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On a conjecture of J. M. Lee
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Abstract

We deal with the Lee conjecture (compact strictly pseudoconvex CR
manifolds whose CR structure has a vanishing first Chern class admit a
global pseudo-Einstein structure'). We solve in affirmative the Lee conjec-
ture for compact strictly pseudoconvex CR manifolds with a regular (in
the sense of R.Palais, [Pal]) contact vector. The regularity assumption
leads (via the Boothby-Wang theorem ([Boo-Wan]) and B.O’Neill’s fun-
damental equations of a submersion ([Neil)) to zero pseudohermitian tor-
sion (and we may apply a result of [Lee2]).

Moreover we construct a family Ha(s), 0<s<1, of compact strictly
pseudoconvex CR manifolds, so that each H,(s) satisfies the Lee conjec-
ture. We endow H,(s) with the contact form (4): our construction is
reminiscent of W. C. Boothby’s Hermitian metric (cf. [Boo]) on a complex
Hopf manifold.

1 Introduction.

Let (M, Th,o(M), 8) be a pseudohermitian manifold of CR dimension .
Then M is termed pseudo-Einstein if the pseudohermitian Ricci tensor of 8
is proportional to the Levi form, cf. [Lee2]. One may formulate the fol-
lowing natural problem: given a nondegenerate CR manifold M find a
pseudohermitian structure 6 so that (M, 0) is pseudo-Einstein. The solu-
tion of the local problem (i.e. find a pseudo-Einstein structure on some
neighborhood of each point of M) is intimately related to the question of
imbeddability. Indeed, if M admits a CR imbedding into C"*! then M
admits a pseudo-Einstein structure (cf. [Lee2], Corollary B, p.158). On
the other hand, by a result of L.Boutet de Monvel, , a compact
strictly pseudoconvex CR manifold can always be imbedded locally in
C"*'. Also local imbeddability holds in the noncompact case if 7#>2 by
results of M. Kuranishi, , and T. Akahori, . Thus, if M is
strictly pseudoconvex then M is locally pseudo-Einstein provided that

! A CR analogue of the Calabi conjecture.
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either M is compact or dimrM =7.

As to the solution of the global problem, J.M.Lee has found (cf.
[Lee2]) the following obstruction: if M is a compact strictly
pseudoconvex pseudo-Einstein manifold then ci(71,0(M))=0. Here
a(To M) H M ;R) is the first Chern class of the CR structure. He
also conjectured that any compact strictly pseudoconvex CR manifold M
with ci( T1,0(M))=0 admits a global pseudo-Einstein structure.

The conjecture (referred hereafter as the Lee conjecture) is known to
hold when M has transverse symmetry (i.e. M admits a 1-parameter
group of CR automorphisms transverse to 71,(M)). By a result of S.
Webster, if M has transverse symmetry then M admits a contact
form @ with vanishing pseudohermitian torsion r(and then, by [Lee2], p.
176, there is u= C*(M) so that exp (2u)8 is pseudo-Einstein).

In the defense of the Lee conjecture we construct an example of a
compact strictly pseudoconvex CR manifold, which is globally pseudo-Ein-
stein and has non-vanishing pseudohermitian torsion. This is obtained as
a quotient of the Heisenberg group H. by a discrete group of CR automor-
phisms (and is a CR analogue of the construction of H. Hopf, , end-
owing S?*7'X S' with a complex structure).

2 Quotients of H, by properly discontinuous groups
of CR automorphisms.

Let 6s: H,—{0}—H,—{0}, s>0, be the parabolic dilations of the Heisenber-
g group (i.e. 0s(z, t)=(sz, s’t), z€C", tER, (2, t)*0). If m€Z, m>0, set
O0r=0s0...00s(m factors). Also 0;"=351s. Consider the discrete group
Gs={07: meZ}. We establish the following :

THEOREM 1. Let 0<s<1 and n>1. Then Gs acts freely on H,—{0}
as a properly discontinuous group of CR automorphisms of H.—{0}. The
quotient space H.(s)=MH,.—{0})/Gs is a compact strictly pseudoconvex CR
manifold of CR dimension n.

