# A unit group in a character ring of an alternating group II 

Kenichi Yamauchi

(Received November 19, 1991)

## 1. Introduction

Throughout this paper, $G$ denotes always a finite group, $Z$ the ring of rational integers, $Q$ the field of rational numbers, $C$ the field of complex numbers. In addition, we fix the following notations.
$R(G)$; a character ring of $G$
$U(R(G))$; a unit group of $R(G)$
$U_{f}(R(G))$; the subgroup of $U(R(G))$ which consists of units of finite order in $R(G)$
$S_{n}, A_{n}$; a symmetric group and an alternating group on $n$ symbols respectively for a natural number $n$.
In the paper of [6], we proved the following theorem.
Theorem 1.1. $\quad \operatorname{rank} U\left(R\left(A_{n}\right)\right) /\{ \pm 1\}=c(n)$.
(See Definition 2.3 concerning a number $c(n)$ )
In section 3, we will construct $c(n)$ units $\psi_{1}, \ldots, \psi_{c(n)}$ in $R\left(A_{n}\right)$ and show that $U^{2}\left(R\left(A_{n}\right)\right) \subseteq\left\langle\psi_{1}, \ldots, \psi_{c(n)}\right\rangle$, where $U^{2}\left(R\left(A_{n}\right)\right)=\left\{\psi^{2} \mid \psi \in U\left(R\left(A_{n}\right)\right)\right\}$ and $\left\langle\psi_{1}, \ldots, \psi_{c(n)}\right\rangle$ is an abelian subgroup of $U\left(R\left(A_{n}\right)\right)$ generated by $\psi_{1}, \ldots$, $\psi_{c(n)}$. (See Theorem 3.4.). It is easily proved that rank $\left\langle\psi_{1}, \ldots, \psi_{c(n)}\right\rangle=c$ ( $n$ ). (See the proof of Lemma 4.1 of [6]]), and so Theorem 1.1] is a direct consequence of the above result.

For a given unit $\psi$ in $R\left(A_{n}\right)$, we will give the necessary and sufficient condition on which $\psi$ is the difference of two irreducible $C$-characters of $A_{n}$. (See Theorem 3.6.)

In section 4, as an application of the above results, we will state some examples such that the equation $\{ \pm 1\} \times\left\langle\psi_{1}, \ldots, \psi_{c(n)}\right\rangle=U\left(R\left(A_{n}\right)\right)$ holds, by the way of finding generators of $U\left(R\left(A_{n}\right)\right)$ concretely, and we will also give the example such that a unit in $R\left(A_{n}\right)$ is the difference of two irreducible $C$-characters of $A_{n}$.

Now we pay attention to the fact that for $n=3,4, U\left(R\left(A_{n}\right)\right)=U_{f}(R$ $\left.\left(A_{n}\right)\right)=\left\{ \pm \chi_{1}, \pm \chi_{2}, \pm \chi_{3}\right\}$, where $\chi_{1}, \chi_{2}$, and $\chi_{3}$ are the linear characters of
$A_{n}$. (See Theorem 4.3 (ii) of [6]). Therefore, from now on, we may assume that $n \geqq 5$.

## 2. Preliminaries

We first state Frobenius's theorem. (See p 222-223 of [1]). Let [ $m_{1}$, $\left.\ldots, m_{r}\right], m_{1}+\cdots+m_{r}=n$ be a self-associated frame. Then we assign to [ $m_{1}, \ldots, m_{r}$ ] a conjugacy class of $S_{n}$ with cycles of odd lengths $q_{1}>q_{2}>\cdots$ $>q_{k}, q_{1}+q_{2}+\cdots+q_{k}=n\left(q_{1}=2 m_{1}-1, q_{2}=2 m_{2}-3, \ldots\right)$. We denote by ( $q_{1}$, $q_{2}, \ldots, q_{k}$ ) this conjugacy class and we set $p=q_{1} q_{2} \cdots q_{k}$.

Let $\chi$ be a self-associated character of $S_{n}$ which corresponds to [ $m_{1}$, $\left.\ldots, m_{r}\right]$. Then we have

ThEOREM 2.1. (Frobenius's theorem) In the above situation we have
(i) If we consider $\chi$ as a character of $A_{n}$, then $\chi$ is the sum of two irreducible $C$-characters $\varphi_{1}, \varphi_{2}$ of $A_{n} ; \chi=\varphi_{1}+\varphi_{2}$
(ii) A conjugacy class $\left(q_{1}, q_{2}, \ldots q_{k}\right)$ splits into two conjugacy classes $\mathfrak{J}^{\prime}$, © " $"$ of $A_{n}$.
(iii)

$$
\begin{aligned}
& \varphi_{1}\left(c^{\prime}\right)=\varphi_{2}\left(c^{\prime \prime}\right)=\frac{1}{2}(\theta+\sqrt{p \theta}) \\
& \varphi_{1}\left(c^{\prime \prime}\right)=\varphi_{2}\left(c^{\prime}\right)=\frac{1}{2}(\theta-\sqrt{p \theta})
\end{aligned}
$$

where $\theta=(-1)^{\frac{1}{2}(p-1)}=(-1)^{\frac{1}{2}(n-k)}$ and $c^{\prime}, c^{\prime \prime}$ are the representatives of $\mathfrak{C}^{\prime}, \mathfrak{C}^{\prime \prime}$ respectively. The values of $\varphi_{1}$ and $\varphi_{2}$ are equal in all other conjugacy classes of $A_{n} ; \varphi_{1}=\varphi_{2}=\frac{1}{2} \chi$.

