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Selfsimilar solutions of the porous medium equation
without sign restriction
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Abstract

We consider radially symmetric selfsimilar solutions u(x, t)=
t^{-a}U(|x|t^{-\beta}) of the porous medium equation u_{t}-\Delta(|u|^{m-1}u)=0 . If m\in

(\frac{(N-2)_{+}}{N} , 1 ), we show that the resulting ODE allows global solutions with

rapid decay for a sequence of parameters k=\alpha/\beta , denoted by
\{k_{i}^{g}(m, N)\}_{i\in N}\subset R^{+} . The corresponding solution U_{i} has exactly (i-1) sim-
ple zeroes in R^{+} This case was left open by previous papers, where the
result for the degenerate case was given.
Besides the existence result in the singular case m<1 for arbitrary space
dimension N we prove continuity of the k_{i}^{g}(., N) at functions of m in

(\frac{(N-2)_{+}}{N} , 1 ).
In one space dimension there also exist antisymmetric solutions with rapid
decay for certain values \{k_{i}^{u}(m)\}_{i\in N} . We show that these values as well as
the k_{i}^{g}(., 1) are continuous functions of m in R^{+} and identify their limits
marrow\infty with compactly supported solutions of a limit problem.

Chapter 1. Introduction

In this paper we consider a special class of solutions of the Porous
Medium Equation

(PME) u_{t}-\Delta(|u|^{m-1}u)=0 in R^{N}\cross(0, T)

with m>0 and N\geq 1 . These radially symmetric, so called selfsimilar
solutions

u(x, t)=t^{-a}U(|x|t^{-\beta}) , \alpha , \beta>0 ,

play an important role in describing the large time behaviour of initial
value problems related to (PME). We stress the fact that we impose no
sign restriction on the solution.
The above ansatz leads to an initial value problem for U=U(\eta) :
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V^{rr}+ \frac{N-1}{\eta}V’+\beta\eta U’+\alpha U=0 in R^{+} ,
(P_{g})

V=|U|^{m-1}U , \alpha(m-1)+2\beta=1 ,
V’(0)=0 , V(0)=1 .

It is sufficient to examine the case V(0)=1 due to the scaling invariance of
(P_{g})- if U is a solution, so is

\hat{U}(\eta) :=\lambda^{-2}U(\lambda^{m-1}\eta) .

The question of existence and uniqueness of solutions of (P_{g}) was solved
by Hulshof in [H]. He showed that for every k>0 there is a unique solu-
tion ( U, V) with

U\in C^{0}(R^{+}) , V\in C^{1}(R^{+}) , U , V’ absolutely continuous.

The sign change condition is given by V=0 and V’\neq 0 : Given a zero \eta_{0}

of V. the solution has to be continued by the zero function if and only if
V’(\eta_{0})=0 .

In what follows the most important parameter will be

k:= \frac{\alpha}{\beta} .

Noting the above relation between \alpha and \beta in (P_{g}) and choosing suitable
parameter ranges there are bijections to \alpha and \beta , given by

\alpha=\frac{k}{2+k(m-1)}, \beta=\frac{1}{2+k(m-1)} .

Let us mention that (P_{g}) can be transformed into the equivalent equation

V’+ \frac{N-1}{\hat{\eta}}V’+\overline{\eta}U’+kU=0 in R^{+}

by the scaling U=U(\overline{\eta}),\overline{\eta} :=\beta^{1/2}\eta . This equation only contains k as a
parameter. Both versions will be used.

Concerning the structure of solutions of (P_{g}) we have the following

T HEOREM: ([H] and [BHV]) Let N=1 and m>0 . Then there
exists a strictly increasing sequence \{k_{i}^{g}(m, N)\}_{i\in N}\subset R^{+} . such that the corre-
sponding solutions V(\eta) of (P_{g}) have the following properties:
(i) If k\in(k_{i-1}^{g}, k_{i}^{g}] , then V has exactly (i-1) zeroes in R^{+}\cap suppV.
(ii) If k does not belong to the sequence and is less than its supremum,

then
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\eta^{km}V(\eta)arrow C\neq 0 if \etaarrow\infty .

(iii) If k=k_{i}^{g}(m, N) , then

\eta^{km}V(\eta)arrow 0 if \etaarrow\infty .

REMARK: First, in the degenerate case m>1 the sequence k_{\iota}^{q} con-
verges to infinity (see [H]) ; in the case of singular diffusion m<1 we

have an upper bound k_{i}^{g}< \frac{2}{1-m} . It is not known whether this value is

also the limit of the sequence.
Secondly, the solution V in (iii) is called i-th eigenfunction and k_{l}^{q}(m, N)

the i-th eigenvalue. The large time behaviour of the eigenfunction is
known to be as follows:

(i) If m>1 , then the eigenfunctions have compact support,
(ii) If m=1 , then \eta^{-2(i-1)}c^{\eta/2}V2(\eta) - C\neq 0 for \etaarrow\infty .

(iii) If m<1 , then \eta^{\frac{2m}{1-m}}V(\eta)
-arrow C\neq 0 for \etaarrow\infty .

In arbitrary space dimension only the degenerate case m>1 was solved.
Hulshof showed that the theorem is also valid in this case.
In this paper we will fill the gap by proving that the above theorem holds

for N>1 and m \in(\frac{(N-2)_{+}}{N} , 1 ).
This parameter range is the interesting one, as in the case m< \frac{(N-2)_{+}}{N}

extinction in finite time for solutions of (PME) occurs (see [BC]).
The proof of this result is given in chapter 2.

The first eigenfunction is known explicitely: it is the famous Barenblatt-
solution (see [B])

U( \eta)=(1-\frac{m-1}{2m(m+1)}|\eta|^{2})_{+}^{\frac{1}{m-1}}

and the corresponding eigenvalue is given by k_{1}^{g}(m, N)=N .
Kamin and Vasquez in [KV] proved that the solution of the initial value
problem related to (PME) with

u(., 0)=u_{0} in R^{N} .
u_{0}\in L^{1}(R^{N}) , M := \int_{R^{N}}u_{0}(x)dx\neq 0

converges to the Barenblatt-solution with mass M for large times. Using
strictly one dimensional techniques, Bernis, Hulshof and Vasquez in
[BHV] proved that the large time behaviour in case of
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\int_{R}u_{0}(x)dx=0 , \int_{R}\int_{-\infty}^{X}u_{0}(r)drdx=0 ,

\int_{-\infty}^{s}\int_{-\infty}^{X}u_{0}(r)drdx\geq 0 for all s\in R

can be described by the second eigenfunction.

As shown in [H] and [BHV], in one space dimension there are also
not radially symmetric eigenfunctions, that is solutions

u(x, t)=t^{-a}U(xt^{-\beta})

of (PME) with rapid decay for \etaarrow\infty as described above. Such eigenfun
ctions occur in case of antisymmetric initial data replacing the symmetric
ones in (P_{g}) . Again normalized due to the scaling invariance of the equa-
tion the problem now reads

V’+\beta\eta U’+\alpha U=0 in R^{+} ,
(P_{u}) V=|U|^{m-1}U , \alpha(m-1)+2\beta=1 ,

V’(0)=1 , V(0)=0 .

Again the theorem on the qualitative structure of solutions is valid; the
antisymmetric eigenvalues are called k_{i}^{u}(m) . They alternate with the
k_{\iota}^{q}(m, 1)

k_{\iota-1}^{q}(m, 1)<k_{i-1}^{u}(m)<k_{l}^{q}(m, 1)<k_{i}^{u}(m) .

The first antisymmetric eigenfunction is the dipole solution (see [BZ])

U( \eta)=\eta^{\frac{1}{m}}(1-\frac{m-1}{2m(m+1)}|\eta|^{1+\frac{1}{m}})_{+}^{\frac{1}{m-1}}

It is positive in R^{+} and the eigenvalue is k_{1}^{u}(m)=2 .
As shown in [KV] the dipole solution describes the large time behaviour
of solutions of the initial value problem related to (PME) with

\int_{R}u_{0}(x)dx=0 and \int_{R}xu_{0}(x)dx\neq 0 .

This result fills the gap arising in the results concerning large time behav-
iour with symmetric eigenfunctions in one space dimension. The exis-
tence of solutions of dipole-type in arbitary space dimension in the degen-
erate case was proved by Hulshof and Vasquez in [HV]. Such solutions
are antisymmetric in one space direction, are positive in the halfspace
given by this direction and have compact support.
In this paper, however, we want to concentrate on the radially symmetric
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case and the case of one space dimension.