PrROOF. Clearly 6#x=x for some x€H,—{0} yields m=0. Thus the
action of Gs on H,—{0} is free.

Let |x|=(z]*+t»)"*, x=(z, v), be the Heisenberg norm on H,. Let xo
€H,—{0} and set Uc(xo)={x=H,.—{0}:|x—xi|<e}, €>0. Let |x| be the
Euclidean norm on H,x~R?*!, Cf. G.B.Folland & E. M. Stein, [Fol-Ste],
p. 449, for any x€H, with |x|<1 one has |x|<|x|<|x|"%. Thus the sets
Uex), x€H,—{0}, 0<e<1, form a fundamental system of neighborhoods
in H,—{0}.
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To show that Gs is properly discontinuous, given x&H,—{0} one
needs to choose € >0 such that:

S™M(Ue(x0)) N Uelxo) =10 (1)

for any mE€Z, m+0. Cf. [Fol-Ste], Lemma 8.9., p. 449, there exists y=1
so that |x+v|<7(|x|+]|y|) for any x, yEH,. Consequently :

x| = 7ly[<7lx —yl (2)
for any x, y€H,. Let:
En=|0"(x0) — x|

for m€Z. As Gs acts freely on H,—{0}, it follows that &»=>0, and
Em &= m=(. Next, as 0<s<1, one obtains:

0<mi<my— 5m1<5m2, E—m1<$—7nz-

Therefore :

En=min(&y, £21)=6&

for any m€Z, m=+0. Set N=2y+1. Choose 0< e(iNél. Let x€ Ue(x).
Then:

|87(x) — 62 x0)| = s™|x — x0| < s™e< €
shows that :

8T Ue(x0)) S Ue(85(x0)). (3)
Using (2)-(3) we have the estimates:

70— 0F(0)| = 7120 — 08 (2x0) — (8F(x) — 88(x0))| =
>|xo— 82 x0)| — 7|05 (x) — 82(x0)| >
>En—ye=E&—ye>Ne—ye=(y+1)e

so that:

60— 7 (x)| > 7*;16>e.

This shows that 67(x)& Ue(xo), for any x<E Ue(xo), mEZ, m=+0, so that (1)
holds.

Let 7:H,—{0}—Ha.(s) be the natural map. Let:
={x€H,: |x|=1}.
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Then 3?” is a compact real hypersurface in H.. The map Ha(s)—2*" X S!
defined by :

z 27rilog1x|>>
”(x)H< x| |x]* exp( log s
is a diffeomorphism, x=(z, t)€H,—{0}. Thus H.(s) is compact. As 7 is
a local diffeomorphism H.(s) inherits a structure of CR hypersurface of
CR dimension #. Let (U, 2, ..., 2" t) be a local coordinate system on
H.(s), z°=x"+y* Set:

O=|x[{dt +2 2 (x“dy"— y*dx*)} (4)
on U. The right hand member of (4) is Gs-invariant and thus defines a
global 1-form on H.(s). Let {6%} be dual to T., where T,= 2,, +iz° 8at

on U. The Levi form associated with (4) is given by :
L9:|X|_28a30a/\ GE

on U. Thus 8 is strictly pseudoconvex. Our [Theorem 1. is completely
proved.

Let M be a CR manifold and # the sheaf of CR-pluriharmonic func-
tions (ie. real parts of CR-holomorphic functions) on M. By a result in
[Lee?], p.172, if M in locally realizable then there exists a CR invariant
cohomology class y(M)e H' (M, %) so that y(M)=0 iff M admits a global
pseudo-Einstein structure. We need to recall the construction of y(M).
The notations we employ are those in [Gol], p. 271-275.

If M is locally realizable, in the neighborhood of each point there
exists a pseudo-Einstein structure. Let {(U;, 6:)}:er be a covering of M
with such neighborhoods. On each U.NU;#0 one may write 0,=exp
(2u;:)6:, for some u;€C>(U;NU;). By a result of [Lee2] i.e. Prop. 5.1,
p.172, U< ﬁ(Uzﬂ U;) and Zlij+uji:0, uij+ujk+uki:0. Let N( %) be
the nerve of Z =(U.)ie;r. Let f map each 1-simplex o=(U;U,) of N(%)
in u3€2(No). Then fFEZY(N(%), .#), i.e. f so built is a 1-cocycle with
coefficients in .#. Let y(M)EHYM, %) be the equivalence class of [f]E
HNN(%), #). It is known (cf. [Lee2], p.173) that (M) depends only on
the CR structure of M.

