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Introduction.

In the history of Riemannian geometry, the rigidity problem of
isometric imbeddings has been one of the major problems and has been
studied by many authors.

Let f be an isometric imbedding of a Riemannian manifold M into a
euclidean space R^{m} . f is called rigid if any other isometric imbedding of
M into R^{m} can be written by a composite of f and a euclidean transfor-
mation of R^{m}\wedge The rigidity problem is to determine whether a given
isometric imbedding f is rigid or not. In his paper [Tn], N. Tanaka
threw a new light upon the rigidity problem and made a great contribution
to the progress of this problem.

Let f be an isometric imbedding of M into R^{m} . We define a
differential operator \Phi_{*f} by setting

\Phi_{*f}(u)=<df . du > ,

where u is a differentiate map of M to R^{m} A solution u of the equation
\Phi_{*f}(u)=0 is called an infifinitesimal isometric deformation of f. N. Tanaka
ka proved that under the assumption that f is non-degenerate, there is a
differential operator L associated with f_{r} which is, in a sense, equivalent
to the operator \Phi* ; and the solution space of the equation L\varphi=0 is
isomorphic with the space of infinitesimal isometric deformations of f.

It is noted that the operator L has a preferable property as a
differential operator: the symbol of L is not necessarily degenerate,
although the symbol of \Phi* ; is necessarily degenerate. Therefore, through
the operator L, the rigidity problem can be observed from a viewpoint of
the differential equation.

In [Tn], N. Tanaka studied the case where the operator L is of ellip-
tic type and f is infinitesimally rigid; an isometric imbedding f is called
infifinitesimally rigid if each solution of L\varphi=0 corresponds to an
infinitesimal euclidean transformation of R^{m} . Applying the theory of ellip-
tic differential equation, he established a global rigidity theorem for such
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an isometric imbedding f. As an application of this theorem, he proved

actual rigidity theorems for the so called canonical isometric imbeddings

of Hermitian symmetric spaces of compact type.
Studies in this line can be seen in [KT] and [Ka]: for the canonical

imbeddings of real Grassmann manifolds G^{2,q}(R)(q\geqq 3) and the classical
compact Lie groups U(n) , SO(n) and Sp(n) , the dimensions of the solu-
tion spaces of L\varphi=0 are calculated and actual global rigidity theorems
have been established.

Kaneda and Tanaka [KT] studied the local solutions of the equation
L\varphi=0,\cdot especially, the prolongations of the symbol of L are systemat-
ically discussed. They considered the case where L is of finite type, i . e. ,

the equation L\varphi=0 reduces to a completely integrable system of
differential equations after finitely many prolongation procedures. In case
the symbol of L has minimal prolongations, they proved that f is locally

rigid, i . e. , even the restriction of f to any small open submanifold of M is
rigid in a sense. This local rigidity theorem is a refinement of the global
r\overline{l}gidity theorem stated above; for many irreducible Hermitian symmetric
spaces of compact type the actual global rigidity theorems can be also
proved by this theorem.

In this paper, we say that a non-degenerate isometric imbedding f is
of type (E) (resp. type (F)) if L is of elliptic type (resp. finite type). As
we have seen, the operator L played an important role in the study of the
global or local rigidity theorem; therefore, to discuss the rigidity of a
given isometric imbedding f it is a fundamental and interesting problem

to determine the type of f.
The purpose of this paper is to survey the types of L associated with

the canonical isometric \overline{1}mbeddings of symmetric R-spaces G/K. Sym-

metric R-spaces form a wide class of compact Riemannian symmetric
spaces; the irreducible Hermitian symmetric spaces of compact type, the
real quadrics Q^{p,q}(R) and the Grassmann manifolds G^{p,q}(K)(K=R, C or
H) belong to this class (see Table I Appendix 1). It is known that for
each symmetric R-space G/K there is an isometric imbedding into a eu-
clidean space, which is called the canonical isometric imbedding of G/K

(see [Ko], [KT]). In this paper, we restrict our investigation to the case
where G/K is not a Hermitian symmetric space of compact type. As for
the Hermitian symmetric spaces of compact type, the types of the canoni-
cal isometric imbeddings have been already known (see [Tn], [KT]).

Roughly speaking, it is shown that for almost all symmetric R spaces

the canonical isometric imbeddings f are of type (F) and that the excep-

tional cases are limited to the already known cases in [KT] (see Theorem
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2.6). We prove: (1) f\overline{1}S of type (F) if G/K does not coincide with any
of the real quadrics Q^{p,q}(R)(p, q\geqq 1) , the real projective spaces P^{n}(R)

nor the real Grassmann manifolds G^{2,q}(R):(2)f is of type(E) if G/K
does not coincide with any of the real quadrics Q^{p,q}(R) nor the real pr0-
jective spaces P^{n}(R) . Accordingly, for almost all symmetric R spaces,
we can conclude that the space of (local) infinitesimal isometric deforma-
tions of f is of finite dimension.

Throughout this paper we assume the differentiability of class C^{\infty}

Unless otherwise stated, for Lie groups, Lie algebras and symmetric
spaces, we follow the notation in [H].

\S 1. Types of isometric imbeddings.

1. 1. The differential operator L. Let (M, g) be an n-dimensional
Riemannian manifold. We denote by T(M) (resp. T^{*}(M) ) the tangent
(resp. cotangent) bundle of M. We also denote by S^{2}T^{*}(M) the symmet-
ric product of T^{*}(M) .

Let f be an isometric imbedding of (M, g) into a euclidean space R^{m} .
We denote by N(M) the normal bundle of f. Let \nabla be the Riemannian
connection of (M, g) . Then, it is known that at each p\in M , the second
derivative \nabla_{\chi}\nabla_{y}f . x , y\in T_{p}(M) takes its value in the normal vector space
N_{p}(M) . Let A\in N_{p}(M) . We define a symmetric bilinear form A^{\vee} by

A^{\vee}(x, y)=<A , \nabla_{x}\nabla_{y}f> , x , y\in T_{p}(M) .
A^{\vee} is called the second fundamental form of f with respect to A. We say
that an isometric imbedding f is non-degenerate if at each p\in M , N_{p}(M)

is spanned by the vectors \nabla_{x}\nabla_{y}f(x, y\in T_{p}(M)) .
Let f be a non-degenerate isometric imbedding of (M, g) into R^{m} .

Then the map N_{p}(M)\ni A -\mapsto A^{\vee}\in S^{2}T_{p}^{*}(M) is injective for each p\in M .
We denote by N_{p}^{\vee} the subspace of S^{2}T_{p}^{*}(M)consist\overline{l}ng of all A^{\vee}(A\in

N_{p}(M)) . It is easy to see that N^{\vee}= \bigcup_{p\in M}N_{p}^{\vee} forms a subbundle of
S^{2}T^{*}(M) , which is called the bundle of second fundamental forms as-
sociated with f. We denote by \pi the natural projection of S^{2}T^{*}(M) onto
the quotient bundle S^{2}T^{*}(M)/N^{\vee}

We now recall the definition of the differential operator L. Let \varphi be a
differential l-form on M. Define a symmetric 2-tensor field D\varphi on M by

D\varphi(x, y)=\nabla_{x}\varphi(y)+\nabla_{y}\varphi(x) , x , y\in T_{p}(M) .

It is easily shown that D\varphi=\mathscr{L}_{X},g , where X is the vector field on M defined
by \varphi(\cdot)=g(X, \cdot) and \mathscr{L}_{X}g is the Lie derivative of g by X. The differential
operator L is then defined as a composite \pi\circ D , i . e. ,
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L:\Gamma(T^{*}(M))\ni\varphi\mapsto\pi(D\varphi)\in\Gamma(S^{2}T^{*}(M)/(N^{\vee}) .

The following proposition is fundamental in the discussion of
infinitesimal isometric deformations of f .

PROPOSITION 1. 1 (see [Tn], [KT]). Let f be an isometric imbed-
ding of a Riemannian manifold (M, g) into a euclidean space R^{m} .

Assume that f is non-degenerate. Then there exists a linear isomorphism
between the kernel of the operator L and the space of infifinitesimal
isometric deformations of f.

1. 2. Properties (E) and (F). Before proceeding to the definition of
type of isometric imbeddingsm, we make a brief preparation for symmetric
bilinear forms.

Let V be an n-dimensional vector space over R. We denote by V^{*}

the dual vector space of V and by S^{2}V^{*} the symmetric product of V^{*} .
We also denote by V^{*c} and S^{2}V^{*c} the complex\overline{l}fifications of V^{*} and S^{2}V^{*} .

Let A be an element of S^{2}V^{*} . A is called decomposable if it can be
expressed as a symmetric product of two vectors in V^{*} . i . e. , A=\xi_{1}\cdot\xi_{2} , \xi_{1} ,
\xi_{2}\in V^{*} . Similarly, an element B\in S^{2}V^{*c} is called decomposable \overline{1}f it can
be expressed as a symmetric product of two vectors in V^{*c} . i . e. , B=\eta_{1}\cdot\eta_{2} ,
\eta_{1},

\eta_{2}\in V^{*c} .

DEFINITION. Let W be subspace of S^{2}V^{*} . We say that W has Prop-
erty (E) if W contains no non-trivial decomposable elements of S^{2}V^{*} .
We also say that W has Property (F) if the complexification W^{c} of W

contains no non^{-triv}\overline{1}a1 decomposable elements of S^{2}V^{*c} .

DEFINITION. Let f be a non-degenerate isometric imbedding of (M,
g) into a euclidean space R^{m} . Then f\overline{1}S called of type (E) (resp. type
(F)) if N_{p}^{\vee} has Property (E) (resp. Property (F)) at each p\in M .

The type of a non-degenerate isometric imbedding defined above just
corresponds to the type of the differential operator L associated with f ; f
is of type (E) (resp. type (F)) if and only if L is of elliptic type (resp.

finite type) (see [Tn], [KT]). Therefore, as for the space of infinitesimal
isometric deformations of f. we obtain the following fundamental proposi-
tion.

PROPOSITION 1. 2 (see [Tn], [KT]). Let f be a non-degenerate
isometric imbedding of a Riemannian manifold (M, g) into a euclidean
space R^{m} . Then:

(1) If f is of type (E) and M is compact, then the space of global

infifinitesimal isometric deformations of f is fifinite dimensional.
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(2) If f is of type (F), then the space of (local) infifinitesimal
isometric deformations of f\iota^{-}s fifinite dimensional.

