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\S 1. Introduction

Let (G, X) be a (topological) transformation group, in which G is a
compact abelian group and X is a locally compact Hausdorff space. Sup-
pose that the action of G on X is given by (g, x)arrow g\cdot x , where g\in G and
x\in X . Let \pi:Xarrow X/G be the canonical map.

Let C_{0}(x) be the Banach space of continuous functions on X which
vanish at infinity. Let M(X) be the Banach space of bounded regular
Borel measures on X with the total variation norm. Let M^{+}(X) be the
set of nonnegative measures in M(X) . For \mu\in M(X) and f\in L^{1}(|\mu|) , we

often write \mu(f)=\int_{X}f(x)d\mu(x) . Let X’ be another locally compact Haus-

dorff space, and let S:Xarrow X’ be a continuous map. For \mu\in M(X) , let
S(\mu)\in M(X’) be the continuous image of \mu under S . A Borel measure \sigma

on X is called quasi-invariant if |\sigma|(F)=0 implies |\sigma|(g\cdot F)=0 for all g\in

G. The \sigma-algebra of Baire sets is the \sigma-algebra generated by compact
G_{8}-sets

Let \hat{G} be the dual group of G. M(G) and L^{1}(G) denote the measure
algebra and the group algebra respectively. By the Radon-Nikodym
theorem we can identify L^{1}(G) with the set of all absolutely continuous
measures in M(G) . For \lambda\in M(G),\overline{\lambda} donotes the Fourier-Stieltjes trans-

fo r of \lambda , i . e., \lambda-(\gamma)=\int_{G}(-x, \gamma)d\lambda(x) . m_{G} stands for the Haar measure

of G . For a subset E of \hat{G} , M_{E}(G) denotes the space of measures in
M(G) whose Fourier-Stieltjes transforms vanish off E. A subset E of \hat{G}

is called a Riesz set if M_{E}(G)\subset L^{1}(G) .
For \lambda\in M(G) and \mu\in M(X) , we define \lambda*\mu\in M(X) by

(1. 1) \lambda*\mu(f)=\int_{X}\int_{G}f(g\cdot x)d\lambda(g)d\mu(x)

for f\in C_{0}(X) . We note that (1. 1) holds for all bounded Baire functions f
on X. Let J(\mu) be the collection of all f\in L^{1}(G) with f*\mu=0 .
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DEFINITION 1. 1. For \mu\in M(X) , define the spectrum sp(\mu) of \mu by

\bigcap_{f\in f(\mu)}\overline{f}^{-1}(0) .

We note that \gamma\in sp(\mu) if and only if \gamma*\mu(=(\gamma m_{G})*\mu)\neq 0 (cf. [16,
Remark 1. 1 (II. 1)]) . We say that \mu\in M(X) translates G-continuously if
\lim_{garrow 0}||\mu-\delta_{\mathcal{G}}*\mu||=0 , where \delta_{g} is the point mass at g\in G . Let M_{aG}(X) be an
L-subspace of M(X) defined by

M_{aG}(X)=\{\mu\in M(X) : and\nu\in M^{+}(X)\mu<<\rho*\iota_{J}forsome\rho\in L^{1}(G)\cap M^{+}(G)\} .

By [16, Proposition 5. 1], we note that \mu\in M_{aG}(X) if and only if \mu

translates G-continuously.
Absolute continuity of a bounded Borel measure on a locally compact

group is characterized by continuity of translation (cf. [5, (19. 27) and
(20.4) Theorem]). On a compact transformation group, we give condi-
tions for absolute continuity of a bounded Borel measure with respect to a
quasi-invariant Radon measure. We state our results.

THEOREM 1. 1. Let (G, X) be a transformation group, in which G is
a compact abelian group and X is a locally compact Hausdorff space. Let
\sigma be a positive Radon measure on X that is quasi-invariant. Let
\mu\in M^{+}(X) . If \mu\in M_{aG}(X) and \pi(\mu)<<\pi(\sigma) , then \mu<<\sigma.

By Theorem 1. 1 and [17, Theorem 2. 3], we have the following corol-
lary.

COROLLARY 1. 1. Let (G, X) and \sigma be as in Theorem 1. 1. Let E
be a Riesz set in \hat{G} . Let \mu\in M(X) , and suppose that sp(\mu)\subset E and
\pi(|\mu|)<<\pi(\sigma) . Then \mu<<\sigma.