Let:

Hs= Tl,o(Hn(S))

and :
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7s=7(Ha(s))

for simplicity. Let {(U., ¢ t:)}:e: be an atlas on H.(s) so that for any ¢, j
& with U:N U;## the coordinate transformation reads :

Zi=gsMizd f,=g?Mit; (5)

for some m;;€Z. Define:
0:=dt:+2 2, (xfdyf —yidx?)

on U;, i€I. Each (U, 6:) is a strictly pseudoconvex CR manifold with
vanishing Ricci tensor (in particular each 6; is pseudo-Einstein). Let ys&
H'(H.(s), Z) be the corresponding CR invariant cohomology class. As a
consequence of (5) one has:

0;,=exp(2m;log s)0;

on U;sNU;. Let c=2mlogs)€Z'(N(% ), R) be the corresponding cocy-
cle. If 7:ZYN(%), R—»%N(%Z),#) is the natural cochain map then 7s
is the image of [c] via ix: H'(M,R)—>HYM, #). We are going to show
that (4) is globally pseudo-Einstein so that (cf. Prop. 5.2 of [Lee2], p. 172)
vs=0. Yet c+0 (as Ker(ix)#0). Indeed [c] corresponds (under the
isomorphism Hpx(HA(s))=~H'(H.(s), R)) to the De Rham cohomology class
[w] of the 1-form w=dlog|x|™ (which is not exact)’>. Also, by Prop. D
of , p. 159, 7s=0 yields ci(#s)=0. We may show that actually all
Chern classes of #s vanish (by constructing a flat connection D in #%).
We do this in the following more general setting.

Let (M, Th,o(M), 8) be a nondegenerate CR manifold. Let u< C*(M)
be a real valued smooth function on M. Let {7} be a frame in T1,o(M)
defined on some open set USM. Let §=¢e*0, 6°=0°+2 iu°0 and T=
e {T—2iu"Ts+2iu? T 5}, where u*=h%us; us=Tsu) and u?=(u?)".
Note that, with these choices, one has T|8=1, T]d6=0 and T)§*=0.
By (A.0) one has Gs=e*Gs so that hes=e**ha.g, where hag=La(T., T5).
We shall need the following :

PROPOSITION 1. Let (M, Tr,o(M), 9, T) be a nondegenerate CR mani-
fold. Then, under a transformation 6=e**0, the Chz’istoﬁfel symbols of
the Webster connections of (Tro(M), 8) and (Tr,o(M), 8) are related by :

ga:].-‘ga + 2u385+2ua8§’
Fa

A
r =F%a“-2uo‘hﬁa (6)

2 Note that dloglx|™ is Gs-invariant, so that w is globally defined.
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T =T8+ 2100 — diuau’ +
+2iua° +2iT%u”—2iT % u".

Consequently, the commection forms w3, @3 are related by®:

D3= w3+ 2(1a0° — 1u%0a) + 0 1s0” — 1’ Gs) +
+ (e +u’ et ducu®+4065usu®) 0+ 63du (7)

where ua,"=uq 5h°?, Ga=h.50°%, elc.

PrROOF. The first two identities in (6) are a straightforward conse-
quence of (A.3)-(A.4). To prove the last identity in (6) note that (A.5)
may be also written :

T8ahos= T (has)+90([ T s, T, To).

The desired formula follows from:
?n[Ts Tl=nl[Ts T1+2i[Ts, Tau+
+2i{uls—2usu+T%u*—T5%u” Ts

and :
T8+ 21u’T % —2iu’T'%=
=0+ 2uo07+20ua’ +4iusu’ 05+ 4iuqu®

where o= T (u).

Let (M, T1,o(M), 6) be a nondegenerate CR manifold admitting a real

closed (globally defined) 1-form w. Let B=w?*, where # denotes raising of
indices with respect to gs. Next, set B"*=n.B. Locally, if:

W=ws0°+wz0°+ wol
where ws=(w.)", then:
BI’OZ haE(I)ETa.