\S 2. Canonical isometric imbeddings of symmetric R-spaces.

2. 1. Symmetric R-spaces. F\dot{l}rst we recall the definition of a simple

graded Lie algebra of the first kind (=FSGLA) .

DEFINITION. Let L=\Sigma_{i}L_{i}(i\in Z) be a finite dimensional graded Lie
algebra over R. L=\Sigma_{i}L_{i} is called an FSGLA if it satisfies

(1) L is non-compact and simple;
(2) L_{i}=0 for |i|\geqq 2 ;
(3) L_{1}\neq 0 .

Let L= \sum_{i}L_{i} be an FSGLA. Then there is a unique element E of L_{0}

satisfying [E, X]=iX for X\in L_{i} ( i=-1,0 and 1). The element E is
called the characteristic element of L= \sum_{i}L_{i} . As is easily seen, the gra-
dation of L= \sum_{i}L_{i} can be reproduced by the characteristic element E.
In the following discussion, we represent an FSGLA by the pair (L, E) .

Let (L, E) be an FSGLA and B the Killing form of L. An involutive
automorphism \theta of L is called a standard involution of (L, E) if it
satisfies:

(1) \theta E=-E\cdot,
(2) \theta is a Cartan involution of L, i . e ., the bilinear form < > of

L defined by <X , Y>=-B(X, \theta Y) , X, Y\in L is positive
definite.

As shown \overline{1}n[KN] , there exists a standard involut\overline{l}on\theta for each
FSGLA (L, E) .

Lemma 2. 1 (see [KN]). Let \theta be an standard involution of (L, E) .
Then:

(1) \theta L_{i}=L_{-i} ( i=-1,0 and 1).
(2) L=L_{-1}+L_{0}+L_{1} is an orthogonal direct sum with respect

to < > .

Let \theta be a standard involution of (L, E) . We set

G=\{X\in L,\cdot\theta X=X\} , P=\{X\in L;\theta X=-X\} .

Then we have

E\in P:[GG]\subset G , [ G, P]\subset P , [P, P]\subset G .
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As is well-known, G is a maximal compact subalgebra of L and L=G
+P gives a Cartan decomposition of L.

Let L be the adjoint group of L. By the map X\mapsto ad(X)(X\in L)

we can regard L as the Lie algebra of L. We denote by G the Lie sub-
group of L generated by G . Then G is a maximal compact subgroup of
L and the bilinear form < > is invariant under the action of G, i . e. ,

<Ad(g)X , Ad(g) Y>=<X , Y>forX , Y\in L , g\in G .

We now regard P as a euclidean space with the inner product < >|P .
Let M be the Ad(G)-0rbit in P passing through the character\overline{l}stic element
E. Since P is invariant under the action of G, M becomes a compact
Riemannian submanifold of P.

Let K be the closed subgroup of G defined by

K=\{g\in G;Ad(g)E=E\} .

Then M can be represented by a homogeneous space G/K. Put K=G\cap

L_{0} and M=G\cap(L_{-1}+L_{1}) . Then K can be \overline{1}dentifified with the Lie alge-
bra of K and M can be identified with the tangent space T_{0}(G/K) at the
origin o(=E) . By the definition, it is easily observed that:

(1) [K, K]\subset K , [K, M]\subset M , [M, M]\subset K .
(2) Ad(k)K=K, Ad(k)M=M for k\in K .
(3) K=\{X+\theta X:X\in L_{0}\} M=\{X+\theta X;X\in L_{-1}\} .

We have

PROPOSITION 2. 2 (see [KN], [Tk], [KT]). The homogeneous space G/

K endowed with the induced metric has the structure of a Riemannian
symmetric space.

DEFINITION. The Riemannian symmetric space G/K defined above is
called the symmetric R-space assoc\overline{l}ated with (L, E) . The inclus\overline{l}on map

f of G/K into P is called the canonical isometric imbedding of G/K.

The following proposition is fundamental for the canonical isometric
imbeddings of symmetric R space.

PROPOSITION 2. 3 (see [Tn], [KT]). Let f be the canonical isometric
imbedding of a symmetric R-space G/K. Then:

(1) f is non-degenerate.
(2) Set N=P\cap L_{0} . Then N can be identifified with the normal

vector space N_{0} of f at 0 . N is invariant under the action of
Ad(K), i. e. , Ad(k)N=N for k\in K.
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(3) For each A\in N the second fundamental form A^{\vee} is given by
A^{\vee}(X, Y)=\langle A, [ Y, E]]\rangle for X, Y\in M.

2. 2. Satake diagrams. Let (L, E) be an FSGLA and \theta a standard
involution of (L, E) . In the following discussion, we assume that the
complexified Lie algebra L^{c} is simple over C. (Under this assumption,
the symmetric R-space G/Kassoc\overline{l}ated with (L, E) is not isomorphic
with a Hermitian symmetric space of compact type (see [Tk]). )

Let L=G+P be the Cartan decomposition of L obtained by \theta and let
a be a maximal abelian subspace of P such that E\in a . Let t be a Cartan
subalgebra of L containing a. Then we have t=a+b ( b=t\cap G) We
set t_{R}=a+\sqrt{-1}b . As is easily shown, the Killing form B is positive
definite on t_{R} . We denote by ( ) the restriction of B to t_{R} .

An element \alpha\in t_{R} is called a root if there exists a non-zero vector Z\in

L^{c} such that [H, Z]=(\alpha, H)Z for all H\in t_{R} . Let \Delta be the set of all non-
zero roots. We select and fix a system of vectors \{Z_{a} ; \alpha\in\Delta\} , where Z_{a} is
a non-zero root vectors corresponding to \alpha\in\Delta .

We now introduce a linear order ”< ” in t_{R} satisfying: ( 1) If (H,
E)<0 then H>0;(2) If H\in t_{R}\backslash \sqrt{-1}b and H>0 then \theta H<0 . We denote
by \Pi=\{\alpha_{1}, \ldots, \alpha_{l}\} (1=rank L) the set of simple roots with respect to < .
Under our assumption that L^{c}\overline{1}S simple over C , the Dynkin diagram of \prod

is irreduc\overline{l}ble . Then we have

PROPOSITION 2. 4 (see [KN]). (1) For each \alpha\in\Delta, it holds (\alpha, E)=

-1,0 or 1.
(2) Set \Delta_{i}=\{\alpha\in\Delta;(\alpha, E)=i\} ( i=-1,0 or 1). Then-.

L_{i}^{c}=\Sigma_{a}CZ_{a}(\alpha\in\Delta_{i}) ( i=-1 or 1) ;
L_{0}^{c}=t^{c}+\Sigma_{a}CZ_{a}(\alpha\in\Delta_{0}) .

By Proposition 2. 4, we easily have

LEMMA 2. 5. (1) K^{c}=t^{c}+\Sigma_{a}C(Z_{a}+\theta Z_{a})(\alpha\in\Delta_{0}) .
(2) M^{c}=\Sigma_{a}C(Z_{a}+\theta Z_{a})(\alpha\in\Delta_{-1})

By (1) of Proposition 2. 5, we know that there is a unique simple root
\alpha_{i0}\in\Pi such that (\alpha_{i0}, E)=-1;(\alpha_{i}, E)=0 for \alpha_{i}\in\Pi\backslash \{\alpha_{i0}\} . The simple
root \alpha_{i0} is called the distinguished root for (L, E) . In the Satake diagram
for the Riemannian symmetric pair (L, G) , the distinguished root can be
characterized by:

(a) \alpha_{i0} is denoted by a white circle,\cdot

(b) \alpha_{i0} is not connected by an arrow with another white circle;
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(c) Let \mu=\Sigma_{i}a_{i}\alpha_{i} be the h_{\overline{1}}ghest root of \Delta . Then the coefficient of
\alpha_{i0} is equal to 1, \overline{1} . e. , a_{i0}=1 .

In Table I (see Appendix 1), we exhibit all FSGLAs (L, E) with L^{c}

simple over C and the symmetric R-spaces G/K associated with (L, E) .
Each FSGLA is represented by the pair of the Satake diagram of (L, G)

and the distinguished root; the location of the distinguished root is denoted
ed by a double circle. For the symmetric R-spaces, we use the following
notation:

S^{n}=SO(n+1)/SO(n) (the sphere),
Q^{p,q}(R)=(S^{p}\cross S^{q})/Z_{2}(p, q\geqq 1) (the real quadric),
G^{p,q}(R)=SO(p+q)/S(O(p)\cross O(q)) (the real Grassmann manifold),
G^{p,q}(H)=Sp(p+q)/Sp(p)\cross Sp(q) (the quaternion Grassmann manifold),
P^{2}(Cay)=F_{4}/Spin(9) (the Cayley projective plane).

As is known, we have

G^{1,q}(R)=G^{q,1}(R)=P^{q}(R);G^{1,q}(H)=G^{q,1}(H)=P^{q}(H) :
Q^{1,3}(R)=Q^{3,1}(R)=U(2) : Q^{2,2}(R)=G^{2,2}(R) ;
G^{1,1}(H)=P^{1}(H)=S^{4}

Here P^{q}(R) (resp. P^{q}(H) ) means the real (resp. quaternion) projective
space.

We now state the main theorem of this papar. The proof will be
given in \S 4 and \S 5.

THEOREM 2. 6. Let (L, E) be an FSGLA such that L^{c} is simple over
C. Let G/K be the symmetric R-space associated with (L, E) and f the
canonical isometric imbedding of G/K. Then :

(1) f is of type (F) if G/K\neq Q^{p,q}(R)(p, q\geqq 1) , P^{n}(R)(n\geqq 1) nor
G^{2,q}(R)(q\geqq 2) .

(2) f is of type (E) but not of type (F) if G/K=G^{2,q}(R)(q\geqq 3) .
(3)

1).f
is not of type (E) if G/K=Q^{p,q}(R)(p, q\geqq 1) , or P^{n}(R)(n\geqq

Comb_{\overline{1}}ning Theorem 2. 6 with Proposition 1. 2, we have

THEOREM 2. 7. Under the same assumptions in Theorem 2. 6, it
holds:

(1) If G/K\neq Q^{p,q}(R) , P^{n}(R) nor G^{2,q}(R)(q\geqq 2) , the space of local
infifinitesimal isometric deformations of f is fifinite dimensional.