REMARK 1. 1. In Theorem 1. 1, the converse also holds (cf. [18,
Remark 1. 1 (iii) ] .

REMARK 1. 2. In Corollary 1. 1, we need the assumption that
\pi(|\mu|)<<\pi(\sigma) . In fact, let G and H be infinite compact abelian groups,
and put X=G\oplus H . We define the action of G on X by g\cdot(x, y)=(g+x, y)

for g\in G and (x, y)\in X . For 0\neq y\in H , define \sigma\in M^{+}(X) by \sigma=m_{G}\cross\delta_{\mathcal{Y}} .
Then \sigma is quasi-invariant. We define a measure \mu\in M(X) by \mu=m_{G}\cross\delta_{0} .
Then sp(\mu)=\{0\} , and {0} is a Riesz set in \hat{G} .
However \mu\perp\sigma since y\neq 0 .

REMARK 1. 3. In Corollary 1. 1, we need the assumption that \sigma is
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quasi-invariant. In fact, let (G, X) be as in Remark 1. 2. Define a mea-
sure \sigma\in M^{+}(X) by \sigma=\sigma_{0}\cross m_{H} . Then \sigma is not quasi-invariant. Define a
measure \mu\in M(X) by \mu=m_{G}\cross m_{H} . Then sp(\mu)=\{0\} and \pi(|\mu|)<<\pi(\sigma) .
However \mu\perp\sigma .

In section 2 we prove Theorem 1. 1. In section 3, using Corollary 1. 1,
we give an F. and M. Riesz thorem on a compact group K (Theorem 3. 1),
which was obtained by R. G. M. Brummelhuis when K is a metrizable
compact group ([2]).

\S 2 Proof of Theorem 1. 1.

For x\in.X , we define a continuous map B_{\chi} : Garrow G\cdot x\subset X by B_{\chi}(g)=

g-x. For x=\pi(x) , define m_{x}\in M^{+}(X) by m_{x}=B_{X}(m_{G}) . We state two
conditions (D. I) and (D. II).

(D. I) Let (G, X) be a transformation group, in which G is a metr-
izable compact abelian group and X is a locally compact Hausdorff space.
For \mu\in M^{+}(X) , put \eta=\pi(\mu) . Then there exists a family \{\lambda_{x}\}_{x\in X/G} of mea-
sures in M^{+}(X) with the following properties:

(2. 1) \dot{x}arrow\lambda_{x}(f) is \eta-measurable for each bounded Baire function f on
X,

(2. 2) ||\lambda_{x}||=1 ,
(2. 3) supp(\lambda_{x})\subset\pi^{-1}(x.) ,

(2. 4) \mu(f)=\int_{x/G}\lambda_{x}(f)d\eta(x.) for each bounded Baire function f on X.

(D. II ) Let ( G, X) be as in (D. I ). Let \iota/\in M^{+}(X/G) . Suppose
\{\lambda_{x}^{1}\}_{x\in X/G} and \{\lambda_{x}^{2}\}_{x\in X/G} are families of measures in M(X) with the follow-
ing properties:

(2. 5) \dot{x}arrow\lambda_{x}^{i}(f) is \nu- integrable for each bounded Baire function f on
X(i=1,2) ,

(2. 6) supp (\lambda_{x}^{i})\subset\pi^{-1}(x.) (i=1,2) ,

(2. 7) \int_{X/G}\lambda_{x}^{1}(f)d\nu(x.)=\int_{x/c}\lambda_{x}^{2}(f)d\nu(x.) for each bounded Baire func-

tion f on X.

Then \lambda_{x}^{1}=\lambda_{x}^{2} v-a.a. \dot{x}\in X/G .

Let \mu\in M(X) and \eta\in M^{+}(X/G) . By an \eta-disintegration of \mu , we
mean a family \{\lambda_{x}\}_{x\in X/G} of measures in M(X) satisfying (2. 1)’\dot{x}arrow\lambda_{x}(f)

is \eta-integrable for each bounded Baire function f on X and (2. 3)-(2.4)
in (D. I). If, in addition, \eta=\pi(|\mu|) and ||\lambda_{x}||=1 for all \dot{x}\in X/G , then we
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call \{\lambda_{x}\}_{x\in X/G} a canonical disintegration of \mu . Thus condition (D. I) says
that each \mu\in M^{+}(X) has a canonical disintegration \{\lambda_{x}\}_{x\in X/G} with \lambda_{x}\in

M^{+}(X) .