By the Poincaré lemma, there exists an open covering {U:}:cr of M and a
family {u.}:ier of R-valued functions w.€C*(U,) so that w|v,.=du: i<I.
Set ;=exp(2u:)0|v.. By applying (6) to u=u: it follows that the Webster
connections of the nondegenerate CR hypersurfaces (U, 6:), i1, glue up
to a (globally defined) linear connection D on M expressed by :

DW=V W+2{w(Z)W+w(W)Z}
DzW=Vz;W-2L«Z, W)B*®

3 The formula (7) has been obtained by J. M. Lee, cf. [Leel]. Yet there is an error in
(5.7) of [Leel], p.421 (the term 8Jdu is missing there).
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DW=VW+2iVwB"+4i0(W)B"*+4:| BY°|* W (8)
D:To=20(Z)To
Dr,To=20(T)To

for any Z, W& T1,o(M). Here V denotes the Webster connection of (M,
0) and T,=T —2:iB"+2iB*. Note that T, is transversal to H(M) (so
that the formulae (8) define D everywhere on 7(M)). In analogy with L.
Vaisman, [Vail, we call D the Weyl connection of (M, 6, w).

THEOREM 2. Let 0<s<1 and n>1. Then i) all Chern classes of
Fs vanish, and ii) the contact form (4) is pseudo-Einstein and has
nonvanishing pseudohermitian torsion.

PrROOF. Let M=H,(s) with the C> atlas {U, 2% t:)};ier as above.
Let #.€C=(U.) be defined by wu:=logl|x:|, x:=(z:, ;). Then (by (5)) we
have uw;—u:.=mjlogs=const. on U;NU;. Consequently, the local 1-forms
du: glue up to a real (closed) global 1-form @ on H.(s). The Webster
connections of the local pseudohermitian structures {8:}:c; are flat, so that
the Weyl connection D of (H.(s), 8, w) (with 6 given by (4)) is flat. As
DJ=0 the Weyl connection is reducible to a (flat) connection in #s. By
the Chern-Weil theorem the characteristic ring of s must vanish.

Let (M, Ti.o(M), 8) be a nondegenerate CR manifold. Set §=¢%4, u
€C>(M). As a consequence of [Proposition 1| one has:

Ag=Aas+20tas—dTUaus (9)

(cf. also (2.16) in [Lee2], p.164). At this point we may prove ii) in The-
orem 2. Indeed, we may apply (9) with #=log|x|™!, Aw=0 and w§=0. If
T.=0/0z°+iz%3/ot then:

Ue= —ilxl“‘z‘ @
a 2 a

To(us)=|x|"*0* ZuZs

where ¢(z, #)=|z[2+ . Finally, as @ is CR-holomorphic, (9) yields A=
2iTo(us) —4iucus=1lx|"2z.2s¢*> so that (4) has nonvanishing pseudoher-
mitian torsion.

Let (M, Ti.o(M), 8) be a nondegenerate CR manifold of CR dimension
n and 8 =¢%6. Then the pseudohermitian Ricci tensors Rz, R.of 9, 6
are related by :

Rig=Rai—(n+2)(thoas+ uza) —
—(uptus’+4(n+1)uort”) hag (10)
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(cf. e.g. (2.17) in [Lee2}, p.164). If M=H,(s) and 6 is given by (4) then
we may apply (10) with R.z=0, u=log|x|™, #ez=04 and wi=0. Then:

n _
Up, — _Tle 4§0

1 -
upup- I 'x‘ 4|Z|2
B | | ‘
Zta, 2 //C ¢5aﬂ

so that (10) yields:
Rog=(n+1D|x|22|* hias
and (4) is pseudo-Einstein. Our is completely proved.

REMARK 1. Let R*=x{(0,¢):t€R—{0}}JCH,—{0}. The pseudoher-
mitian Ricci curvature of the contact form (4) vanishes on 7(R*) so that
Prop. 6.4. in [Lee2), p. 175 does not apply.