Results concerning the continuity and the limit behaviour marrow\infty of
all these eigenvalues are subject of the third and fourth chapters of this
paper.
Besides the eigenvalues k_{1}^{g}(m, N)=N and k_{1}^{u}(m)=2 the eigenvalues in the
linear case are explicitely known to be

k_{i}^{g}(1, N)=N+2(i-1) ,
k_{i}^{u}(1)=2i .

Moreover in [HV] the estimate

k_{2}^{g}(m, N)>N+2 if m>1

was proved and in [BHV] the continuity of k_{2}^{g}(., 1) as a function of m in
R^{+} as well as the limit

\lim_{mrightarrow\infty}k_{2}^{g}(m, 1)=4

could be stated.

By generalization of the techniques in [BHV] we are able to prove the
continuity of all eigenvalues as functions of m in R^{+} in one space dimen-
sion. In arbitrary space dimension we have to restrict the result to the
singular case m<1 . Only the case k_{2}^{g}(., N) can be handled in the degener-
ate case, due to the above lower bound.

In order to examine the limit marrow\infty of the eigenvalues, we first observe
that all eigenvalues remain bounded as functions of m.
Following [BHV], who showed the above result for k_{2}^{g}(., 1) , we define

Z( \eta):=-\frac{1}{k-2}+\int_{0}^{\eta}x^{1-N}\int_{0}^{X}t^{N-1}U(t) dtdx.

This function satisfies

Z’+ \frac{N-1}{\eta}Z’=U=|V|^{\frac{1}{m}-1}V in R^{+}

and, combined with the ODE from (P_{g}) in a twice integrated version we
are led to a system with unknown functions V and Z . Passing to the
limit in this problem we arrive at

V+\eta Z’+(k-2)Z=0 in R^{+} .
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Z’+ \frac{N-1}{\eta}Z’\in sgnV a.e . in R^{+} ,
(P_{g}^{\infty})

Z(0)=- \frac{1}{k-2}, Z’(0)=0,

V(0)=1 , V’(0)=0 ,

\frac{1}{2}|V’(\eta)|^{2}+k|V(\eta)| is nonincreasing in R^{+} .

This will be shown in detail in chapter 4.
Concerning the structure of solutions the limit problem has the same prop-
erties as (P_{g}) . In particular it allows solutions with compact support for
certain discrete values of k , which will be called eigenvalues of (P_{g}^{\infty}) . In
fact we will prove that there is a strictly increasing sequence
\{k_{i}^{g}(\infty, N)\}_{i\in N} , such that V_{\wedge}Z have compact support and V has precisely
(i-1) zeroes, if and only if k=k_{l}^{q}(\infty, N) . The same result holds for the
limit problem derived from (P_{u}) .
As in chapter 3, in one space dimension we are able to identify these
eigenvalues with the limits marrow\infty of the eigenvalues of (P_{g}) and (P_{u}) ,
whereas in arbitrary space dimension only the case k_{2}^{g} can be treated.
More as a curiosity we present the value of this limit:

\lim_{marrow\infty}k_{2}^{g}(m, N)=\{

2+ \frac{2(N-2)}{N+2-N\sqrt[N]{4}} , if N\neq 2 ,

2+ \frac{2}{2ln2-1} , if N=2 .

Chapter 2. Existence and uniqueness of the eigenvalues for the case
m<1

We start giving the precise result and recall, that k is an eigenvalue,
if and only if the corresponding solution V of (P_{g}) tends faster to zero
than \eta^{-km} .

THEOREM 2. 1: Let N\in N and m \in(\frac{(N-2)_{+}}{N}, 1 ). Then there is a

strictly increasing sequence \{k_{i}^{g}(m, N)\}_{i\in N}, bounded by \frac{2}{1-m}, such that a

solution V of (P_{g}) is i -th eigenfunction, iff k=ki(m, N) .
If k<s.u\iota\in Pk_{l}^{q}(m, N) and k is not contained in the sequence, V behaves like
\eta^{-km} for \etaarrow\infty and if k\in(k_{i-1}^{g}, k_{\iota}^{q}) , V has exactly (i-1) zeroes in R^{+} .

PROOF: As mentioned in chapter 1, (P_{g}) possesses a unique global
solution for all k>0 . To go on we change variables
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t := log \eta , f(t) :=c^{\frac{2m}{1-m}t}V(c^{t})

and arrive at an autonomous first order system:

g’=c_{1}g- \frac{\beta}{m}|f|^{\frac{1}{m}-1}g-\alpha|f|^{\frac{1}{m}-1}f ,

f’=g+ \frac{2m}{1-m}f .

The constant c_{1} is given by c_{1} := \frac{2}{1-m}-N and is positive due to the
assumption on m.
The phase plane contains three critical points: the origin-a repeller with

eigenvalues \frac{2m}{1-m} and c_{1} and eigenvectors v_{1} :=(0,1) and v_{2} :=(2-N, 1) ,

respectively-and two saddle points \pm P , given by

|f|^{\frac{1}{m-1}}=2mc_{1} , g=- \frac{2m}{1-m}f .

To identify orbits in the phase plane that originate from solutions of (P_{g}) ,

let us mention that \lim_{tarrow-\infty}f , g=0 holds whenever V(0) , V’(0) are finite and

that the scaling invariance of (P_{g}) corresponds to the translational invar-
iance of the system. Moreover

\frac{g(t)}{f(t)}=\frac{\eta V’(\eta)}{V(\eta)} – 0 for \etaarrow 0 ,

if V(0)\neq 0 . Hence the (P_{g})-orbits leave the origin along the eigenvector

v_{1} . If N>2 , then
\underline{2m}

is the largest eigenvalue in (o, 0) and the orbit1-m
leaving there along v_{1} is unique. If N\leq 2 we have a parametrization of
these orbits via

\lim\frac{g(t)}{1+m}=\lim\frac{V’(\eta)}{1+m}=:p .
tarrow-\infty|f(t)|\overline{2m}sgnf(t) \etaarrow 0|V(\eta)|\overline{2m}sgnV(\eta)

In particular the (P_{g})-orbit corresponds to p=0.
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In order to describe the global behaviour of the (P_{g})-orbits, we have to
distinguish three possible cases (see sketch of the phase plane): First, an
orbit may escape to infinity after a finite number of rotations; this implies

\frac{g(t)}{f(t)}arrow-km if tarrow\infty

and thereby slow decay \eta^{-km} of V as \etaarrow\infty . Secondly, it may turn
around the origin forever and therefore have maxima of order \eta^{\frac{2m}{1-m}} .
Such solutions, however, do not satisfy the eigenfunction property. The
existence of such oscillatory solutions is possible and strongly related to

the question whether \frac{2}{1-m} equals the limit iarrow\infty of the eigenvalues or

not. We must leave this an open problem.
Finally an orbit may converge to the saddle points +P or -P after a
finite number of rotations. These orbits correspond to eigenfunctions V
of (P_{g}) . As an example we have the Barenblatt solution, emerging from
the origin along v_{1} and going to +P without leaving the second quadrant.
To prove existence of a second eigenfunction, we have to look for an
orbit again leaving the origin along v_{1} , intersecting the negative g-axis
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and then going into - P.
In order to do so, we first establish a monotonicity property of the system
(see [H]):
Expressing the system for (/, g) in polar coordinates (r, \phi) ,

f=:( \frac{r}{1-r})^{\frac{m}{1-m}}\sin\phi , g=:( \frac{r}{1-r})^{\frac{m}{1-m}}\cos\phi ,

we get

r’=( \frac{1}{m}-1)r(1-r)F(r, \phi, m, \alpha, N)

\phi’=G(r, \phi, m, \alpha, N) ,

F and G given by

F(r, \phi, m, \alpha, N) :=\sin\phi cos \phi+\frac{2m}{1-m}+(2-N)\cos^{2}\phi

- \frac{r}{1-r}|\sin\phi|^{\frac{1}{m}-1}\cos\phi( \alpha sin \phi+\frac{\beta}{m} cos \phi ),
G(r, \phi, m, \alpha, N) :=\cos^{2}\phi+(N-2) sin \phi cos \phi

+ \frac{r}{1-r}|\sin\phi|^{\frac{1}{m}-1}\sin\phi ( \alpha sin \phi+\frac{\beta}{m} cos \phi ).