REMARK 2. 1. Let (G, X) be a transformation group, in which G is
a metrizable compact abelian group and X is a locally compact metric
space. Then ( G, X) satisfies conditions (D. I) and (D. II ) (cf. [16,
Remark 6. 1]).

LEMMA 2. 1. Suppose that (G, X) satisfies conditions (D. I ) and (D.
II) . Let \sigma\in M^{+}(X) be a quasi-invariant measure, and let \mu\in M^{+}(X) . If
\mu\in M_{aG}(X) and \pi(\mu)<<\pi(\sigma) , then \mu<<\sigma .

PROOF. Put \eta=\pi(\mu) . Since \mu\in M_{aG}(X) , it follows from [17, Lemma
4. 1] that

(1) \mu<<m_{G}*\mu .

Let \{\lambda_{x}\}_{x\in X/G} be a canonical disintegration of \mu with \lambda_{x}\in M^{+}(X) . It fol-
lows from [16, Lemma 1. 3] that m_{G}*\lambda_{x}=m_{x} . Hence, by [16, Lemma 2. 6],
\{m_{x}\}_{x\in X/G} is an \eta-disintegration of m_{G}*\mu . By (1) and [18, Lemma 2. 6],
we have \lambda_{x}<<m_{x}\eta-a . a . x\in X/G , which together with [16, Lemma 2. 5
(I) ] yields \mu<<\sigma . This completes the proof.

LEMMA 2. 2. Let (G, X) be a transformation group, in which G is a
compact abelian group and X is a locally compact metric space. Let
\sigma\in M^{+}(X) be a quasi-invariant measure, and let \mu\in M^{+}(X) . If \mu\in

M_{aG}(X) and \pi(\mu)<<\pi(\sigma) , then \mu<<\sigma.

PROOF. Put \eta=\pi(\mu) . Since \mu is bounded regular, we may assume
that X is \sigma-compact Set H= {g\in G:g\cdot x=x for all x\in X}. By [18,
Lemma 2. 6], H is a compact subgroup of G such that G/H is metrizable.
Moreover, ( G/H, X) becomes a transformation group by the action
(g+H)\cdot x=g\cdot x for g+H\in G/H and x\in X . Let \pi_{G/H} : Xarrow X/G/H be the
canonical map.

Claim 1. \pi_{G/H}(\mu)<<\pi_{G/H}(\sigma) .

In fact, let A be a compact subset of X/G/H such that \pi_{G/H}(\sigma)(A)=0 .
Then \sigma(\pi_{G/H}^{-1}(A))=0 . We note that

(1) \pi^{-1}(\pi(\pi_{G/H}^{-1}(A)))=\pi_{G/H}^{-1}(A) .

Hence \pi(\sigma)(\pi(\pi_{G/H}^{-1}(A)))=\sigma(\pi_{G/H}^{-1}(A))=0 , which yields \pi(\mu)(\pi(\pi_{G/H}^{-1}

(A)))=0 since \pi(\mu)<<\pi(\sigma) . Thus, by (1), we have \pi_{G/H}(\mu)(A)=\pi(\mu)

(\pi(\pi_{G/H}^{-1}(A)))=0 . Since \pi_{G/H}(\mu) and \pi_{G/H}(\sigma) are bounded regular, the
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claim follows.

Claim 2. \mu\in M_{aG/H}(X) .

This follows from [18, Lemma 2. 8].
Since G/H is a metrizable compact abelian group and X is a \sigma-com-

pact, locally compact metric space, (G/H, X) satisfies conditions (D. I)
and (D. II). Moreover \sigma is quasi-invariant under the action of G/H.
Hence, by Lemma 2. 1, we have \mu<<\sigma . This completes the proof.

Now we prove Theorem 1. 1. Since \mu is bounded reqular, we may
assume that X is \sigma-compact and \sigma\in M^{+}(X) . Suppose that \mu is not abs0-
lutely continuous with respect to \sigma . Let \mu=\mu_{a}+\mu_{s} be the Lebesgue de-
composition of \mu with respect to \sigma . Then \mu_{s}\neq 0 . By [17, Lemma 3. 1],
there exists an equivalence relation ”–,, on X such that
(2. 8) X/- is a \sigma-compact, locally compact metric space with respect

to the quotient topology,
(2.9) ( G, X/-) becomes a transformation group by the action

g\cdot\tau(x)=\tau(g\cdot x) for g\in G and x\in X ,
(2. 10) \tau(\mu_{s})\neq 0 , and
(2. 11) \tau(\mu_{s})\perp\tau(\sigma) ,

