{ \pm}(M)$ may not be a maximal ideal.

The following lemma is well known (see [2, Corollary 2.5] for the proof).
Lemma 2.3. Let R be a commutative ring, I a proper ideal of R, and L a finitely generated faithful R-module. Then $I L \subsetneq L$.

Hence the following maps are well-defined;

$$
\begin{array}{ll}
\operatorname{cup}^{*}: \operatorname{Max}\left(\mathrm{E}_{G}(M)\right) \longrightarrow \mathrm{V}_{G}, & \operatorname{cup}^{*}(\mathfrak{M})=\operatorname{cup}^{-1}(\mathfrak{M}), \\
\operatorname{res}^{*}: & \mathrm{V}_{H}(Q)=\operatorname{res}^{-1}(Q) .
\end{array}
$$

Moreover, again by Lemma 2. 3, the image of cup* is $\mathrm{V}_{G}(M)$ and the image of res* is $\left\{P \in \mathrm{~V}_{G} \mid \operatorname{Ker}_{G, H}(K) \subset P\right\}$. Well-definedness of cup* implies that every maximal ideal of $\mathrm{E}_{G}(M)$ has finite codimension over K.

Lemma 2.4. For $P \in \operatorname{res}^{*}\left(\mathrm{~V}_{H}\right)$, let $\left(\text { res }^{*}\right)^{-1}(P)=\left\{Q_{1}, Q_{2}, \cdots, Q_{n}\right\}$. Then

$$
\bigcap_{i=1}^{n} \operatorname{res}^{-1}\left(Q_{i} \mathrm{E}_{H}(M)\right) \subset \sqrt{P \mathrm{E}_{G}(M)+\operatorname{Ker}_{G, H}(M)} \quad \text { in } \mathrm{E}_{G}(M) .
$$

Proof. Since $\mathrm{E}_{H}(K)$ is almost commutative and finitely generated as a K-algebra, we have $\cap_{i} Q_{i}=\sqrt{P \mathrm{E}_{H}(K)}$. By the Artin-Rees lemma, there exists a positive integer c such that

$$
\bigcap_{i}\left(Q_{i}^{c} \mathrm{E}_{H}(M)\right) \subset\left(\bigcap_{i} Q_{i}\right) \mathrm{E}_{H}(M)=\left(\sqrt{P \mathrm{E}_{H}(K)}\right) \mathrm{E}_{H}(M) \subset \sqrt{P \mathrm{E}_{H}(M)},
$$

where we can interpret P as both $\left(P_{H}\right)_{M}$ and $\left(P_{M}\right)_{H}$, by Theorem 2.2. Also by the same lemma, there exists a positive integer d such that $P^{d} \mathrm{E}_{H}(M) \cap\left(\mathrm{E}_{G}(M)\right)_{H} \subset\left(P \mathrm{E}_{G}(M)\right)_{H}$. This completes the proof.

Lemma 2. 5. For $P \in \operatorname{res}^{*}\left(\mathrm{~V}_{H}\right)$, we have $\operatorname{Ker}_{G, H}(M) \subset \sqrt{P \mathrm{E}_{G}(M)}$.
Proof. We may assume that G is a p-group, since the restriction maps to Sylow p-subgroups are monic. We use induction on the order of G. We may assume that there is a maximal subgroup S of G such that H is a (shifted) subgroup of S, otherwise the restriction to H is isomorphism. Let $\left(\operatorname{res}_{6, s}^{*}\right)^{-1}(P)=\left\{Q_{1}, Q_{2}, \cdots, Q_{n}\right\}$. Then, by the assumption of induction and by Lemma 2.4,

$$
\left.\operatorname{Ker}_{G, H}(M)=\operatorname{res}_{c}^{-1}(s) \operatorname{Ker}_{s, H}(M)\right) \subset \bigcap_{i} \operatorname{res}_{c_{,}^{\prime}, s}^{-1}\left(\sqrt{Q_{i} \mathrm{E}_{s}(M)}\right)
$$

