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On a conjecture of J. M. Lee

Sorin DRAGOMIR
(Received May 7, 1992)

Abstract

We deal with the Lee conjecture (compact strictly pseudoconvex CR
manifolds whose CR structure has a vanishing first Chern class admit a
global pseud0-Einstein structure^{1} ). We solve in affirmative the Lee conjec-
ture for compact strictly pseudoconvex CR manifolds with a regular (in
the sense of R. Palais, [Pal] ) contact vector. The regularity assumption
leads (via the Boothby-Wang theorem ([BoO-Wan]) and B. O’Neill’s fun-
damental equations of a submersion ([Nei]) ) to zero pseudohermitian tor-
sion (and we may apply a result of [Lee2]).

Moreover we construct a family H_{n}(s) , 0<s<1 , of compact strictly
pseudoconvex CR manifolds, so that each H_{n}(s) satisfies the Lee conjec-
ture. We endow H_{n}(s) with the contact form (4); our construction is
reminiscent of W. C. Boothby’s Hermitian metric (cf. [Boo]) on a complex
Hopf manifold.

1 Introduction.

Let (M, T_{1,0}(M) , \theta) be a pseudohermitian manifold of CR dimension n .
Then M is termed pseudO-Einstein if the pseudohermitian Ricci tensor of \theta

is proportional to the Levi form, cf. [Lee2]. One may formulate the fol-
lowing natural problem: given a nondegenerate CR manifold M find a
pseudohermitian structure \theta so that (M, \theta) is pseudO-Einstein. The solu-
tion of the local problem (i.e. find a pseud0-Einstein structure on some
neighborhood of each point of M) is intimately related to the question of
imbeddability. Indeed, if M admits a CR imbedding into C^{n+1} then M
admits a pseud0-Einstein structure (cf. [Lee2], Corollary B, p. 158). On
the other hand, by a result of L. Boutet de Monvel, [Bou], a compact
strictly pseudoconvex CR manifold can always be imbedded locally in
C^{n+1} . Also local imbeddability holds in the noncompact case if n>2 by
results of M. Kuranishi, [Kur], and T. Akahori, [Aka]. Thus, if M is
strictly pseudoconvex then M is locally pseud0-Einstein provided that

1 A CR analogue of the Calabi conjecture.
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either M is compact or \dim_{R}M\geq 7 .
As to the solution of the global problem, J. M. Lee has found (cf.

[Lee2] ) the following obstruction : if M is a compact strictly
pseudoconvex pseud0-Einstein manifold then c_{1}(T_{1,0}(M))=0 . Here
c_{1}(T_{1.0}(M))\in H^{2}(M,\cdot R) is the first Chern class of the CR structure. He
also conjectured that any compact strictly pseudoconvex CR manifold M
with c_{1}(T_{1,0}(M))=0 admits a global pseud0-Einstein structure.

The conjecture (referred hereafter as the Lee conjecture) is known to
hold when M has transverse symmetry (i.e. M admits a l-parameter
group of CR automorphisms transverse to T_{1,0}(M)) . By a result of S.
Webster, [Web] if M has transverse symmetry then M admits a contact
form \theta with vanishing pseudohermitian torsion \tau(and then, by [Lee2], p .
176, there is u\in C^{\infty}(M) so that exp (2u)\theta is pseud0-Einstein).

In the defense of the Lee conjecture we construct an example of a
compact strictly pseudoconvex CR manifold, which is globally pseud0-Ein-
stein and has non-vanishing pseudohermitian torsion. This is obtained as
a quotient of the Heisenberg group H_{n} by a discrete group of CR automor-
phisms (and is a CR analogue of the construction of H. Hopf, [Hop], end-
owing S^{2n-1}\cross S^{1} with a complex structure).

2 Quotients of H_{n} by properly discontinuous groups
of CR automorphisms.

Let \delta_{S} : H_{n}-\{0\}arrow H_{n}-\{0\} , s>0 , be the parabolic dilations of the Heisenber-
g group (i.e. \delta_{s} (z, t)=(sz, s^{2}t) , z\in C^{n} , t\in R , (z, t)\neq 0). If m\in Z , m>0 , set
\delta_{s}^{m}=\delta_{s^{\circ\circ}}\ldots\delta_{S} ( m factors). Also \delta_{\overline{s}}^{m}=\delta_{1/s}^{m} . Consider the discrete group
G_{s}=\{\delta_{s}^{m} : m\in Z\} . We establish the following:

THEOREM 1. Let 0<s<1 and n>1 . Then G_{s} acts freely on H_{n}-\{0\}

as a properly discontinuous group of CR automorphisms of H_{n}-\{0\} . The
quotient space H_{n}(s)=(H_{n}-\{0\})/G_{s} is a compact strictly pseudoconvex CR

manifold of CR dimension n.