3 Regular strictly pseudoconvex CR manifolds.

Let M be a m-dimensional differentiable manifold. A local chart (U, ¢)
on M is cubical (of breadth 2a centered at x€M) if ¢(x)=(0,...,0) and
o(U)={(t}, ..., t"ER" |¥|<a, 1<j<m}. Let (U, ¢),o=(x,...,x™), be a
cubical local chart on M. Let 1<p<wm and ¢t=(t""}, ..., t")&R™? g0 that
|t?*]|<a, 1 <j<m—p. The p-dimensional slice 3}: of (U, ¢) is given by
Z={yEU 2" (y)=1t"" 1<j<m—p)}.

Let (M, T\o(M), 8, T) be a nondegenerate CR manifold of CR dimen-
sion #. Then T is regular if M admits a C* atlas {(U, x%)} so that the
intersection with U of any maximal integral curve of 7 is a l-dimen-
sional slice of (U, x?). Let <T) be the distribution spanned by T, i.e.
(T>x=RT(x), x€M. If T is regular then, by Theorem VIII in [Pal], p.
19, the quotient space M/{T> (i.e. the space of all maximal integral
curves of 7) admits a natural manifold structure with respect to which
the canonical projection 7 : M—M/{T> is differentiable (cf. also Theorem
X, [Pall, p.20). We may state the following :

THEOREM 3. Let (M, T\ o(M), 6, T) be a compact strictly
pseudoconvex CR manifold. If T is regular then M admits a global
pseudo-Einstein structure.

To prove [Theorem 3. we need to recall the essentials of the Boothby-
Wang theorem (cf. [Boo-Wan]). As T is regular, its maximal integral
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curves are closed subsets of M (cf. Theorem VII, [Pal], p.18). But M is
compact so that each maximal integral curve is homeomorphic to S'. Let
A be the period of T, ie. A(x)=inf {>0: ¢.(x)=x}, xEM, where {@:}:cr
is the 1-parameter group generated by 7. We may assume that A=1
(otherwise, as A=const.>0 (by an argument in [Tan]) we may replace T

by —}TT)' Then, by the Boothby-Wang theorem, 7 generates a free and

effective action of S' on M. Next M becomes the total space of a princi-
pal bundle S'->M—> B, where B=M/<T>. Any principal bundle is in
particular a submersion (and we may apply results in [Nei]).

Let gs be the Webster metric. Let ﬁd[ be the generator of the Lie

algebra L(S")=R. Then 0®—a‘,i—t is a connection 1-form in S'->M—B.
Set :

ho(X, Y)u=gs( X", Y¥)x
where x€7 (u), u€B and X, Y& Tu(B). Here X* denotes the horizon-

tal lift (cf. [Kob-Nom], vol. I, p.64) of X with respect to m%. The

definition of %6(X, Y). does not depend upon the choice of x in 7 '(%). It
follows that 7: M—B is a Riemannian submersion from (M, gs) onto (B
hs). Let P, @ be the fundamental tensors of 7 (cf. [Nei], p. 460) that is:

PxY=hVuxvY +vVoxhY (11)
Qxy:thXhY+ vVuxvY (12)

for any X, YET(M). Here V denotes the Levi-Civita connection of (M ,
gs). Moreover h=ny and vX=60(X)T are the canonical projections as-
sociated with (A.2). Let us substitute from (A.6) into (12). As JT =0,
tT=0, VT =0 and H(M) is parallel with respect to V, our (12) becomes:

)

QXYZ{%QB(X, Y)— A(X, Y)}T

OxT =1(X) +%]X (13)
QTXZO, QTT =(

for any X, YEH(M). By Theorem 6, r is self-adjoint, while by a result
of B. O’Neill (cf. [Nei], p.460) @ is skew-symmetric on horizontal vectors.
Clearly the Levi distribution H(M) coincides with the horizontal distribu-
tion of the Riemannian submersion 7 : M—B. Then the first of the formu-
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lae [13) yields A=0 and thus (cf. , p. 176) there is u=C*(M) so
that exp (2u)6@ is globally pseudo- Emsteln The proof of [Theorem 3 is
complete.