(2) If G/K=G^{2,q}(R)(q\geqq 3) , the space of global infifinitesimal
isometric deformations of f is fifinite dimensional.
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REMARK. 1). The assertions (1) and (2) in Theorem 2. 6 are
already obtained in [KT]. There, the determination of type of f is car-
ried out by case-by-case examinations with the help of matrices. In this
paper, we will determine the type of f for all symmetric R-spaces in a
unified manner.

2). If G/K=P^{n}(R) the space of global or local infinitesimal isometric
deformations of f is infinite dimensional. For the real Grassmann mani-
folds G^{2,q}(R)(q\geqq 3) , the dimensions of the spaces of global infinitesimal
isometric deformations of f were calculated and the actual global rigidity
theorems were established (see [KT]).

For some other symmetric R-spaces, such as compact Hermitian sym-
metric spaces and classical compact Lie groups U(n)(n\geqq 3) , SO(n) (n\geqq

5) and Sp(n)(n\geqq 1) , the space of global or local infinitesimal isometric
deformations of f were calculated (see the results in [Tn], [Ka]).

\S 3. Second fundamental forms of canonical isometric imbeddings.

Let G/K be a symmetric R-space associated with an FSGLA (L, E)
such that L^{c} is simple over C . Let f be the canonical isometric \overline{1}mbed-

ding of G/K. Let N^{\vee}=N_{0}^{\vee} be the space of second fundamental forms of
f at the origin 0\in G/K . Since f is G-equivariant, the type of f is deter-
mined by the property of N^{\vee}

Before proceeding the study of the property of N^{\vee} we prepare a
proposition concerning symmetric bilinear forms.

3. 1. c-decomposable elements. Let V be an n-dimensional vector
space over R. As in 1. 2, we denote by V^{*} the dual vector space of V
and by S^{2}V^{*} the symmetric product of V^{*} .

Let A\in S^{2}V^{*} . A is called c-decomposable if it can be expressed as a
sum of two decomposable elements in S^{2}V^{*} . i . e. , A=\xi_{1}\cdot\xi_{2}+\xi_{3}\cdot\xi_{4} , \xi_{i}\in V^{*}

(1\leqq i\leqq 4) .
We first prove

LEMMA 3. 1. Let W be a subspace of S^{2}V^{*} Assume that W con-
tains no non-trivial c-decomposable elements of S^{2}V^{*}r Then W has
Property (F).

PROOF. Suppose that there are non-zero elements \xi , \eta\in V^{*c} such
that \xi\cdot \eta\in W^{c} . Write \xi=\xi_{1}+\sqrt{-1}\xi_{2} , \eta=\eta_{1}+\sqrt{-1}\eta_{2} , where \xi_{i} , \eta_{i}\in V^{*}

(i=1,2) . Then the real and imaginary parts of \xi\cdot\eta are given by
{\rm Re}(\xi\cdot\eta)=\xi_{1}\cdot\eta_{1}-\xi_{2}\cdot\eta_{2}\in W ,
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{\rm Im}(\xi\cdot\eta)=\xi_{1}\cdot\eta_{2}+\xi_{2}\cdot\eta_{1}\in W .

Consequently, {\rm Re}(\xi\cdot\eta) and {\rm Im}(\xi\cdot\eta) are c-decomposable elements
contained in W. Since \xi\cdot\eta\neq 0 , we have {\rm Re}(\xi\cdot\eta)\neq 0 or {\rm Im}(\xi\cdot\eta)\neq 0 . This
implies that Wconta\overline{l}ns a non-trivial c^{-}decomposable element. Thus we
obtain the lemma. Q. E. D.

In the follow\overline{l}ng discussion, it \overline{1}S convenient to characterize (c-)
decomposable elements by their eigenvalues.

Let A be an element of S^{2}V^{*} . Define a symmetric endomorphism A^{\wedge}

of V by A(x, y)=\langle x, A^{\wedge}(y)\rangle for x , y\in V . where \langle . \rangle is an inner product
of Vr We denote by r^{+}(A) (resp. r^{-}(A) ) the number of positive (resp.
negative) eigenvalues of A\wedge Let \{e_{i}\}_{1\leqq i\leqq n} be a basis of Vr By
Sylvester’s law of inertia, r^{+}(A) (resp. r^{-}(A) ) is equal to the number of
positive (resp. negative) eigenvalues of the symmetric matrix (A(e_{i} ,
e_{j}))_{1\leq i,j\leq n} .

LEMMA 3. 2. Let A\in S^{2}V^{*}r Then:

(1) A is decomposable if and only if r^{\pm}(A)\leqq 1 .
(2) A \iota^{-}s c -decomposable if and only if r^{\pm}(A)\leqq 2 .

PROOF. We show the assertion (2). (The assertion (1) is proved in
[Tn].) We first assume that r^{\pm}(A)\leqq 2 . Then there are non-negative real
numbers a_{i}(1\leqq i\leqq 4) and elements \xi_{i}\in V^{*}(1\leqq i\leqq 4) such that A can be
wr\overline{l}tten in the form

A=a_{1}\xi_{1}\cdot\xi_{1}+a_{2}\xi_{2}\cdot\xi_{2}-a_{3}\xi_{3}\cdot\xi_{3}-a_{4}\xi_{4}\cdot\xi_{4} .

Then we have

A=(\sqrt{a_{1}}\xi_{1}+\sqrt{a_{3}}\xi_{3})\cdot(\sqrt{a_{1}}\xi_{1}-\sqrt{a_{3}}\xi_{3})

+(\sqrt{a_{2}}\xi_{2}+\sqrt{a_{4}}\xi_{4})\cdot(\sqrt{a_{2}}\xi_{2}-\sqrt{a_{4}}\xi_{4}) .

This implies that A is c-decomposable.
We next show the converse. Let A=\xi_{1}\cdot\xi_{2}+\xi_{3}\cdot\xi_{4} be a c-decomposa-

ble element of S^{2}V^{*} . Then clearly we have rankA^{\wedge}\leqq 4 . Note that there
is nothing to prove if rankA^{\wedge}\leqq 2 . Now assume the case rankA^{\wedge}=4 .
Then the elements \xi_{1} , \xi_{2} , \xi_{3} and \xi_{4} are linearly independent. Take a basis
\{e_{i}\}_{1\leqq i\leq n} of V satisfying \xi_{j}(e_{i})=\delta_{ji} , 1\leqq i\leqq n , 1\leqq j\leqq 4 . Then it is eas\dot{l}ly

seen that the non-zero eigenvalues of the symmetric m a trix
(A(e_{i}, e_{j}))_{1\leq i,j\leq n} are 1, 1, -1 and -1. Therefore, we have r^{\pm}(A)=2 . We
next consider the case rankA^{\wedge}=3 . Without loss of generality, we may
assume that \xi_{1} , \xi_{2} , \xi_{3} are linearly \overline{1}ndependent and \xi_{4} is written as a linear
combination of \xi_{1} , \xi_{2} , \xi_{3} , i . e. , \xi_{4}=a\xi_{1}+b\xi_{2}+c\xi_{3} . Then we have
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A=(\xi_{1}+b\xi_{3})\cdot(\xi_{2}+a\xi_{3})+(c-ab)\xi_{3}\cdot\xi_{3} .

Put \eta_{1}=\xi_{1}+b\xi_{3} , \eta_{2}=\xi_{2}+a\xi_{3} , \eta_{3}=\xi_{3} and take a basis \{f_{i}\}_{1\leqq i\leqq n} of V satisfy-
ing \eta_{j}(f_{i})=\delta_{ji} , 1\leqq i\leqq n , 1\leqq j\leqq 3 . Then it 1-s easy to see that the non-zero
e\overline{l}genvalues of the matrix (A(f_{i}, f_{j}))_{1\leqq i,j\leq n} are 1, -1 and c -ab. This
implies r^{\pm}(A)\leqq 2 . Thus we obtain the lemma. Q. E. D.

By Lemmas 3. 1 and 3. 2, we immediately have

PROPOSITION 3. 3. Let W be a subspace of S^{2}V^{*} Then:
(1) W has Property (E) if and only if W contains no non-trivial

elements A such that r^{\pm}(A)\leqq 1 .
(2) W has Property (F) if W contains no non-trivial elements A

such that r^{\pm}(A)\leqq 2 .

3. 2 Eigenvalues of second fundamental forms. In the following
discussion, we study the property of N^{\vee} For simplicity, we denote by
A^{\wedge} the symmetric endomorphism of M associated with A^{\vee}(A\in N) and
set r^{+}(A)=r^{+}(A^{\vee}) , r^{-}(A)=r^{-}(A^{\vee}) .

We first show

LEMMA 3. 4. Let A\in N. Then A^{\wedge}=-ad(E)\cdot ad(A) .

PROOF. It is easily shown that if X\in P (resp. Y\in G ) then ad(^{\lrcorner}X)

(resp. ad(Y)) is symmetric (resp. skew symmetric) endomorphism of L
with respect to \langle , \rangle . Hence by (3) of Proposition 2. 3, we have A\vee(X ,
Y)=\langle A, [X, [Yr. E]]\rangle=\langle[A, X], [Y, E]\rangle=-\langle[E, [A, X]], Y\rangle for X, Y\in M .
This proves the lemma. Q. E.D.

LEMMA 3. 5. Let A\in N. Then r^{\pm}(Ad(k)A)=r^{\pm}(A) for k\in K.

PROOF. By Lemma 3. 4, we easily have (Ad(k)AT = Ad(k) \cdot A\wedge

Ad(k)^{-1} for k\in K . Thus our assertion follows immediately. Q. E. D.

Let N_{1} (resp. N_{2}) be the subset of Ncons\overline{l}sting of all A\in N such that
A^{\vee} is decomposable (resp. c-decomposable). Then by Lemma 3. 2, N_{1}

and N_{2} can be characterized as follows:
N_{1}=\{A\in N : r^{\pm}(A)\leqq 1\} ; N_{2}=\{A\in N ; r^{\pm}(A)\leqq 2\} .