PROOF. Clearly \delta_{s}^{m}x=x for some x\in H_{n}-\{0\} yields m=0. Thus the
action of G_{s} on H_{n}-\{0\} is free.

Let |x|=(|z|^{4}+t^{2})^{1/4} . x=(z, y) , be the Heisenberg norm on H_{n} . Let x_{0}

\in H_{n}-\{0\} and set U_{\epsilon}(x_{0})=\{x\in H_{n}-\{0\} : |x-x_{0}|<\epsilon\} , \epsilon>0 . Let ||x|| be the
Euclidean norm on H_{n}\approx R^{2n+1}- Cf. G. B. Folland & E. M. Stein, [Fol-Ste],
p. 449, for any x\in H_{n} with |x|\leq 1 one has ||x||\leq|x|\leq||x||^{1/2} . Thus the sets
U_{\epsilon}(x) , x\in H_{n}-\{0\} , 0<\epsilon<1 , form a fundamental system of neighborhoods
in H_{n}-\{0\} .



On a conjecture of J. M. Lee 37

To show that G_{s} is properly discontinuous, given x_{0}\in H_{n}-\{0\} one
needs to choose \epsilon>0 such that:

\delta_{s}^{m}(U_{\epsilon}(x_{0}))\cap U_{\epsilon}(x_{0})=\emptyset (1)

for any m\in Z , m\neq 0 . Cf. [Fol-Ste], Lemma 8.9., p. 449, there exists \gamma\geq 1

so that |x+y|\leq\gamma(|x|+|y|) for any x , y\in H_{n} . Consequently:

|x|-\gamma|y|\leq\gamma|x-y| (2)

for any x , y\in H_{n} . Let:
\xi_{m}=|\delta_{s}^{m}(x_{0})-x_{0}|

for m\in Z . As G_{s} acts freely on H_{n}-\{0\} , it follows that \xi_{m}\geq 0 , and
\xi_{m}\Leftrightarrow m=0 . Next, as 0<s<1 , one obtains:

0\leq m_{1}<m_{2}\supset\xi_{m_{1}}<\xi_{m_{2}} , \xi_{-m_{1}}<\xi_{-m_{2}} .

Therefore :
\xi_{m}\geq\min(\xi_{1}, \xi_{-1})=\xi_{1}

for any m\in Z , m\neq 0 . Set N=2\gamma+1 . Choose 0< \epsilon<\frac{1}{N}\xi_{1} . Let x\in U_{\epsilon}(x_{0}) .

Then:
|\delta_{s}^{m}(x)-\delta_{s}^{m}(x_{0})|=s^{m}|x-x_{0}|<s^{m}\epsilon<\epsilon

shows that :
\delta_{S}^{m}(U_{\epsilon}(x_{0}))\subseteq U_{\epsilon}(\delta_{S}^{m}(x_{0})) . (3)

Using (2)-(3) we have the estimates:
\gamma|x_{0}-\delta_{s}^{m}(x)|=\gamma|x_{0}-\delta_{s}^{m}(x_{0})-(\delta_{s}^{m}(x)-\delta_{s}^{m}(x_{0}))|\geq

\geq|x_{0}-\delta_{s}^{m}(x_{0})|-\gamma|\delta_{s}^{m}(x)-\delta_{s}^{m}(x_{0})|>

>\xi_{m}-\gamma\epsilon\geq\xi_{1}-\gamma\epsilon>N\epsilon-\gamma\epsilon=(\gamma+1)\epsilon

so that:

|x_{0}- \delta_{s}^{m}(x)|>\frac{\gamma+1}{\gamma}\epsilon>\epsilon .

This shows that \delta_{s}^{m}(x)\not\in U_{\epsilon}(x_{0}) , for any x\in U_{\mathcal{E}}(x_{0}) , m\in Z , m\neq 0 , so that (1)
holds.