where \tau:Xarrow X/- is the canonical map. Since \tau(\mu_{a})<<\tau(\sigma) , it follows
from (2. 11) that \tau(\mu)=\tau(\mu_{a})+\tau(\mu_{s}) is the Lebesgue decomposition of \tau(\mu)

w_{\sim}ith respect to \tau(\sigma) . By [17, Lemma 2. 1], \tau(\sigma) is quasi-invariant. Let
\pi : X/-arrow X/-/G be the canonical map. Then \tilde{\pi}(\tau(\mu))<<\tilde{\pi}(\tau(\sigma)) , by
[17, Lemma 2. 3]. We claim

(2. 12) \tau(\mu)\in M_{aG}(X/-) .

Since \delta_{g}*\tau(\mu)=\tau(\delta_{g}*\mu) (cf. [17, Lemma 2.1]), we have

\lim_{garrow 0}||\tau(\mu)-\delta_{g}*\tau(\mu)||=\lim_{garrow 0}||\tau(\mu)-\tau(\delta_{g}*\mu)||

\leq\lim_{garrow 0}||\mu-\delta_{g}*\mu||=0 .

This shows that (2. 12) holds. Since X/- is metrizable, it follows from
Lemma 2. 2 that \tau(\mu)<<\tau(\sigma) . Hence \tau(\mu_{s})=0 , which contradicts (2. II) .
Thus we have \mu<<\sigma , and the proof of Theorem 1. 1 is complete.

\S 3 An F. and M. Riesz theorem on compact groups.

In this section we will give an F. and M. Riesz theorem on compact
groups, which R. G. M. Brummelhuis obtained on metrizable compact
groups. Let K be a compact group and \Sigma its dual object. m_{K} stands for
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the Haar measure of K. We denote by Z(K) the center of K. Let G be
a closed subgroup of Z(K) , and let \pi_{G} : Karrow K/G be the canonical map.
A(\Sigma, G) means the annihilator of G in \Sigma (cf. [6, (28. 7) Definition]). For \sigma

\in\Sigma , U^{(\sigma)} denotes a continuous irreducible unitary representation of K in
\sigma with the representation space H_{\sigma} . Since U^{(\sigma)} is a continuous irreducible
unitary representation, it follows from Schur’s lemma (cf. [6, (27. 10) Corol-
lary]) that there exists a map \gamma:\Sigmaarrow\overline{G} such that

(3. 1) U_{x}^{t\sigma)}=(x, \gamma(\sigma))I

for x\in G and \sigma\in\Sigma , where I is the identity operator on H_{\sigma} . Let \mu be a
measure in M(K) . We denote by sp_{G}(\mu) the spectrum of \mu on the tranfor-
mation group (G, K) . \mu means the Fourier transform of \mu , i . e. , for \sigma\in\Sigma

and \xi , \eta\in H_{\sigma} ,

(3. 2) \langle\hat{\mu}(\sigma)\xi, \eta\rangle=\int_{K}\langle \overline{U}_{x}^{t\sigma)}\xi, \eta\rangle d\mu(x) ,

where \overline{U}_{X}^{(\sigma)}=D_{\sigma}U_{X}^{(\sigma)}D_{\sigma} and D_{\sigma} is a conjugation on H_{\sigma} (cf. [6, (27, 28)]). In
accordance with [2], let spec (\mu)=\{\sigma\in\Sigma:\overline{\mu}(\sigma)\neq 0\} .

For \sigma , \tau\in\Sigma , \sigma\cross\tau is defined (cf. [6, (27, 35) Definition]). \sigma\cross\tau is a
finite subset of \Sigma .

For \tau\in\Sigma , \mathfrak{T}_{\tau}(K) is the linear span of all functions xarrow\langle U_{X}^{(\tau)}\xi, \eta\rangle ,

where \xi , \eta\in H_{\tau} . Let \mathfrak{T}(K) denote the space of trigonometric polynomials
on K, i . e. , \mathfrak{T}(K) is the set of finite linear combinations of functions xarrow

\langle U_{x}^{(\sigma)}\xi, \eta\rangle , where \sigma\in\Sigma and \xi , \eta\in H_{\sigma} . Set \Omega^{-+}(\sim K)=\{f\in \mathfrak{T}(K) : f\geq 0\} .
Let \{\xi f^{\sigma)}, \ldots , \xi_{d\sigma}^{(\sigma)}\} be a fixed orthonormal basis in H_{\sigma} . For 1\leq i , j\leq

d_{\sigma} , let u_{\iota_{J}}^{(\sigma)} be the function on K defined by u_{\iota_{J}}^{(\sigma)}(x)=\langle U_{x}^{(\sigma)}\xi_{j}^{(\sigma)}, \xi_{i}^{(\sigma)}\rangle . The
functions u_{lj}^{(\sigma)} are called the coordinate functions for U^{(\sigma)}\in\sigma and the basis
{ \xi\{^{\sigma)} .\ldots . \xi_{d\sigma}^{(\sigma)}\} .