DEFINITION 2.2. Let $\Gamma=\left[m_{1}, \ldots, m_{r}\right], m_{1}+\cdots+m_{r}=n$ be a selfassociated frame. Then we assign to $\Gamma$ a conjugacy class $\mathfrak{C}=\left(q_{1}, q_{2}, \ldots\right.$, $q_{k}$ ) of $S_{n}$ with cycles of odd lengths $q_{1}>q_{2}>\cdots>q_{k}, q_{1}+q_{2}+\cdots+q_{k}=n$ ( $q_{1}=$ $\left.2 m_{1}-1, q_{2}=2 m_{2}-3, \cdots\right)$ and we set $p=q_{1} q_{2} \cdots q_{k}$. In addition, we assume that $p \equiv 1$ ( $\bmod .4$ ) and $p$ is not the square of a number (i.e. $\sqrt{p} \notin Q$ ). In this case we call $\Gamma$ a self-associated frame of real type, and we also say


DEFInition 2.3. For a natural number $n$, we define a nonnegative rational integer $c(n)$ as follows
$c(n)=$ the number of self-associated frames of real type

$$
\left[m_{1}, \ldots, m_{r}\right], m_{1}+\cdots+m_{r}=n
$$

Let $\Gamma=\left[m_{1}, \ldots, m_{r}\right], m_{1}+\cdots+m_{r}=n$ be a self-associated frame of real type and let $(\Gamma, \mathfrak{c}, p)$ be a triple of $\Gamma$. Then $Q(\sqrt{p})$ is the real quadratic
field. Here we state two lemmata without proofs in the above situation. (See Lemma 3.1 and Lemma 3.2 of [6])

Lemma 2.4. A conjugacy class © $\mathbb{C}^{5}$ of $S_{n}$ consists of $\left|S_{n}\right| / p$ elements.
Lemma 2.5. We set $p=f^{2} p_{0}$ ( $p_{0}$ : square-free). Then we have
(i) $\quad p_{0} \equiv 1($ mod. 4$)$
(ii) If $\frac{1}{2}(t+u \sqrt{p}), t, u \in Z$ is an algebraic integer in $Q\left(\sqrt{p_{0}}\right)$, then $t \equiv u$ (mod. 2).
(iii) If $\varepsilon$ is a fundamental unit in $Q\left(\sqrt{p_{0}}\right)$, then the units in $Q\left(\sqrt{p_{0}}\right)$ which take the form of $\frac{1}{2}(t+u \sqrt{p}), t, u \in Z$ are given by
$\pm E^{n}(n=0, \pm 1, \pm 2, \ldots)$
where $E=\varepsilon^{e}$ for some natural number $e$.
Definition 2.6. We call a unit $E$ which appears in Lemma 2.5 (iii), a standard unit in $Q(\sqrt{p})\left(=Q\left(\sqrt{p_{0}}\right)\right)$ for convenience.

Lemma 2.7. $\quad U_{f}\left(R\left(A_{n}\right)\right)=\left\{ \pm \chi_{1}\right\}(n \geqq 5)$
where $\chi_{1}$ is a principal character of $A_{n}$.
Proof. Any unit of finite order in $R(G)$ has the form $\pm \chi$ for some linear character $\chi$ of a finite group $G$ (See Corollary 2.2 of [5]), and $A_{n}$ has only one linear character $\chi_{1}$, because $A_{n}$ is a simple group and $A_{n}=$ $D\left(A_{n}\right)$ (a commutator subgroup of $A_{n}$ ) holds. Therefore it follows that $U_{f}\left(R\left(A_{n}\right)\right)=\left\{ \pm \chi_{1}\right\}$. Thus the result follows.
Q. E. D.
3. Units in $R\left(A_{n}\right)(n \geqq 5)$

Let $\Gamma=\left[m_{1}, \ldots, m_{r}\right], m_{1}+\cdots+m_{r}=n$ be a self-associated frame of real type and let $(\Gamma, \mathfrak{c}, p)$ be a triple of $\Gamma$. Let $\mathfrak{c}^{\prime}$, $\mathfrak{c}^{\prime \prime \prime}$ be the two conjugacy classes of $A_{n}$ into which $\mathbb{C}$ splits. Let $E=\frac{1}{2}(t+u \sqrt{p}),(t, u \in Z, t u \neq 0)$ be the standard unit in $Q(\sqrt{p})$. We denote by $N(E)$ the norm of $E$ over $Q$. Then we have the following theorem.