Let \pi:H_{n}-\{0\}arrow H_{n}(s) be the natural map. Let:
\Sigma^{2n}=\{x\in H_{n} : |x|=1\} .
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Then \sum^{2n} is a compact real hypersurface in H_{n} . The map H_{n}(s)arrow\sum^{2n}\cross S^{1}

defined by:

\pi(x)\}arrow(\frac{z}{|x|}, \frac{t}{|x|^{2}}, exp ( \frac{2\pi i1og|x|}{1ogs}))

is a diffeomorphism, x=(z, t)\in H_{n}-\{0\} . Thus H_{n}(s) is compact. As \pi is
a local diffeomorphism H_{n}(s) inherits a structure of CR hypersurface of
CR dimension n . Let ( U, z^{1}, ..., z^{n}. t) be a local coordinate system on
H_{n}(s) , z^{a}=x^{a}+iy^{a} Set:

\theta=|x|^{-2}\{dt+2\sum_{a=1}^{n}(x^{a}dy^{a}-y^{a}dx^{a})\} (4)

on U. The right hand member of (4) is G_{s^{-}} invariant and thus defines a

global 1-form on H_{n}(s) . Let \{\theta^{a}\} be dual to T_{a} , where T_{a}= \frac{\partial}{\partial z^{a}}+i\overline{z}^{a_{\frac{\partial}{\partial t}}}

on U. The Levi form associated with (4) is given by:

L_{\theta}=|x|^{-2}\delta_{a\rho}\theta^{a}\wedge\theta^{\overline{\beta}}

on U. Thus \theta is strictly pseudoconvex. Our Theorem 1. is completely
proved.

Let M be a CR manifold and \mathscr{P} the sheaf of CR-pluriharmonic func-
tions (ie . real parts of CR-holomorphic functions) on M. By a result in
[Lee2], p. 172, if M in locally realizable then there exists a CR invariant
cohomology class \gamma(M)\in H^{1}(M, \mathscr{P}) so that \gamma(M)=0 iff M admits a global
pseud0-Einstein structure. We need to recall the construction of \gamma(M) .
The notations we employ are those in [Gol], p. 271-275.

If M is locally realizable, in the neighborhood of each point there
exists a pseud0-Einstein structure. Let \{(U_{i}, \theta_{i})\}_{i\in I} be a covering of M
with such neighborhoods. On each U_{i}\cap U_{j}\neq\emptyset one may write \theta_{j}=\exp

(2u_{ji})\theta_{i} , for some u_{ji}\in C^{\infty}(U_{i}\cap U_{j}) . By a result of [Lee2], i.e. Prop. 5.1.,
p.172, u_{ji}\in \mathscr{P}(U_{i}\cap U_{j}) and u_{ij}+u_{ji}=0 , u_{ij}+u_{jk}+u_{ki}=0 . Let N(\mathscr{U}) be
the nerve of \mathscr{U}=(U_{i})_{i\in I} . Let f map each 1-simplex \sigma=(U_{i}U_{j}) of N(\mathscr{U})

in u_{ji}\in \mathscr{P}(\cap\sigma) . Then f\in Z^{1}(N(\mathscr{U}), \mathscr{P}) , i.e. f so built is a 1-cocycle with
coefficients in \mathscr{P} . Let \gamma(M)\in H^{1}(M, \mathscr{P}) be the equivalence class of [f]\in
H^{1}(N(\mathscr{U}), \mathscr{P}) . It is known (cf. [Lee2], p. 173) that \gamma(M) depends only on
the CR structure of M.

Let:
\mathscr{H}_{s}=T_{1,0}(H_{n}(s))

and:
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\gamma_{s}=\gamma(H_{n}(s))

for simplicity. Let \{(U_{i}, z_{i}^{a}, t_{i})\}_{i\in I} be an atlas on H_{n}(s) so that for any i , j
\in I with U_{i}\cap U_{j}\neq\emptyset the coordinate transformation reads:

z_{j}^{a}=s^{m_{Ji}}z_{i}^{a} , t_{j}=s^{2m_{Jt}}t_{i} (5)

for some m_{ji}\in Z . Define :

\theta_{i}=dt_{i}+2\sum_{a=1}^{n}(x_{i}^{a}d^{a}y_{i}-y_{i}^{a}dx_{i}^{a})

on U_{i} , i\in I . Each ( U_{i}, \theta_{i}) is a strictly pseudoconvex CR manifold with
vanishing Ricci tensor (in particular each \theta_{i} is pseud0-Einstein). Let \gamma_{s}\in