LEMMA 3. 1. Let \Delta be a subset of \Sigma , and let \mu be a measure in
M(K) with \Phi ec(\mu)\subset\Delta . Then \phi_{G}(\mu)\subset\{\gamma(\sigma):\sigma\in\Delta\} .

Proof. Let \gamma_{0}\in\hat{G}\backslash \{\gamma(\sigma):\sigma\in\Delta\} . For any \sigma\in\Delta and, \xi , \eta\in H_{\sigma} , we
have

\langle(\gamma_{0}m_{G})^{\wedge}(\sigma)\xi, \eta\rangle=\int_{G}\langle \overline{U}_{X}^{(\sigma)}\xi, \eta\rangle(x, \gamma_{0})dm_{G}(x)

= \int_{G}\overline{(x,\gamma(\sigma))}\langle\xi, \eta\rangle(x, \gamma_{0})dm_{G}(x)

= \int_{G}(x, \gamma_{0}-\gamma(\sigma))\langle\xi, \eta\rangle dm_{G}(x)=0 .
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Thus (\gamma_{0}m_{G})^{\wedge}(\sigma)=0 for any \sigma\in\Delta . Since \hat{\mu}=0 on \Sigma\backslash \Delta , we have
\{(\gamma_{0}m_{G})*\mu\}^{\wedge}(\sigma)=(\gamma_{0}m_{G})^{\wedge}(\sigma)\hat{\mu}(\sigma)=0 for all \sigma\in\Sigma . Therefore (\gamma_{0}m_{G})*\mu=0 ,
which yields \gamma_{0}\not\in sp_{G}(\mu) . This completes the proof.

The following lemma is easily obtained.

LEMMA 3. 2. Let \sigma\in\Sigma and \Delta\subset\Sigma . For f\in \mathfrak{T}_{\sigma}(K) and g\in \mathfrak{T}(K)

with spec(g)\subset \Delta , we have spec(fg)\subset \sigma x\Delta .

LEMMA 3. 3. Let \sigma\in\Sigma and \Delta\subset\Sigma . For f\in \mathfrak{T}_{\sigma}(K) and \mu\in M(K)

with \Phi ec(\mu)\subset\Delta , we have \Phi ec(f\mu)\subset\sigma\cross\Delta .

PROOF. Let \{h_{a}\}\subset \mathfrak{T}^{+}(K) be a bounded left approximate unit for
L^{1}(K) obtained in [6, (28, 53) Theorem]. Then we have

(1) h_{a}*\mu converges to \mu in the weak* topology.

For any u_{\iota j}^{(\sigma)}\in \mathfrak{T}_{\sigma}(K)(1\leq i, j\leq d_{\sigma}) , it follows from (1) that

(2) u_{\iota j}^{(\sigma\rangle}h_{a}*\mu converges to u_{\iota j}^{(\sigma)}\mu in the weak* topology.

Since h_{a}*\mu\in Q^{\vee}(\sim K) and spec(h_{a}*\mu)\subset\Delta , we have, by Lemma 3. 2,

spec(u_{\iota j}^{(\sigma)}h_{a}*\mu)\subset\sigma\cross\Delta ,

which together with (2) yields that spec(u_{\iota j}^{(\sigma)}\mu)\subset\sigma\cross\Delta . Hence we have
spec(f\mu)\subset\sigma\cross\Delta , and the proof is complete.

THEOREM 3. 1. Suppose \Delta\subset\Sigma satisfies the following two conditions.

(i) For each \omega\in\overline{G}, \{\sigma\in\Delta:\gamma(\sigma)=\omega\} is finite.
(ii) The set \{\gamma(\sigma):\sigma\in\Delta\} is a Riesz set in \overline{G}.

Let \mu be a measure in M(K) such that \Phi ec(\mu)\subset\Delta . Then \mu<<m_{K} .