REMARK 2.

i) Let us substitute from (A.6) into (11). This procedure leads to P
=0. Consequently the fibres of the submersion 7n:M—B are totally-
geodesic in (M, gs).

ii) By a result of G.Gigante, [Gig], p. 151, and by the proof of Theo-
rem 3, any compact strictly pseudoconvex symmetric (in the sense of
[Gigl, p.150) CR manifold is a Sasakian manifold.

Let (M, Th,o(M), 8) be a nondegenerate CR manifold. Let ‘& ¢ be the
sheaf of local CR-holomorphic functions on M. There is a short exact
sequence :

0—>R—j’ & cp— F >0 (14)

where ju:R— & &(U), ju(c)=ic, and nv: & x(U)— #(U), pu(f)=Re(f),
for any c€R, f€ &(U). Indeed, let ox=Ker(sx), x€M. That is,
there are an open set UCM, x€ U, and a real valued function vE C=(U)
so that [#w]x=0x and 9,(v)=0. Then dv=0 (by complex conjugation)
and dv=T(v)0. Exterior differentiation gives:

0=dT(W)NO+ T (0)d=dT ()N O+ iT(v)haz0° N G%.

Let us apply this to the pair (7%, T7) so that to yield OZ—Z?—T(v)haE.

Finally, contraction with %% gives T (v)=0, i.e. there are an open set VC
U, x€V, and a constant cER so that v=c on V. Thus ox=[ic]x=Jjx(c),
Q.E.D.

Consider the Bockstein exact sequence :
= HY\M,R—>H'M, & z)>H M, ﬁ)ﬁHZ(M R)— -

associated with (14). If M is compact and strictly pseudoconvex one may
try to show that i) b(y(M))=ci(T1,0(M)) and ii) Im(p«)=0 (by Prop. 5.2 in
[Lee2], p. 172, this would imply the Lee conjecture). The example M=
H.(s) kills a hope to solve the Lee conjecture along the line indicated
above. Indeed, 7 : H,—{0}—>2%" defined by :

7(x)=Sx(x)
for any x€H,—{0}, is a deformation retract. Thus, by H.(s)=2*"x S
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and the Kiinneth formula it follows that H*(H.(s), R)=H*>*", R)=H*(H,
—{0}, R)=H?*(S**, R)=0 and the Bockstein sequence yields :

Im(n*)=H'(Hx(s), 7#)
4 Locally conformal Heisenberg manifolds.

Let M be a C® real (2n+1)-dimensional manifold. Then M is said to be
locally Heisenberg if it is equipped with a C* atlas .« whose transition
functions (coordinate transformations) are local CR diffeomorphisms of
the Heisenberg group H,. The sphere S***'!CC"*' is locally Heisenberg.
Also H.(s) (cf. Section 2) is locally Heisenberg, for any 0<s<1.

Any locally Heisenberg manifold (M,.«”) is a CR manifold, in a natu-
ral way. Indeed, let x&M and (V, ¢)E & so that x&€ V. Define Hx(M)
=¢x ' Hpx(Hn). The definition of Hx(M) does not depend upon the choice
of (V, ¢)e. Next, define a real operator Jx: H{(M)®C—H.(M)®C by
setting JxTz=1Ts where To=¢5' W, Wo=0/0w*+ iw%d/os, ¢=(w", ..., w",
s). If (U« is an other chart, UNV=+0, then F=¢p ! is a CR
diffeomorphism. Set F=(F' ..., F" f). As F is a CR map, the functions
F? and |F|*—if are CR-holomorphic, where |F|*=F°F,. Thus FxZ.=
ZF°)Ws, where Z,=0/0.+1iz°0/0t, ¢o=(2, ..., 2" t). Finally JT.=J¢s'Za
=JZF%) 5 Ws=1iT,, i.e. J is globally defined. Then (H(M),]) gives M
a structure of CR manifold of CR dimension #.

A pseudohermitian manifold (M, #, 6) of CR dimension #, is said to
be locally conformal Heisenberg if for any x&M there is a local coordi-
nate neighborhood (U, z', ..., 2" t), x€ U, so that:

fo=c?{dt+i él(z“dz"—z'“dz“)}

for some R-valued function u€ C*(U). For instance (H.(s), |x| ?{dt
+ig‘.l(z“d2“—2“dz”)}) is locally conformal Heisenberg (with z=log|x|™).