In V\overline{l}ew of Proposition 3. 3, we know that N^{\vee} has Property (E) if and
only if N_{1}=0;N^{\vee} has Property (F) if N_{2}=0 .

By the following proposition, we may concentrate our attention on a
in order to study the property of N^{\vee}
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PROPOSITION 3. 6. Set a_{1}=a\cap N_{1} , a_{2}=a\cap N_{2} . Then:

(1) N^{\vee} has Property (E) if and only if a_{1}=0 .
(2) N^{\vee} has Property (F) if a_{2}=0 .

PROOF. To show the proposition, if suffices to prove that for each A
\in N there exists an element k\in K such that Ad(k) a (see Lemma 3. 5).

As shown in [KN], L_{0} is a reductive Lie algebra whose center is equal to
RE. Let L_{0}^{0} be the semisimple part of L_{0} . Then L_{0}^{0}=K+N^{0}(N^{0}=N\cap

L_{0}^{0}) gives a Cartan decomposition of L_{0}^{0} and a^{0}=a\cap L_{0}^{0} is a maximal
abelian subspace of N^{0} Let A\in N . Then there \overline{1}S an element B\in N^{0}

such that A=B+cE, where c\in R . Since each element of N^{0} is conjugate
to an element of a^{0} under the action of Ad(K), we have Ad(k)B\in a^{0} for
some k\in K . Thus, we have Ad{k)\^A a, because E\in a and Ad\{k)E=E
for k\in K . Q. E. D.

We now consider the restricted root system of the Riemannian sym-
metric pair (L, G) .

Let \gamma\in a . \gamma is called a restricted root if there is a root \alpha\in\Delta such
that \gamma=\alpha^{-} , where \alpha^{-} denotes the a^{-}component of \alpha with respect to the
decomposition t_{R}=a+\sqrt{-1}b . Let \Sigma be the set of all non-zero restricted
roots. For each \gamma\in\Sigma , we define an integer m(\gamma) by m(\gamma)=\#\{\alpha\in\Delta : \alpha^{-}=

\gamma\};m(\gamma) is called the multiplicity of \gamma .
We now introduce a linear order in a induced from the linear order

”< ” in t_{R} by a natural way. Let \Pi\Sigma=\{\gamma_{1}, \ldots.\gamma_{s}\}(s=rank(L/G)) be the
set of simple restricted roots of \Sigma with respect to this linear order. As is
easily shown, for each \gamma_{j}\in\Pi\Sigma , there is a simple root \alpha_{i}\in\Pi such that \gamma_{j}=

\alpha_{i}^{-}

Under the above notation, we have

PROPOSITION 3. 7. (see [Tk]). (1) \Sigma is an irreducible reduced root
system. Therefore the Dynkin diagram of \Pi_{Z} coincides with one of the
Dynkin diagrams of complex simple Lie algebras.

(2) Let \gamma_{j0}\in\Pi\Sigma satisfy \gamma_{j0}=\alpha_{i0}^{-} where \alpha_{i0} is the distinguished root of
(L, E) . Then:

(a) (\gamma_{j0}, E)=-1 ; (\gamma_{j}, E)=0 for each \gamma_{j}\in\Pi_{\Sigma}^{0}=\Pi\Sigma\backslash \{\gamma_{j0}\} .
(b) Let \mu=\Sigma_{i}a_{i}\gamma_{i} be the highest root of \Sigma . Then a_{j0}=1 .

Let us set \Sigma_{-1}=\{\alpha^{-} ; \alpha\in\Delta_{-1}\} . Then, \Sigma_{-1} is given by \Sigma_{-1}=\{\gamma\in\Sigma ; (\gamma ,
E)=-1\} .

By use of the mu1t_{\overline{1}}p1icity , r^{+}(A) and r^{-}(A) are calculated as fol-
lows:
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PROPOSITION 3. 8. Let A\in a . Set R^{+}(A)=\{\alpha\in\Sigma-1;(\alpha, A)>0\} and
R^{-}(A)=\{\alpha\in\Sigma_{-1} : (\alpha, A)<0\} . Then

r^{+}(A)=\Sigma_{\gamma}m(\gamma) (\gamma\in R^{+}(A)),\cdot

r^{-}(A)=\Sigma_{\gamma}m(\gamma) (\gamma\in R^{-}(A)) .

PROOF. Let \alpha\in\Delta_{-1} . Then by Lemma 3. 1, we have A^{\wedge}(Z_{a})=(\alpha ,
A)Z_{a} . On the other hand, since A^{\wedge}\cdot\theta=\theta\cdot A^{\wedge} we have A^{\wedge}(Z_{a}+\theta Z_{a})=(\alpha ,
A)(Z_{a}+\theta Z_{a}) . This proves that (\alpha, A) is an eigenvalue of A^{\wedge} Converse-
ly, since \{Z_{a}+\theta Z_{a} ; \alpha\in\Delta_{-1}\} forms a basis of M^{c} (see Lemma 2. 5), the set
of eigenvalues of A^{\wedge} is given by \{(\alpha, A);\alpha\in\Delta_{-1}\} . It is easy to see that
(\alpha, A)=(\gamma, A) holds for each A\in a if \alpha^{-}=\gamma . Hence we have the proposi-
tion. Q. E. D.

In Table II (see Appendix 2), we represent the Dynkin diagram of \Pi_{\Sigma}

and the multiplicity of \gamma_{j}\in\Pi\Sigma for each FSGLA (L, E) such that L^{c} is
simple over C (cf. [Ar], [H]). There the restricted root \gamma_{j0}=\alpha_{i0}^{-} is denot-
ed by a double circle.

Let \gamma\in\Sigma . Since \Sigma is irreducible, there is at least one simple
restricted root \gamma j of the same length, i , e. , (\gamma, \gamma)=(\gamma_{j}, \gamma_{j}) . Then, the multi-
plicity of \gamma is equal to that of \gamma_{j} , i.e. , m(\gamma)=m(\gamma_{j}) (see [H]).

Making use of Proposition 3. 8, we can immediately determine the
property of N\vee for those FSGLAs with large multiplicities. In fact, if
m(\gamma_{j})\geqq 3 holds for each \gamma_{j}\in\Pi\Sigma we have m(\gamma)\geqq 3 . Hence, by Proposition
3. 8 we obtain r^{+}(A)\geqq 3 or r^{-}(A)\geqq 3 for each A\in a\backslash \{0\} . This proves a_{2}=

0 . Thus, by Proposition 3. 6 we have

PROPOSITION 3. 9. Let (L, E) be an FSGLA such that m(\gamma_{j})\geqq 3 for
each \gamma_{j}\in\Pi\Sigma . Then N^{\vee} has Property (F).

In \S 4, we exhibit all FSGLAs satisfying the assumption of Proposi-
tion 3. 9 (see Class IV : FSGLAs with large multiplicities).

3. 3. Admissible chains and (c-)decomposable elements. We now
consider a method to determine (c^{-})decomposab1e elements in N^{\vee} for
those FSGLAs with small multiplicities.

Let D be a closed domain in a defined by

D= {A\in a ;( \gamma_{j0} , A)\leqq 0 and (\gamma j, A)\geqq 0 for \gamma_{j}\in\Pi_{z}^{0}}.

Further we put D_{1}=D\cap a_{1} , D_{2}=D\cap a_{2} . Then we have

PROPOSITION 3. 10. (1) N^{\vee} has Property (E) if and only if D_{1}=0 .
(2) N^{\vee} has Property (F) if D_{2}=0 .
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Let W_{\Sigma} be the Weyl group of the restricted root system \Sigma . We denote
by W_{\Sigma}^{0} the subgroup of W_{\Sigma} generated by the reflections \{S_{\gamma i} ; r_{i}\in\Pi_{\Sigma}^{0}\} . It is
known that for each reflection S_{7i}(\gamma_{i}\in\Pi_{\Sigma}^{0}) there is an element k\in K such
that S_{\gamma i}=Ad(k)|_{a} . Hence we have w(E)=E and r^{\pm}(w(A))=r^{\pm}(A) for A
\in N , w\in W_{\Sigma}^{0} (see Lemma 3. 5). Thus, the proposition follows from prop-
osition 3. 6 and the following lemma.

LEMMA 3. 11. Let A\in a . Then there exists an element w\in W_{\Sigma}^{0} such
that w(A)\in D or - w(A)\in D .

PROOF. We note that w(\Sigma_{-1})=\Sigma_{-1} holds for w\in W_{\Sigma}^{0} . This can be
easily proved by the fact w(E)=E for w\in W_{\Sigma}^{0} .

Replacing A by -A if necessary, we may assume that (\gamma_{j0}, A)\leqq 0 .
Let H be an element of a such that (\gamma_{j}, H)>0 for each j\neq j0 . We difine a
function f of W_{\Sigma}^{0} by setting f(w)=(w(A)-H, w(A)-H) (w\in W_{\Sigma}^{0}) . Let
w^{0}\in W_{\Sigma}^{0} be an element that gives the minimum of f. Then, as is well
-known, it holds (\gamma_{j}, w^{0}(A))\geqq 0 for each \gamma_{j}\in\Pi_{\Sigma}^{0} . In order to prove (yjo ,

w^{0}(A))\leqq 0 , we suppose (\gamma_{j0}, w^{0}(A))>0 . Since w^{0}(\Sigma_{-1})=\Sigma_{-1} and \gamma_{j0}\in\Sigma_{-1} ,

we have w^{0}(\gamma_{j0})=\gamma_{j0}+\Sigma_{j\neq j0}a_{j}\gamma_{j} and a_{j}\geqq 0(j\neq j0) . Therefore we have

0\geqq(\gamma_{j0}, A)=(w^{0}(\gamma_{j0}), w^{0}(A))

=(\gamma_{j0}, w^{0}(A))+\Sigma_{j\neq j0}a_{j}(\gamma_{j}, w^{0}(A))>0 .

This is a contradiction. Hence we have (\gamma_{j0}, w^{0}(A))\leqq 0 , which proves
w^{0}(A)\in D . Q. E. D.