$$
\subset \sqrt{P \mathrm{E}_{c}(M)+\operatorname{Ker}_{G, S}(M)} .
$$

Hence we may assume $H=S$.
By a result of Alperin and Evens [1], there exists $\beta \in \operatorname{Ker}_{G, H}(K)$ such that homogeneous elements of $\operatorname{Ker}_{G, H}(M)$ are contained in $\sqrt{\beta E_{G}(M)}$, and hence in $\sqrt{P \mathrm{E}_{G}(M)}$. Choose finitely many homogeneous generators of $\operatorname{Ker}_{G, H}(M)$ as an $\mathrm{E}_{G}(M)$-module. Their images in $\mathrm{E}_{G}(M) / P E_{G}(M)$ generate a finitely generated nil multiplicative subsemigroup. So it is nilpotent by Levitzki's theorem [11, pp.199]. Hence $\operatorname{Ker}_{G, H}(M)$ is nilpotent in $\mathrm{E}_{G}(M) / P \mathrm{E}_{G}(M)$. This completes the proof.

By the above lemmas, we have the following :
Proposition 2.6. For $P \in \operatorname{res}^{*}\left(\mathrm{~V}_{H}\right)$, let $\left(\operatorname{res}^{*}\right)^{-1}(P)=\left\{Q_{1}, Q_{2}, \cdots\right.$, $\left.Q_{n}\right\}$. Then

$$
\bigcap_{i=1}^{n} \operatorname{res}^{-1}\left(Q_{i} \mathrm{E}_{H}(M)\right) \subset \sqrt{P \mathrm{E}_{G}(M)} \quad \text { in } \mathrm{E}_{G}(M) .
$$

We rewrite Theorem A as follows. Note that if K is algebraically closed, then by Theorem 2.1 there certainly exists such a cyclic shifted subgroup H as in the following theorem.

Theorem A'. Let \mathfrak{M} be a maximal ideal of $\mathrm{E}_{G}(M)$, and let $P=$ cup* $(\mathfrak{M}) \in \mathrm{V}_{G}(M)$. Suppose that H is a subgroup or a shifted subgroup of G such as $P \in \operatorname{res}_{G, H}^{*}\left(\mathrm{~V}_{H}\right)$. Then there is a maximal ideal \mathfrak{R} of $\mathrm{E}_{H}(M)$ such that $\operatorname{res}_{\mathcal{G}, H}^{-1}(\mathfrak{M}) \subset \mathfrak{M}$.

Proof. Let $\left(\operatorname{res}_{\mathcal{C}, H}^{*}\right)^{-1}(P)=\left\{Q_{1}, Q_{2}, \cdots, Q_{s}\right\}$, and $\left(\operatorname{cup}_{H, M}^{*}\right)^{-1}\left(Q_{i}\right)=\left\{\mathfrak{R}_{i 1}\right.$, $\left.\mathfrak{N}_{i 2}, \cdots, \mathfrak{N}_{i t i}\right\}$. Then we have $\left(\cap_{j} \mathfrak{N}_{i j}\right) / Q_{i} \mathrm{E}_{H}(M)=\operatorname{rad}\left(\mathrm{E}_{H}(M) / Q_{i} \mathrm{E}_{H}(M)\right)$ in the finite dimensional K-algebra, for each i. Hence Proposition 2.6 implies

$$
\bigcap_{i j} \operatorname{res}^{-1}\left(\Re_{i j}\right) \subset \bigcap_{i} \sqrt{\operatorname{res}^{-1}\left(Q_{i} \mathrm{E}_{H}(M)\right)} \subset \sqrt{P \mathrm{E}_{G}(M)} \subset \mathfrak{M} .
$$

Therefore \mathfrak{M} contains some $\operatorname{res}^{-1}\left(\mathfrak{M}_{i j}\right)$. This completes the proof.

3. Ideal subfunctors of Ext

The argument in this section follows Green's method [10, Appendix] for Hom functors.