Then

FG_{a}-F_{a}G= \frac{2m}{1-m} ( \sin\phi+\frac{1-m}{2m} cos \phi)^{2}\geq 0 ,

which means that the flow turns monotonically in one direction as \alpha

increases. Since k depends monotonically on \alpha the same is true as k
increases.
Bearing this in mind, we define two disjoint sets of values k , such that the
corresponding (P_{g})-orbits do not have the behaviour of a second eigenfun-
ction:

A= \{N<k<\frac{2}{1-m}| The (P_{g})-orbit intersects the negative g-
axis exactly once and escapes to infinity
through the fourth quadrant.},

B= \{N<k<\frac{2}{1-m}| The (P_{g})-orbit intersects the positive g-
axis.}.

Both sets are open. They are also not empty, as can be seen as follows:
If k=N\neq 2 , the orbits leaving the origin along v_{2} have to escape to infinity
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through the fourth quadrant, and as this is an open property, it holds also
for k slightly larger than N. Due to the monotonicity property this in
turn implies that the same must hold for the (P_{g})-orbits in this parameter
range. If k=N=2 one only has to replace the v_{2}-orbit by the orbit leav-
ing along v_{1} with p=-1 (see page 481). Thus A is not the empty set.
To show that B is not empty, we consider the problem related to the

upper bound k= \frac{2}{1-m} . Then f=f(t) rescaled by \overline{\eta}

:=\beta^{\frac{1}{2}}\eta , t=\log\hat{\eta} ,

satisfies the second order ODE

f’+ \{\frac{1}{m}|f|^{\frac{1}{m}-1}+(N-\frac{2}{1-m}(1+m))\}f’+\frac{2m}{1-m}c_{1}f=0 .

As proved for instance is [SC], p.330, this equation has a periodic solu-

tion. Therefore the solutions for k slighty less than \frac{2}{1-m} must have
arbitrarily many zeroes.
Consequently there is a k>N , which is neither contained in A nor in B .
Due to the monotonicity property it is unique; hence it is the second
eigenvalue k_{2}^{g}(m, N) .
Iterating this process with the obvious modifications concerning A and B,

the theorem is proved.
q.e.d

REMARK 2. 2: One easily derives the limit behaviour m arrow\frac{(N-2)_{+}}{N}

of the eigenvalues-

m arrow\frac{\lim_{(N-2)_{+}}}{N}k_{i}^{g}(m, N)=\{

2 for N=1 and i\geq 2 ,

N otherwise.

But, as already mentioned in the proof, it is not known whether the limit

iarrow\infty , keeping m and N fixed, equals the upper bound \frac{2}{1-m} .

Chapter 3. Continuity

As already mentioned in the introduction, k_{1}^{g}(m, N)=N and k_{1}^{u}(m)=2

are explicitely known and obviously continous functions of m. In what
follows we can therefore concentrate on the parameter range

k> \max\{2, N\} , i\geq 2 ,

even if its not explicitely stated.
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To proceed further we define

W( \eta):=\eta^{1-N}\int_{0}^{\eta}x^{n-1}U(x)dx ,

Z( \eta):=-\frac{1}{k-2}+\int_{0}^{\eta}W(x)dx .

Integrating twice the ODE from (P_{g}) , these definitions lead to

V’+\eta U+(k-N)W=0 ,
(*)(**)

V+\eta W+(k-2)Z=0 .

LEMMA 3. 1 : ( a-priori-estimates)
Let V be a solution of (P_{g}) . Then the following functions are nonincreas-
ing in \eta :

(i) E_{1}( \eta):=\frac{1}{2}V’(\eta)^{2}+\frac{km}{m+1}|V(\eta)|^{1+\frac{1}{m}} ,

(ii) E_{2}( \eta):=\frac{1}{2}W(\eta)^{2}+(k-2)^{\frac{1}{m}}\frac{m}{m+1}|Z(\eta)|^{1+\frac{1}{m}} if k>2 ,

(iii) E_{3}( \eta):=\frac{k-1}{2}W(\eta)^{2}+\frac{m}{m+1}|V(\eta)|^{1+\frac{1}{m}} if k \geq 1+\frac{N-1}{4} .

REMARK: Due to the relation

1+ \frac{N-1}{4}=N-\frac{3}{4}(N-1)\leq N

estimate (iii) is valid in particular for all k under consideration.

PROOF: (in case that N=1 see [BHV])
(i): This is the standard energy estimate for (P_{g}) .

(ii): Differentiating E2 and using Z’=U+ \frac{1-N}{\eta}Z’ we deduce

E_{\acute{2}}( \eta)=\frac{1-N}{\eta}|Z’|^{2}+(g(V)+g((k-2)Z))Z’

where g(s):=|s|^{\frac{1}{m}}sgns being a strictly increasing, odd function. Due to

V=-(\eta Z’+(k-2)Z)

the second term is nonpositive and the assertion follows,

(iii): Differentiating E_{3} and using (*) yields

E_{\acute{3}}( \eta)=UV’+(k-1)W(U-\frac{N-1}{\eta}W)
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=U(_{\frac{V’+(k-N)W}{=-\eta U}})+(N-1)UW-(k-1) \frac{N-1}{\eta}W^{2} .

If N=1 , then the assertion is proved. So assume N>1 . But in this case
Young’s inequality gives

E_{\acute{3}}( \eta)\leq-(1-\frac{N-1}{2}\epsilon)\eta U^{2}-(N-1)(k-1-\frac{1}{2\epsilon})\frac{W^{2}}{\eta}

=-(N-1)(k-(1+ \frac{N-1}{4}))\frac{W^{2}}{\eta} .

This completes the proof of the lemma.
q.e.d.

As an immediate consequence we get

(i) |V|\leq 1 , ( ii) |V’|^{2} \leq\frac{2km}{m+1} , (i) |Z| \leq\frac{1}{k-2} ,

(iv) |W|^{2} \leq\frac{2m}{(k-1)(m+1)} , (v) |W’|=|Z’|\leq 2 .

The last inequality follows by (i) and the identity W=Z’ :

|Z’| \leq|U|+(N-1)\frac{Z’}{\eta}\leq 1+(N-1)\eta^{-N}\int_{0}^{\eta}t^{N-1}dt

=1+ \frac{N-1}{N}\leq 2 .

Now suppose there is a sequence \{m_{j}\}_{j\in N} converging to \overline{m}\in(\frac{(N-2)_{+}}{N} , \infty ).
We first deal with the continuity of the eigenvalues in the singular case
\overline{m}<1 .

THEOREM 3. 2: For all i, N\in N the eigenvalues k_{i}^{g}(., N) are continu-

ous functions of m in (\frac{(N-2)_{+}}{N}, 1 ).
PROOF: Without loss of generality we can assume that the m_{j} are

bounded away from 1 and we have

\lim_{jarrow\infty} sup k_{i}^{g}(m_{j}, N)<\infty .

Thus we can choose a convergent subsequence, again denoted by \{m_{j}\}_{j\in N} ,

k_{i}^{g}(m_{j}, N)arrow\overline{k}\geq 2 .

Now the a-priori bounds from lemma 3. 1 give uniform bounds, such that-
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again for a subsequence-

V_{j}arrow\overline{V} in C_{lOC}^{0}(R^{+}) and W_{j}arrow\overline{W} in C_{lOC}^{0}(R^{+})

holds. Furthermore (*) yields

-V_{j}’=\eta U_{j}+(k_{j}-N)W_{j}

arrow\eta\overline{U}+(\overline{k}-N)\overline{W} in C_{lOC}^{0}(R^{+}) ,

hence V_{j}arrow\overline{V} in C_{lOC}^{1}(R^{+}) .
As we deal here with the singular case, we observe U_{j}arrow\overline{U} in C_{lOC}^{1}(R^{+}) .

Combining this and the fact that | \frac{1}{\eta}V_{j}(\eta)| is uniformly bounded in j and
\eta , we obtain

V_{j}’=- \frac{N-1}{\eta}V_{j}’-\eta U_{j}’-k_{j}U_{j}

arrow-\frac{N-1}{\eta}\overline{V}’-\eta\overline{U}’-\overline{k}\overline{U} in C_{lOC}^{0}(R^{+}) ,

hence \overline{V} solves (P_{g}) with the parameter values \overline{m} and \overline{k} .
It remains to prove that \overline{V} has rapid decay and precisely (i-1) zeroes in
its support.
We recall the asymptotic behaviour of eigenfunctions derived in the proof
of theorem 2. 1:

\eta^{\frac{2m}{1-m}}V(\eta) - arrow[2m(\frac{2}{1-m}-N)]^{\frac{m}{1-m}}(-1)^{i+1} if \etaarrow\infty .