Theorem 3.1. In the above situation, we define a class function $\psi$ of $A_{n}$ as follows

In case $N(E)=1$

$$
\begin{aligned}
& \psi(x)=1 \text { for } x \in A_{n}, x \notin \mathbb{C}^{\prime}, \mathfrak{C}^{\prime \prime} \\
& \psi\left(c^{\prime}\right)=E^{2}, \psi\left(c^{\prime \prime}\right)=E^{-2}
\end{aligned}
$$

In case $N(E)=-1$

$$
\begin{aligned}
& \psi(x)=-1 \text { for } x \in A_{n}, \quad x \notin \mathfrak{C}^{\prime}, \mathfrak{S}^{\prime \prime} \\
& \psi\left(c^{\prime}\right)=E^{2}, \quad \psi\left(c^{\prime \prime}\right)=E^{-2}
\end{aligned}
$$

where $c^{\prime}, c^{\prime \prime}$ are the representatives of $\mathfrak{C}^{\prime}$, $\mathfrak{c}^{\prime \prime}$ respectively.
Then $\psi$ is a unit in $R\left(A_{n}\right)$, which is not of finite order.
Proof. In case $N(E)=1$, by both Lemma 3.3 and Theorem 3.4 of [6], we can see that $\psi$ is a unit in $R\left(A_{n}\right)$, which is not of finite order, and so in case $N(E)=-1$, we prove that $\psi$ is a unit in $R\left(A_{n}\right)$. Since $N(E)=$ $\frac{1}{4}\left(t^{2}-p u^{2}\right)=-1$, we have $t^{2}=p u^{2}-4$. Hence we get the following equation

$$
\begin{aligned}
& E^{2}=\frac{1}{4}\left(t^{2}+p u^{2}+2 t u \sqrt{p}\right)=\frac{1}{4}\left(2 p u^{2}-4+2 t u \sqrt{p}\right) \\
& =\frac{1}{2}(a+b \sqrt{p})-1
\end{aligned}
$$

where $a=p u^{2}$ and $b=t u(\neq 0)$.
Therefore we have

$$
\begin{aligned}
& \left(\psi+\chi_{1}\right)(x)=0 \text { for } x \in A_{n}, \quad x \notin \mathbb{C}^{\prime}, \\
& \left(\psi+\chi_{1}\right)\left(c^{\prime \prime}\right)=\frac{1}{2}(a+b \sqrt{p}) \\
& \left(\psi+\chi_{1}\right)\left(c^{\prime \prime}\right)=\frac{1}{2}(a-b \sqrt{p}), \quad p \mid a, \quad b \neq 0
\end{aligned}
$$

where $\chi_{1}$ is a principal character of $A_{n}$.
By the same proof as that of Theorem 3.4 of [6], we can prove that $\psi$ is actually written as a linear combination of irreducible $C$-characters of $A_{n}$ with integral coefficients and that $\psi$ is a unit in $R\left(A_{n}\right)$, and so we omit its proof. Thus the proof is complete.
Q. E. D.

Let $\left(\Gamma_{1}, \bigodot_{1}, p_{1}\right), \ldots,\left(\Gamma_{c(n)}, \bigodot_{c(n)}, p_{c(n)}\right)$ be the triples of self-associated frames of real type and let $\lambda_{1}, \ldots, \lambda_{c(n)}$ be the characters of self-associated representations of $S_{n}$, which correspond to $\Gamma_{1}, \ldots, \Gamma_{c(n)}$ respectively. If we consider $\lambda_{i}$ as a character of $A_{n}$, then $\lambda_{i}$ is the sum of two irreducible $C$-characters $\varphi_{i}^{\prime}, \varphi_{i}^{\prime \prime}$ of $A_{n} ; \lambda_{i}=\varphi_{i}^{\prime}+\varphi_{i}^{\prime \prime}(i=1, \ldots, c(n))$. Let $\mathscr{C}_{i}^{\prime}$, $\mathfrak{C}_{i}^{\prime \prime}$ be the two conjugacy classes of $A_{n}$ into which $\oint_{i}$ splits, and let $c_{i}^{\prime}, c_{i}^{\prime \prime}$ be the representatives of $\mathfrak{C}_{i}^{\prime}$, $\mathfrak{C}_{i}^{\prime \prime \prime}$ respectively $(i=1, \ldots, c(n))$. We denote by $E_{i}$ the standard unit in $Q\left(\sqrt{p_{i}}\right)(i=1, \ldots, c(n))$, and we keep these notations throughout this section. Then we have the following theorem which plays a fundamental role.

Theorem 3.2. In the above situation, let $\psi$ be a unit in $R\left(A_{n}\right)$ which is not of finite order such that

$$
\psi\left(c_{i}^{\prime}\right)= \pm E_{i}^{j i}, \quad \psi\left(c_{i}^{\prime \prime}\right)= \pm E_{i}^{\prime j i}, j_{i} \in Z
$$

$(i=1, \ldots, c(n))$, where $E_{i}^{\prime}$ is the conjugate number of $E_{i}$ over $Q$ and the sign of $E_{i}^{j i}$ is equal to that of $E_{i}^{j_{i j}}$.

Then we have $N\left(E_{i}^{i_{i}}\right)=1(i=1, \ldots, c(n))$, where $N\left(E_{i}^{i}\right)$ denotes the norm of $E_{i}^{j i}$ over $Q$.

