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On codimensions of maximal ideals in cohomology rings
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1. Introduction

Throughout this paper, let G be a finite group, K a field of character-
istic p>0 , and M a finitely generated left KG-module. For the c0-

homology ring

E_{G}(M)=Ext_{KG}^{*}(M, M)\simeq H^{*}(G, End_{K}(M))

of M, Carlson [5, 7] conjectured that if K is algebraically closed, then
every maximal ideal in E_{G}(M) contains the kernel of the restriction map
to some cyclic shifted subgroup. This conjecture was proved in [12] by
using almost commutativity of restriction maps and cup products. Note
that the conjecture implies a theorem of Avrunin and Scott [3] which
associates the module varieties with the rank varieties. One of the pur-
poses of this paper is to extend Carlson’s conjecture as follows:

THEOREM A. Assume that K is algebraically closed. Then, for a
maximal ideal \mathfrak{M} in E_{G}(M) , there exist a cyclic shifted subgroup U and a
maximal ideal \mathfrak{R} in E_{U}(M) such that \mathfrak{M} contains res_{G,U}^{-1}(\mathfrak{R}) .

Here res_{G,U} is the restriction map. Although there is another proof
based on Carlson’s conjecture as in [14], we give a proof by directly exten-
ding the original one as anounced in [12].

On the other hand, Carlson [5] showed that each simple E_{G}(M)-mod-
ule has finite dimension over K for an arbitrary field K. Another purpose
of this paper is to prove the following theorem.

THEOREM B. If S is a simple E_{G}(M)-module then \dim_{K}S\leq\dim_{K}M.

We shall prove Theorem B as follows. Suppose that M has a decom-
position M=M_{1}\oplus M_{2}\oplus\cdots\oplus M_{n} of ifG-submodules. We regard E_{G}(M) as a
matrix ring whose(i, j)-entry is Ext_{KG}^{*}(M_{j}, M_{i}) . We shall show in Section
3 that we can interpret the Jacobson radical of E_{G}(M) by means of each
entry by considering the functor Ext_{KG}^{*}( -, M) and its certain subfunctors.
This argument follows Green’s methods [10, Appendix] for Hom functors.
In Section 4, we calculate the radical in the cyclic group case and give a
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proof of Theorem B by using Theorem A.

NOTATION. For a ring A, rad A denotes the Jacobson radical of A.
{\rm Max}(A) denotes the set of maximal ideals of A. For an ideal I of A, set
\sqrt{I}= { a\in A|a^{c}\in I for some c>0}. This is only a subset unless A is com-
mutative.

2. Maximal ideals and cup, res

In this section we give a proof of Theorem A. At first we recall some
basic concepts. They are detailed in [6, 4] .

Let K be the trivial ZfG-module, and H a subgroup of G . Then there
are two graded ring homomorphisms

cup_{G,M} : E_{G}(K)arrow E_{G}(M) ,
res_{G,H,M} : E_{G}(M)arrow E_{H}(M)

which are induced from the inclusions KL_{arrow}End_{K}(M) and KH-arrow>KG ,

respectively. The former coincides with the cup product with the identity
element of E_{G}(M) . Evens [9] showed that E_{G}(K) is finitely generated as a
/C-algebra, and E_{H}(M) becomes a finitely generated E_{G}(K)-module by

E_{G}(K)rarrow E_{H}(esK)carrow E_{H}(upM) .

On the other hand, if p>2 , then the subalgebra E_{G}^{ev}(K)=\bigoplus_{n\geq 0}Ext_{KG}^{2n}(K ,

K) is contained in the center of E_{G}(K) , and \rho^{2}=0 for each odd degree
homogeneous element \rho . So {\rm Max}(E_{G}(K))\simeq{\rm Max}(E_{G}^{ev}(K)) . If p=2 , then
E_{G}(K) itself is commutative. In both cases, we can treat E_{G}(K) as if it
were a commutative noetherian graded ring, and can consider a. lying
over ’ problem between E_{G}(K) and E_{H}(K) .

We recall the definition of shifted subgroups. Let E=\langle x_{1},x_{2^{ }},\cdots, x_{n}\rangle be
an elementary abelian p-subgroup of rank n of G. A set of linearly in-
dependent elements \alpha_{1} , \alpha_{2} , \cdots , \alpha_{m} in K^{n} defines a subgroup \langle u_{1}, u_{2}, \cdots, u_{m}\rangle of
the unit group of KG, where

u_{i}=1+ \sum_{j=1}^{n}\alpha_{ij}(x_{j}-1) , \alpha_{i}=(\alpha_{i1}\cdots\alpha_{in}) .