Let $\bmod K G$ be the category of finitely generated left $K G$-modules, and Mod K the category of vector spaces over K. Let Mmod $K G$ denote the category of K-linear contravariant functors from $\bmod K G$ to $\operatorname{Mod} K$. Thus objects are those contravariant functors $F: \bmod K G \rightarrow \operatorname{Mod} K$ whose
induced maps $\operatorname{Hom}_{\kappa}(X, Y) \rightarrow \operatorname{Hom}_{K}(F Y, F X)$ are K-linear. Morphisms are natural transformations. For example, $\operatorname{Hom}_{\kappa c}(-, M)$ and Ext ${ }_{k c}(-$, M) are objects of Mmod $K G$. Mmod $K G$ is a K-linear (i. e. morphism sets are K-vector spaces, and their composition maps are K-bilinear) abelian category. If F^{\prime} is a subfunctor of F, then we write $F^{\prime} \subset F$ (subfunctors are pointwisely defined).

Throughout this section, let M, N, X, Y be objects in $\bmod K G . \Omega$ denotes the Heller operator, namely, $\Omega(X)$ is the kernel of the projective cover of X. We define $\Omega^{0}(X)$ as its core, and inductively $\Omega^{n+1}=\Omega \Omega^{n}$. For non-negative integers i, n, consider the canonical homomorphism

$$
\gamma_{n}^{i}(X): \operatorname{Ext}_{K G}^{i}\left(\Omega^{n}(X), M\right) \longrightarrow \operatorname{Ext}_{K G}^{i+n}(X, M) .
$$

When $i>0, \gamma_{n}^{i}(X)$ is an isomorphism which maps the class of

$$
0 \rightarrow M \rightarrow B_{i-1} \rightarrow B_{i-2} \rightarrow \cdots \rightarrow B_{0} \rightarrow \Omega^{n}(X) \rightarrow 0
$$

to the class of the Yoneda splice

$$
0 \rightarrow M \rightarrow B_{i-1} \rightarrow \cdots \rightarrow B_{0} \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow X \rightarrow 0,
$$

where $\cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow X \rightarrow 0$ is a minimal projective resolution of X. When i $=0$ and $n>0, \gamma_{n}^{0}(X)$ is the canonical epimorphism because $\operatorname{Ext}_{K G}^{0}=$ Hom $_{K G}$. On the other hand, $\gamma_{0}^{0}(X)$ is the canonical monomorphism induced from the splitting inclusion $\Omega^{0}(X) \rightarrow X$.

We have a graded $\mathrm{E}_{6}(M)$-homomorphism

$$
\gamma_{n}(X)=\prod_{i} \gamma_{n}^{i}(X): \operatorname{Ext}_{k G}^{*}\left(\Omega^{n}(X), M\right) \rightarrow \operatorname{Ext}_{k G}^{*}(X, M)
$$

of degree n, and a natural transformation

$$
\gamma_{n}: \operatorname{Ext}_{{ }_{K} G}^{*}\left(\Omega^{n}(-), M\right) \rightarrow \operatorname{Ext}_{{ }_{K G}^{*}}(-, M)
$$

in Mmod $K G$.
Definition 3.1. A subfunctor F of $\operatorname{Ext}_{\kappa 6}^{*}(-, M)$ is called a right ideal subfunctor when $\gamma_{n}\left(F \Omega^{n}\right) \subset F$ for all $n \geq 0$, that is,

is a well-defined commutative diagram for all n and X. Then we write $F \leq \operatorname{Ext}_{\kappa \kappa}^{*}(-, M)$.