We now introduce a partial order ”\prec" in \Sigma as follows : Let \alpha=

\Sigma_{i}a_{i}\gamma_{i} and \beta=\Sigma_{i}b_{i}\gamma_{i}\in\Sigma . We write \alpha\prec\beta when \alpha\neq\beta and a_{i}\leqq b_{i} holds for
each i . We also define the height h(\alpha) of \alpha=\Sigma_{i}a_{i}\gamma_{i}\in\Sigma by setting h(\alpha)=

\Sigma_{i}a_{i} .

DEFINITION. An ascending chain \beta_{1}\prec\beta_{2}\prec\ldots\prec\beta_{r-1}\prec\beta_{r} composed of
positive roots of \Sigma is called admissible \overline{1}f the follow\overline{l}ng two conditions are
satisfied:

(1) \beta_{1}=\gamma_{j0} ; \beta_{r}=\mu ( \mu is the highest root of \Sigma ) \vee.
(2) h(\beta_{i+1})=h(\beta_{i})+1 (1\leqq i\leqq r-1) .

By the definition we have r=h(\mu) and \beta_{i}\in\Sigma_{-1} for 1\leqq i\leqq r . The fol-
lowing propositions are useful in the determination of D_{1} and D_{2} .

PROPOSITION 3. 12. Let \{\beta_{i}(1\leqq i\leqq r)\} be an admissible chain in \Sigma .
Then:
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(1) Assume r=h(\mu)\geqq 3 and set \sigma=\beta_{r-1}-\beta_{2}=\Sigma_{j}a_{j}\gamma_{j} . Then for each
A\in D_{1} , it holds (\gamma_{j}, A)=0 if a_{j}\neq 0 .

(2) Assume r=h(\mu)\geqq 5 and set \epsilon=\beta_{r-2}-\beta_{3}=\Sigma_{j}b_{j}\gamma_{j} . Then for each
A\in D_{2} , it holds (r_{j}, A)=0 if b_{j}\neq 0 .

PROOF. We show (1). Since A\in D_{1} , we have (\gamma_{j}, A)\geqq 0 for j\neq j0 .
Therefore we have (\beta_{1}, A)\leqq(\beta_{2}, A)\leqq\ldots\leqq(\beta_{r}, A) . Since r^{\pm}(A)\leqq 1 we
have (\beta_{j}, A)=0 (2\leqq j\leqq r-1) . Consequently, we have (\sigma, A)=\Sigma ja_{j}(\gamma_{j} ,
A)=0. On the other hand, since a_{j}\geqq 0(j\neq j0) and a_{j0}=0 , we have (\gamma j ,
A)=0 in case a_{j}\neq 0 . This completes the proof of (1). The assertion (2)
can be similarly dealt with. Q. E. D.

PROPOSITION 3. 13. Let A\in D satisfy (\gamma_{j}, A)=0 for ](-\neq j0). Then:
(1) If A\in D_{1} and \#\Sigma_{-1}\geqq 2 , then A=0 .
(2) If A\in D_{2} and \#\Sigma_{-1}\geqq 3 , then A=0 .

PROOF. Let \beta\in\Sigma_{-1} . Then by the assumption, we have (\beta, A)=(\gamma j0 ,
A) . Therefore if (\gamma_{j0}, A)\neq 0 , then we have r^{-}(A)=\#\Sigma_{-1} . Thus our asser-
tion follows from Lemma 3. 2. Q. E. D.

REMARK. As we have seen in the above discussion, admissible
chains are useful in the determination of D_{1} and D_{2} . However, they are
considerably dependent on the restricted root system \Sigma and the location of
Yjo. Therefore, to select suitable admissible chains for our discussion, we
have to consult the list of roots in [B] .

In the following example, we consider the cases where the restricted
root systems \Sigma are not of classical type. We note that such cases are
limited to EI_{1} and EV_{7} .

EXAMPLE. Let (L, E) be EI_{1} or EV_{7} . Then, the Dynkin diagram of
\Pi_{\Sigma}^{0} is of type E_{6} or E_{7} (see Table II). We note that in this case all the
multiplicities are equal to 1. In view of [B] , we have the following \cdot.

Case of EI_{1} .
[_{h(\mu)=11,j0=1}^{\mu=\gamma_{1}+2\gamma_{2}+2\gamma_{3}+3\gamma_{4}+2\gamma_{5}+\gamma_{6};}.

.

Case of EV_{7} . \{

\mu=2\gamma_{1}+2\gamma_{2}+3\gamma_{3}+4\gamma_{4}+3\gamma_{5}+2\gamma_{6}+\gamma_{7;}

h(\mu)=17 : j0=7.

Furthermore, for admissible chains of \Sigma , we know the following: Let
\{\beta_{i}(1\leqq i\leqq h(\mu))\} be an admissible chain. Then \beta_{3} and \beta_{r-2}(r=h(\mu)) are
uniquely determined. They are given as follows:
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\beta_{3} \beta_{r-2}

EI_{1} \gamma_{1}+\gamma_{3}+\gamma_{4} \mu-\gamma_{2}-\gamma_{4}

EV_{7} \gamma_{5}+\gamma_{6}+\gamma_{7} \mu-\gamma_{3}-\gamma_{1}

Therefore, the difference \epsilon=\beta_{r-2}-\beta_{3} is given by \epsilon=\gamma_{2}+\gamma_{3}+\gamma_{4}+2\gamma_{5}+

\gamma_{6} (Case of EI_{1} ), \epsilon=\gamma_{1}+2\gamma_{2}+2\gamma_{3}+4\gamma_{4}+2\gamma_{5}+\gamma_{6} (Case of EV_{7}).
Let A be an element of D_{2} . Then, by Propositin 3. 11 and the above

table, we have (\gamma_{j}, A)=0 for j\neq j0 . Therefore, by Proposition 3. 12, we
obtain A=0. This proves D_{2}=0 . Hence, by Proposition 3. 9 we have

PROPOSITION 3. 14. Let (L, E) be EI_{1} or EV_{7} . Then N^{\vee} has Prop-
erty (F).

\S 4. Case studies (1).

As we have seen in the previous section, to determine the types of
canonical isometric imbeddings of symmetric R-spaces we have only to
study the spaces D_{1} and D_{2} .

In this and the next sections, we prove the following the theorems.

THEOREM 4. 1. Let (L, E) be an FSGLA such that L is simple over
C and let G/K be the symmetric R-space associated with (L, E) . Then:

(1) Assume that G/K\neq Q^{p,q}(R)(p, q\geqq 1) , P^{n}(R)(n\geqq 1) , G^{2,q}(R)

(q\geqq 3) , G^{3,3}(R) nor U(3)/O(3) . Then D_{2}=0 .
(2) Assume that G/K=Qp,q(R)(p, q\geqq 1) or Pn(R)(n\geqq 1) . Then

D_{1}\neq 0 .

For the case G/K=G^{2,q}(R)(q\geqq 3) , G^{3,3}(R) or U(3)/O(3) , we have

THEOREM 4. 2. Assume that G/K=G^{2,q}(R)(q\geqq 3) , G^{s,s}(R) or U(3)/
O(3) . Then D_{1}=0 but D_{2}\neq 0 . Moreover:

a) . If G/K=G^{2,q}(R)(q\geqq 3) , N^{\vee} has Property (E) but not Property
(F).

b) . If G/K=G^{3,3}(R) or U(3)/O(3) , N^{\vee} has Property (F).

It is easy to see that Theorem 2. 6 \overline{1}mmediately follows from the above
two theorems.

To prove the above thoerems, we divide all the FSGLAs (L, E) into
the following five classes.

I FSGLAs accompanied with real Grassmann manifolds.
II . FSGLAs accompanied with real quadrics.
III. FSGLAs with trivial multiplicities, i . e. , all the multiplicities of

restricted roots are equal to 1.
IV . FSGLAs with large multiplicities, i . e. , all the multiplicities of



Types of the canonical isometric imbeddings of symmetric R-spaces 51

restricted roots are greater than or equal to 3.
V Otherwise.

4. 1. Case of Class IV . In view of Table II , we know that Class
IV is composed of the following FSGLAs:

AII(n)_{p}(1\leqq p\leqq[n/2], n\geqq 2) , BII(n)_{1}(n\geqq 2) , CII(n, n)_{n}(n\geqq 2) ,
DII(n)_{1}(n\geqq 4) , EIV_{1} .

The corresponding symmetric R-spaces are given as follows:
G^{p,q}(H)(n=p+q, 1\leqq p\leqq q\leqq[n/2]) , S^{2n-1}(n\geqq 2) , Sp(n)(n\geqq 2) ,
S^{2n-2}(n\geqq 4) , P^{2}(Cay) .

As we have seen is 3. 2 (Proposition 3. 9), for each FSGLA listed
above the space N^{\vee} has Property (F). This proves Theorem 4. 1 for this
class.

4.2 Case of Class I. In view of Table I , we know that Class I is
composed of AI(n)_{p}(n\geqq 1,1\leqq p\leqq[(n+1)/2]) . We note that for AI(n)_{p}

all the multiplicities are equal to one.
We show

PROPOSITION 4. 3. (cf. [KT]). Assume that {L,E) is AI(n)_{p}(n\geqq 1 ,
1\leqq p\leqq[(n+1)/2] and (n, p)\neq(5,3)) . Then:

(1) D_{1}\neq 0 if p=1 or (n, p)=(3,2) .
(2) D_{1}=0 and D_{2}\neq 0 if p=2 and n\geqq 4 .
(3) D_{2}=0 if p\geqq 3 and n\geqq 6 .

The case AI(5)_{3} is treated in the next section

PROOF. We first note that for AI(n)_{p} it holds \cdot.

\{\begin{array}{l}\mu=\gamma_{1}+\ldots+\gamma_{n}.. h(\mu)=n,. j0=p.\sum_{-1}=\{\sum_{k=i}^{j}\gamma_{k}(1\leqq i\leqq p,p\leqq j\leqq n)\}.\end{array}

According as the pair (n, p)(n\geqq 1,1\leqq p\leqq[(n+1)/2], (n, p)\neq(5,3)) ,
we div\overline{l}de this class into the following three cases.\cdot

(I-a) The case where p=1 and n\geqq 1 .
(I-b) The case where p=2 and n\geqq 3 .
(I-c) The case where p\geqq 3 and n\geqq 6 .