It is an elementary abelian p-group of rank m. Such a subgroup is called
a shifted subgroup of G. In the case m=1 , it is particularly called a
cyclic shifted subgroup. We can define the restriction map from G to a
shifted subgroup H as above. Evens’ result also holds, that is, E_{H}(M) is
finitely generated over E_{G}(K) .

Let U=\langle u\rangle be a cyclic group of order p. We choose the standard
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elements

\eta_{u}\in Ext_{KU}^{1}(K,K) , \zeta_{u}\in Ext_{KU}^{2}(K,K)

corresponding to the generator u as in [6]. Then

E_{U}(K)=\{
K[\eta_{u}] if p=2 ,
K[\zeta_{u}]\otimes_{K}\Lambda(\eta_{u}) otherwise,

where K[\zeta_{u}] is the polynomial ring and \Lambda(\eta_{u}) is the exterior algebra. We
define a maximal ideal \mathfrak{R}_{u} of E_{U}(K) by

\mathfrak{R}_{u}=\{

(\eta_{u}-1) if p=2 ,
(\zeta_{u}-1)+radE_{U}(K) otherwise.

Let \mathfrak{C}= { u\in KG|\langle u\rangle is a cyclic shifted subgroup}, on which G acts by con-
jugation. We can define a map \mathfrak{C}U\{1\}arrow{\rm Max}(E_{G}(K)) which maps u to
res^{-1}(\mathfrak{R}_{u}) , and 1 to the homogeneous maximal ideal E_{G}^{+}(K) . The following
is Carlson’s version of Quillen’s stratification theorem.

THEOREM 2. 1 ([13, 6]). If K is algebraically closed, then the in-
duced map \mathfrak{C}/GU\{1\}arrow{\rm Max}(E_{G}(K)) is bijective.

For the remainder of this section, let H be a subgroup or a shifted
subgroup of G. For convenience, we write \rho_{M} and \rho_{H} instead of cup_{G,M}(\rho)

and res_{G,H}(\rho) respectively. Also for subsets of E_{G}(K) , we use the same
notation. When H is shifted, since the K-algebra inclusion KH–KG
is not a Hopf algebra homomorphism, the diagram

cup\downarrow\downarrow cupE_{G}(K)\underline{res}E_{H}(K)

E_{G}(M)E_{H}(M)\overline{res}

is not commutative. However it is ‘almost’ commutative as follows:

THEOREM 2. 2 ([12]). ((\rho^{p})_{M})_{H}=((\rho^{p})_{H})_{M} for all \rho\in E_{G}(K) .

To show Theorem A, we introduce some notation. Let
J_{G}(M)=Ker(cup:E_{G}(K)arrow E_{G}(M)) ,

V_{G}(M)=\{P\in{\rm Max}(E_{G}(K))|\int_{G}(M)\subset P\} , and
Ker_{G,H}(M)=Ker(res : E_{G}(M)arrow E_{H}(M)) .

Then J_{G}(M) is the annihilator of E_{G}(M) , and its support V_{G}(M) is isomor-
phic to {\rm Max}((E_{G}(K))_{M}) . We write V_{G} for V_{G}(K)={\rm Max}(E_{G}(K)) . We note
that
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(1 ) (E_{G}^{ev}(K))_{M} is contained in the center of E_{G}(M) ;
(2) Ker_{G,H}(M) is a homogeneous ideal contained in E_{G}^{+}(M)=\bigoplus_{n\geq 1}

Ext_{KG}^{n}(M, M) ;
(3) E_{G}^{+}(M) may not be a maximal ideal.

The following lemma is well known (see [2, Corollary 2.5] for the proof).

LEMMA 2. 3. Let R be a commutative ring, I a proper ideal of R,

and L a finitely generated faithful R-module. Then IL\subsetneqq L .

Hence the following maps are well-defined;

cup* : {\rm Max}(E_{G}(M)) – V_{G} , cup*(M) =cup^{-1}(\mathfrak{M}) ,

res* : V_{H}arrow V_{G} res^{*}(Q)=res^{-1}(Q) .

Moreover, again by Lemma 2. 3, the image of cup* is V_{G}(M) and the
image of res* is \{P\in V_{G}|Ker_{G,H}(K)\subset P\} . Well-definedness of cup* implies
that every maximal ideal of E_{G}(M) has finite codimension over K.

