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Note on even tournaments whose automorphism groups
contain regular subgroups
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\S 1. Introduction

A (0, 1)-matrix A of degree v is called a tournament of order v if A
satisfies the following equation

(1 ) A+A^{t}+I=J ,

where t denotes the transposition, and I and J are the identity and all one
matrices of degree v respectively. In other words, a tournament is the
adjacency matrix of a complete asymmetric digraph.

A tournament A is called even if the inner product of any two distinct
row vectors of A is even.

A permutation matrix P such that P^{t}AP=A is called an automor-
phism of A. The multiplicative group \mathfrak{G}(A) of all automorphisms of A is
called the automorphism group of A.

In the present note we consider a tournament A such that \mathfrak{G}(A) con-
tains a regular subgroup \mathfrak{G} . In previous two notes we considered the case
where \mathfrak{G} is cyclic (1) and (2). In such a case A is called a cyclic tourna-
ment. We obtained the following result in (2).

THEOREM. An even cyclic tournament of order v exists if and only

if v satisfies one of the following conditions: ( i) v is congruent to 3
modulo 8 and the order of 2 modulo every prime divisor of v is singly
even, where an even integer n is called singly even if n is not divisible by
4: ( ii)v is cogruent to 1 modulo 8 and the order of 2 modulo every prime
divisor of v is odd.

Now since \mathfrak{G} is regular, we label rows and columns of A by elements of \mathfrak{G}

so that

(2) A=(A(a, b)) , where a and b are elements of \mathfrak{G} ,

and

(3) A(ac, bc)=A(a, b) , where c runs over all elements of \mathfrak{G} .
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Obviously A is regular, namely each row A(a) of A contains the
same number of 1’s, say k . Then it holds that

(4) v=2k+1 .

Moreover A is completely determined by its first row A(e) , where e is the
identity element of \mathfrak{G} . We identify A(e) with its support \mathfrak{D} , namely the
set of elements a of \mathfrak{G} such that A(e, a)=1 . So \mathfrak{D} consists of k elements
of \mathfrak{G} .

In the present note we show that the above mentioned theorem holds
good for an arbitrary group \mathfrak{G} of order v , provided that we choose \mathfrak{D}

normal in \mathfrak{G} , namely \mathfrak{D} satisfies the condition a^{-1}\mathfrak{D}a=\mathfrak{D} for every element
a of \mathfrak{G} .

We have to leave open the case where \mathfrak{D} is not normal in \mathfrak{G} .

\S 2.

LEMMA 1. ( i) edoe not belong to \mathfrak{D} . ( ii) For a\neq e exactly one of
a and a^{-1} belongs to \mathfrak{D} .

PROOF. It is straightforward.

We consider the collection \mathfrak{D}(^{*}) (namely multiplicity is counted) of
elements of \mathfrak{G} of the form c^{-1}d , where both c and d belong to \mathfrak{D} . Let
m(a) denote the multiplicity of an element a of \mathfrak{G} in \mathfrak{D}(^{*}) . Clearly it
holds that m(e)=k.

LEMMA 2. A tournament A is even if and only if m(a) is even for
every non-identity element a of \mathfrak{G} .

PROOF. m(a) equals the inner product (A(e), A(a)) .

We say that \mathfrak{D} is even if m(a) is even for every non-identity elemens
a of \mathfrak{G} .

LEMMA 3. If \mathfrak{D} is even, then it holds that

(5) k^{2}-k\equiv 0 (mod 4).

PROOF. a and a^{-1} have the same multiplicity.

By (5) we distinguish two cases: (I) k is congruent to 1 modulo 4
and (II) k is divisible by 4.

First we treat the case (I). In the proof of the next lemma we require
the assumption that \mathfrak{D} is normal in G.

LEMMA 4. \mathfrak{D} is even if and only if exactly one of a and a^{2} belongs
to \mathfrak{D} for every non-identity element a of \mathfrak{G} .
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PROOF. First assume that both a and a^{2} belong to \mathfrak{D} . Then we
show that m(a^{2}) is odd. We say that an element d of \mathfrak{D} is bad if da^{-2}

does not belong to \mathfrak{D} . Under our assumption we show that the number of
bad d’s is even. Under our assumption we show that the number of bad
d’s is even. Since k is odd in case (I), this implies that m(a^{2}) is odd.
Now since both aa^{-2}=a^{-1} and a^{2}a^{-2}=e do not belong to \mathfrak{D} , both a and a^{2}

are bad. Moreover, if b is bad and if b\neq a , a^{2}- then a^{2}b^{-1} is also bad,
since a^{2}b^{-1} belongs to \mathfrak{D} and a^{2}b^{-1}a^{-2} does not belong to \mathfrak{D} by the normal-
ity of \mathfrak{D} .

Next assume that neither a nor a^{2} belongs to \mathfrak{D} . This time we show
that m(a^{-2}) is odd. Since both a^{-1}a^{2}=a and a^{-2}a^{2}=e do not belong to \mathfrak{D} ,

both a^{-1} and a^{-2} are bad. If b is bad and if b\neq a^{-1} . a^{-2} , then a^{-2}b^{-1} is
also bad, since a^{-2}b^{-1} belongs to \mathfrak{D} and a^{-2}b^{-1}a^{2} does not belong to \mathfrak{D} by
the normality of \mathfrak{D} .