Consequently

\eta^{\frac{2\overline{m}}{1-\overline{m}}}|\overline{V}(\eta)|\leq C ;

thus \overline{V} is an eigenfunction.
The number of zeroes of \overline{V} cannot exceed (i-1) , which is the number of
zeroes of all the V_{j} . To show that it equals (i-1) , we proceed by induc-
tion:

Let i=2 . Due to the result from 2. 1 mentioned above, \lim_{\etaarrow\infty}\eta^{\frac{2m}{1-m_{J}}}V_{j}(\eta) is
negative. As this must also hold in the limit, we conclude \overline{k}=k_{2}^{g}(\overline{m}, N) .
As the arguments do not depend on the subsquence, k_{2}^{g}(., N) is continuous.
If i>2 , the same argument gives \overline{k}=k_{i-2}^{g}(\overline{m}, N) or \overline{k}=k_{i}^{g}(\overline{m}, N) . On the
other hand eigenvalues for fixed m and N strictly increase, so by the
hypothesis of this induction
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k_{i-2}^{g}(\overline{m}, N)<k_{i-1}^{g}(\overline{m}, N)\leq\overline{k} .

Again the arguments are independent of the subsequence; hence the the0-
rem is proved.

q.e.d.

To prove continuity results in the degenerate case, we first have to
show that the sequence \{k_{t}^{q}(m_{j}, N)\}_{j\in N} is bounded and that an L^{\infty}-estimate
holds, which allows a suitable decay estimate of the limit function \overline{V}

LEMMA 3. 3: If \overline{m}\geq 1 , then

\lim_{jarrow\infty} sup k_{i}^{g}(m_{j}, N)<\infty .

PROOF: Assume there is an unbounded subsequence of the k_{j} :=
k_{\iota}^{q}(m_{j}, N) with corresponding solutions ( V_{j}, Z_{j}) .
Introducing the scaling

Z_{j}( \eta):=\frac{1}{k_{j}}\overline{Z}_{j}(\sqrt{k_{j}}\eta) , V_{j}(\eta):=\overline{V}_{j}(\sqrt{k_{j}}\eta) , t :=\sqrt{k_{j}}\eta

we obtain from (**)

- \overline{V}_{j}(t)=\frac{t}{k_{j}}\overline{Z}_{j}’(t)+(1-\frac{2}{k_{j}})\overline{Z}_{j}(t) .

Due to the estimate k_{j}\geq N+2\geq 3 (see [HV]), this implies

\overline{Z}_{j}arrow\overline{Z} in C_{lOC}^{1}(R^{+}) , \overline{Z}_{j}’-*\overline{Z} ” in L_{lOC}^{\infty}(R^{+})

by using the a-priori-estimates of lemma 3. 1. Thus the number of zeroes
cannot increase and thereby not exceed (i-1) .
On the other hand we can pass to the limit in \overline{Z}_{j}’+\frac{N-1}{t}\overline{Z}_{j}’=\overline{U}_{j} . This
implies that \overline{Z} solves the initial value problem

\overline{Z}’+\frac{N-1}{t}\overline{Z}’\in-|\overline{Z}|^{\frac{1}{m}}sgn\overline{Z} a.e . in R^{+} ,

\overline{Z}(0)=1 , \overline{Z}’(0)=0 ,

whose solution has infinitely many zeroes, as can be seen as follows:

Step 1: For any a\in R^{+} with \overline{Z}’=0 there is an \overline{a}\in(a, \infty) , such that
\overline{Z}(\overline{a})>0 .

PROOF: Without loss of generality assume \overline{Z}(a)>0 . Due to \overline{Z}’=

-|\overline{Z}|^{\frac{1}{\overline{m}}}sgn\overline{Z}<0 in any positive extremum, \overline{Z} cannot attain a positive
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minimum. Moreover it cannot equal a positive constant within an open
interval ; thus the assumption \overline{Z}>0 in (a^{ },\infty) implies that \overline{Z} strictly
decreases. Consequently

\overline{Z}’(\eta)=-\frac{1}{\eta^{N-1}}\int_{a}^{\eta}x^{N-1}\overline{Z}(x)^{\frac{1}{\overline{m}}}dx\check{\geq\overline{Z}(\eta)}

\leq-\frac{1}{\eta^{N-1}}\overline{Z}(\eta)^{\frac{1}{\overline{m}}}\frac{1}{N}(\eta^{N}-a^{N}) .

Provided \overline{m}>1 and N\neq 2 this yields

(1- \frac{1}{\overline{m}})^{-1}\overline{Z}(\eta)^{1-\frac{1}{\overline{m}}}\leq C-\frac{1}{2N}\eta^{2}+\frac{a^{N}}{N(2-N)}\eta^{2-N}

<0 ,

if \eta>a is chosen large enough; contradition. If N=2 the argument still

works; one only has to replace \frac{1}{2-N}\eta^{2-N} by ln\eta .

If the linear case is considered, the above argument only yields
exponential decay of \overline{Z} . but this in turn implies

\eta^{N-1}\overline{Z}’(\eta)arrow 0 if \etaarrow\infty .

Integrating the differential equation for \overline{Z} over (a, \eta) we derive

\int_{a}^{\eta}x^{N-1}\overline{Z}(x)dx=-\eta^{N-1}\overline{Z}’(\eta)arrow 0 if \etaarrow\infty ,

which contradicts the fact that due to the assumpton \overline{Z}>0 this integral
has to be strictly positive.

Step 2: For any a\in R^{+} with \overline{Z}(a)=0 there is an \overline{a}\in(a^{ },\infty) , such
that \overline{Z}’(\overline{a})=0 .

PROOF: Without loss of generality assume \overline{Z}’(a)>0 . Integrating
again the ODE for \overline{Z} . we obtain

\eta^{N-1}\overline{Z}’(\eta)=a^{N-1}\overline{Z}’(a)-\int_{a}^{\eta}x^{N-1}\overline{Z}(x)^{\frac{1}{\overline{m}}}dx .

Now it is apparent that the last term goes to infinity if we assume \overline{Z}
’ to

be positive for all \eta>a . This in turn implies \overline{Z}’(\eta)<0 , if \eta>a is chosen
large enough; contradiction.
Thus the lemma is proved.

q.e.d.
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LEMMA 3. 4: ( L^{\infty}-estimate) Let

m, k>0 , 2+(m-1)k>0
and 0\leq\overline{a}<a<\infty . Mereover let U be a solution of (P_{g}) not identically
zero in (\overline{a}, a) and U(a)=\overline{a}U(\overline{a})=0 . Then

M := \sup_{x\in(\overline{a},a)}x^{\lambda}|U(x)|\leq C(m, \lambda, N, k)||U||^{\frac{2+\lambda(m-1)}{L^{\infty}((^{\frac{2}{a}},a))}}

for all \lambda\geq k satisfying 2+(m-1)\lambda\geq 0 .

REMARK: ( i) Combining 3. 4 and the a-priori-estmates 3. 1, we
have in particular

\sup_{x\in(a,a)}x^{\lambda}|U(x)|\leq C(m, \lambda, N, k) .

(ii) This lemma also holds if a=\infty , provided x^{\lambda}U(x) -arrow 0 for xarrow\infty .

PROOF: (in case that N=1 see also [BHV]) Without loss of general-
ity let U be positive in (\overline{a}, a) . As U is continuous, M is attained for
some \rho\in(\overline{a}, a) . Hence

\rho^{k}U(\rho)=\int_{\rho}^{a}(-r^{k}U(r))’dr

= \int_{\rho}^{a}r^{k-N}(r^{N-1}V’(r))’dr

by using (P_{g}) . Integrating twice we obtain

\rho^{k}U(\rho)\leq-\rho^{k-1}V’(\rho)+(k-N)\rho^{k-2}V(\rho)+(k-N)(k-2)\int_{\rho}^{a}r^{k-3}V(r)dr .

Due to the choice of \rho

0=(x^{\lambda}U(x))_{|\chi=\rho}’=\rho^{\lambda-1}(\lambda U(\rho)+\rho U’(\rho))

holds, which implies

\rho V’(\rho)=\rho m|U(\rho)|^{m-1}U’(\rho)=-\lambda m|U(\rho)|^{m-1}U(\rho)=-\lambda mV(\rho) .

Combining this and V(x) \leq\frac{M^{m}}{x^{\lambda m}} , we arrive at

\rho^{k}U(\rho)\leq\rho^{k-2-\lambda m}M^{m}\{\lambda m+k-N+2|\frac{(k-N)(k-2)}{2+\lambda m-k}|\} .