LEMMA 2. 4. For P\in res^{*}(V_{H}) , let (res^{*})^{-1}(P)=\{Q_{1}, Q_{2}, \cdots, Q_{n}\} .
Then

\bigcap_{i=1}^{n}res^{-1}(Q_{i}E_{H}(M)) in E_{G}(M) .

PROOF. Since E_{H}(K) is almost commutative and finitely generated as
a K-algebra, we have By the Artin-Rees lemma, there
exists a positive integer c such that

where we can interpret P as both (P_{H})_{M} and (P_{M})_{H} , by Theorem 2. 2.
Also by the same lemma, there exists a positive integer d such that
P^{d}E_{H}(M)\cap(E_{G}(M))_{H}\subset(PE_{G}(M))_{H} . This completes the proof. \square

LEMMA 2. 5. For P\in res^{*}(V_{H}) , we have

PROOF. We may assume that G is a p-group, since the restriction
maps to Sylow p-subgroups are monic. We use induction on the order of
G . We may assume that there is a maximal subgroup S of G such that
H is a (shifted) subgroup of S , otherwise the restriction to H is isomor-
phism. Let (res_{G,S}^{*})^{-1}(P)=\{Q_{1}, Q_{2}, \cdots, Q_{n}\} . Then, by the assumption of
induction and by Lemma 2. 4,
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By the above lemmas, we have the following:

PROPOSITION 2. 6. For P\in res^{*}(V_{H}) , let (res^{*})^{-1}(P)=\{Q_{1} , Q_{2} , \cdots ,
Q_{n}\} . Then

in E_{G}(M) .

We rewrite Theorem A as follows. Note that if K is algebraically
closed, then by Theorem 2. 1 there certainly exists such a cyclic shifted
subgroup H as in the following theorem.

THEOREM A’ . Let \mathfrak{M} be a maximal ideal of E_{G}(M) , and let P=cup^{*}
(\mathfrak{M})\in V_{G}(M) . Suppose that H is a subgroup or a shifted subgroup of G
such as P\in res_{G,H}^{*}(V_{H}) . Then there is a mmimal ideal \mathfrak{R} of E_{H}(M) such
that res_{G,H}^{-1}(\mathfrak{R})\subset \mathfrak{M} .

PROOF. Let (res_{G,H}^{*})^{-1}(P)=\{Q_{1}, Q_{2}, \cdots, Q_{S}\} , and (cup_{H,M}^{*})^{-1}(Q_{i})=\{\mathfrak{R}_{i1} ,
\mathfrak{R}_{i2} , \cdots , \mathfrak{R}_{it_{i}}}. Then we have ( \bigcap_{j}\mathfrak{R}_{ij})/Q_{i}E_{H}(M)=rad(E_{H}(M)/Q_{i}E_{H}(M)) in
the finite dimensional K-algebra, for each i . Hence Proposition 2. 6
implies

Therefore \mathfrak{M} contains some res^{-1}(\mathfrak{R}_{ij}) . This completes the proof. \square

3. Ideal subfunctors of Ext

The argument in this section follows Green’s method [10, Appendix]
for Hom functors.

Let mod KG be the category of finitely generated left KG-modules,
and Mod K the category of vector spaces over K. Let Mmod KG denote
the category of K-linear contravariant functors from mod KG to Mod K.
Thus objects are those contravariant functors F : mod KGarrow ModK whose
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induced maps Hom_{KG}(X, Y)arrow Hom_{K}(FY. FX) are K-linear. Morphisms
are natural transformations. For example, Hom_{KG}( -, M) and Ext_{KG}^{*}(- ,
M) are objects of Mmod KG. Mmod KG is a K-linear ( i. e . morphism
sets are Zf-vector spaces, and their composition maps are K-bilinear)
abelian category. If F’ is a subfunctor of F, then we write F’\subset F (sub-

functors are pointwisely defined).
Throughout this section, let M, N, X, Y be objects in mod KG. \Omega

denotes the Heller operator, namely, \Omega(X) is the kernel of the projective
cover of X. We define \Omega^{0}(X) as its core, and inductively \Omega^{n+1}=\Omega\Omega^{n}

For non-negative integers i , n , consider the canonical homomorphism

\gamma_{n}^{i}(X) : Ext_{KG}^{i}(\Omega^{n}(X), M)arrow Ext_{KG}^{i+n}(X, M) .