Proof. Let $\chi_{1}$ (a principal character), $\ldots, \chi_{k}$ be the irreducible $C$ characters of $A_{n}$ such that $\left\{\chi_{1}, \ldots, \chi_{k}\right\} \cup\left\{\varphi_{i}^{\prime}, \varphi_{i}^{\prime \prime} \mid i=1, \ldots, c(n)\right\}$ is a full set of irreducible $C$-characters of $A_{n}$. Now we assume that $\psi$ is written as a linear combination of irreducible $C$-characters of $A_{n}$ with integral coefficients as follows

$$
\begin{aligned}
& \psi=\sum_{i=1}^{c(n)} a_{i} \varphi_{i}^{\prime}+\sum_{i=1}^{c(n)} b_{i} \varphi_{i}^{\prime \prime}+\sum_{j=1}^{k} c_{j} \chi_{j} \\
& a_{i}, b_{i}, \quad c_{j} \in Z .
\end{aligned}
$$

If we set

$$
\psi^{\prime}=\sum_{i=1}^{c(n)} b_{i} \varphi_{i}^{\prime}+\sum_{i=1}^{c(n)} a_{i} \varphi_{i}^{\prime \prime}+\sum_{j=1}^{k} c_{j} \chi_{j},
$$

then by Theorem 2.1, we can see that

$$
\begin{aligned}
& \psi^{\prime}(x)=\psi(x) \text { for } x \in A_{n}, x \notin \mathbb{E}_{i}^{\prime}, \mathbb{E}_{i}^{\prime \prime}(i=1, \ldots, c(n)) \\
& \psi^{\prime}\left(c_{i}^{\prime}\right)=\psi\left(c_{i}^{\prime \prime}\right)= \pm E_{i}^{\prime i_{i}}, \psi^{\prime}\left(c_{i}^{\prime \prime}\right)=\psi\left(c_{i}^{\prime}\right)= \pm E_{i}^{j_{i}}
\end{aligned}
$$

where the sign of $E_{i}^{\prime j_{i}}$ is equal to that of $E_{i}^{j_{i}}$. Therefore it follows that $\left(\psi \psi^{\prime}\right)(x)= \pm 1$ or $\left(\psi \psi^{\prime}\right)(x)$ is a unit in an imaginary quadratic field for $x \in A_{n}, x \notin \mathbb{C}_{i}^{\prime}, \mathfrak{C}_{i}^{\prime \prime}(i=1, \ldots, c(n))$, and that

$$
\left(\psi \psi^{\prime}\right)\left(c_{i}^{\prime}\right)=\left(\psi \psi^{\prime}\right)\left(c_{i}^{\prime \prime}\right)=N\left(E_{i}^{i^{i}}\right)= \pm 1 \text { for } i=1, \ldots, c(n) .
$$

Thus we can conclude that $\psi \psi^{\prime}$ is a unit in $R\left(A_{n}\right)$, which is of finite order. By Lemma 2.7, we have $\psi \psi^{\prime}= \pm \chi_{1}$. Since $\left(\psi \psi^{\prime}\right)(1)=1$ for an identity element 1 of $A_{n}$, we have the equation $\psi \psi^{\prime}=\chi_{1}$. This implies that $N\left(E_{i}^{j i}\right)=1$ for $i=1, \ldots, c(n)$. Thus the proof is complete. Q. E.D.

We assume further that $E_{1}, \ldots, E_{r}$ are the standard units such that $N\left(E_{1}\right)=\cdots=N\left(E_{r}\right)=1$, and that $E_{r+1}, \ldots, E_{r+s}\left(=E_{c(n)}\right)$ are the standard units such that $N\left(E_{j}\right)=-1(j=r+1, \ldots, r+s=c(n))$. Then, for each $i \in$ $\{1, \ldots, r\}$, we set

$$
\begin{aligned}
& \psi_{i}(x)=1 \text { for } x \in A_{n}, x \notin \mathfrak{S}_{i}^{\prime}, \mathfrak{S}_{i}^{\prime \prime} \\
& \psi_{i}\left(c_{i}^{\prime}\right)=E_{i}^{2}, \psi_{i}\left(c_{i}^{\prime \prime}\right)=E_{i}^{-2}
\end{aligned}
$$

and for each $j \in\{r+1, \ldots, r+s=c(n)\}$, we set

$$
\begin{aligned}
& \psi_{j}(x)=-1 \text { for } x \in A_{n}, x \notin \mathfrak{C}_{j}^{\prime}, \mathfrak{c}_{j}^{\prime \prime} \\
& \psi_{j}\left(c_{j}^{\prime}\right)=E_{j}^{2}, \psi_{j}\left(c_{j}^{\prime \prime}\right)=E_{j}^{-2} .
\end{aligned}
$$

By Theorem 3.1, it follows that $\psi_{1}, \ldots, \psi_{r+s}\left(=\psi_{c(n)}\right)$ are units in $R\left(A_{n}\right)$, which are not of finite order, and we fix these units throughout this section. Then we have

