# Note on even tournaments whose automorphism groups contain regular subgroups 

Noboru ITO

(Received May 26, 1992)

## § 1. Introduction

A ( 0,1 )-matrix $A$ of degree $v$ is called a tournament of order $v$ if $A$ satisfies the following equation

$$
\begin{equation*}
A+A^{t}+I=J, \tag{1}
\end{equation*}
$$

where $t$ denotes the transposition, and $I$ and $J$ are the identity and all one matrices of degree $v$ respectively. In other words, a tournament is the adjacency matrix of a complete asymmetric digraph.

A tournament $A$ is called even if the inner product of any two distinct row vectors of $A$ is even.

A permutation matrix $P$ such that $P^{t} A P=A$ is called an automorphism of $A$. The multiplicative group $\mathscr{G}(A)$ of all automorphisms of $A$ is called the automorphism group of $A$.

In the present note we consider a tournament $A$ such that $\mathbb{B}(A)$ contains a regular subgroup ${ }^{\text {b }}$. In previous two notes we considered the case where $\mathbb{B}^{2}$ is cyclic (1) and (2). In such a case $A$ is called a cyclic tournament. We obtained the following result in (2).

Theorem. An even cyclic tournament of order $v$ exists if and only if $v$ satisfies one of the following conditions: (i) $v$ is congruent to 3 modulo 8 and the order of 2 modulo every prime divisor of $v$ is singly even, where an even integer $n$ is called singly even if $n$ is not divisible by 4 ; (ii) $v$ is cogruent to 1 modulo 8 and the order of 2 modulo every prime divisor of $v$ is odd.

Now since $₫ \Vdash^{4}$ is regular, we label rows and columns of $A$ by elements of $\mathscr{C}$ so that

$$
\begin{equation*}
A=(A(a, b)) \text {, where } a \text { and } b \text { are elements of } \mathscr{G} \text {, } \tag{2}
\end{equation*}
$$

and
(3) $\quad A(a c, b c)=A(a, b)$, where $c$ runs over all elements of $\mathscr{C}$.

Obviously $A$ is regular, namely each row $A(a)$ of $A$ contains the same number of 1's, say $k$. Then it holds that
(4) $v=2 k+1$.

Moreover $A$ is completely determined by its first row $A(e)$, where $e$ is the identity element of $\mathfrak{G}$. We identify $A(e)$ with its support $\mathfrak{D}$, namely the set of elements $a$ of $\mathbb{B}$ such that $A(e, a)=1$. So $\mathfrak{D}$ consists of $k$ elements of $\mathfrak{C b}$.

In the present note we show that the above mentioned theorem holds good for an arbitrary group $\mathfrak{G}$ of order $v$, provided that we choose $\mathfrak{D}$ normal in $\mathscr{E}$, namely $\mathfrak{D}$ satisfies the condition $a^{-1} \mathfrak{D} a=\mathfrak{D}$ for every element $a$ of $\mathbb{C}$.

We have to leave open the case where $\mathfrak{D}$ is not normal in $\mathbb{G}$.

## § 2.

Lemma 1. (i) e doe not belong to $\mathfrak{D}$. (ii) For $a \neq e$ exactly one of $a$ and $a^{-1}$ belongs to $\mathfrak{D}$.

Proof. It is straightforward.
We consider the collection $\mathfrak{D}\left({ }^{*}\right)$ (namely multiplicity is counted) of elements of $\mathscr{b}$ of the form $c^{-1} d$, where both $c$ and $d$ belong to $\mathfrak{D}$. Let $m(a)$ denote the multiplicity of an element $a$ of $\mathscr{B}$ in $\mathfrak{D}\left({ }^{*}\right)$. Clearly it holds that $m(e)=k$.

Lemma 2. A tournament $A$ is even if and only if $m(a)$ is even for every non-identity element $a$ of $\mathscr{B}$.

Proof. $\quad m(a)$ equals the inner product $(A(e), A(a))$.
We say that $\mathfrak{D}$ is even if $m(a)$ is even for every non-identity elemens $a$ of $\mathbb{G}$.

Lemma 3. If $\mathfrak{D}$ is even, then it holds that
(5) $\quad k^{2}-k \equiv 0 \quad(\bmod 4)$.

Proof. $a$ and $a^{-1}$ have the same multiplicity.
By (5) we distinguish two cases: (I) $k$ is congruent to 1 modulo 4 and (II) $k$ is divisible by 4 .

First we treat the case (I). In the proof of the next lemma we require the assumption that $\mathfrak{D}$ is normal in $\mathbb{G}$.