Conversely we assume that exactly one of a and a^{2} belongs to \mathfrak{D} for
every non-identity element a of \mathfrak{G} . We notice that every non-identity
element c of \mathfrak{G} may be written in the form c=a^{2} for some element a of \mathfrak{G} ,

since \mathfrak{G} has odd order. So we may proceed as above and investigate
m(a^{2}) . If a belongs to \mathfrak{D} and a^{2} does not belong to \mathfrak{D} , then, since aa^{-2}=

a^{-1} does not belong to \mathfrak{D} , a is bad. Moreover, if a^{-2} is bad, then a^{4} is
also bad, because a^{4}a^{-2}=a^{2} does not belong to \mathfrak{D} . If a does not belong to
\mathfrak{D} and a^{2} belongs to \mathfrak{D} , then, since a^{2}a^{-2}=e does not belong to \mathfrak{D} , a^{2} is
bad. Moreover, if a^{-1} is bad, then a^{3} is also bad, because a^{3}a^{-2}=a does
not belong to \mathfrak{D} .

LEMMA 5. Let \mathfrak{D} be even. If an elemens a of \mathfrak{G} belongs to \mathfrak{D} , then
a^{-2} also belongs to \mathfrak{D} .

PROOF. This is immediate by Lemma 4.

LEMMA 6. If there exists a prime divisor p of v such that 2 modulo
p has order divisible by 4 or odd, then there exists no even tournament of
order v whose automorphism group containts a regular subgroup.

PROOF. Assume the contrary. We use the same notation as above.
Let a be an element of \mathfrak{D} of order p. Using Lemma 5 repeatedly, we see
that a^{(-1)^{n}2n} belongs to \mathfrak{D} . Now assume that the order of 2 modulo p

equals 4m. Then put n=2m. It follows that a^{22m}=a^{-1} belongs to \mathfrak{D} ,

which is a contradiction. Next assume that the order of 2 modulo p

equals 2m+1 . Then put n=2m+1. It follows that a^{-22m+1}=a^{-1} belongs to
\mathfrak{D} , which is a contradiction.
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THEOREM 1. If the order of 2 is singly even modulo every prime
divisor of v, then there exists a tournament of order v whose automor-
phism group contains a regular subgroup which is isomorphic to an arbi-
trarily given group \mathfrak{G} of order v.

PROOF. Let c and d be elements of \mathfrak{G} . Then we say that d is equiv-
alent to c if and only if there exists a non-negative integer n such that
d=c^{(-2)^{n}} It is easy to see that this is a true equivalence relation.

We show that for every non-identity element a of \mathfrak{G} a and a^{-1} belong
to distinct equivalence classes.

Now assume that for some non-identity element a of \mathfrak{G} both a and a^{-1}

belong to the same equivalence class. So there exists a positive integer m

such that a^{(-2)^{m}}=a^{-1} . Let p be a prime divisor of the order of a . Then p

is also a prime divisor of v . Now p divides (-2)^{m}+1 . If m is odd, then
the order of 2 modulo p divides m against our assumption. Hence m is
even and we put m=2n. Now let 2 u be the order of 2 modulo p. Then,
by assumption, u is odd. Thus u\neq 2n . If 2n is bigger than u , then the
order of 2 modulo p divides 2n-u . If 2n is less than u , then the order of
2 modulo p divides u-2n. Since 2n-u and u-2n are odd, we have a
contradiction.

Thus equivalence classes of non-identity elements of \mathfrak{G} are paired off.
So if we pick up exactly one equivalence class from each pair and form a
union \mathfrak{D} , then \mathfrak{D} is even by Lemma 4.

REMARK 1. The normality of \mathfrak{D} is not needed in the proof of TheO-
rem 1. So the following question arises. Does a new order v appear, if
we put aside the normality of \mathfrak{D} after all ?

Secondly we treat the case (II). We notice that k is a multiple of 4 in
this case.

LEMMA 7. \mathfrak{D} is even if and only if for every non-identity element a

of \mathfrak{G} both a and a^{2} belong to \mathfrak{D} , or neither a nor a^{2} belongs to \mathfrak{D} .

PROOF. Bad elements in Lemma 4 are wanted here. The proof of
Lemma 4 goes through.

LEMMA 8. Let \mathfrak{D} be even. If an element a of \mathfrak{G} belongs to \mathfrak{D} , then
a^{2} also belongs to \mathfrak{D} .

PROOF. This is immediate by Lemma 7.

Lemma 9. If there exists a prime divisor p of v such that 2 has even
order modulo p, then there exists no even tournament of order v whose
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automorphism group contains a regular subgroup.

PROOF. Let 2m be the order of 2 modulo p. Then 2^{m}+1 is divisible
by p. Now assume the contrary and let a be an element of \mathfrak{D} of order p.
Then by Lemma 8 a^{2^{m}}=a^{-1} belongs to \mathfrak{D} , which is a contradiction.

THEOREM 2. If the order of 2 modulo every prime divisor of v is
odd, then there exists an even tournament of order v whose automorphism
group contains a regular subgroup which is isomorphic to an arbitrarily
given group \mathfrak{G} of order v.

PROOF. Let c and d be elements of \mathfrak{G} . Then we say that d is equiv-
alent to c if and only if there exists a non-negative integer n such that
d=c^{2^{n}} This is a true equivalence relation.

We show that for every non-identity a of \mathfrak{G} a and a^{-1} belong to dis-
tinct equivalence classes.

Suppose that for some non-identity element a of \mathfrak{G}a^{-1} is equivalent to
a . Then there is a positive integer n such that a^{2^{n}}=a^{-1} . Let p be a
prime divisor of the order of a . Then p is also a prime divisor of v . At
any rate 2^{n}+1 is divisible by p. Now let u be the order of 2 modulo p.
Then, by assumption, u is odd. Now 2n is a multiple of u . But this
implies that n is a multiple of u , which is a contradiction.

Now we can complete the proof like Theorem 1.

REMARK 2. We can make the same question as in Remark 1.
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