Case of (I-a) . Define an element A\in D by (\gamma_{1}, A)=-1 , (\gamma_{2}, A)=1

and (\gamma_{i}, A)=0 for i\geqq 3 . In view of the set \Sigma_{-1} we have r^{+}(A)=0 and
r^{-}(A)=1 . This clearly implies A\in D_{1} . Therefore, we have D_{1}\neq 0 .
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Case of (I-b). First we assume n\geqq 4 and prove D_{1}=0 and D_{2}\neq 0 . In
view of the set \Sigma_{-1} , we can show that there are three admissible chains
\{\beta_{i}\} , \{\beta_{i}’\} and \{\beta_{i}^{rr}\} satisfying

\beta_{2}=\gamma_{1}+\gamma_{2} , \beta_{n-1}=\mu-\gamma_{n} ; \beta_{2}’=\gamma_{2}+\gamma_{3} ,
\beta_{n-1}’=\mu-\gamma_{n} ; \beta_{2}’=\gamma_{2}+\gamma_{3} , \beta_{n-1}’=\mu-\gamma_{1} .

Put \sigma=\beta_{n-1}-\beta_{2} , \sigma’=\beta_{n-1}’-\beta_{2}’ and \sigma^{rr}=\beta_{n-1}’-\beta_{2}’ . Then we have \sigma=\Sigma_{i=3}^{n-1}\gamma_{i}

and \sigma’=\gamma_{1}+\Sigma_{i=4}^{n-1}\gamma_{i} and \sigma’=\Sigma_{i=4}^{n}\gamma_{i} . Thus, if A\in D_{1} we can easily verify
that (\gamma_{i}, A)=0 for \dot{\iota}\neq 2 (see Proposition 3. 12 (1)). Hence by Proposit\overline{l}on

3.13(1) we have A=0 . This proves D_{1}=0 .
To show D_{2}\neq 0 , we consider the element A\in D defined by (\gamma_{2}, A)=

-1 , (\gamma_{3}, A)=1 and (\gamma_{i}, A)=0(i\neq 2,3) . Then we can easily see that the
non-zero eigenvalues of A^{\wedge} are -1 and -1. Therefore, we have r^{-}(A)=

2 and r^{+}(A)=0 , i . e. , A\in D_{2} . This proves D_{2}\neq 0 . Now we prove that
N^{\vee} has not Property (F). For the element A defined above, there are
two suitable covectors \xi , \eta\in M^{*} such that A^{\vee}=-(\xi\cdot\xi+\eta\cdot\eta) . Since \xi .
\xi+\eta\cdot\eta=(\xi+\sqrt{-1}\eta)\cdot(\xi-\sqrt{-1}\eta) , A^{\vee} can be regarded as a decomposable
element of S^{2}M^{*c}- This proves Theorem 4. 2 a).

Finally we assume n=3. We define an element A\in D by (\gamma_{2}, A)=-1 ,
(\gamma_{1}, A)=(\gamma_{3}, A)=1 . Then it is easy to see that r^{\pm}(A)=1 . This implies A
\in D_{1} . Consequently, we have D_{1}\neq 0 .

Case of (I-c). First assume that n\geqq 7 . Then \overline{1}n view of the set \Sigma_{-1} ,

we can show that there are three admissible chaisns \{\beta_{i}\} , \{\beta_{i}’\} and \{\beta_{i}’\}

satisfying

\beta_{3}=\gamma_{p-2}+\gamma_{p-1}+\gamma_{p} , \beta_{n-2}=\mu-\gamma_{n-1}-\gamma_{n} : \beta_{3}’=\gamma_{p}+\gamma_{p+1}+\gamma_{p+2} ,
\beta_{n-2}’=\mu-\gamma_{n-1}-\gamma_{n} ; \beta_{3}’=\gamma_{p}+\gamma_{p+1}+\gamma_{p+2} , \beta_{\acute{\acute{n}}-2}=\mu-\gamma_{1}-\gamma_{2} .

We put \epsilon=\beta_{n-2}-\beta_{3} , \epsilon’=\beta_{n-2}’-\beta_{3}’ and \epsilon’=\beta_{n-2}’-\beta_{3}^{rr} . Then we have \epsilon=

\Sigma_{i=1}^{p-3}\gamma_{i}+\Sigma_{i=p+1}^{n-2}\gamma_{i} , \epsilon’=\Sigma_{i=1}^{p-1}\gamma_{i}+\Sigma_{i=p+3}^{n-2}\gamma_{i} , and \epsilon’=\Sigma_{i=3}^{p-1}\gamma_{i}+\Sigma_{i=p+3}^{n}\gamma_{i} .
Therefore, for each A\in D_{2} we can easily verify that (\gamma_{i}, A)=0 for i\neq p

(see Proposition 3. 12 (2)). Hence by Proposition 3. 13 (2), we have A=0.

This proves D_{2}=0 .
We next assume n=6. Then we have p=3 and \gamma_{i}=\mu-\sum_{j\neq i}\gamma_{j} for

each i(1\leqq i\leqq 6) . Thus it can be easily shown that if i\neq 3 then there is an
admissible chain \{\beta_{i}\} such that \gamma_{i}=\beta_{n-2}-\beta_{3} . Therefore we have (\gamma_{i}, A)=

0(i\neq 3) for each A\in D_{2} . Thus, as in the case n\geqq 7 , we can prove D_{2}=0 .
By the above discussion, we have proved Proposition 4. 3. Q. E. D.

4. 3. Case of Class II . In view of Table II , v^{\gamma}e know that Class II

is composed of BI(n, p)_{1}(n\geqq 2,2\leqq p\leqq n) , DI(n, p)_{1}(n\geqq 4,2\leqq p\leqq n) and
AIII(2, 2)_{2} (Here we note the identity U(2)=Q^{1,3}(R)).
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We show

PROPOSITION 4. 4 (cf. [KT]). Assume that (L, E) is BI(n, p)_{1}
(n\geqq 2,2\leqq p\leqq n) , BI(n, p)_{1}(n\geqq 4,2\leqq p\leqq n) or AIII(2, 2)_{2} . Then D_{1}\neq 0 .

PROOF. We prove the case where (L, E) is BI(n, p)_{1} or DI(n, p)_{1} .
The case where (L, E)=AIII(2,2)_{2} is similary dealt with.

In view of [B] , we have the following:
The case where BI(n, p)_{1}(p\leqq n) or DI(n, p)_{1}(p\neq n-1) :

\{\begin{array}{l}\mu=\gamma_{1}+2(\gamma_{2}+\ldots+\gamma_{p}),.h(\mu)=2p-1,.j0=1.\sum_{-1}=\{\sum_{k=1}^{i}\gamma_{k} (1\leqq i\leqq p),.\sum_{k=1}^{i}\gamma_{k}+2\sum_{l=i+1}^{p}\gamma_{l} (1\leqq i\leqq p-1)\}.\end{array}

The case where DI(n, n)_{1} :

\{\begin{array}{l}\mu=\gamma_{1}+2(\gamma_{2}+\ldots+\gamma_{n-2})+\gamma_{n-1}+\gamma_{n}..h(\mu)=2n-3,.j0=1.\sum_{-1}=\{\sum_{k=1}^{i}\gamma_{k} (1\leqq i\leqq n),. \sum_{k=1}^{n-2}\gamma_{k}+\gamma_{n},.\sum_{k=1}^{i}\gamma_{k}+2\sum_{l=i+1}^{n-2}\gamma_{k}+\gamma_{n-1}+\gamma_{n} (1\leqq i\leqq n-3)\}.\end{array}

Let us define an element A\in D by (\gamma_{1}, A)=-1 , (\gamma_{2}, A)=1 and (\gamma_{i} ,
A)=0 for \dot{\iota}\geqq 3 . Then we can easily see that (\gamma, A)=0 holds for each
\gamma\in\Sigma_{-1} such that \gamma\neq\gamma_{1} , \mu . Since (\gamma_{1}, \gamma_{1})=(\mu, \mu) , it follows that m(\mu)=
m(\gamma_{1})=1 . Thus, we have r^{\pm}(A)=1 , which implies A\in D_{1} . This proves
D_{1}\neq 0 . Q. E. D.

4. 4. Case of Class III. In view of Table II , we know that Class
III is composed of AI(n)_{p} , BDI(n, n)_{1} , CI(n)_{n}(n\geqq 3) , DI(n, n)_{n}(n\geqq 5)

EI_{1} and EV_{7} . We note that the case where (L, E) is AI(n)_{p} , BDI(n, n)_{1} ,
EI_{1} or EV_{7} has been already treated in 3. 3, 4. 2 and 4. 3 (see Propositions
3. 14, 4. 3 and 4. 4).

We now prove

PROPOSITION 4. 5. Let (L, E) be one of CI (n)_{n}(n\geqq 4) , DI(n, n)_{n}
(n\geqq 5) . Then D_{2}=0 .

(The case where (L, E) is CI(3)_{3} is treated \overline{1}n the next section.)

PROOF. (III-a) Case of CI(n)_{n}(n\geqq 4) . In view of [B] , we have
the following.\cdot

\{\begin{array}{l}\mu=2(\gamma_{1}+.-.\dagger\gamma_{n-1})+\gamma_{n},.h(\mu)=2n-1,.j0=n.\sum_{-1}=\{\sum_{k=i}^{n}\gamma_{k} (1\leqq i\leqq n),-\sum_{k=i}^{j}\gamma_{k}+2\sum_{l=j+1}^{n-1}\gamma_{l}+\gamma_{n} (1\leqq i\leqqj\leqq n-2)\}.\end{array}

Since n\geqq 4 , there are two admissible chains \{\beta_{i}\} and \{\beta_{i}’\} such that
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\beta_{3}=\gamma_{n-2}+\gamma_{n-1}+\gamma_{n} , \beta_{2n-3}=\mu-2\gamma_{1} : \beta_{3}’=2\gamma_{n-1}+\gamma_{n} , \beta_{2n-3}’=\mu-\gamma_{1}-\gamma_{2} . We put
\epsilon=\beta_{2n-3}-\beta_{3} , \epsilon^{\gamma}=\beta_{2n-3}’-\beta_{3}’ . Let A\in D_{2} . Since \epsilon=2(\gamma_{2}+\ldots+\gamma_{n-3})+\gamma_{n-2}+

\gamma_{n-1} and \epsilon’=\gamma_{1}+\gamma_{2}+2(\gamma_{3}+\ldots+\gamma_{n-2}) , we have (\gamma_{i}, A)=0 for i\neq n (see

Proposition 3. 12 (2)) . Hence by Proposition 3. 12 (2) we have A=0.