When i>0 , \gamma_{n}^{i}(X) is an isomorphism which maps the class of
0-arrow M-B_{i-1}arrow B_{i-2}arrow\cdotsarrow B_{0}arrow\Omega^{n}(X)arrow 0

to the class of the Yoneda splice

0- M-arrow B_{i-1}arrow\cdotsarrow B_{0}arrow P_{n-1}arrow\cdotsarrow P_{0}arrow Xarrow 0 ,

where \ldotsarrow P_{1}arrow P_{0}arrow Xarrow 0 is a minimal projective resolution of X. When i
=0 and n>0 , \gamma_{n}^{0}(X) is the canonical epimorphism because Ext_{KG}^{0}=Hom_{KG} .
On the other hand, \gamma_{0}^{0}(X) is the canonical monomorphism induced from
the splitting inclusion \Omega^{0}(X)arrow X .

We have a graded E_{G}(M)-homomorphism

\gamma_{n}(X)=\prod_{i}\gamma_{n}^{i}(X):Ext_{KG}^{*}(\Omega^{n}(X), M)arrow Ext_{KG}^{*}(X, M)

of degree n , and a natural transformation

\gamma_{n} : Ext_{KG}^{*}(\Omega^{n}(-), M)arrow Ext_{KG}^{*}(-, M)

in Mmod KG.

DEFINITION 3. 1. A subfunctor F of ExtiG( M) is called a right
ideal subfunctor when \gamma_{n}(F\Omega^{n})\subset F for all n\geq 0 , that is,

Ext_{KG}^{*}(\Omega^{n}(X), M)Ext_{KG}^{*}(X, M)\underline{\gamma_{n}(X)}

incl | | incl

F\Omega^{n}(X)
\overline{\gamma_{n}(X)}

F(X)

is a well-defined commutative diagram for all n and X. Then we write
F\leq Ext_{KG}^{*}(-, M) .
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DEFINITION 3. 2. Suppose F\leq Ext_{KG}^{*}( -, M) and F’\leq Ext KG*(-, N) .
A natural transformation \alpha:Farrow F’ is called a right ideal mo\uparrow phism when
\alpha\gamma_{n}=\gamma_{n}\alpha\Omega^{n} for all n\geq 0 , that is,

F\Omega^{n}(X)F(X)\underline{\gamma_{n}(X)}

\alpha(\Omega^{n}(X))\downarrow \downarrow\alpha(X)

F’\Omega^{n}(X)F’(X)\overline{\gamma_{n}(X)}

is commutative for all n and X. We write the class of right ideal mor-
phisms from F to F’ by [F, F’] .

Dually we can define left ideal subfunctors and morphisms by

\mathcal{A}_{n} : Ext_{KG}^{*}(M, -)arrow Ext_{KG}^{*}(M, \Omega^{n}(-)) .

The below arguments also hold for left ideal subfunctors.

PROPOSITION 3. 3. If F\leq Ext_{KG}^{*}( -, M) , then F(X)Ext_{KG}^{*}(YX)\subset

F(Y), namely,

Ext_{KG}^{*}(X, M)\cross Ext_{KG}^{*}(YX)-Ext_{KG}^{*}(Y. M)

incl | | incl

F(x)\cross Ext_{KG}^{*}(Y. X) – F(Y)

is a well-defined commutative diagram, where the horizontal maps are the
composition maps.

PROOF. Given \rho\in Ext_{KG}^{*}(Y_{7}X) , choose f\in Hom_{KG}(\Omega^{n}(Y), X) such
that \rho is the class of f. Then in the commutative diagram

Ext_{KG}^{*}(X, M)Ext_{KG}^{*}(\Omega^{n}(Y), M)Ext_{KG}^{*}(Y, M)\underline{f^{\mu}}\underline{\gamma_{n}(Y)}

incl | | incl | incl

F(X)
\overline{F(f)}

F(\Omega^{n}(Y))
\overline{\gamma_{n}(Y)}

F(Y) ,

\gamma_{n}(Y)f^{\#} coincides with multiplication by \rho from the right hand. \square

Here we state an interesting lemma without proof, although this is not
necessary for our later argument.