Definition 3.2. Suppose $F \leq \operatorname{Ext}_{k G}^{*}(-, M)$ and $F^{\prime} \leq \operatorname{Ext}^{*}{ }_{K G}(-, N)$. A natural transformation $\alpha: F \rightarrow F^{\prime}$ is called a right ideal morphism when $\alpha \gamma_{n}=\gamma_{n} \alpha \Omega^{n}$ for all $n \geq 0$, that is,

$$
\begin{aligned}
& \quad F \Omega^{n}(X) \xrightarrow{\gamma_{n}(X)} F(X) \\
& \alpha\left(\Omega^{n}(X)\right) \downarrow^{\prime} \\
& \quad \mathrm{F}^{\prime} \Omega^{n}(X) \xrightarrow[\gamma_{n}(X)]{ } F^{\prime}(X)
\end{aligned}
$$

is commutative for all n and X. We write the class of right ideal morphisms from F to F^{\prime} by $\left[F, F^{\prime}\right.$].

Dually we can define left ideal subfunctors and morphisms by

$$
\lambda_{n}: \operatorname{Ext}_{\kappa G}^{*}(M,-) \rightarrow \operatorname{Ext}_{\kappa G}^{*}\left(M, \Omega^{n}(-)\right) .
$$

The below arguments also hold for left ideal subfunctors.
Proposition 3. 3. If $F \leq \operatorname{Ext}_{k G}^{*}(-, M)$, then $F(X) \operatorname{Ext}_{k G}^{*}(Y, X) \subset$ $F(Y)$, namely,

is a well-defined commutative diagram, where the horizontal maps are the composition maps.

Proof. Given $\rho \in \operatorname{Ext}_{k \in G}^{*}(Y, X)$, choose $f \in \operatorname{Hom}_{K G}\left(\Omega^{n}(Y), X\right)$ such that ρ is the class of f. Then in the commutative diagram

$\gamma_{n}(Y) f^{\neq}$coincides with multiplication by ρ from the right hand.
Here we state an interesting lemma without proof, although this is not necessary for our later argument.

Lemma 3. 4. The following hold.
(1) If $F_{1}, F_{2} \leq \operatorname{Ext}_{k G}^{*}(-, M)$ then $F_{1}+F_{2}, F_{1} \cap F_{2} \leq \operatorname{Ext}_{k G}^{*}(-, M)$.
(2) (Homomorphism theorem) Suppose that $F \leq \operatorname{Ext}_{\kappa G}^{*}(-, M), F^{\prime} \leq$ $\operatorname{Ext}_{K G}^{*}(-, N)$ and $\alpha \in\left[F, F^{\prime}\right]$. Then both $\operatorname{Ker} \alpha$ and $\operatorname{Im} \alpha$ are right ideals, and there is a natural correspondence

$$
\left\{S \leq \operatorname{Ext}_{K G}^{*}(-, M) \mid \operatorname{Ker} \alpha \subset S \subset F\right\} \simeq\left\{S^{\prime} \leq \operatorname{Ext}_{K G}^{*}(-, N) \mid S^{\prime} \subset \operatorname{Im} \alpha\right\} .
$$

(3) (Yoneda's lemma) For $F \leq \mathrm{Ext}_{K 6}^{*}(-, M)$, there is a natural K-lin. ear isomorphism

$$
\left[\operatorname{Ext}_{K G}^{*}(-, N), F\right] \simeq F(N) .
$$

If $F \leq \operatorname{Ext}_{{ }_{K} G}^{*}(-, M)$, then $F(X)$ is a right $\mathrm{E}_{G}(X)$-module by Proposition 3.3. Let $\Re\left(\operatorname{Ext}_{{ }_{k G}^{*}}(-, M)\right)$ be the class of right ideal subfunctors of Ext ${ }_{k}^{*}(-, M)$, and $\Re\left(\mathrm{E}_{G}(M)\right)$ the set of right ideals of $\mathrm{E}_{G}(M)$. We define

$$
\begin{aligned}
\alpha(F) & =F(M) \\
\beta(I)(X) & =\left\{\zeta \in \operatorname{Ext}_{k c}^{*}(X, M) \mid \zeta \operatorname{Ext}_{\kappa G}^{*}(M, X) \subset I\right\} .
\end{aligned}
$$