This proves D_{2}=0 .

(III-b) Case of DI(n, n)_{n}(n\geqq 5) . We first note the following:

\{\begin{array}{l}\mu=\gamma_{1}+2(\gamma_{2}+\ldots+\gamma_{n-2})+\gamma_{n-1}+\gamma_{n}\cdot.h(\mu)=2n-3\cdot,j0=n.\sum_{-1}=\{\sum_{k=i}^{n}\gamma_{k} (1\leqq i\leqq n)\cdot.\sum_{k=i}^{n-2}\gamma_{k}+\gamma_{n}(1\leqq i\leqq n-2)\cdot,\sum_{k=i}^{j}\gamma_{k}+2\sum_{l=j+1}^{n-2}\gamma_{l}+\gamma_{n-1}+\gamma_{n}(1\leqq i\leqq j\leqq n-3)\}.\end{array}

Then we can easily show that there are two admissible chains \{\beta_{i}\} and
\{\beta_{i}’\} satisfying \beta_{3}=\gamma_{n-2}+\gamma_{n-1}+\gamma_{n} , \beta_{2n-5}=\mu-\gamma_{2}-\gamma_{3} ; \beta_{3}’=\gamma_{n-3}+\gamma_{n-2}+\gamma_{n} ,

\beta_{2n-5}’=\mu-\gamma_{1}-\gamma_{2} . We put \epsilon=\beta_{2n-5}-\beta_{3} and \epsilon’=\beta_{2n-5}’-\beta_{\acute{3}} . Then we have
\epsilon=\gamma_{1}+\gamma_{2} , \epsilon’=\gamma_{3}+\gamma_{4} in case n=5 and \epsilon=\Sigma_{i=1}^{3}\gamma_{i}+2\Sigma_{j=4}^{n-3}\gamma_{j}+\gamma_{n-2} , \epsilon’=\gamma_{2}+

2\Sigma_{i=3}^{n-4}\gamma_{i}+\gamma_{n-3}+\gamma_{n-2}+\gamma_{n-1} in case n\geqq 6 . Let A\in D_{2} . Then by Proposition
3. 12 (2) we have (\gamma_{i}, A)=0 for i\neq n . Thus we have A=0 (see Proposi-

tion 3. 13 (2) ) . This implies that D_{2}=0 .
Thus, we obtain the proposition. Q. E. D.

4. 4. Case of Class V. In view of Table I and Table II , we know
that Class V is composed of AIII (n, n)_{n}(n\geqq 3) , DIII(n)_{n} ( n\geqq 3) and
EVII_{3} . The corresponding symmetric R-spaces are given by U(n)(n\geqq

3) , U(2n)/Sp(n)(n\geqq 3) and E_{6}\cdot SO(2)/F_{4} .

We now prove

PROPOSITION 4. 6. Let (L, E) be one of AIII ( n, n)_{n} ( n\geqq 4) ,

DIII (n)_{n}(n\geqq 4) . Then D_{2}=0 .

PROOF. We note that in case AIII(n, n)_{n}(n\geqq 4) and DIII(n)_{n}(n\geqq

4) the fundamental system \Pi_{\Sigma} is isomorphic with that of CI(n)_{n}(n\geqq 4) .

Hence, by the discussion in 4. 4 (III-a), we have D_{2}=0 . Q. E. D.

The following three cases: AIII(3, 3)_{3} ; DIII(3)_{3} and EVII_{3} are treated
ed in the next section.

In this section, we complete the proofs of Theorems 4. 1 and 4. 2.

5. 1. Case of AI(5)_{3} or CI(3)_{3} . Here we assume that (L, E) is
AI(5)_{3} or CI(3)_{3} and show Theorem 4. 2. We note that the corresponding

\S 5. Case studies (2).
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symmetric R-space is G^{3,3}(R) or U(3)/O(3) .
In view of Table I , the Satake diagram of the symmetric pair (L, G)

contains no black circles and no arrows. Thus, we know that t_{R}=a and
hence \Sigma=\Delta , \theta\alpha=-\alpha for \alpha\in\Sigma . Therefore we can select root vectors { Z_{a} ;
\alpha\in\Delta\} of L^{c} satisfying:

(1) Z_{a}\in L ; (2) \theta Z_{a}=Z_{-a},\cdot (3) \langle Z_{a}, Z_{a}\rangle=1/2 .

Now set X_{a}=Z_{a}+\theta Z_{a} for \alpha\in\Delta_{-1} . Then we know that \{X_{a},\cdot\alpha\in\Delta_{-1}\}

forms an orthonormal basis of M with respect to \langle_{-}\rangle .
We first show

LEMMA 5. 1. Let \alpha, \beta\in\Delta_{-1} satisfy \alpha\pm\beta\oplus\Delta\cup\{0\} . Then it holds
A^{\vee}(X_{a}, X_{\beta})=0 for A\in N.

PROOF. By the definition of X_{a} and X_{\beta} , we have
[X_{a}, [X_{\beta}, E]]=[Z_{a}+Z_{-a}, - Z_{\beta}+Z_{-\beta}]=0 .

Then our assertion follows from Proposition 2. 4. Q. E. D.

We now show

LEMMA 5. 2. Asume that {L,E) is AI(5)_{3} or CI(3)_{3} . Let A\in a .
Then A\in D_{2} if and only if there is a non-positive number a\in R such that

(1) In case AI(5)_{3} , it holds one of the following:
(i) (\gamma_{3}, A)=a, (\gamma_{2}, A)=(\gamma_{5}, A)=-a, (\gamma_{1}, A)=(\gamma_{4}, A)=0 :
(ii) (\gamma_{3}, A)=a, (\gamma_{1}, A)=(\gamma_{4}, A)=-a, (\gamma_{2}, A)=(\gamma_{5}, A)=0 ,

(2) In case CI(3)_{3} , it holds (\gamma_{1}, A)=(\gamma_{2},A)=-a and (\gamma_{3}, A)=2a .

PROOF. We first consider the case AI(5)_{3} . As in the proof of PropO-
sition 4. 3, we can verify that there are three admissible chains \{\beta_{i}\} , \{\beta_{i}’\}

and \{\beta_{i}’\} satisfying \beta_{3}=\gamma_{1}+\gamma_{2}+\gamma_{3} ; \beta_{3}’=\gamma_{2}+\gamma_{3}+\gamma_{4} ; \beta_{3}^{rr}=\gamma_{3}+\gamma_{4}+\gamma_{5} . Now
assme A\in D_{2} . Then we have (\beta_{3}, A)=(\beta_{3}’, A)=(\beta_{3}’, A)=0 . Consequently,
we have (\gamma_{1}+\gamma_{2}+\gamma_{3}, A)=0 , (\gamma_{1}, A)=(\gamma_{4}, A) and (\gamma_{2}, A)=(\gamma_{5}, A) . Put a=
(\gamma_{3}, A) . If a=0, then we easily obtain A=0, because (\gamma_{i}, A)\geqq 0 for i(\neq 3) .
Next assume a<0 . Then since \gamma_{3}\in R^{-}(A) and r^{-}(A)\leqq 2 , we have \gamma_{2}+\gamma_{3}

\not\in R^{-}(A) or \gamma_{3}+\gamma_{4}\not\in R^{-}(A) . Assume the case \gamma_{2}+\gamma_{3}\oplus R^{-}(A) . Then we
have (\gamma_{2}+\gamma_{3}, A)\geqq 0 . Since (\gamma_{1}+\gamma_{2}+\gamma_{3}, A)=0 and (\gamma_{1}, A)\geqq 0 , it follows
that (\gamma_{2}+\gamma_{3}, A)=0 . Hence we have (\gamma_{1}, A)=(\gamma_{4}, A)=0 and (\gamma_{2}, A)=(\gamma_{5} ,
A)=-a. Similarly, in case \gamma_{3}+\gamma_{4}\oplus R^{-}(A) , we have (\gamma_{2}, A)=(\gamma_{5}, A)=0

and (\gamma_{1}, A)=(\gamma_{4}, A)=-a . This proves (1).
Conversely, assume that there is a negative number a satisfying (i) or
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(ii). Then we can easily observe that r^{\pm}(A)=2 . This proves A\in D_{2-}

We next consider the case CI(3)_{3} . As in the proof of Propos\overline{l}tion4.5

(III-a), we can easily verify that the following two admissible chains are
possible:

\gamma_{3}\prec\gamma_{2}+\gamma_{3}\prec\gamma_{1}+\gamma_{2}+\gamma_{3}\prec\gamma_{1}+2\gamma_{2}+\gamma_{3}\prec\mu’
.

\gamma_{3}\prec\gamma_{2}+\gamma_{3}\prec 2\gamma_{2}+\gamma_{3}\prec\gamma_{1}+2\gamma_{2}+\gamma_{3}\prec\mu .

Therefore, if A\in D_{2} , we have (\gamma_{1}+\gamma_{2}+\gamma_{3}, A)=(2\gamma_{2}+\gamma_{3}, A)=0 . Put a=
(\gamma_{3}, A)/2 . Then we have (\gamma_{1}, A)=(\gamma_{2}, A)=-a . This proves (2). The con-
verse can be easily verified. We have thus obtained the lemma. Q. E. D.

As a consequence of the above lemma, we easily have

LEMMA 5. 3. Let (L, E) be AI(5)_{3} or CI(3)_{3} . Then it holds that
D_{1}=0 and D_{2}\neq 0 .

The proof of Lemma 5.3 is left to the reader.
We now give the proof of Theorem 4.2.

PROOF OF THEOREM 4. 2. Here we show the case of CI(3)_{3} . (The
case where (L, E) is AI(5)_{3} is similarly dealt W\overline{l}th ; hence we omit the
proof for this case.)