Consequently
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M=\rho-k\rho U\lambda k(\rho)\leq\rho^{\lambda-2-\lambda m}M^{m}\{\ldots\}

,

the exponent of \rho being negative due to the assumption on \lambda . Hence we

eliminate \rho using \rho^{-1}\leq(\frac{||U||_{\infty}}{M})^{\frac{1}{\lambda}} and finally obtain

M \leq\{\lambda m+k-N+2|\frac{(k-N)(k-2)}{2+\lambda m-k}|\}^{\frac{\lambda}{2}}||U||^{\frac{2+\lambda(m-1)}{L^{\infty}((^{\frac{2}{a}},a))}}

q.e.d.

PROPOSITION 3. 5: For all N\in N the second eigenvalue k_{2}^{g}(., N) is a

continuous function of m in (\frac{(N-2)_{+}}{N} , \infty ).
PROOF: As the case \overline{m}<1 was already treated in 3. 2, we now

assume \overline{m}>1 . By lemma 3. 3 we can choose a subsequence

k_{2}^{q}(m_{j}, N)arrow\overline{k}<\infty for jarrow\infty .

Proceeding as in the singular case yields

U_{j}arrow\overline{U} in C_{lOC}^{0}(R^{+}) , V_{j}arrow\overline{V} in C_{lOC}^{1}(R^{+}) .

Now we have to distinguish two cases: First m_{j}>1 and secondly m_{j}<1

with m=1 .
As the first case is concerned, the solutions ( U_{j}, V_{j}) are non-classical
solutions; U_{j} and V_{j}’ are only absolutely continuous. But in this sense
(\overline{U},\overline{V}) solves (P_{g}) with parameter values \overline{m} and \overline{k} :
Defining g(s):=|s|^{\frac{1}{m}}sgns , we have - due to the absolute continuity of g-

U_{j}’=g^{r}(V_{j})V_{j}’arrow g’(\overline{V})\overline{V}’=g(\overline{V})’ in L_{loc}^{1}(R^{+})

and therefore

V_{j}^{rr} arrow-\frac{N-1}{\eta}\overline{V}’-\eta\overline{U}’-\overline{k}\overline{U} in L_{lOC}^{1}(R^{+}) .

The decay of \overline{V} is faster than \eta^{-\overline{k}\overline{m}} , as can be seen using the L^{\infty}-estimate
3. 4 with an arbitrarily large \lambda>\overline{k} and passing to the limit. This and the
existence theorem in [H] this imply that \overline{V} has compact support.
The number of zeroes cannot be larger than one, since V_{j}arrow\overline{V} in C^{1} ; on
the other hand we have the estimate (see [HV])

k_{2}^{g}(m, N)\geq N+2 if m\geq 1 ,



492 C. Dohmen

from which we derive \overline{k}\neq k_{1}^{g}(\overline{m}, N)=N . If \overline{m}=1 and m_{j}<1 , we conclude
that \overline{V} solves (P_{g}) along the same arguments as in 3. 2. To prove the
eigenvalue property, we use 3. 4 again: Without loss of generality assume

\frac{2}{1-m_{j}}>\overline{k} for all j\geq j_{0} .

Now choose \lambda\in( \overline{k} , \frac{2}{1-m_{j_{0}}}); due to

\eta^{\lambda}|U_{j}(\eta)|=\eta_{\frac{\eta^{\frac{2}{1-m_{j}}}|U_{j}(\eta)}{\leq c}}^{\lambda\frac{2}{1-m_{j}}}|arrow 0 if \etaarrow\infty

and the remark in 3. 4 the L^{\infty}-estimate is applicable. As above we con-
clude

\eta^{\overline{k}}\overline{U}(\eta)arrow 0 if \etaarrow\infty .

In this case we do not have an estimate from below as above; thus we
have to prove the existence of a zero of \overline{U} in a different way:
Integrating (*) and observing \eta^{N}|U_{j}(\eta)| , \eta^{N-1}|V_{j}’(\eta)|arrow 0 if \etaarrow\infty gives

\int_{R^{+}}x^{N-1}U_{j}(x)dx=0

for all j\geq j_{0} . Using the Lebesgue theorem this continues to hold in the
limit, which guarantees the existence of a zero of \overline{U} ; therefore
\overline{k}=k_{2}^{g}(\overline{m}, N) .
Again the arguments do not depend on the subsequence; hence the the0-
rem is proved.

q.e.d.

THEOREM 3. 6: In one space dimension all eigenvalues k_{i}^{g}(., 1) and
k_{i}^{u} are continuous functions of m in R^{+}

PROOF: In order to prove this theorem, we can argue along the lines
used in 3. 2 and 3. 5 to derive that the limit function \overline{V} solves (P_{g}) -or
(P_{u}) , of course-with the parameter values \overline{m} and \overline{k} and that it has fast
decay.
To show that \overline{V} is indeed the i-th eigenfunction, we use induction and the
fact that the k_{i}^{g} and the k_{i}^{u} alternate and cannot be equal (see [H]).
Assuming continuity of k_{l}^{g}(., 1) and k_{l}^{u} for all l\leq i-1 and passing to the
limit gives

k_{i-1}^{g}(\overline{m}, 1)<k_{i-1}^{u}(\overline{m})\leq\overline{k} .
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As the number of zeroes of the V_{j} cannot increase by passing to the limit,
\overline{k} equals k_{l}^{q}(\overline{m}, 1) . Similar considerations can be made for k_{i}^{u} ; thus the
theorem is proved.

q.e.d.

REMARK 3. 7: If N>1 and m\geq 1 , this technique -to be precise :
lemma 3. 3 and 3. 4 -only yields that any converging subsequence has a
limit which belongs to the set \{k_{l}^{g}(\overline{m}, N)\}_{/\leq i} . The unsolved problem is to
determine the number of zeroes of \overline{V}

Chapter 4. The Limit m arrow\infty of the eigenvalues

In this chapter we will still use the notation of chapter 3 and also
assume k> \max(2, N) . The fundamental lemma of this chapter is the fol-
lowing:

LEMMA 4. 1 : If i, N\in N are fixed, then

\lim_{marrow\infty}\sup k_{i}^{g}(m, N)<\infty .

PROOF: Proceeding exactly as in lemma 3. 3, we arrive at the initial
value problem

\overline{Z}^{rr}+\frac{N-1}{\eta}\overline{Z}’\in-sgn\overline{Z} a.e . in R^{+} .

\overline{Z}(0)=1 , \overline{Z}’(0)=0 .

In order to get a contradiction, we have to show that the solution \overline{Z} has
infinitely many zeroes. This, however, is clear as the problem can be
solved explicitely (see also 4. 3) and is strictly concave in \{ \overline{Z}>0\} and
strictly convex in \{ \overline{Z}<0\} .

q.e.d.

Thus we will consider sequences m_{j}arrow\infty and k_{j}arrow k<\infty (we stress
that the k_{j} do not have to be eigenvalues) and pass to the limit jarrow\infty in
(P_{g}) . Due to Uarrow sgnV formally, we first have to express the problem in
more convenient terms. In order to do so, we replace U by Z , defined at
the beginning of chapter 3, which solves the equation

Z’+ \frac{N-1}{\eta}Z’=U=|V|^{\frac{1}{m}-1}V

In view of (**) we now obtain an initial value problem with unknown
functions V and Z . It turns out that the limit problem also allows solu-
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tions with two essentially different behaviours at infinity, one of these
possibilities being a solution with compact support.

PROPOSITION 4. 2: Consider two sequences m_{j}arrow\infty , k_{j}arrow k and the
corresponding solutions V_{j}, Z_{j} of (P_{g}) . Moreover suppose that the number
of zeroes of the V_{j} is uniformly bounded.
Then

V_{j}arrow V in C_{lOC}^{0}(R^{+}) , Z_{j}arrow Z in C_{lOC}^{1}(R^{+}) , Z_{j}’-\backslash *Z’ in L_{lOC}^{\infty}(R^{+})

and ( V, Z) solves the initial value problem

V+\eta Z’+(k-2)Z=0 in R^{+} .

N-1
Z’+Z’\in sgnV\overline{\eta} a.e. in R_{\mathcal{F}}^{+}

(P_{g}^{\infty}) Z(0)=- \frac{1}{k-2}, Z’(0)=0,

V(0)=1 , V’(0)=0,

\frac{1}{2}|V’(\eta)|^{2}+k|V(\eta)| is nonincreasing in R^{+}

PROOF: (in case that N=1 also see [BHV]) The convergence
results above are an immediate consequence of the a-priori estimates 3. 1;
they thereby imply

V+\eta Z’+(k-2)Z=0 in R^{+} .