THEOREM 3.3. For any unit $\psi$ in $R\left(A_{n}\right)$, which is not of finite order, we can write

$$
\psi^{2}=\psi_{1}^{i_{1}} \ldots \psi_{r}^{i r} \cdot \psi_{r+1}^{2 j_{r+1}{ }^{2}} \ldots \psi_{r+s}^{2 j_{r+s}}
$$

where $i_{1}, \ldots, i_{r}, j_{r+1}, \ldots, j_{r+s} \in Z$.
Proof. Since $N\left(E_{k}\right)=-1$ for $k \in\{r+1, \ldots, r+s=c(n)\}$, by Theorem 3. 2, we have

$$
\psi\left(c_{k}^{\prime}\right)= \pm E_{k}^{2 j_{k}}, \psi\left(c_{k}^{\prime \prime}\right)= \pm E_{k}^{-2 j_{k}} \text { for some } j_{k} \in Z
$$

where the sign of $E_{k}^{2 j_{k}}$ is equal to that of $E_{k}^{-2 j_{k}}$. Hence we have

$$
\left(\psi^{2}\right)\left(c_{k}^{\prime}\right)=E_{k}^{4 j_{k}},\left(\psi^{2}\right)\left(c_{k}^{\prime \prime}\right)=E_{k}^{-4 j_{k}} .
$$

On the other hand, for $h \in\{1, \ldots, r\}$ we have

$$
\psi\left(c_{h}^{\prime}\right)= \pm E_{h}^{i_{h}}, \psi\left(c_{h}^{\prime \prime}\right)= \pm E_{h}^{-i_{h}} \text { for some } i_{h} \in Z
$$

where the sign of $E_{h}^{i_{h}}$ is equal to that of $E_{h}^{-i_{h}}$. Therfore, if we
set $\quad \mu=\psi^{2} \psi_{1}^{-i_{1}} \ldots \psi_{r}^{-i r} \psi_{r+1}^{-2 j_{r+1}} \ldots \psi_{r+s}^{-2 j_{r+s}}$, then we
can see that $\mu(x)=1$ for $x \in \mathfrak{C}_{i}^{\prime}$ or $x \in \mathfrak{C}_{i}^{\prime \prime}(i=1, \ldots, r+s=c(n))$. Thus it follows that $\mu$ is a unit in $R\left(A_{n}\right)$ which is of finite order. By Lemma 2.7, we have $\mu= \pm \chi_{1}$. For an identity element 1 of $A_{n}, \mu(1)=1$ holds, and so we obtain $\mu=\chi_{1}$.

This implies that

$$
\psi^{2}=\psi_{1}^{i_{1}} \ldots \psi_{r}^{i_{r}} \psi_{r+1}^{2 j_{j+1}} \ldots \psi_{r+s}^{2 j_{j+s} .} .
$$

Thus the result follows.
Q. E. D.

We denote by $\left\langle\psi_{1}, \ldots, \psi_{c(n)}\right\rangle$ an abelian subgroup of $U\left(R\left(A_{n}\right)\right)$ generated by $\psi_{1}, \ldots, \psi_{c(n)}$, and we denote by $U^{2}\left(R\left(A_{n}\right)\right)$ the set $\left\{\psi^{2} \mid \psi\right.$ is a unit in $\left.R\left(A_{n}\right)\right\}$. Then the following theorem is a direct consequence of Theorem 3. 3.

THEOREM 3.4. $U^{2}\left(R\left(A_{n}\right)\right) \cong\left\langle\psi_{1}, \ldots, \psi_{c(n)}\right\rangle$.

Corollary 3.5. Let $\psi$ be any unit in $R\left(A_{n}\right)$. Then $\psi(x)$ is a real number for all $x \in A_{n}$. In particular, $\psi(x)= \pm 1$ for $x \in A_{n}, x \notin \mathbb{E}_{i}^{\prime}$, $\mathbb{C}_{i}^{\prime \prime}(i=$ $1, \ldots, c(n)$ ).

Proof. It is clear that $\psi(x)$ is a real number for $x \in \mathfrak{C}_{i}^{\prime}$ or $x \in \mathfrak{C}_{i}^{\prime \prime}(i=$ $1, \ldots, c(n)$ ). By Theorem 3.3, we can see that $\left(\psi^{2}\right)(x)=1$ for $x \in A_{n}, x \notin$ $\mathfrak{c}_{i}^{\prime}, \mathfrak{C}_{i}^{\prime \prime \prime}(i=1, \ldots, c(n))$. Thus the result follows. Q.E.D.

Let $\Gamma=\left[m_{1}, \ldots, m_{r}\right], m_{1}+\cdots+m_{r}=n$ be a self-associated frame of real type and let $(\Gamma, \mathfrak{\varrho}, p)$ be a triple of $\Gamma$. Let $\mathbb{『}^{\prime}$, $\complement^{\prime \prime}$ be the two conjugacy classes of $A_{n}$ into which ${ }^{〔}$ splits.

Let $\frac{1}{2}(t+u \sqrt{p})(t u \neq 0)$ be the unit in $Q(\sqrt{p})$. Then we have the following theorem.