Well-definedness of β follows from the fact that

$$
\left(\gamma_{n}(X)(\zeta)\right) \rho=\zeta\left(\lambda_{n}(X)(\rho)\right) \quad \text { in } \mathrm{E}_{G}(M)
$$

for $\zeta \in \operatorname{Ext}_{k G}^{*}\left(\Omega^{n}(X), M\right)$ and $\rho \in \operatorname{Ext}_{K G}^{*}(M, X)$. Not that α and β may not be bijections. The following are easily verified.
(1) $F \subset \beta \alpha(F)$.
(2) If $\alpha(F)=\mathrm{E}_{c}(M)$, then $F=\operatorname{Ext}_{k \in}^{*}(-, M)$.
(3) If F is maximal, then $\beta \alpha(F)=F$.
(4) If I is maximal, then $\beta(I)$ is maximal.
(5) For a set $\left\{I_{\lambda} \mid \lambda \in \Lambda\right\}$ of right ideals, $\beta\left(\cap_{\lambda} I_{\lambda}\right)=\cap_{\lambda} \beta\left(I_{\lambda}\right)$.

So α and β induce a one to one correspondence between the maximal objects in $\Re\left(\operatorname{Ext}_{K G}^{*}(-, M)\right)$ and the maximal objects in $\Re\left(\mathrm{E}_{G}(M)\right)$. Let

$$
\operatorname{rad} \operatorname{Ext}_{K G}^{*}(-, M)=\bigcap_{\max F} F,
$$

where F runs through maximal right ideal subfunctors. By (5), $\bigcap_{\max F} F$ coincides with $\beta\left(\operatorname{radE} E_{G}(M)\right)$, and

$$
\left(\operatorname{radExt} \operatorname{ExG}^{*}(-, M)\right)(M)=\bigcap_{\max F} F(M)=\operatorname{radE}_{G}(M) .
$$

The same fact holds for left ideal subfunctors. In particular, since

$$
\left(\operatorname{radExt}_{K G}^{*}(-, M)\right)(N)=\left(\operatorname{radExt}_{K G}^{*}(N,-)\right)(M),
$$

denote this by $\operatorname{radExt} \operatorname{EKG}^{*}(N, M)$. When $M=M_{1} \oplus M_{2}$, it is easy to show that

$$
\operatorname{radExt}{ }_{K G}^{*}(-, M)=\operatorname{radExt}_{K G}^{*}\left(-, M_{1}\right) \oplus \operatorname{radExt}_{K G}^{*}\left(-, M_{2}\right)
$$

as in the case of radicals of modules [8, Ex 5.11]. Hence we get
Theorem 3.5. Let $M=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$. Then
(1) $\operatorname{radExt}_{\kappa \mathrm{K}}^{*}(-, M)=\bigoplus_{i=1}^{n} \operatorname{rad} \operatorname{Ext}_{k G}^{*}\left(-, M_{i}\right)$.
(2) If we regards $\mathrm{E}_{G}(M)$ as the matrix ring $\left\{\left(\zeta_{i j}\right) \mid \zeta_{i j} \in \operatorname{Ext}_{K G}^{*}\left(M_{j}, M_{i}\right)\right\}$ of size $n \times n$, then

$$
\operatorname{radE}_{G}(M)=\left\{\left(\zeta_{i j}\right) \mid \zeta_{i j} \operatorname{Ext}_{k G}^{*}\left(M_{i}, M_{j}\right) \subset \operatorname{radE}_{G}\left(M_{i}\right)\right\} .
$$

Carlson [5] showed that $\operatorname{rad} \mathrm{E}_{G}(M)$ is nilpotent. This fact implies the equality

$$
\operatorname{rad}_{G}(M)=\left\{\zeta \in \mathrm{E}_{G}(M) \mid \zeta \rho \text { is nilpotent for all } \rho \in \mathrm{E}_{G}(M)\right\},
$$

and hence the second statement of Theorem 3.5. However we do not use his result.