Any orientable locally Heisenberg manifold is locally conformal
Heisenberg, in a natural way. Indeed, let (M,%") be a locally Heisenber-
g manifold and # its natural CR structure. By orientability, let &
I'*(F) be a global, nowhere vanishing section, i.e. a pseudohermitian
structure on M. Here F—M is the real line bundle in the Appendix (i.e.
FxCTXM), xEM, and each covector fE€ Fx annihilates H.(M)). Let (U,
p)E v, p=(z' ..., 2" t). Then # v = Span{0/0z*+iz°3/dt} so that dt

+z'él(z“dza—Z"dz“)EI‘w(EU). Thus there is a R-valued function f&
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C=(U), nowhere vanishing, so that Gu=r{dt+: GZZII(Z“dZ *—z%z")}. We

may assume w. 1. o.g. that #>0 on U(otherwise start with—4). If (17, ¢)
€ . is an other coordinate neighborhood, UN V=+#, so that ¢=(w?’, ...,

w", s) and 6’|v=g{a’s+igl(w“dw“—w“dw“)}, g=C>(V), then ¢g>0 on V ;in
particular (M, #, ) is strictly pseudoconvex. Indeed, set F=¢¢!;then
F is a local CR diffeomorphism of H, and F*{ds-{-iﬁl(w“a’w“-w“dw“)}:

AMdt+i azi:l(z“dza— 29dz°) with A=

Finally, note that f=gA.

Let (M, #, 0) be a locally conformal Heisenberg manifold. There is
a covering of M with coordinate neighborhoods {(Uj, 2% t))};e; and a fam-
ily {u;};e; of R-valued functions u,€C*(U;) so that 8y, = e**{dt;

+i az::I(zfdzf— 28dz9)). i, for any i, ;€] with U:N U;#0, there is csER

so that u;—u;=c; on U;\Uj; then (M, #, 8) is termed globally conformal
Heisenbrg.

Let (M,#, ) be a globally conformal Heisenberg manifold. Set wy,
=du;, j€J. Then w is a (closed) globally defined 1-form on M, called
the Lee form of M. For instance H,(s) with the contact form (4) is
globally conformal Heisenberg with the Lee form w=dlog|x|™.

Let M be a real (2#+1)-dimensional C* differentiable manifold admit-
ting a C* atlas & whose transition functions are dilations 6-:(z, t) —
(rz, v*t), r#0, of Hn.. Let us call such (M,«") a locally dilation mani-
fold. For example H,(s), 0<s<1, is a locally dilation manifold.

;, |U£2> 0 (where Uf=_Z.(F*)).

a 1

PROPOSITION 2. Let M be a locally dilation wmanifold. Then M is
globally conformal Heisenberg.

PROOF. Any dilation of H, is a CR diffeomorphism so that a locally
dilation manifold is in particular locally Heisenberg. Let 6v=e**¢*6 and
Gv=e*¢* 6, (where 01=a’t+i§‘.l (2°dz*—z°dz") and Hz=ds—i—z'aZZ‘.l (wdw*
—wdw®)). Then F*6,=16, with A=|703*=r*n* so that u=v+logn|r|
(and M follows to be globally conformal Heisenberg), Q. E. D.

THEOREM 4. Let M be a globally conformal Heisenberg manifold.
If M s locally realizable and its Lee form is exact then M adwmits a global
pseudo-Einstein structure.

PrROOF. As (M, #, 6) is globally conformal Heisenberg, there is an
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open cover % ={U;};e; and a family {u;};e;, u;E C*(U;), and local coordi-
n
nates ¢;=(2%, ¢;): U—H, so that 0|U,.=ez“f{a’tj-l-i;l(zj“dz'}’—éfdzj“)} and u;

—u;=c;ER on U:NU;#0. Let f=(ci;)€ €' (N(%),R) be the corre-
sponding cochain. Note that f is a cocycle so that we may consider its
cohomology class [fleH'(M,R). Then [w] (the De Rham cohomology
class of the Lee form) corresponds to [f] under the isomorphism Hpz(M)
~H'(M,R). Let Z be the sheaf of CR-pluriharmonic functions on M and
y(M)e H' (M, #) the CR invariant cohomology class in Section 2. Let 7:
' (N(z),R—>Z (N(7Z), #) be the natural cochain map. Since each dt;

+z'§]l(zfd2}’—2,"dzj’), J€7, is Ricci flat (and in particular pseudo-Einstein)
it follows that 7« : H'(M,R)—>H'(M, #) maps [f] onto y(M).
5 Appendix.