As the U_{j} are concerned, the estimate |U_{j}|\leq 1 yield U_{j}-*U in L_{lOC}^{\infty}(R^{+}) .
The U_{j} are continuous and cannot possess positive minima or negative
maxima; hence the number of extrema is bounded uniformly in j and so
\{U_{j}\} is a bounded sequence in BV(R^{+}) , consequently compact in L_{lOC}^{p}(R^{+})

for every p<\infty and we have

U_{j}arrow U a.e . in R^{+} .

On the other hand U_{j}arrow sgnVa.e . in R^{+} is valid within \{ V\neq 0\} , from
which we conclude \lim_{jarrow\infty}U_{j}\in sgnV

Obviously the initial values and the energy estimate are satisfied; these
fore the proposition is proved.

q.e.d.

The following proposition is concerned with existence and uniqueness
of solutions of (P_{g}^{\infty}) . It turns out that the energy estimate is crucial for
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uniqueness.

PROPOSITION 4. 3: For every k>2 there is a unique solution V\in

C^{0}(R^{+}) , Z\in C^{1}(R^{+}) of (P_{g}^{\infty}) .

PROOF: (in case that N=1 see [BHV]) We will construct the solu-
tion. As long as V is not equal zero, V and U=sgnV are smooth and
differentiating twice the first equation in (P_{g}^{\infty}) we derive

V’= \frac{N-1}{\eta}V’=-ksgnV

on intervals where V does not change sign. This equation, taken as ini-
tial value problem in c\in R^{+} . can be solved explicitely:

V(\eta)=\{

V(c)+ \frac{1}{2-N}(V’(c+)+\frac{k}{N}c)c((\frac{c}{\eta})^{N-2}-1)+\frac{k}{2N}(c^{2}-\eta^{2}) if N\neq 2 ,

V(c)+(V’(c+)+ \frac{k}{N}c)c\log\frac{\eta}{c}+\frac{k}{4}(c^{2}-\eta^{2}) if N=2 .

The first part of the solution is a parabola

V( \eta)=1-\frac{k}{2N}\eta^{2} .

The question now arising is how the solution is to be continued beyond a
zero, or, equivalently, how to determine the right handed derivative of V
in a zero.
Thus, let c\in R^{+} be a zero of V and without loss of generality assume
V’(c-)\leq 0 . First observe that due to the strict convexity of V left of c ,
V’(c-) cannot equal zero.
Moreover, if we assume V’(c+)>0 , there is no sign change in a neigh-
bourhood of c , hence U=sgnV=1 there. Then we derive from (*)

-V’(c\pm)=cU(c\pm)+(k-N)Z’(c\pm)

and therefore

V’(c+)=V’(c-)<0 ,

due to the C^{1}- property of Z . Thus we get a contradiction and V’(c+)\leq 0 .
If V’(c+)<0 , we have U=sgnV=-1 right of c and the same calculation
yields

V’(c+)=V’(c-)+2c.

This equation is valid as long as V’(c-)<-2c . Otherwise V’(c+)=0
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and the solution is identically zero in \{\eta>c\} due to the energy estimate.
On the other hand V’(c+)=0 implies

U(c)=- \frac{1}{c}(k-N)Z’(c)=\frac{1}{c}(V’(c)+c)>-1 ,

if V’(c-)>-2c . In this case U(c)\in sgnV

Combining the results we have

|V’(c+)|=(|V’(c-)|-2c)_{+} ,

the sign of V’(c+) -unless it is zero -being the same as the sign of
V’(c-) .
Hence V is uniquely determined and has only finitely many zeroes due to
the energy estimate and the fact that this energy is reduced by 2c in every
zero c of V. This also shows that V has compact support regardless of k .
As Z is continuously differentiate, it is uniquely determined in supp V
although the ODE is only valid almost everywhere. In R^{+}\backslash suppV it is
given by

\eta Z’+(k-2)Z=0 ,

whose solution is identically zero if Z(c)=0 and equals

Z( \eta)=Z(c)(\frac{\eta}{c})^{2-k}\neq 0

-in this case suppZ =R^{+}- otherwise.
This concludes the proof of the proposition.

q.e.d.

Thus we can define the concept of eigenfunctions of (P_{g}^{\infty}) .

DEFINITION: The pair of functions V, Z is called z’-th eigenfunction
of (P_{g}^{\infty}) corresponding to the eigenvalue k\in R^{+} . iff V and Z have compact
support and V possesses exactly (i-1) zeroes within its support.

Recall that we only consider i\geq 2 . The above definition does not cover
the case k_{1}^{g} , as (P_{g}^{\infty}) with k=N has a solution Z , which does not have
compact support.
In what follows we want to prove existence and uniqueness of i-th
eigenvalues of (P_{g}^{\infty}) . In order to do so, we need another characterization:

LEMMA 4. 4: A value k\in R^{+} is an eigenvalue of (P_{g}^{\infty}) , iff the corre-
sponding solution V has the property
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\int_{suppV}t^{N} sgn V(t)dt=0 .

PROOF: As V\neq 0 almost everywhere within its support, we may
integrate the equation

(t^{N-1}Z’(t))’=sgnV(t)t^{N-1} a.e . in R^{+}

Using the fact that Z and Z’ only vanish simultaneously at the boundary
of supp V and Z=0 at this point characterizes the eigenfunctions, the
lemma is proved.

q.e.d.

THEOREM 4. 5 For every N\in N there is a strictly increasing sequence
\{k_{i}^{g}(\infty, N)\}_{i\in N}, such that the solutions ( V, Z) of (P_{g}^{\infty}) is i-th eigenfunc-
tion, iff k=k_{i}^{g}(\infty, N) .

PROOF: It is more convenient to look at the problem in a scaled
version. Let x=\sqrt{k}\eta ; then V=V(x) satisfies (see 4. 3)

V’+ \frac{N-1}{x}V’=-sgnV in \{ V\neq 0\} ,

V(0)=1 , V’(0)=0 ,

V(c)=0 \Rightarrow|V’(c+)|=(|V’(c-)|-\frac{2}{k}c)_{+} .

The eigenvalue criterion 4. 4 remains unchanged. As the problem is sym-
metric as far as sign changes are concerned, we will only consider the
positive arcs of the solutions.
The first part of V is given by

V(x)=1- \frac{1}{2N}x^{2} in (0, \sqrt{2N})

and the right derivative in a_{1} :=\sqrt{2N} equals

\frac{|V’(a_{1}+)|}{a_{1}}=(\frac{1}{N}-\frac{2}{k})_{+} ,

which is positive provided k>2N .

Further zeroes can only be given implicitely. If V(c)=0 and

\frac{|V’(c+)|}{c}>0 , the next zero of V is located at x=sc , s=s( \frac{|V’(c+)|}{c})

being the unique solution of
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\frac{s^{2}-1}{1-s^{2-N}}=\frac{2}{N-2}(N\frac{|V’(c+)|}{c}+1)

in (1, \infty)- provided N\neq 2 . If N=2 , the equation reads

\frac{s^{2}-1}{lns}=2(2\frac{|V’(c+)|}{c}+1) .

Using the explicit solution we calculate

\frac{|V’(sc-)|}{sc}=-\frac{V’(sc-)}{sc}=-\frac{|V’(c+)|}{c}s^{-N}-\frac{1}{N}s^{-N}+\frac{1}{N} ,

which can be expressed as a function of s only by

\frac{|V’(sc-)|}{sc}=-\frac{N-2}{2N}\frac{s^{2}-1}{1-s^{2-N}}s^{-N}+\frac{1}{N} .

Elementary calculations show that \frac{|V’(sc-)|}{sc} is strictly increasing as a

function of s . This fact will be used below.
The above equations led to a recursive calculation of the values that char-
acterize V- the zeroes a_{i} and the right hand derivatives at these points:

a_{1} :=\sqrt{2N} , p_{1} :=0, \frac{|V’(a_{1}+)|}{a_{1}}=(\frac{1}{N}-\frac{2}{k})_{+} .

If \frac{|V’(a_{i-1}+)|}{a_{i-1}}>0 , define Si- l=s( \frac{|V’(a_{i-1}+)|}{a_{i-1}}) to be the solution of the

equation characterising s , inserting c=a_{i-1} .

a_{i} :=s_{i-1}a_{i-1} , p_{i} :=(1-p_{i-1})s_{i-1}^{-N} , \frac{|V’(a_{i}+)|}{a_{i}}=(\frac{1}{N}(1-2p_{i})-\frac{2}{k}(1-p_{i}))_{+} .