Lemma 4. $\mathfrak{D}$ is even if and only if exactly one of $a$ and $a^{2}$ belongs to $\mathfrak{D}$ for every non-identity element $a$ of $\mathfrak{B}$.

Proof. First assume that both $a$ and $a^{2}$ belong to $\mathfrak{D}$. Then we show that $m\left(a^{2}\right)$ is odd. We say that an element $d$ of $\mathfrak{D}$ is bad if $d a^{-2}$ does not belong to $\mathfrak{D}$. Under our assumption we show that the number of bad $d$ 's is even. Under our assumption we show that the number of bad $d$ 's is even. Since $k$ is odd in case ( I , this implies that $m\left(a^{2}\right)$ is odd. Now since both $a a^{-2}=a^{-1}$ and $a^{2} a^{-2}=e$ do not belong to $\mathfrak{D}$, both $a$ and $a^{2}$ are bad. Moreover, if $b$ is bad and if $b \neq a, a^{2}$, then $a^{2} b^{-1}$ is also bad, since $a^{2} b^{-1}$ belongs to $\mathfrak{D}$ and $a^{2} b^{-1} a^{-2}$ does not belong to $\mathfrak{D}$ by the normality of $\mathfrak{D}$.

Next assume that neither $a$ nor $a^{2}$ belongs to $\mathfrak{D}$. This time we show that $m\left(a^{-2}\right)$ is odd. Since both $a^{-1} a^{2}=a$ and $a^{-2} a^{2}=e$ do not belong to $\mathfrak{D}$, both $a^{-1}$ and $a^{-2}$ are bad. If $b$ is bad and if $b \neq a^{-1}, a^{-2}$, then $a^{-2} b^{-1}$ is also bad, since $a^{-2} b^{-1}$ belongs to $\mathfrak{D}$ and $a^{-2} b^{-1} a^{2}$ does not belong to $\mathfrak{D}$ by the normality of $\mathfrak{D}$.

Conversely we assume that exactly one of $a$ and $a^{2}$ belongs to $\mathfrak{D}$ for every non-identity element $a$ of $\mathbb{b}$. We notice that every non-identity element $c$ of $\mathfrak{B}$ may be written in the form $c=a^{2}$ for some element $a$ of $\mathfrak{G}$, since $\mathscr{B}^{\mathscr{b}}$ has odd order. So we may proceed as above and investigate $m\left(a^{2}\right)$. If $a$ belongs to $\mathfrak{D}$ and $a^{2}$ does not belong to $\mathfrak{D}$, then, since $a a^{-2}=$ $a^{-1}$ does not belong to $\mathfrak{D}, a$ is bad. Moreover, if $a^{-2}$ is bad, then $a^{4}$ is also bad, because $a^{4} a^{-2}=a^{2}$ does not belong to $\mathfrak{D}$. If $a$ does not belong to $\mathfrak{D}$ and $a^{2}$ belongs to $\mathfrak{D}$, then, since $a^{2} a^{-2}=e$ does not belong to $\mathfrak{D}, a^{2}$ is bad. Moreover, if $a^{-1}$ is bad, then $a^{3}$ is also bad, because $a^{3} a^{-2}=a$ does not belong to $\mathfrak{D}$.

Lemma 5. Let $\mathfrak{D}$ be even. If an elemens a of $\mathfrak{G}$ belongs to $\mathfrak{D}$, then $a^{-2}$ also belongs to $\mathfrak{D}$.

Proof. This is immediate by Lemma 4.
Lemma 6. If there exists a prime divisor $p$ of $v$ such that 2 modulo $p$ has order divisible by 4 or odd, then there exists no even tournament of order $v$ whose automorphism group containts a regular subgroup.

Proof. Assume the contrary. We use the same notation as above. Let $a$ be an element of $\mathfrak{D}$ of order $p$. Using Lemma 5 repeatedly, we see that $a^{(-1)^{n 2 n}}$ belongs to $\mathfrak{D}$. Now assume that the order of 2 modulo $p$ equals $4 m$. Then put $n=2 m$. It follows that $a^{22 m}=a^{-1}$ belongs to $\mathfrak{D}$, which is a contradiction. Next assume that the order of 2 modulo $p$ equals $2 m+1$. Then put $n=2 m+1$. It follows that $a^{-22 m+1}=a^{-1}$ belongs to $\mathfrak{D}$, which is a contradiction.

THEOREM 1. If the order of 2 is singly even modulo every prime divisor of $v$, then there exists a tournament of order $v$ whose automorphism group contains a regular subgroup which is isomorphic to an arbitrarily given group $\$ 5$ of order $v$.