It is well known that the Jacobson radical of the matrix ring over a ring can be interpreted by means of each entry. The second statement of Theorem 3.5 for $\operatorname{End}_{K G}(M)$ is one of the central ideas in Clifford theory. It is interesting to find properties corresponding to the fact that $\operatorname{End}_{\kappa \epsilon}(M)$ is local for an indecomposable module M.

4. Cyclic case

We calculate radical functors in the simplest case, and give a proof of Theorem B.

Let $U=\langle u\rangle$ be a cyclic group of order p, and $V_{i}=K U /(\operatorname{rad} K U)^{i}$ for positive integers i. Then $V_{1}, V_{2}, \cdots, V_{p-1}$ are the non-projective indecomposable $K U$-modules with $\operatorname{dim}_{K} V_{i}=i . \quad V_{1}=K$ is the unique simple $K U$-module. They are uniserial (i.e. they have unique composition series), and have a common projective cover $K U$. The Heller operator Ω acts by $\Omega\left(V_{i}\right)=V_{p-i}$. For l with $1 \leq l \leq \min (i, j)$, let $f_{i j l}: V_{j} \rightarrow V_{i}$ be the canonical homomorphism of rank l. We write simply f_{l} instead of $f_{i j l}$. Then they are K-basis of $\operatorname{Hom}_{K U}\left(V_{j}, V_{i}\right)$, namely

$$
\operatorname{Hom}_{\kappa \nu}\left(V_{j}, V_{i}\right)=<f_{l}: V_{j} \rightarrow V_{i} \mid 1 \leq l \leq \min (i, j)>_{K} .
$$

It is easy to show that $f_{l}: V_{j} \rightarrow V_{i}$ is projective, that is, f_{l} factors through
the projective cover $K U$, if and only if $l \leq i+j-p$. Let $\operatorname{hom}_{K U}\left(V_{j}, V_{i}\right)$ denote the factor space of $\operatorname{Hom}_{K \nu}\left(V_{j}, V_{i}\right)$ by the subspace of projective homomorphisms. Then

$$
\operatorname{hom}_{\kappa U}\left(V_{j}, V_{i}\right)=<\bar{f}_{l} \mid i+j-p<l \leq \min (i, j)>_{K},
$$

where we use bar convention. In particular, we have

$$
\operatorname{dim}_{K} \operatorname{hom}_{K U}\left(V_{j}, V_{i}\right)= \begin{cases}\min (i, j) & \text { if } i+j \leq p \\ p-\max (i, j) & \text { otherwise }\end{cases}
$$

We regard $\operatorname{Ext}_{K U}^{n}\left(V_{j}, V_{i}\right)$ as $\operatorname{hom}_{K U}\left(\Omega^{n}\left(V_{j}\right), V_{i}\right)$ for positive n, so its K-vector space structure is determined.

There is an isomorphism

$$
\Omega: \operatorname{hom}_{K U}\left(V_{j}, V_{i}\right) \rightarrow \operatorname{hom}_{K U}\left(\Omega\left(V_{j}\right), \Omega\left(V_{i}\right)=\operatorname{hom}_{K U}\left(V_{p-j}, V_{p-i}\right),\right.
$$

which maps \bar{f}_{l} to $\overline{\Omega\left(f_{l}\right)}=\bar{f}_{l+p-(i+j)}$. It is the lifting map in the sense of making the diagram

of projective covers commutative. Thus in a similar way to Proposition 3.3, it is easy to show that the diagram

of the composition maps is commutative. Thus for

$$
\begin{aligned}
& \bar{f}_{s} \in \operatorname{hom}_{K U}\left(\Omega^{m}\left(V_{j}\right), V_{i}\right)=\operatorname{Ext}_{K U}^{m}\left(V_{j}, V_{i}\right), \\
& \bar{f}_{t} \in \operatorname{hom}_{K U}\left(\Omega^{n}\left(V_{k}\right), V_{j}\right)=\operatorname{Ext}_{K \nu}^{n}\left(V_{k}, V_{j}\right),
\end{aligned}
$$

