Note on even tournaments whose automorphism groups contain regular subgroups

Noboru ITO (Received May 26, 1992)

§1. Introduction

A (0, 1)-matrix A of degree v is called a tournament of order v if A satisfies the following equation

 $(1) \qquad A + A^t + I = J,$

where t denotes the transposition, and I and J are the identity and all one matrices of degree v respectively. In other words, a tournament is the adjacency matrix of a complete asymmetric digraph.

A tournament A is called even if the inner product of any two distinct row vectors of A is even.

A permutation matrix P such that $P^tAP = A$ is called an automorphism of A. The multiplicative group $\mathfrak{G}(A)$ of all automorphisms of A is called the automorphism group of A.

In the present note we consider a tournament A such that $\mathfrak{G}(A)$ contains a regular subgroup \mathfrak{G} . In previous two notes we considered the case where \mathfrak{G} is cyclic (1) and (2). In such a case A is called a cyclic tournament. We obtained the following result in (2).

THEOREM. An even cyclic tournament of order v exists if and only if v satisfies one of the following conditions: (i) v is congruent to 3 modulo 8 and the order of 2 modulo every prime divisor of v is singly even, where an even integer n is called singly even if n is not divisible by 4; (ii) v is cogruent to 1 modulo 8 and the order of 2 modulo every prime divisor of v is odd.

Now since \mathfrak{G} is regular, we label rows and columns of A by elements of \mathfrak{G} so that

(2) A = (A(a, b)), where a and b are elements of \mathfrak{G} ,

and

(3) A(ac, bc) = A(a, b), where c runs over all elements of \mathfrak{G} .

Obviously A is regular, namely each row A(a) of A contains the same number of 1's, say k. Then it holds that

$$(4) \qquad v=2k+1.$$

Moreover A is completely determined by its first row A(e), where e is the identity element of \mathfrak{G} . We identify A(e) with its support \mathfrak{D} , namely the set of elements a of \mathfrak{G} such that A(e, a)=1. So \mathfrak{D} consists of k elements of \mathfrak{G} .

In the present note we show that the above mentioned theorem holds good for an arbitrary group \mathfrak{G} of order v, provided that we choose \mathfrak{D} normal in \mathfrak{G} , namely \mathfrak{D} satisfies the condition $a^{-1}\mathfrak{D}a=\mathfrak{D}$ for every element a of \mathfrak{G} .

We have to leave open the case where \mathfrak{D} is not normal in \mathfrak{G} .

§ 2.

LEMMA 1. (i) e doe not belong to \mathfrak{D} . (ii) For $a \neq e$ exactly one of a and a^{-1} belongs to \mathfrak{D} .

PROOF. It is straightforward.

We consider the collection $\mathfrak{D}(*)$ (namely multiplicity is counted) of elements of \mathfrak{G} of the form $c^{-1}d$, where both c and d belong to \mathfrak{D} . Let m(a) denote the multiplicity of an element a of \mathfrak{G} in $\mathfrak{D}(*)$. Clearly it holds that m(e) = k.

LEMMA 2. A tournament A is even if and only if m(a) is even for every non-identity element a of \mathfrak{G} .

PROOF. m(a) equals the inner product (A(e), A(a)).

We say that \mathfrak{D} is even if m(a) is even for every non-identity elemens a of \mathfrak{G} .

LEMMA 3. If \mathfrak{D} is even, then it holds that

(5) $k^2 - k \equiv 0 \pmod{4}$.

PROOF. a and a^{-1} have the same multiplicity.

By (5) we distinguish two cases: (I) k is congruent to 1 modulo 4 and (II) k is divisible by 4.

First we treat the case (I). In the proof of the next lemma we require the assumption that \mathfrak{D} is normal in \mathfrak{G} .

LEMMA 4. \mathfrak{D} is even if and only if exactly one of a and a^2 belongs to \mathfrak{D} for every non-identity element a of \mathfrak{G} .

PROOF. First assume that both a and a^2 belong to \mathfrak{D} . Then we show that $m(a^2)$ is odd. We say that an element d of \mathfrak{D} is bad if da^{-2} does not belong to \mathfrak{D} . Under our assumption we show that the number of bad d's is even. Under our assumption we show that the number of bad d's is even. Since k is odd in case (I), this implies that $m(a^2)$ is odd. Now since both $aa^{-2} = a^{-1}$ and $a^2a^{-2} = e$ do not belong to \mathfrak{D} , both a and a^2 are bad. Moreover, if b is bad and if $b \neq a$, a^2 , then a^2b^{-1} is also bad, since a^2b^{-1} belongs to \mathfrak{D} and $a^2b^{-1}a^{-2}$ does not belong to \mathfrak{D} by the normality of \mathfrak{D} .

Next assume that neither a nor a^2 belongs to \mathfrak{D} . This time we show that $m(a^{-2})$ is odd. Since both $a^{-1}a^2 = a$ and $a^{-2}a^2 = e$ do not belong to \mathfrak{D} , both a^{-1} and a^{-2} are bad. If b is bad and if $b \neq a^{-1}$, a^{-2} , then $a^{-2}b^{-1}$ is also bad, since $a^{-2}b^{-1}$ belongs to \mathfrak{D} and $a^{-2}b^{-1}a^2$ does not belong to \mathfrak{D} by the normality of \mathfrak{D} .