Theorem 3.6. In the above situation, let $\psi$ be the unit in $R\left(A_{n}\right)$ such that $\psi(x)= \pm 1$ for $x \in A_{n}, x \notin \mathfrak{C}^{\prime}, \mathfrak{c}^{\prime \prime}$

$$
\psi\left(c^{\prime}\right)=\frac{1}{2}(t+u \sqrt{p}), \psi\left(c^{\prime \prime}\right)=\frac{1}{2}(t-u \sqrt{p})
$$

where $c^{\prime}, c^{\prime \prime}$ are the reprensentatives of $\mathbb{~}^{\prime}, \mathfrak{c}^{\prime \prime}$ respectively.
Then the following conditions are equivalent.
(i) $\psi$ is the difference of two irreducible $C$-characters of $A_{n}$.
(ii) $\quad u= \pm 1$

Proof. We denote by $\chi_{1}$ a principal character of $A_{n}$, and we denote by $(\lambda, \mu)$ the inner product of two class functions $\lambda, \mu$ of $A_{n}$. That is,

$$
(\lambda, \mu)=\frac{1}{\left|A_{n}\right|} \sum_{g \in A_{n}} \lambda(g) \overline{\mu(g)}
$$

where $\overline{\mu(g)}$ is the conjugate complex number of $\mu(g)$.
(i) $\Longrightarrow$ (ii) Since $\psi$ is the difference of two irreducible $C$-characters of $A_{n}$ and $\psi(x),\left(x \in A_{n}\right)$, is a real number, we
have $\quad\left(\psi^{2}, \chi_{1}\right)=\left(\psi \bar{\psi}, \chi_{1}\right)=(\psi, \psi)=2$
On the other hand, by Theorem $3.2 N\left(\frac{1}{2}(t+u \sqrt{D})\right)=1$, and so we derive $t^{2}=p u^{2}+4$. From this formula, we get

$$
\left(\frac{t \pm u \sqrt{p}}{2}\right)^{2}=\frac{p u^{2} \pm t u \sqrt{p}}{2}+1 .
$$

Hence we have

$$
\begin{aligned}
& \left(\psi^{2}-\chi_{1}\right)(x)=0 \text { for } x \in A_{n}, x \notin \mathfrak{C}^{\prime}, \mathfrak{C}^{\prime \prime} \\
& \left(\psi^{2}-\chi_{1}\right)\left(c^{\prime}\right)=\frac{p u^{2}+t u \sqrt{p}}{2},\left(\psi^{2}-\chi_{1}\right)\left(c^{\prime \prime}\right)=\frac{p u^{2}-t u \sqrt{p}}{2}
\end{aligned}
$$

By Lemma 2.4 we have $\left|\mathfrak{C}^{\prime}\right|=\left|\mathfrak{C}^{\prime \prime}\right|=\frac{1}{p}\left|A_{n}\right|$. Now we calculate an inner product $\left(\psi^{2}-\chi_{1}, \chi_{1}\right)$.

$$
\begin{equation*}
\left(\psi^{2}-\chi_{1}, \chi_{1}\right)=\frac{1}{\left|A_{n}\right|}\left(\frac{\left|A_{n}\right|}{p}\left(\frac{p u^{2}+t u \sqrt{p}}{2}\right)+\frac{\left|A_{n}\right|}{p}\left(\frac{p u^{2}-t u \sqrt{p}}{2}\right)\right)=u^{2} . \tag{2}
\end{equation*}
$$

Therefore it follows that $\left(\psi^{2}, \chi_{1}\right)=1+u^{2}$. Hence by the formula (1), we have $1+u^{2}=2$, and so we get $u= \pm 1$.
(ii) $\Longrightarrow$ (i) We assume that $u= \pm 1$. Then by the formula (2), we get $\left(\psi^{2}-\chi_{1}, \chi_{1}\right)=1$ and so we have

$$
\left(\psi^{2}, \chi_{1}\right)=(\psi, \bar{\psi})=(\psi, \psi)=2
$$

Because $\psi$ is a unit in $R\left(A_{n}\right)$, it follows that $\psi(1)= \pm 1$ for an identity element 1 of $A_{n}$. Hence we can see that $\psi$ is the difference of two irreducible $C$-characters of $A_{n}$. This completes the proof of Theorem 3.6. Q. E.D.

## 4. Some examples

Example 1. $U\left(R\left(A_{10}\right)\right)$. We will find the generators of $U\left(R\left(A_{10}\right)\right)$. First we compute $c(10)$. There are two self-associated frames ; [4, 3, 2, 1], $\left[5,2,1^{3}\right]$. We assign to $[4,3,2,1],\left[5,2,1^{3}\right]$ conjugacy classes of $S_{10},(7,3)$, $(9,1)$ respectively, and conjugacy classes $(7,3),(9,1)$ determine odd numbers $7 \times 3=21 \equiv 1(\bmod .4), 9 \times 1=3^{2}$ respectively. Therefore we have $c(10)=1$.