We first suppose that N^{\vee} has not Property (F). Let C^{\vee} be a non
-trivial decomposable element of N^{\bigvee_{C}}\sim Write C=A+\sqrt{-1}B , where A,

B\in N. As we have seen in the proof of Lemma 3.1, both A^{\vee} and B^{\vee} are
c-decomposable elements of N^{\vee} Thus, without loss of generality, we
may assume that A\neq 0 and A\in D_{2} (see the discussion in \S 3). We may
further assume that (\gamma_{1}, A)=(\gamma_{2}, A)=1 and (\gamma_{3}, A)=-2 (see Lemma 5. 2).

Now set \sigma_{1}=\gamma_{3} , \sigma_{2}=\gamma_{2}+\gamma_{3} , \sigma_{3}=\mu-\gamma_{1}=\gamma_{1}+2\gamma_{2}+\gamma_{3} and \sigma_{4}=\mu=2\gamma_{1}+2\gamma_{2}+\gamma_{3} .
Then we have (\sigma_{1}, A)=-2 , (\sigma_{2}, A)=-1 , (\sigma_{3}, A)=1 and (\sigma_{4}, A)=2 . Put
X_{i}=X_{\sigma t} for i(1\leqq\iota^{-}\leqq 4) and set M_{1}=\Sigma_{i=1}^{4}RX_{i} . It is easily seen that the
restriction of C^{\vee} to M_{1}^{c} is also decomposable. Thus, for the complex sym-
metric matrix C_{1} defined by C_{1}=(C^{\vee}(X_{i}, X_{j}))_{1\leqq i,j\leqq 4} , it holds rankc C_{1}\leqq 2 .
Define a real symmetric matrix A_{1} by A_{1}=(A^{\vee}(X_{i}, X_{j}))_{1\leqq i,j\leqq 4} . Then A_{1} is
the real part of the complex matrix C_{1} . Moreover, since A^{\wedge}(X_{i})=(\sigma_{i}, A)

X_{i}(1\leqq i\leqq 4) , we know that the matrix A_{1}\overline{1}S a diagonal matrix whose
diagonal components are given by

A^{\vee}(X_{1}, X_{1})=-2 , A^{\vee}(X_{2}, X_{2})=-1 ,
A^{\vee}(X_{3}, X_{3})=1 , A^{\vee}(X_{4}, X_{4})=2 .

On the other hand, since \sigma_{1}\pm\sigma_{3}\not\in\Delta\cup\{0\} , \sigma_{1}\pm\sigma_{4}\not\in\Delta\cup\{0\} and \sigma_{2}\pm\sigma_{4}\not\in\Delta\cup

\{0\} , the matrix C_{1} can be written in the following form:
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C_{1}=\{\begin{array}{llll}a f 0 0f b g 00 g c h0 0 h d\end{array}\} .

where a – h are complex numbers satisfying

Re a=-2, Re b=-1 , Re c=1 , Re d=2 :
Re f={\rm Re} g={\rm Re} h=0 .

Note that the (2, 2)-cofactor of C_{1} is given by a(cd-h^{2}) . However, by
the above equations, we can show that a(cd-h^{2})\neq 0 . This implies that
rank cC_{1}\geqq 3 , contradicting our assumption. Q. E. D.

5. 2. Case of AIII(3, 3)_{3} , DIII(3)_{3} or EVIh. Finally, we prove

PROPOSITION 5. 4. Let (L, E) be one of AIII(3, 3)_{3} , DIII (3)_{3} and
EVIh . Then D_{2}=0 .

PROOF. We note that \overline{1}n this setting, \Pi_{\Sigma} coincides with the fundamen-
tal system of restricted roots assoc\overline{l}ated with CI(3)_{3} . Let A\in D_{2} . Sup-
pose that A\neq 0 . Then by Lemma 5. 2(2) , there is a negative number a\in R

such that (\gamma_{1}, A)=(\gamma_{2}, A)=-a and (\gamma_{3}, A)=2a . Put \gamma=\gamma_{2}+\gamma_{3} . Then we
have \gamma\in\Sigma_{-1} and (\gamma, A)=a . This proves \gamma\in R^{-}(A) . On the other hand,
from the Dynkin diagram of \Pi_{\Sigma} , we know that (\gamma_{3}, \gamma_{3})=2(\gamma_{2}, \gamma_{2}) and (\gamma_{2} ,
\gamma_{3})=-(\gamma_{2}, \gamma_{2}) . Hence we have (\gamma, \gamma)=(\gamma_{2}, \gamma_{2}) and hence m(\gamma)=m(\gamma_{2}) . In
view of Table II , we have m(\gamma_{2})=2 in case AIII (3, 3)_{3} , m(\gamma_{2})=4 in case
DIII(3)_{3} and m(\gamma_{2})=8 in case EVIh. Then by Proposition 3.8, we have
r^{-}(A)\geqq m(\gamma)+m(\gamma_{3})\geqq 3 . This contradicts our assumption A\in D_{2} .
Therefore we have D_{2}=0 . Q. E. D.

Thus, by Propositions 3. 14, 4. 3-4. 6 and 5. 4, we obtain Theorem 4. 1.

Appendix 1. Table I (FSGLAs and symmetric R-spaces)

FSGLA Satake Diagram R-space G/K

AI(n)_{p}
\alpha_{1} \alpha_{p} \alpha_{n}

\{\begin{array}{l}n\geqq 11\leqq p\leqq[(n+1)/2\end{array}\}
0-0-\cdots\infty\circ\cdots m

G^{p,q}(R)(p+q=n\dagger 1)

AII(n)_{p}

\{\begin{array}{l}n\geqq 21\leqq p\leqq[n/2]\end{array}\}
\infty\cdots\infty\circ\cdots\infty

\alpha_{2} \alpha_{2p} \alpha_{zn-2} G^{p.q}(H)(p+q=n)
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AIII(n, n)_{n}
\alpha_{n} U(n)

(n\geqq 2)

\alpha_{2n-1} \alpha_{n+1}

BI(n, p)_{1}
\alpha_{1}

\alpha_{p} \alpha_{n}

Q^{p-1,q-1}(R)

\{\begin{array}{l}n\geqq 22\leqq p\leqq n\end{array}\} 0-\cdots\cdot-0-\cdots\cdot\sim-o (p+q=2n+1)

BII(n)_{1}
\alpha_{1} \alpha_{2} \alpha_{n}

S^{2n-1}
(n\geqq 2) 0-\cdots\sim-0

CI(n)_{n}
\alpha_{1}

\alpha_{n} U(n)/O(n)
(n\geqq 3) 0-0-\cdots-0-0\circ

CII(n, n)_{n}
\alpha_{2} \alpha_{2n}

Sp(n)
(n\geqq 2) -c-0-\cdots-0-0-0\circ

\alpha_{1} \alpha_{P} \alpha_{n-1}

o\circ-\cdots\infty\cdots v-
(n\geqq p+1)

DI(n, p)_{1} o \alpha_{n}

Q^{p-1,q-1}(R)

\{\begin{array}{l}n\geqq 42\leqq p\leqq n\end{array}\}

\alpha_{1} \alpha_{n-1}

(p+q=2n)

\mapsto\circ\cdots-Q_{\alpha_{n}}^{-0}

(n=p)

DII(n)_{1}
S^{2n-2}

(n\geqq 4)

DI(n, n)_{n}
\alpha_{1} \alpha_{n-1}

(n\geqq 5) \mapsto\cdots\tau_{\circ\alpha_{n}}^{O}
SO(n)

DIII(n)_{n}
U(2n)/Sp(n)

(n\geqq 3)

\alpha_{1} \alpha_{3} \alpha_{4} \alpha_{5} \alpha_{6}

Sp(4)/(Sp(2)\cross Sp(2)) .
EI_{1}

o\circ-0-\zeta^{-O-O} Z_{2}
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EIV_{1} P^{2}(Cay)

EV_{7} SU(8)/Sp(4)\cdot Z_{2}

EVII_{3} E_{6}\cdot SO(2)/F_{4}

Appendix 2. Table II (Restricted root systems and multiplicties)

FSGLA Dynk_{\dot{1}}n diagram of \Pi_{\Sigma} m(\gamma_{i})

AI(n)_{p}

\gamma_{1} \gamma_{p} \gamma_{n}

\{\begin{array}{l}n\geqq 11\leqq p\leqq[(n+1)/2]\end{array}\} 0–0– \cdots \cdot\infty\circ\cdots\cdot\infty O
1

AII(n)_{p}

\{\begin{array}{l}n\geqq 21\leqq p\leqq[n/2]\end{array}\} 0–0– \cdots \cdot\infty\circ\cdots-0-O 4
\gamma_{1} \gamma_{p} \gamma_{n-1}

AIII(n, n)_{n} 2 (i<n)
\gamma_{1} \gamma_{p}

(n\geqq 2) \infty\cdots\cdot-0-0\circ 1 (i=n)

BI(n, p)_{1}
1 (i<p)

\gamma_{1}

\gamma_{p}

\{\begin{array}{l}n\geqq 22\leqq p\leqq n\end{array}\}
m\circ\cdots\cdot-0-o 2(n-p)+1(i=p)

BII(n)_{1}
\gamma_{1}

2n-1
(n\geqq 2) o\circ

CI(n)
\gamma_{1}

\gamma_{n} 1
(n\geqq 3) 0\infty\cdots \cdot-0-O\circ

CII(n, n)_{n} 4 (\dot{\iota}<\leqq n)

\infty\gamma_{1}....-0-00\gamma_{n}
(n\geqq 2) 3 (\dot{\iota}=n)
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\gamma_{1} \gamma_{p} 1 (i<p)
o\circ-c-\cdots\cdot-0-0 (n\geqq p-1)

DI(n, p)_{1} 2(n-p)(i=p)

\{\begin{array}{l}n\geqq 42\leqq p\leqq n\end{array}\}

(n=p) 1

DII(n)_{1}
\gamma_{1}

2n-2
(n\geqq 4) o\circ

DI(n, n)_{n}
1

(n\geqq 5)

DIII(n)_{n} 4 (i<n)
\gamma_{1} \gamma_{n}

(n\geqq 3) \infty\cdots\cdot-0-0\circ 1 (i=n)

EI_{1} 1

EIV_{1}
\gamma_{1} \gamma_{2} 8m\circ

EV_{7} 1

8 (i<3)
EVII_{3} \gamma_{1} \gamma_{2} \gamma_{3}

\infty-0\circ 1 (i=3)
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