the composition $\bar{f}_{s} \bar{f}_{t}$ in $\operatorname{Ext}{ }_{K U}^{m+n}\left(V_{k}, V_{i}\right)$ is the class of the composition

$$
\Omega^{m+n}\left(V_{k}\right) \xrightarrow{\Omega^{m}\left(f_{i}\right)} \Omega^{m}\left(V_{j}\right) \xrightarrow{f_{s}} V_{i},
$$

where Ω^{m} is Ω if m is old, and ineffective otherwise.
Since V_{i} is indecomposable, an endomorphism of V_{i} is nilpotent if and
only if it is not an isomorphism. So $\operatorname{radEnd}_{K U}\left(V_{i}\right)$ has codimension 1. The same fact holds for homogeneous elements of $\mathrm{E}_{U}\left(V_{i}\right)$. To prove this, suppose that $\bar{f} \in \operatorname{Ext}{ }_{K U}^{n}\left(V_{i}, V_{i}\right)$ for positive n. Since \bar{f}^{2} is the class of $f \cdot \Omega^{n}(f): V_{i} \rightarrow \Omega^{n}\left(V_{i}\right) \rightarrow V_{i}, \bar{f}$ is nilpotent if and only if f is not an isomorphism.

Hence,

$$
\underset{n \geq 0}{\oplus}\left\{\bar{f} \in \operatorname{Ext}_{K U}^{n}\left(V_{i}, V_{i}\right) \mid f: \Omega^{n}\left(V_{i}\right) \rightarrow V_{i} \text { is not an isomorphism }\right\}
$$

is a homogeneous nil ideal, and the factor ring by this ideal is a polynomial ring generated by the image of the class σ_{i} of the identity map of V_{i}, whose degree is 1 if $p=2$, or 2 otherwise. Therefore the above ideal coincides with $\operatorname{rad} \mathrm{E}_{G}\left(V_{i}\right)$. Note that in the case of $i=1$, the generator σ_{1} is equal to η_{u} or ζ_{u} of Section 2, and it is mapped to σ_{i} by cup: $\mathrm{E}_{U}(K) \rightarrow \mathrm{E}_{U}\left(V_{i}\right)$. So cup induces a K-algebra isomorphism

$$
R=K\left[\sigma_{1}\right] \simeq \mathrm{E}_{U}\left(V_{i}\right) / \operatorname{rad~} \mathrm{E}_{U}\left(V_{i}\right)
$$

The following is easy to show by the same arguments as above.
Proposition 4.1. For any i, j with $1 \leq i, j \leq p-1$, we have

$$
\begin{aligned}
\operatorname{radExt} & *:\left(V_{j}, \quad V_{i}\right)=\bigoplus_{n \geq 0}^{\oplus}\left\{\bar{f} \in \operatorname{Ext}_{K U}^{n}\left(V_{j}, V_{i}\right) \mid f: \Omega^{n}\left(V_{j}\right) \rightarrow V_{i}\right. \text { is not an } \\
& \text { isomorphism }\} .
\end{aligned}
$$

Note that f is not an isomorphism unless $j=i$ and n is even, nor unless $j=p-i$ and n is odd.

Proposition 4.2. We have

$$
\operatorname{Ext}_{K U}^{*}\left(V_{j}, V_{i}\right) / \operatorname{radExt} \operatorname{ExU}^{*}\left(V_{j}, V_{i}\right) \simeq \begin{cases}R & \text { if } j=i \text { or } j=p-i, \\ 0 & \text { otherwise } .\end{cases}
$$

as R-modules for $1 \leq i, j \leq p-1$.
Let V be a finitely generated $K U$-module, and have a decomposition $V=\oplus_{i=1}^{p} V_{i}^{m_{i}}$, where m_{i} are their multiplicities. Then, by Theorem 3.5 and Proposition 4.2, we have