Now we set $\varepsilon=\frac{1}{2}(5+\sqrt{21})$. Then $\varepsilon$ is a fundamental unit in $Q(\sqrt{21})$. (At the same time $\varepsilon$ is a standard unit in $Q(\sqrt{21})$, and $N(\varepsilon)$ (the norm of $\varepsilon$ over $Q$ ) is equal to 1.)

Secondly we prove that there is no unit $\mu$ in $R\left(A_{10}\right)$ such that

$$
\begin{align*}
& \mu(x)= \pm 1 \text { for } x \in A_{10}, x \notin \mathfrak{C}^{\prime}, \mathfrak{S}^{\prime \prime}  \tag{3}\\
& \mu\left(c^{\prime}\right)= \pm \varepsilon, \mu\left(c^{\prime \prime}\right)= \pm \varepsilon^{-1}
\end{align*}
$$

where $\mathfrak{C}^{\prime}$, $\mathfrak{C}^{\prime \prime}$ are the cojugacy classes of $A_{10}$ into which the conjugacy class $(7,3)$ of $S_{10}$ splits, and $c^{\prime}, c^{\prime \prime}$ are the representatives of $\mathbb{C}^{\prime}$, $\mathfrak{C}^{\prime \prime}$ respectively.

Assume by way of contradiction that there is a unit $\mu$ in $R\left(A_{10}\right)$ which satisfies the equations of (3). Let $\lambda$ be a self-associated character of $S_{10}$
which corresponds to the frame $\lfloor 4,3,2,1\rfloor$, and let $\psi_{1}, \psi_{2}$ be the two irreducible $C$-characters of $A_{10}$ into which $\lambda$ splits. By Theorem 3.6, we can see that $\mu$ is the difference of two irreducible $C$-characters of $A_{10}$, and so we may assume that $\mu= \pm\left(\psi_{1}-\chi\right)$ for some irreducible $C$-character $\chi$ of $A_{10}$. Now we can easily compute $\operatorname{deg} \lambda=768$. (See p78 Theorem 3.9 of [3].) Hence we have $\operatorname{deg} \psi_{1}=\operatorname{deg} \psi_{2}=384$. Since $\mu(1)= \pm\left(\psi_{1}(1)-\chi(1)\right)=$ $\pm(384-\chi(1))= \pm 1$, it follows that $\chi(1)=383$ or $\chi(1)=385$. But there is no irreducible $C$-character $\chi$ of $A_{10}$ such that $\chi(1)=383$ or $\chi(1)=385$, because

$$
\frac{\left|A_{10}\right|}{\chi(1)}=\frac{10!}{2 \times 383} \notin Z \quad \text { and } \quad \frac{\left|A_{10}\right|}{\chi(1)}=\frac{10!}{2 \times 385}=\frac{10!}{2 \times 5 \times 7 \times 11} \notin Z .
$$

This contradiction implies that there is no unit $\mu$ in $R\left(A_{10}\right)$ which satisfies the equations of (3).

Let $\psi$ be the class function of $A_{10}$ such that

$$
\begin{aligned}
& \psi(x)=1 \text { for } x \in A_{10}, x \notin \mathbb{E}^{\prime}, \mathbb{C}^{\prime \prime} \\
& \psi\left(c^{\prime}\right)=\varepsilon^{2}=\frac{23+5 \sqrt{21}}{2}, \psi\left(c^{\prime \prime}\right)=\varepsilon^{-2}=\frac{23-5 \sqrt{21}}{2} .
\end{aligned}
$$

Then by Theorem 3.1, it follows that $\psi$ is a unit in $R\left(A_{10}\right)$. Therefore we have
$U\left(R\left(A_{10}\right)\right)=\left\{ \pm \psi^{i} \mid i \in Z\right\}$. (See the proofs of Theorem 3.2 and Theorem 3.3.)

Example 2. $U\left(R\left(A_{p}\right)\right)$. Let $p$ be a prime number such that $p \equiv 1$ (mod.4) and $c(p)=1$. For example, 5,13 and 17 are the prime numbers which satisfy these conditions. Then we will find the generators of $U\left(R\left(A_{p}\right)\right)$. Let $\varepsilon$ be a fundamental unit of $Q(\sqrt{p})$, then $N(\varepsilon)=-1$. (See p 316 Problem 5 of [4].)

There is a self-associated frame; $\left[\frac{p+1}{2}, 1^{\frac{p-1}{2}}\right]$. We assign to this frame a conjugacy class of $S_{p},(p)$. Then the conjugacy class $(p)$ splits into two conjugacy classes $\mathfrak{C}^{\prime}$, $\mathfrak{C}^{(1 \prime \prime}$ of $A_{p}$. Let $\lambda$ be a self-associated character of $S_{p}$ which corresponds to $\left[\frac{p+1}{2}, 1^{\frac{p-1}{2}}\right]$. When we consider $\lambda$ as a character of $A_{p}$, by Theorem 2.1 we can see that $\lambda$ is the sum of two irreducible $C$-characters $\psi_{1}, \psi_{2}$ of $A_{\rho}$ such that $\psi_{1}\left(c^{\prime}\right)=\psi_{2}\left(c^{\prime \prime}\right)=\frac{1}{2}(1+\sqrt{p})$, $\psi_{1}\left(c^{\prime \prime}\right)=\psi_{2}\left(c^{\prime}\right)=\frac{1}{2}(1-\sqrt{p})$, where $c^{\prime}, c^{\prime \prime}$ are the representatives of $\mathfrak{C}^{\prime}, \mathfrak{C}^{\prime \prime}$ respectively. Therefore it follows that $\varepsilon$ is a standard unit in $Q(\sqrt{p})$.