PROOF. By Lemma 3. 1, we have

(1) sp_{G}(\mu)\subset\{\gamma(\sigma):\sigma\in\Delta\} .

Moreover we obtain

(2) \pi_{G}(f\mu)\in L^{1}(K/G) for all f\in \mathfrak{T}(K) .

In fact, for any \sigma\in\Sigma and f\in \mathfrak{T}_{\sigma}(K) , it follows from Lemma 3. 3 that spec
(f\mu)\subset\sigma\cross\Delta . Hence

(3) spec (\pi_{G}(f\mu))\subset(\sigma\cross\Delta)\cap A(\Sigma, G) .

Let \tau be any element in \Delta such that (\sigma\cross\tau)\cap A(\Sigma, G)\neq\phi . For \delta\in(\sigma\cross\tau)\cap

A(\Sigma, G) , we note that



32 Hiroshi Yamaguchi

(4) \gamma(\sigma)+\gamma(\tau)=\gamma(\delta)=0 ,

where 0 is the identity element in \overline{G} . Hence, by (4) and the condition (i),
\{\tau\in\Delta: (\sigma\cross\tau)\cap A(\Sigma, G)\neq\phi\} is finite. Hence (\sigma\cross\Delta)\cap A(\Sigma, G) is finite,
which together with (3) shows that \pi_{G}(f\mu)\in L^{1}(K/G) for all f\in \mathfrak{T}_{\sigma}(K) .
Thus (2) holds.

There exists a sequence \{p_{n}\} in \mathfrak{T}(K) such that \lim_{narrow\infty}||p_{n}\mu-|\mu|||=0 .

Then \lim_{narrow\infty}||\pi_{G}(p_{n}\mu)-\pi_{G}(|\mu|)||=0 , which combined with (2) yields

(5) \pi_{G}(|\mu|)<<m_{K/G}=\pi_{G}(m_{K}) .

Since \{\gamma(\sigma) : \sigma\in\Delta\} is a Riesz set, it follows from (1), (5) and Corollary
1. 1 that \mu<<m_{K} . This complets the proof.

An immediate consequence of Theorem 3. 1 is the following corollary,
which was obtained by R. G. M. Brummelhuis when K is a metrizable
compact group. Brummelhuis proved it by using Shapiro’s methods ([13]).

COROLLARY 3. 1. (cf. [2, Theorem 3. 2]).
Suppose that Z(K) contains the circle group T as a closed subgroup. Let
\Delta\subset\Sigma satisfy the following two conditions :

(i) For each m\in Z, \{\sigma\in\Delta : n(\sigma)=m\} is finite.
(ii) The set \{n(\sigma):\sigma\in\Delta\} is bounded from below,
where n:\Sigmaarrow Z is the map such that U_{e^{i\theta}}^{(\sigma)}=e^{in(\sigma)\theta} I for \sigma\in\Sigma and \theta\in R.
Let \mu be a measure in M(K) such that spec(\mu )\subset \Delta . Then \mu<<m_{K} .

EXAMPLE 3. 1. (cf. [3, 3. 4 Example (a)]).

Let T^{(l)}(l=0, \frac{1}{2},1, \frac{3}{2}, \ldots) be as in [6, (29. 13)]. Then SU(2)^{\wedge}=\{T^{(l)} : l=

0 , \frac{1}{2},1 , \frac{3}{2} , \ldots }. Let K=T\oplus SU(2) and G=T(=T\oplus\{1\}) . Then Z(K)\supset G

and \hat{K}=\{\tau_{n,m} : n\in Z, m=0, \frac{1}{2},1, \frac{3}{2}, \ldots\} , where \tau_{n,m}(c^{i\theta}. u)=e^{in\theta}T_{u}^{(m)} .

Moreover \gamma(\tau_{n,m})=n . Set F=\{-n_{K} : n_{K}\in Z^{+}. n_{K+1}/n_{K}>3(k=1,2,3,\ldots)\} .
Then Z^{+}\cup F is a Riesz set in Z (cf. [10, 5. 7 Theorem]). For \alpha>0 and
\beta<0 , put \Delta=\{\tau_{n,m}\in\hat{K} : n\geq 0, m\leq\alpha n\}\cup\{\tau_{-n_{k}}\in\overline{K} : k\in N, m\leq-\beta n_{k}\} .

Then \Delta satisfies conditions ( i) and ( ii) in Theorem 3. 1.
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