We want to show now that the number of zeroes of V is strictly increas-
ing in k and that within the range of values k , for which V has a constant
number of zeroes, there exists exactly one eigenvalue.
A simple zero, however, occurs, if and only if the right handed derivative
is positive there. This -as mentioned above- is valied in a_{1} for all k>
k^{(1)} :=2N. Moreover \frac{d}{dk}(\frac{|V’(a_{1}+)|}{a_{1}})=\frac{2}{k^{2}}>0 holds.

We will now generalize these observations to arbitrary zeroes of V :

Assume \frac{|V’(a_{i-1}+)|}{a_{i-1}}>0 and \frac{d}{dk}(\frac{V’(a_{i-1}+)|}{a_{i-1}})>0 for all k>k^{(i-1)} (which is

true in case i=2 as pointed out before). From the energy estimate we
obtain that at all preceeding zeroes of V the derivatives are positive; thus
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V has at least (i-1) simple zeroes for all k>k^{(i-1)} .
By elementary calculations we know that s_{i-1} is strictly increasing as a

function of \frac{|V’(a_{i-1}+)|}{a_{i-1}} . herefore

\frac{d}{dk}s_{i-1}=\frac{d}{d(\frac{|V’(a_{i-1}+)|}{a_{i-1}})}s_{i-1}\frac{d}{dk}(\frac{|V’(a_{i-1}+)|}{a_{i-1}})>0
.

Moreover \frac{|V’(sc-)|}{sc} can be expressed as a function of s only, and this

function is strictly increasing in s . Setting s=s_{i-1} and c=a_{i-1} we finally

arrive at

\frac{d}{dk}(\frac{|V’(a_{i}-)|}{a_{i}})>0 .

As \frac{2}{k} goes to zero if k increases, there exists a k^{(i)}<\infty , such that

\frac{|V’(a_{i}+)|}{a_{i}}=0 , if k=k^{(i)} .

Differentiating with respect to k we get

\frac{d}{dk}(\frac{|V’(a_{i}+)|}{a_{i}})=\frac{d}{dk}(\frac{|V’(a_{i}-)|}{a_{i}})+\frac{2}{k^{2}}>0 ,

if k>k^{(i)} , consequently \frac{|V’(a_{i}+)|}{a_{i}}>0 for all k>k^{(i)} : hence the induction
works.
Summarising the results up to now, there is a sequence \{k^{(j)}\}_{j\in N} , such that
V has exactly (i-1) simple zeroes, if and only if k\in(k^{(i-1)}, k^{(i)}) .
As the eigenvalues are concerned, we can rewrite the criterion of lemma
4. 4 as

( -1 )^{i+1} \prod_{l=1}^{i-1}s_{l}^{N}+2\sum_{j=1}^{i-1}(-1)^{j+1}\prod_{l=1}^{j-1}s_{l}^{N}=0 .

This gives

s_{i-1}^{N}=2 \sum_{j=1}^{i-1}(-1)^{i+j+1}\prod_{l=j}^{i-2}s_{l}^{-N}=2(1-p_{i-1}) ,

saying that an i-th eigenvalue corresponds to p_{i}= \frac{1}{2} (see definition of p_{i} ).

But in this case

\frac{|V’(a_{i}+)|}{a_{i}}=(-\frac{2}{k}(1-p_{i}))_{+}=0 ,
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hence the existence of an i-th eigenvalue is proved. Uniqueness follows
from monotonicity of p_{i} as a function of k :
If k>k^{(i-1)} .

\frac{|V’(a_{i}-)|}{a_{i}}=\frac{1}{N}(1-2p_{i})+\frac{2}{k}p_{i}

is valid. This implies

\frac{d}{dk}p_{i}=\frac{N^{2}}{(k-N)^{2}}(\frac{|V’(a_{i}-)|}{\frac{a_{i}-}{<0}}\frac{1}{N})-\frac{1}{2}\frac{kN}{k-N}\frac{d}{dk}(\frac{|V’(a_{i}-)|}{a_{i}})<0
,

the negativity of the first term due to the energy estimate.
Thus the theorem is proved.

q.e.d.

Once this theorem, which parallels the result on (P_{g}) , is established,
we try to show a connection between eigenfunctions of (P_{g}) and (P_{g}^{\infty}) .
Therefore we consider a sequence \{m_{j}\}_{j\in N} , m_{j}arrow\infty and the corresponding
eigenvalues. The next proposition shows that the limit of eigenfunctions
of (P_{g}) is indeed an eigenfunction of (P_{g}^{\infty}) :

PROPOSITION 4. 6: Let ( V_{j}, Z_{j}) be i-th eigenfunctions corresponding
to m_{j}, and suppose m_{j}arrow\infty . Then there is a subsequence k_{l}^{q}(m_{j}, N)arrow\overline{k}

and

V_{j}arrow\overline{V} in C_{lOC}^{0}(R^{+}) , Z_{j}arrow\overline{Z} in C_{lOC}^{1}(R^{+}) , Z_{j}’-\backslash *Z’ in L_{lOC}^{\infty}(R^{+}) ,

(\overline{V},\overline{Z}) is a solution of (P_{g}^{\infty}) and both functions have compact support.

PROOF: (in case that N=1 see also [BHV]) In view of proposition
4. 2 it only remains to prove the property of compact support for \overline{V} and \overline{Z} .
To simplify the notation, we set k_{j} :=k_{\iota}^{q}(m_{j}, N) . From (*) (see the begin-
ning of chapter 3) we know that \eta U_{j}(\eta) is bounded uniformly in \eta and j .
Consequently

V_{j}( \eta)\leq(\frac{C}{\eta})^{m_{j}}arrow 0 if \eta>C and jarrow\infty ,

using the definition of V. This implies \overline{V}(\eta)=0 for all \eta>C .
As to \overline{Z} , we have
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-V_{j}=\eta Z_{j}’+(k_{j}-2)Z_{j}

=\eta^{3-k_{j}}(\eta^{k_{j}-2}Z_{j})’ .

All the Z_{j} have compact support; hence we may integrate this equation
and arrive at

\eta^{k_{j}-2}Z_{j}(\eta)=\int_{\eta}^{\infty}t^{k_{j}-3}V_{j}(t)dt .

Due to k_{j}>2 the integral on the right hand side is finite and we can pass
to the limit. We obtain

\eta^{\overline{k}-2}\overline{Z}(\eta)=\int_{\eta}^{\infty}t^{\overline{k}-3}\overline{V}(t)dt ,

thereby \overline{Z}=0 for all \eta not contained in supp V.
q.e.d.

In order to show that the whole sequence converges-and that the
limit is the i-th eigenvalue of (P_{g}^{\infty})- we have to face the same problem as
in chapter 3: Does \overline{V} possess (i-1) zeroes within its support ? As before
in arbitrary space dimension only i=2 can be settled:

PROPOSITION 4. 7 :

\lim_{marrow\infty}k_{2}^{g}(m_{j}, N)=k_{2}^{g}(\infty, N)=\{

2+ \frac{2(N-2)}{N+2-N\sqrt[N]{4}} , for N\neq 2

2+ \frac{2}{2ln2-1} , for N=2 .

if N\neq 2 .

PROOF: From proposition 4. 6 we know that at least a subsequence
k_{j} , V_{j} converges to an eigenvalue \overline{k} and an eigenfunction \overline{V} of (P_{g}^{\infty}) .
The number of zeroes cannot exceed one, as the V_{j} only have one zero.
Due to the estimate k_{2}^{g}(m_{j}, N)>N+2>k_{1}^{g}(m, N)=N (see [HV]), \overline{k} must
coincide with k_{2}^{g}(\infty, N) . The usual arguments carry over this result to the
whole sequence.
In order to calculate the value of k_{2}^{g}(\infty, N) , we have two informations:
Using the notation of theorem 4. 5, it must satisfy

-s_{1}^{N}+2=0 .

Moreover the derivative |V’(a_{1}+)| is known explicitely, though

\frac{s_{1}^{2}-1}{1-s_{1}^{2-N}}=\frac{2}{N-2}(N(\frac{1}{N}+\frac{2}{k})+1)

Eliminating s_{1} yields the result. The case N=2 can be treated the same
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way.
q.e.d.

In case that N=1 it is possible to identify the limit of all eigenvalues.
As in chapter 3 this relies on the existence of antisymmetric eigenfunc-
tions, whose eigenvalues alternate with the k_{i}^{g}(., 1) . Proceeding as before
we arrive at the following antisymmetric limit problem:

V+\eta Z’+(k-2)Z=0 in R^{+} .
Z’\in sgn V a.e. in R^{+} .