Proof. Let $c$ and $d$ be elements of $\mathbb{S}$. Then we say that $d$ is equivalent to $c$ if and only if there exists a non-negative integer $n$ such that $d=c^{(-2)^{n}}$. It is easy to see that this is a true equivalence relation.

We show that for every non-identity element $a$ of $\$ 3$ and $a^{-1}$ belong to distinct equivalence classes.

Now assume that for some non-identity element $a$ of $\mathfrak{5}$ both $a$ and $a^{-1}$ belong to the same equivalence class. So there exists a positive integer $m$ such that $a^{(-2)^{m}}=a^{-1}$. Let $p$ be a prime divisor of the order of $a$. Then $p$ is also a prime divisor of $v$. Now $p$ divides $(-2)^{m}+1$. If $m$ is odd, then the order of 2 modulo $p$ divides $m$ against our assumption. Hence $m$ is even and we put $m=2 n$. Now let $2 u$ be the order of 2 modulo $p$. Then, by assumption, $u$ is odd. Thus $u \neq 2 n$. If $2 n$ is bigger than $u$, then the order of 2 modulo $p$ divides $2 n-u$. If $2 n$ is less than $u$, then the order of 2 modulo $p$ divides $u-2 n$. Since $2 n-u$ and $u-2 n$ are odd, we have a contradiction.

Thus equivalence classes of non-identity elements of $\mathbb{5}$ are paired off. So if we pick up exactly one equivalence class from each pair and form a union $\mathfrak{D}$, then $\mathfrak{D}$ is even by Lemma 4 .

REMARK 1. The normality of $\mathfrak{D}$ is not needed in the proof of Theorem 1. So the following question arises. Does a new order $v$ appear, if we put aside the normality of $\mathfrak{D}$ after all?

Secondly we treat the case (II). We notice that $k$ is a multiple of 4 in this case.

LEMMA 7. $\mathfrak{D}$ is even if and only if for every non-identity element a of $\left(\$\right.$ both $a$ and $a^{2}$ belong to $\mathfrak{D}$, or neither a nor $a^{2}$ belongs to $\mathfrak{D}$.

Proof. Bad elements in Lemma 4 are wanted here. The proof of Lemma 4 goes through.

Lemma 8. Let $\mathfrak{D}$ be even. If an element a of $\mathfrak{F}$ belongs to $\mathfrak{D}$, then $a^{2}$ also belongs to $\mathfrak{D}$.

Proof. This is immediate by Lemma 7.
Lemma 9. If there exists a prime divisor $p$ of $v$ such that 2 has even order modulo $p$, then there exists no even tournament of order $v$ whose
automorphism group contains a regular subgroup.
Proof. Let $2 m$ be the order of 2 modulo $p$. Then $2^{m}+1$ is divisible by $p$. Now assume the contrary and let $a$ be an element of $\mathfrak{D}$ of order $p$. Then by Lemma $8 a^{2^{m}}=a^{-1}$ belongs to $\mathfrak{D}$, which is a contradiction.

THEOREM 2. If the order of 2 modulo every prime divisor of $v$ is odd, then there exists an even tournament of order $v$ whose automorphism group contains a regular subgroup which is isomorphic to an arbitrarily given group (\$5) of order $v$.

Proof. Let $c$ and $d$ be elements of $\mathbb{G}$. Then we say that $d$ is equivalent to $c$ if and only if there exists a non-negative integer $n$ such that $d=c^{2 n}$. This is a true equivalence relation.

We show that for every non-identity $a$ of $\mathfrak{( 5 )} a$ and $a^{-1}$ belong to distinct equivalence classes.

Suppose that for some non-identity element $a$ of $\mathbb{S H}^{-1} a^{-1}$ is equivalent to $a$. Then there is a positive integer $n$ such that $a^{2 n}=a^{-1}$. Let $p$ be a prime divisor of the order of $a$. Then $p$ is also a prime divisor of $v$. At any rate $2^{n}+1$ is divisible by $p$. Now let $u$ be the order of 2 modulo $p$. Then, by assumption, $u$ is odd. Now $2 n$ is a multiple of $u$. But this implies that $n$ is a multiple of $u$, which is a contradiction.

Now we can complete the proof like Theorem 1.
REMARK 2. We can make the same question as in Remark 1.

## References

[1] N. Ito, On cyclic tournaments. Hokkaido J. Math. 21 (1992) 273-277.
[2] N. Ito, On cyclic even tournaments. To appear in Proc. the 22nd Annual Meeting, Iranian Math. Soc.