LEMMA 3. 4. The following hold.
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(1) If F_{1},F_{2}\leq Ext_{KG}^{*}(-, M) then F_{1}+F_{2} , F_{1}\cap F_{2}\leq Ext_{KG}^{*}(-, M) .
(2) (Homomorphism theorem) Suppose that F\leq Ext_{KG}^{*}(-, M), F’\leq

Ext_{KG}^{*}( -, N) and \alpha\in[F, F’] . Then both Ker \alpha and Im \alpha are right
ideals, and there is a natural correspondence

\{S\leq Ext_{KG}^{*}(-, M)|Ker\alpha\subset S\subset F\}\simeq\{S’\leq Ext_{KG}^{*}(-, N)|S’\subset{\rm Im}\alpha\} .
(3) (Yoneda’s lemma) For F\leq Ext_{KG}^{*}(-, M) , there is a natural K-lin-

ear isomorphism

[Ext_{KG}^{*}(-, N), F]\simeq F(N) .

If F\leq Ext_{KG}^{*}( -, M) , then F(X) is a right E_{G}(X)-module by Proposi-
tion 3. 3. Let \mathfrak{R}(Ext_{KG}^{*}(-, M)) be the class of right ideal subfunctors of
Ext_{KG}^{*}(-, M) , and \mathfrak{R}(E_{G}(M)) the set of right ideals of E_{G}(M) . We define
two maps \mathfrak{R}(Ext_{KG}^{*}(-, M))arrowarrow \mathfrak{R}(E_{G}(M))\beta a by

\alpha(F)=F(M)

\beta(I)(X)=\{\zeta\in Ext_{KG}^{*}(X, M)|\zeta Ext_{KG}^{*}(M, X)\subset I\} .

Well-definedness of \beta follows from the fact that
(\gamma_{n}(X)(\zeta))\rho=\zeta(\mathcal{A}_{n}(X)(\rho)) in E_{G}(M)

for \zeta\in Ext_{KG}^{*}(\Omega^{n}(X), M) and \rho\in Ext_{KG}^{*}(M, X) . Not that \alpha and \beta may not
be bijections. The following are easily verified.

(1) F\subset\beta\alpha(F) .
(2) If \alpha(F)=E_{G}(M) , then F=Ext_{KG}^{*}(-, M) .
(3) If F is maximal, then \beta\alpha(F)=F .
(4) If I is maximal, then \beta(I) is maximal.
(5) For a set \{I_{\lambda}|\mathcal{A}\in\Lambda\} of right ideals, \beta(\bigcap_{\lambda}I_{\lambda})=\bigcap_{\lambda}\beta(I_{\lambda}) .

So \alpha and \beta induce a one to one correspondence between the maximal
objects in \mathfrak{R}(Ext_{KG}^{*}(-, M)) and the maximal objects in \mathfrak{R}(E_{G}(M)) . Let

rad Ext_{KG}^{*}( -, M)= \bigcap_{\max F}F ,

where F runs through maximal right ideal subfunctors. By(5), \max\bigcap_{F}F

coincides with \beta(radE_{G}(M)) , and

(rad Ext_{KG}^{*}(-, M)) (M)= \bigcap_{\max F}F(M)=radE_{G}(M) .

The same fact holds for left ideal subfunctors. In particular, since
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(rad Ext_{KG}^{*}(-, M))(N)=(rad Ext_{KG}^{*}(N, -) ) (M) ,

denote this by radExt_{KG}^{*}(N, M) . When M=M_{1}\oplus M_{2} , it is easy to show
that

rad Ext_{KG}^{*}( -, M)=radExt_{KG}^{*}(-, M_{1})\oplus radExt_{KG}^{*}(-, M_{2})

as in the case of radicals of modules [8, Ex 5. 11]. Hence we get

THEOREM 3. 5. Let M=M_{1}\oplus M_{2}\oplus\cdots\oplus M_{n} . Then

(1) rad Ext_{KG}^{*}(-, M)=\bigoplus_{i=1}^{n} rad Ext_{KG}^{*}(-, M_{i}) .

(2) If we regards E_{G}(M) as the matrix ring \{(\zeta_{ij})|\zeta_{ij}\in Ext_{KG}^{*}(M_{j}, M_{i})\}

of size n\cross n, then
rad E_{G}(M)= { (\zeta_{ij})|\zeta_{ij} ExtiG(Mi9Mj)dmdEG(Mi) }.

Carlson [5] showed that rad E_{G}(M) is nilpotent. This fact implies the
equality

rad E_{G}(M)= { \zeta\in E_{G}(M)|\zeta\rho is nilpotent for all \rho\in E_{G}(M) },

and hence the second statement of Theorem 3. 5. However we do not use
his result.