Let M be a C* manifold of real dimension 2#+1. A CR structure on M
is a complex z-dimensional subbundle Ti,0(M)CT(M)®C so that i)
Tl,o(M)ﬂ To,1(M)=(Q) and ii) [T1,0(M), Tl,o(M)]C T1,0(M), where To,l(M)=
Toa(M). A pair (M, T1o(M)) is a CR manifold (of CR dimension #). Set
H(M)=Re{To(M)® To,(M)}. Then H(M) is a real rank 2% vector sub-
bundle of T(M) (the Levi distribution of M). It carries the complex
structure J(Z+2Z)=i(Z—2), for any Z€ T.o(M). Let FxC TH(M) con-
sist of all tangent covectors f so that Ker(f)2H.(M), x€M. Assume
from now on that M is orientable. Then the real line bundle F—M
admits global nowhere vanishing sections (termed pseudohermitian struc-
tures). With a choice §T'"(F) of pseudohermitian structure on M we
associate the Levi form Lo(Z, W)=L«Z, W)= 10, L«Z, W)=—1i(d8)(Z,
W) and Lo(Z, W)=LZ, W), for any Z, WE T1o(M). The CR manifold
M is nondegenerate (respectively strictly pseudoconvex) if, for some
choice of 6, L is nondegenerate (respectively positive-definite).

Let M be a nondegenerate CR manifold. Its Webster metric gs is
given by gs(X, T)=0, go( T, T)=1 and go(X, Y)=Ge(X, Y) where:

(A0)  Go(X, Y)=%{(d¢9)(X , JY)—(d0)JX, Y)}

for any X, YEH(M). Here T is the unique globally defined nowhere
vanishing tangent vector field on M transverse to H(M) and subject to:
(A.1) T|60=1, T|d6=0

Note that:
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(A.2) T(M)=HM)®{RT}

Extend J to an endomorphism J: T(M)—T(M) by setting JT=0. We
recall (cf. [Dra]):

THEOREM 5. Let (M, Tro(M), 6, T) be a nondegenerate CR wmani-
fold.  There is a unique linear connection V on M satisfying the following
axioms .

1) XeTM), YEHM)=—VxYEH(M),
i) VJ=0,

i) Vge=0,

iv) mTor (Z, W)=0,

for any ZE€ T (M), We T(M)QC(where Tor is the torsion of V and
T(M)®C— Tio(M) the natural projection).

This is the Webster connection of M. With respect to a (local) frame
{Ta} of Th,o(M) it is given by :

(A.3) 2T %ahos= Te(has)+ To(hgs)+
+ge([ T, Ta] Ta)+ge([ 15, Tﬂ] Ta)+ge([ T, Ta], Tﬂ)

(A4) ZFBa 06— Tﬁ(hao) Td(haﬁ)+
+9o([T'5, Tel, To)+96([ T5, Ts), Te)+96([ Ts, Te], T5)

(A5)  2T8ahoe=T (hes)+
0ol T, Tel, To)+9[ T5, T, To).

Let V be the Levi-Civita connection of (M,gs). Then (cf. [Dral):

(A.6) v‘:v+(%no—,4)® T+r®60+060]

where Qo(X, YV)=g4(X,JY), A(X, Y)=go(X, 7Y) and 7: T(M)—T(M)
given by tX=7Tor (T, X) is the pseudohermitian torsion of the Webster
connection. Also ® stands for the symmetric product. Finally, we recall

(cf. [Dral):

THEOREM 6. Let (M, Ty,o(M), 6, T) be a strictly pseudoconvex CR
manifold. Then t is self -adjoint (with respect to gs) and trace-less. Con-
sequently, the Levi distribution is minimal (in (M, gs)).
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