Since $N(\varepsilon)=-1$, by Theorem 3.2, there is no unit $\mu$ in $R\left(A_{p}\right)$ such that $\mu(x)= \pm 1$ for $x \in A_{p}, x \notin \mathbb{C}^{\prime}, \mathbb{C}^{\prime \prime}$ and $\mu\left(c^{\prime}\right)= \pm \varepsilon, \mu\left(c^{\prime \prime}\right)= \pm \varepsilon^{\prime}$ where the sign of $\varepsilon$ is equal to that of $\varepsilon^{\prime}$. Let $\psi$ be the class function of $A_{p}$ such that $\psi(x)=-1$ for $x \in A_{p}, x \notin \mathbb{S}^{\prime}, \mathbb{C}^{\prime \prime}$ and $\psi\left(c^{\prime}\right)=\varepsilon^{2}, \psi\left(c^{\prime \prime}\right)=\varepsilon^{-2}$. Then by Theorem 3.1, $\psi$ is a unit in $R\left(A_{p}\right)$ and so we have $U\left(R\left(A_{p}\right)\right)=\left\{ \pm \psi^{i} \mid i \in Z\right\}$.

Example 3. We show that there is a unit in $R\left(A_{5}\right)$, which is the difference of two irreducible $C$-characters of $A_{5}$. (See Theorem 3. 6.) $A_{5}$ has the following conjugacy classes

$$
\begin{aligned}
& \mathfrak{S}_{1}=\{1\}, \mathfrak{C}_{2}=\{(12)(34), \cdots\}, \mathfrak{C}_{3}=\{(123), \cdots\}, \\
& \mathfrak{S}_{4}=\{(12345), \cdots\}, \mathfrak{C}_{5}=\{(13524), \cdots\} .
\end{aligned}
$$

Hence $A_{5}$ has five irreducible $C$-characters $\chi_{1}, \cdots, \chi_{5}$. For the character table of $A_{5}$, we obtain

|  | $\mathfrak{C}_{1}$ | $\mathfrak{C}_{2}$ | $¢_{3}$ | $\mathrm{C}_{4}$ | $\mathfrak{C}_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\chi_{1}$ | 1 | 1 | 1 | 1 | 1 |
| $\chi_{2}$ | 4 | 0 | 1 | $-1$ | $-1$ |
| $\chi_{3}$ | 5 | 1 | $-1$ | 0 | 0 |
| $\chi_{4}$ | 3 | $-1$ | 0 | $\frac{1+\sqrt{5}}{2}$ | $\frac{1-\sqrt{5}}{2}$ |
| $\chi_{5}$ | 3 | $-1$ | 0 | $\frac{1-\sqrt{5}}{2}$ | $\frac{1+\sqrt{5}}{2}$ |

From this character table, we get the following table for $\chi_{4}-\chi_{2}$ and $\chi_{5}-\chi_{2}$.

\[

\]

Therefore $\chi_{4}-\chi_{2}$ and $\chi_{5}-\chi_{2}$ are units in $R\left(A_{5}\right)$ which are the differences of two irreducible $C$-characters of $A_{5}$. Since $c(5)=1$, $\frac{3+\sqrt{5}}{2}=\left(\frac{1+\sqrt{5}}{2}\right)^{2}$, and $\frac{1+\sqrt{5}}{2}$ is a fundamental unit in $Q(\sqrt{5})$, of which the norm over $Q$ is equal to -1 , the units in $R\left(A_{5}\right)$ are given by

$$
\pm\left(\chi_{4}-\chi_{2}\right)^{i}, i=0, \pm 1, \pm 2, \cdots
$$

## (See Example 2.)

Finally we note that as for $U\left(R\left(A_{6}\right)\right)$ we also can prove the same statement.

## References

[1] BOERNER, H. "Representations of Groups with special consideration for the needs of modern physics" (Second revised edition) North-Holland, Amsterdam, 1970.
[2] ISAACS, I. M. "Character Theory of Finite Groups" Academic Press, New York, 1976.
[3] IWAHORI, N. "Representation thory of symmetric groups and general linear groups" (in Japanese) (Iwanamikōza kisosūgaku) Iwanami Shoten, Tokyo, 1978.
[4] TAKAGI, T. "Elementary theory of numbers " (Second edition) (in Japanese) Kyōritsu Press, Tokyo, 1971.
[5] YamaUCHI, K. "On the units in a character ring" Hokkaido Math. J. vol. 20 (1991), 477-479.
[6] YAMAUCHI, K. "A unit group in a character ring of an alternating group" Hokkaido Math. J. vol. 20 (1991), 549-558.

Department of Mathematics
Faculty of Education
Chiba University
Chiba-city 263
Japan