It is well known that the Jacobson radical of the matrix ring over a

ring can be interpreted by means of each entry. The second statement of
Theorem 3. 5 for End_{KG}(M) is one of the central ideas in Clifford theory.
It is interesting to find properties corresponding to the fact that End_{KG}(M)

is local for an indecomposable module M.

4. Cyclic case

We calculate radical functors in the simplest case, and give a proof of
Theorem B.

Let U=\langle u\rangle be a cyclic group of order p, and V_{i}=KU/(radKU)^{i} for
positive integers i . Then V_{1} , V_{2} , \cdots , V_{p-1} are the non-projective in-
decomposable KU-modules with \dim_{K}V_{i}=i . V_{1}=K is the unique simple
KU-module. They are uniserial (i.e. they have unique composition
series), and have a common projective cover KU. The Heller operator \Omega

acts by \Omega(V_{i})=V_{p-i} . For l with 1 \leq l\leq\min(i, j) , let f_{ijl} : V_{j}arrow V_{i} be the
canonical homomorphism of rank l . We write simply f_{l} instead of f_{ijl} .
Then they are K-h is of Hom_{KU}(V_{j}, V_{i}) , namely

Hom_{KU}( V_{j}, V_{i})=<f_{l} : V_{j} arrow V_{i}|1\leq l\leq\min(i, j)>_{K} .

It is easy to show that f_{t} : V_{j}arrow V_{i} is projective, that is, f_{l} factors through
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the projective cover KU, if and only if l\leq i+j-p . Let hom_{KU}(V_{j}, V_{i})

denote the factor space of Hom_{KU}(V_{j}, V_{i}) by the subspace of projective
homomorphisms. Then

hom_{KU}(V_{j}, V_{i})=<\overline{f_{l}}|i+j-p<l\leq\min(i, j)>_{K} ,

where we use bar convention. In particular, we have

\dim_{K}hom_{KU}(V_{j}, V_{i})=\{
\min(i, j) if i+j\leq p ,
p - \max(i, j) otherwise.

We regard Ext_{KU}^{n}(V_{j}, V_{i}) as hom_{KU}(\Omega^{n}(V_{j}), V_{i}) for positive n , so its
K-vector space structure is determined.

There is an isomorphism

\Omega:hom_{KU}(V_{j}, V_{i})arrow hom_{KU}(\Omega(V_{j}), \Omega(V_{i})=hom_{KU}(V_{p-j}, V_{p-i}) ,

which maps \overline{f_{t}} to \overline{\Omega(f_{l})}=\overline{f_{l+p-(i+j)}} . It is the lifting map in the sense of
making the diagram

0- \Omega(V_{j})arrow KUarrow V_{j}arrow 0

\downarrow\Omega y_{\iota}) \downarrow f_{l+\beta- i} \downarrow f_{\iota}

0arrow\Omega(V_{i})arrow KUarrow V_{i}arrow 0

of projective covers commutative. Thus in a similar way to Proposition
3. 3, it is easy to show that the diagram

Ext_{KU}^{m}( V_{j}, V_{i})\cross Ext_{KU}^{n} ( V_{k}, V_{j}) – Ext_{KU}^{m+n}(V_{k}, V_{i})

hom_{KU}(\Omega^{m}(V_{j}),V_{i})\cross hom_{KU}(\Omega^{n}(V_{k}), V_{j})1\cross\Omega^{m}\downarrow||
||

hom_{KU}(\Omega^{m}(V_{j}), V_{i})\cross hom_{KU}(\Omega^{m+n}(V_{k}), \Omega^{m}(V_{j}))arrow hom_{KU}(\Omega^{m+n}(V_{k}), V_{j})

of the composition maps is commutative. Thus for
\overline{f_{s}}\in hom_{KU}(\Omega^{m}(V_{j}), V_{i})=Ext_{KU}^{m}(V_{j}, V_{i}) ,
\overline{f_{t}}\in hom_{KU}(\Omega^{n}(V_{k}), V_{j})=Ext_{KU}^{n}(V_{k}, V_{j}) ,

the composition \overline{f_{s}}\overline{f_{t}} in Ext_{KU}^{m+n}(V_{k}, V_{i}) is the class of the composition