(P_{u}^{\infty})

Z(0)=0 , Z’(0)=- \frac{1}{k-1} ,

V(0)=0 , V’(0)=1 ,

\frac{1}{2}|V’(\eta)|^{2}+k|V(\eta)| ist nonincreasing in R^{+} .

Due to the initial values in this case we have the eigenvalue criterion

LEMMA 4. 8: A value k\in R^{+} is an eigenvalue of (P_{u}^{\infty}) , iff the corre-
sponding solution V has the property

\int_{6\mathcal{U}ppV}t^{N} sgn V(t)dt= \frac{1}{k-1} .

The calculations are exactly those made in 4. 4 and thus omitted.

In order to relate the eigenvalues of (P_{g}^{\infty}) to those of (P_{u}^{\infty}) , we first
observe that all calculations made before simplify significantly; in particu-
lar all zeroes a_{i} and derivatives at those points can be stated explicitely.
Thus define

a_{1}^{g}=\sqrt{\frac{2}{k}} , v_{1}^{g}=(k-2)\sqrt{\frac{2}{k}} ,

a_{i+1}^{g}=a_{i}^{g}+ \frac{2}{k}v_{i}^{g} , v_{i+1}^{g}=v_{i}^{g}-2a_{i+1}^{g} ,

a_{1}^{u}= \frac{2}{k} , v_{1}^{u}=(1- \frac{4}{k}) ,

a_{i+1}^{u}= a_{i}^{u}+\frac{2}{k}v_{i}^{u} , v_{i+1}^{u}=v_{i}^{u}-2a_{i+1}^{u} .

The v_{i}- as long as they are positive-are equal to |V’(a_{i}+)| . But let us
first consider them without this restriction as sequences in R.

LEMMA 4. 9: The sequences \{a_{i}^{g}\} , \{a_{i}^{u}\} , \{v_{i}^{g}\} and \{v_{i}^{u}\} defined above
satisfy
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(i) v_{i}^{g}=-v_{i-1}^{g}+2\sqrt{\frac{2}{k}}(k-1)v_{i-1}^{u} ,

(ii) a_{i}^{u}=2 \sum_{j=1}^{i-1}a_{j}^{u}(-1)^{i-1-j}+(-1)^{i-1}\frac{1}{k-1}+\frac{1}{k(k-1)}-\sqrt{\frac{k}{2}}v_{i}^{g},

(iii) v_{i}^{u}=-v_{i-1}^{u}+\sqrt{\frac{2}{k}}v_{\iota}^{q},

(iv) a_{i+1}^{g}=2 \sum_{j=1}^{i}a_{J}^{q}(-1)^{i-j}+\sqrt{\frac{2}{k}}v_{i}^{u} .

PROOF: We proceed by induction, simultaneously over all four iden-
tities. The case i=2 only requires explicit calculations.

(i): By definition of v_{i}^{g} and using the assumption on v_{i-1}^{g} we have

v_{i}^{g}+v_{i-1}^{g}=v_{i-1}^{g}-2a_{i}^{g}+v_{i-2}^{g}-2a_{i-1}^{g}

=2\sqrt{\frac{2}{k}}(k-1)v_{i-2}^{u}-2(a_{i}^{g}+a_{i-1}^{g}) .

In order to eliminate a_{i}^{g} , we use the assumption on v_{i-1}^{u} :

a_{i}^{g}-a_{1}^{g}= \frac{2}{k}\sum_{j=1}^{i-1}v_{j}^{g}=\sqrt{\frac{2}{k}}\sum_{j=1}^{i-1}(v_{j}^{u}+v_{j-1}^{u})

=- \sqrt{\frac{2}{k}}v_{i-1}^{u}+\sqrt{\frac{2}{k}}+2\sqrt{\frac{2}{k}}\sum_{j=1}^{i-1}v_{j}^{u}

=- \sqrt{\frac{2}{k}}v_{i-1}^{u}+\sqrt{\frac{2}{k}}+2\sqrt{\frac{2}{k}}(\frac{k}{2}a_{i}^{u}-1)

\Leftrightarrow a_{i}^{g}=-\sqrt{\frac{2}{k}}v_{i-1}^{u}+k\sqrt{\frac{2}{k}}a_{i}^{u} .

Combining the two equations we arrive at

v_{1}^{g}+v_{i-1}^{g}=2\sqrt{\frac{2}{k}}(kv_{i-2}^{u}-ka_{i}^{u}+v_{i-1}^{u}-ka_{i-1}^{u})

=2\sqrt{\frac{2}{k}}((k+1)v_{i-1}^{u}-k(a_{i}^{u}-a_{i-1}^{u}))

=2\sqrt{\frac{2}{k}}(k-1)v_{i-1}^{u} .

(ii): Using (i) and the assumption on a_{i-1}^{u} we derive

a_{i}^{u}=a_{i-1}^{u}+ \frac{2}{k}v_{i-1}^{u}

=2a_{i-1}^{u}-2 \sum_{j=1}^{i-2}a_{j}^{u}(-1)^{i-2-j}-(-1)^{i-2}\frac{1}{k-1}-\frac{1}{k(k-1)}\sqrt{\frac{k}{2}}v_{i-1}^{g}+\frac{2}{k}v_{i-1}^{u}
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=2 \sum_{j=1}^{i-1}a_{j}^{u}(-1)^{i-1-j}+(-1)^{i-1}\frac{1}{k-1}+\frac{1}{k(k-1)}\sqrt{\frac{k}{2}}v_{i}^{g} .

(iii) and (iv): Roughly speaking these identities can be derived by
interchanging g- and u-indexes in the above calculations.

q.e.d.

THEOREM 4. 10: In one space dimension there exists a strictly increas-
ing sequence \{k_{i}^{u}(\infty)\}_{i\in N} , such that the corresponding solution ( V, Z) is
i-th eigenfunction, iff k=k_{i}^{u}(\infty) . Moreover

k_{i-1}^{g}(\infty, 1)<k_{i-1}^{u}(\infty)<k_{i}^{g}(\infty, 1)<k_{i}^{u}(\infty) .

PROOF: Using the same technique as in theorem 4. 5, we look at the
problem in the scaled version and deduce

a_{1}^{u}= \frac{2}{\sqrt{k}} , \frac{|V’(a_{1}^{u}+)|}{a_{1}^{u}}=(\frac{1}{2}-\frac{2}{k})_{+} .

All further considerations can be carried over word by word from 4. 5.
Due to the calculations made in 4. 9 we can say more: (iv) implies that
v_{i}^{u}=0 , if and only if k is i-th eigenvalue of (P_{g}^{\infty}) , thus the solution of (P_{u}^{\infty})

has exactly (i-1) simple zeroes, if and only if k\in(k_{i}^{g}(\infty, 1), k_{i+1}^{g}(\infty, 1)] .
On the other hand (ii) implies that the i-th eigenvalue of (P_{u}^{\infty}) corre-
sponds to v_{i}^{g}=0 , which holds for the k^{(i)} , defined in 4. 5, which denote the
parameter, where the number of simple zeroes of V increases by one. In
other words,

k_{i}^{u}(\infty)=k^{(i)} .
q.e.d.

Now we are prepared to state the main result of this chapter.

THEOREM 4. 11 : In one space dimension all eigenvalues k_{i}^{g}(m, 1) and
k_{i}^{u}(m) , i\geq 2 satisfy

\lim_{marrow\infty}k_{i}^{g}(m, 1)=k_{i}^{g}(\infty, 1) ,

\lim_{marrow\infty}k_{i}^{u}(m)=k_{i}^{u}(\infty) .

PROOF: Consider a sequence \{m_{j}\}_{j\in N} , m_{j}arrow\infty . Following lemma 4. 1
and theorem 4. 10 we know that the corresponding eigenvalues-keeping i
fixed -remain bounded as j - \infty . Thus there exists a subsequence
k_{i}^{g}(m_{j}, 1)arrow\overline{k} the corresponding solution \overline{V} being an eigenfunction of (P_{g}^{\infty})

due to lemma 4. 6. In order to prove that \overline{k} is indeed the i-th eigenvalue
of (P_{g}^{\infty}) we use again that the k_{i}^{g}(., 1) and the k_{i}^{u} alternate: From 4. 10 we
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conclude by induction
\overline{k}\geq k_{i-1}^{u}(\infty)>k_{i-1}^{g}(\infty, 1)

and thereby continuity of the whole sequence.
In the same way we can prove the result for k_{i}^{u}

q.e.d.
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