$$
\mathrm{E}_{U}(V) / \operatorname{radE}_{U}(V) \simeq \begin{cases}\mathrm{M}_{m_{1}}(R) \oplus \mathrm{M}_{m_{2}}(K) & \text { if } p=2, \\ (\underset{i=1}{(1) / 2}) \mathrm{M}_{m_{i}+m_{\rho-1}}(R) \oplus \mathrm{M}_{m_{\rho}}(K) & \text { otherwise, }\end{cases}
$$

where $\mathrm{M}_{m}(R)$ is the matrix ring over R of size $m \times m$.
Combining these isomorphisms and Theorem A, we have the following
main theorem of this section.
Theorem 4.3. Let G be a finite group, K an algebraically closed field, and M a $K G$-module. Suppose that \mathfrak{M} is a maximal ideal of $\mathrm{E}_{G}(M)$, and $\mathrm{E}_{G}(M) / \mathfrak{M} \simeq \mathrm{M}_{d}(K)$ for a positive integer d. Then there is a cyclic shifted subgroup U such that

$$
d \leq \begin{cases}\max \left\{m_{1}, m_{2}\right\} & \text { if } p=2, \\ \max \left\{m_{i}+m_{p-i}, m_{p} \mid 1 \leq i \leq(p-1) / 2\right\} & \text { otherwise }\end{cases}
$$

for the decomposition $M=\oplus_{i=1}^{p} V_{i}^{m_{i}}$ as $K U$-modules.
If K is an arbitrary field and \bar{K} is an algebraic closure of K, then every maximal ideal of $\operatorname{Ext}_{\kappa C}^{*}(M, M)$ is contained in some maximal ideal of $\bar{K} \otimes_{K} \operatorname{Ext}_{K G}^{*}(M, M) \simeq \operatorname{Ext}_{R G}^{*}\left(\bar{K} \otimes_{K} M, \bar{K} \otimes_{K} M\right)$. Therefore Theorem B follows straightforward from Theorem 4.3. Note that if M is a direct sum of some copies of the trivial $K G$-module K, then there exists a maxmal ideal which satisfies the equality in the theorem.

References

[1] J. L. Alperin and L. Evens, Representation, resolutions, and Quillen's dimension theorem, J. Pure Appl. Algebra 22 (1981), 1-9.
[2] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, AddisonWesley, Reading, MA, 1969.
[3] G. S. Avrunin and L. Scott, Quillen stratification for modules, Invent. Math. 66 (1982), 277-286.
[4] D. J. Benson, Modular representation theory: New trends and methods, Lecture Notes in Math., vol. 1081, Springer-Verlag, 1984.
[5] J. F. CARLSON, The cohomology ring of a module, J. Pure Appl. Algebra 36 (1985), 105-121.
[6] Module varieties and cohomology rings of finite groups, University Essen, Essen, 1985.
[7] Cohomology rings of induced modules, J. Pure Appl. Algebra 44 (1987), 8597.
[8] C. W. CURTIS and I. Reiner, Methods of representation theory, vol. I, John Wiley and Sons, New York, 1981.
[9] L. Evens, The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961), 224-239.
[10] J. A. Green, Functors on categories of finite group representations, J. Pure Appl. Algebra 37 (1985), 265-298.
[11] N. Jacobson, Structure of Rings, Amer. Math. Soc., Providence, RI, 1956.
[12] T. Niwasaki, On Carlson's conjecture for cohomology rings of modules, J. Pure Appl. Algebra 59 (1989), 265-277.
[13] D. Quillen, A cohomological criterion for p-nilpotence, J. Pure Appl. Algebra 1 (1971), 361-372.
[14] J. THÉVENAZ, Defect theory for maximal ideals and simple functors, 1989, preprint.

> Department of Mathematics,
> Faculty of Science,
> Ehime University,
> Matsuyama 790, Japan
> E-mail address: niwasaki@ dpc. ehime-u.ac.jp