\Omega^{m+n}(V_{k})arrow\Omega^{m}(f_{t})\Omega^{m}(V_{j})arrow f_{s}V_{i} ,

where \Omega^{m} is \Omega if m is old, and ineffective otherwise.
Since V_{i} is indecomposable, an endomorphism of V_{i} is nilpotent if and
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only if it is not an isomorphism. So radEnd_{KU}(V_{i}) has codimension 1.
The same fact holds for homogeneous elements of E_{U}(V_{i}) . To prove this,
suppose that \overline{f}\in Ext KUn(V_{i}, V_{i}) for positive n . Since \overline{f}^{2} is the class of
f\cdot\Omega^{n}(f):V_{i}arrow\Omega^{n}(V_{i}) -arrow V_{i},\overline{f} is nilpotent if and only if f is not an isomor-
phism.

Hence,

\bigoplus_{n\geq 0} {f-\in Ext_{KU}^{n} ( V_{i} , V_{i} ) |f:\Omega^{n}(V_{i}) -arrow V_{i} is not an isomorphism}

is a homogeneous nil ideal, and the factor ring by this ideal is a
polynomial ring generated by the image of the class \sigma_{i} of the identity map
of V_{i} , whose degree is 1 if p=2, or 2 otherwise. Therefore the above
ideal coincides with rad E_{G}(V_{i}) . Note that in the case of i=1 , the genera-
tor \sigma_{1} is equal to \eta_{u} or \zeta_{u} of Section 2, and it is mapped to \sigma_{i} by cup:
E_{U}(K)arrow E_{U}(V_{i}) . So cup induces a K-algebra isomorphism

R=K[\sigma_{1}]\simeq E_{U}( V_{i})/radE_{U}( V_{i}) .

The following is easy to show by the same arguments as above.

PROPOSITION 4. 1. For any i, j with 1\leq i, j\leq p-1 , we have

rad Ext_{KU}^{*}(V_{j}, V_{i})=\bigoplus_{n\geq 0}\{\overline{f}\in Ext_{KU}^{n}(V_{j}, V_{i})|f:\Omega^{n}(V_{j}) -arrow V_{i} is not an
isomo\psi hism\} .

Note that f is not an isomorphism unless j=i and n is even, nor
unless j=p-i and n is odd.

PROPOSITION 4. 2. We have

Ext_{KU}^{*}( V_{j}, V_{i})/radExt_{KU}^{*}( V_{j}, V_{i})\simeq\{
R if j=i or j=p-i,

0 otherwise.

as R-modules for 1\leq i, j\leq p-1 .

Let V be a finitely generated KU-module, and have a decomposition
V= \bigoplus_{i=1}^{p}V_{i}^{m_{i}} , where m_{i} are their multiplicities. Then, by Theorem 3. 5 and

Proposition 4. 2, we have

E_{U}(V)/radE_{U}(V)\simeq\{\begin{array}{l}M_{m_{1}}(R)\oplus M_{m_{2}}(K) ifp=2,\bigoplus_{i=1}^{(p- 1)/2}M_{m_{i}+mp- 1}(R)\oplus M_{m_{p}}(K)otherwise,\end{array}

where M_{m}(R) is the matrix ring over R of size m\cross m .
Combining these isomorphisms and Theorem A, we have the following
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main theorem of this section.

THEOREM 4. 3. Let G be a finite group, K an algebraically closed
field, and M a KG-module. Suppose that \mathfrak{M} is a maximal ideal of
E_{G}(M) , and E_{G}(M)/\mathfrak{M}\simeq M_{d}(K) for a positive integer d. Then there is a
cyclic shifted subgroup U such that

d\leq\{
\max\{m_{1}, m_{2}\} if p=2,
\max\{m_{i}+m_{p-i}, m_{p}|1\leq i\leq(p-1)/2\} otherwise,

for the decomposition M= \bigoplus_{i=1}^{p}V_{i}^{m_{i}} as KU-modules.

If K is an arbitrary field and \overline{K} is an algebraic closure of K, then
every maximal ideal of Ext_{KG}^{*}(M, M) is contained in some maximal ideal
of K-\otimes_{K}Ext_{KG}^{*}(M, M)\simeq Ext_{\overline{K}G}^{*}(\overline{K}\otimes_{K}M,\overline{K}\otimes_{K}M) . Therefore Theorem
B follows straightforward from Theorem 4. 3. Note that if M is a direct
sum of some copies of the trivial KG-module K, then there exists a max-
mal ideal which satisfies the equality in the theorem.
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