Conversely we assume that exactly one of a and a^2 belongs to \mathfrak{D} for every non-identity element a of \mathfrak{G} . We notice that every non-identity element c of \mathfrak{G} may be written in the form $c = a^2$ for some element a of \mathfrak{G} , since \mathfrak{G} has odd order. So we may proceed as above and investigate $m(a^2)$. If a belongs to \mathfrak{D} and a^2 does not belong to \mathfrak{D} , then, since $aa^{-2} =$ a^{-1} does not belong to \mathfrak{D} , a is bad. Moreover, if a^{-2} is bad, then a^4 is also bad, because $a^4a^{-2} = a^2$ does not belong to \mathfrak{D} . If a does not belong to \mathfrak{D} and a^2 belongs to \mathfrak{D} , then, since $a^2a^{-2} = e$ does not belong to \mathfrak{D} , a^2 is bad. Moreover, if a^{-1} is bad, then a^3 is also bad, because $a^3a^{-2} = a$ does not belong to \mathfrak{D} .

LEMMA 5. Let \mathfrak{D} be even. If an elements a of \mathfrak{G} belongs to \mathfrak{D} , then a^{-2} also belongs to \mathfrak{D} .

PROOF. This is immediate by Lemma 4.

LEMMA 6. If there exists a prime divisor p of v such that 2 modulo p has order divisible by 4 or odd, then there exists no even tournament of order v whose automorphism group containts a regular subgroup.

PROOF. Assume the contrary. We use the same notation as above. Let a be an element of \mathfrak{D} of order p. Using Lemma 5 repeatedly, we see that $a^{(-1)^{n_{2n}}}$ belongs to \mathfrak{D} . Now assume that the order of 2 modulo p equals 4m. Then put n=2m. It follows that $a^{2^{2m}}=a^{-1}$ belongs to \mathfrak{D} , which is a contradiction. Next assume that the order of 2 modulo p equals 2m+1. Then put n=2m+1. It follows that $a^{-2^{2m+1}}=a^{-1}$ belongs to \mathfrak{D} , which is a contradiction.

N. Ito

THEOREM 1. If the order of 2 is singly even modulo every prime divisor of v, then there exists a tournament of order v whose automorphism group contains a regular subgroup which is isomorphic to an arbitrarily given group \mathfrak{G} of order v.

PROOF. Let c and d be elements of \mathfrak{G} . Then we say that d is equivalent to c if and only if there exists a non-negative integer n such that $d = c^{(-2)^n}$. It is easy to see that this is a true equivalence relation.

We show that for every non-identity element a of \mathfrak{G} a and a^{-1} belong to distinct equivalence classes.

Now assume that for some non-identity element a of \mathfrak{G} both a and a^{-1} belong to the same equivalence class. So there exists a positive integer m such that $a^{(-2)^m} = a^{-1}$. Let p be a prime divisor of the order of a. Then p is also a prime divisor of v. Now p divides $(-2)^m + 1$. If m is odd, then the order of 2 modulo p divides m against our assumption. Hence m is even and we put m=2n. Now let 2u be the order of 2 modulo p. Then, by assumption, u is odd. Thus $u \neq 2n$. If 2n is bigger than u, then the order of 2 modulo p divides 2n-u. If 2n is less than u, then the order of 2 modulo p divides u-2n. Since 2n-u and u-2n are odd, we have a contradiction.

Thus equivalence classes of non-identity elements of \mathfrak{G} are paired off. So if we pick up exactly one equivalence class from each pair and form a union \mathfrak{D} , then \mathfrak{D} is even by Lemma 4.

REMARK 1. The normality of \mathfrak{D} is not needed in the proof of Theorem 1. So the following question arises. Does a new order v appear, if we put aside the normality of \mathfrak{D} after all?

Secondly we treat the case (II). We notice that k is a multiple of 4 in this case.

LEMMA 7. \mathfrak{D} is even if and only if for every non-identity element a of \mathfrak{G} both a and a^2 belong to \mathfrak{D} , or neither a nor a^2 belongs to \mathfrak{D} .

PROOF. Bad elements in Lemma 4 are wanted here. The proof of Lemma 4 goes through.

LEMMA 8. Let \mathfrak{D} be even. If an element a of \mathfrak{G} belongs to \mathfrak{D} , then a^2 also belongs to \mathfrak{D} .

PROOF. This is immediate by Lemma 7.

LEMMA 9. If there exists a prime divisor p of v such that 2 has even order modulo p, then there exists no even tournament of order v whose automorphism group contains a regular subgroup.

PROOF. Let 2m be the order of 2 modulo p. Then 2^m+1 is divisible by p. Now assume the contrary and let a be an element of \mathfrak{D} of order p. Then by Lemma 8 $a^{2^m} = a^{-1}$ belongs to \mathfrak{D} , which is a contradiction.

THEOREM 2. If the order of 2 modulo every prime divisor of v is odd, then there exists an even tournament of order v whose automorphism group contains a regular subgroup which is isomorphic to an arbitrarily given group \mathfrak{G} of order v.

PROOF. Let c and d be elements of \mathfrak{G} . Then we say that d is equivalent to c if and only if there exists a non-negative integer n such that $d = c^{2^n}$. This is a true equivalence relation.

We show that for every non-identity a of \mathfrak{G} a and a^{-1} belong to distinct equivalence classes.

Suppose that for some non-identity element a of $\mathfrak{G} a^{-1}$ is equivalent to a. Then there is a positive integer n such that $a^{2^n} = a^{-1}$. Let p be a prime divisor of the order of a. Then p is also a prime divisor of v. At any rate 2^n+1 is divisible by p. Now let u be the order of 2 modulo p. Then, by assumption, u is odd. Now 2n is a multiple of u. But this implies that n is a multiple of u, which is a contradiction.

Now we can complete the proof like Theorem 1.

REMARK 2. We can make the same question as in Remark 1.

References

- [1] N. ITO, On cyclic tournaments. Hokkaido J. Math. 21 (1992) 273-277.
- [2] N. ITO, On cyclic even tournaments. To appear in Proc. the 22nd Annual Meeting, Iranian Math. Soc.

Department of Mathematics, Meijo University Nagoya, Tenpaku, Japan 468