H^{1}(H_{n}(s), \mathscr{P}) be the corresponding CR invariant cohomology class. As a
consequence of (5) one has:

\theta_{j}=\exp(2m_{ji}\log s)\theta_{i}

on U_{i}\cap U_{j} . Let c=(2m_{ij}\log s)\in Z^{1}(N(\mathscr{U}), R) be the corresponding cocy-
cle. If i:\mathscr{C}^{1}(N(\mathscr{U}), R)arrow \mathscr{C}^{1}(N(\mathscr{U}), \mathscr{P}) is the natural cochain map then \gamma_{s}

is the image of [c] via i_{*}: H^{1}(M, R)arrow H^{1}(M, \mathscr{P}) . We are going to show
that (4) is globally pseudO-Einstein so that (cf. Prop. 5.2 of [Lee2], p. 172)
\gamma_{s}=0 . Yet c\neq 0 (as Ker (i_{*})\neq 0). Indeed [c] corresponds (under the
isomorphism H_{DR}^{1}(H_{n}(s))\approx H^{1}(H_{n}(s), R)) to the De Rham cohomology class
[\omega] of the 1-form \omega=d\log|x|^{-1} (which is not exact)^{2} . Also, by Prop. D

of [Lee2], p. 159, \gamma_{s}=0 yields c_{1}(\mathscr{H}_{s})=0 . We may show that actually all
Chern classes of \mathscr{H}_{s} vanish (by constructing a flat connection D in \mathscr{H}_{s} ).
We do this in the following more general setting.

Let (M, T_{1,0}(M) , \theta) be a nondegenerate CR manifold. Let u\in C^{\infty}(M)

be a real valued smooth function on M. Let \{ T_{a}\} be a frame in T_{1,0}(M)

defined on some open set U\subseteq M . Let \hat{\theta}=e^{2y}\theta,\hat{\theta}^{a}=\theta^{a}+2iu^{a}\theta and \hat{T}=

e^{-2u}\{T-2iu^{\beta}T_{\beta}+2iu^{\overline{\beta}}T -\} , where u^{a}=h^{a\overline{\sigma}}u -, u_{\overline{\sigma}}=T_{5}(u) and u^{\overline{a}}=(u^{a})^{-}

Note that, with these choices, one has \hat{T}\rfloor\hat{\theta}=1,\hat{T}\rfloor d\hat{\theta}=0 and \hat{T}\rfloor\hat{\theta}^{a}=0 .
By (A. 0) one has G_{\hat{\theta}}=e^{2u}G_{\theta} so that \hat{h}_{a\overline{\beta}}=e^{2u}h_{a} -, where \hat{h}_{a\overline{\beta}}=L_{\overline{\theta}}(T_{a}, T_{\overline{\beta}}) .
We shall need the following:

PROPOSITION 1. Let (M, T_{1,0}(M) , \theta, T) be a nondegenerate CR mani-
fold. Then, under a transformation \hat{\theta}=e^{2u}\theta, the Christoffel symbols of
the Webster connections of ( T_{1,0}(M), \theta) and ( T_{1,0}(M),\hat{\theta}) are related by:

\hat{\Gamma}_{\beta a}^{\sigma}=\Gamma_{\beta a}^{\sigma}+2u_{\beta}\delta_{a}^{\sigma}+2u_{a}\delta_{\beta}^{\sigma}

\hat{\Gamma}_{\overline{\beta}a}^{\sigma}=\Gamma_{\overline{\beta}a}^{\sigma}-2u^{\sigma}h_{\overline{\beta}a} (6)

2 Note that d\log|x|^{-1} is G_{s^{-}}invariant, so that \omega is globally defined.
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e^{2u} \hat{\Gamma}_{a}\frac{\sigma}{0}=\Gamma_{0a}^{\sigma}+2u_{0}\delta_{a}^{\sigma}-4iu_{a}u^{\sigma}+

+2iu_{a}^{\sigma},+2i \Gamma\frac{\sigma}{\mu}au^{\overline{\mu}}-2i\Gamma_{\mu a}^{\sigma}u^{\mu} .

Consequently, the connection forms \omega_{a}^{\sigma},\hat{\omega}_{a}^{\sigma} are related by:3

\hat{\omega}_{a}^{\sigma}=\omega_{a}^{\sigma}+2(u_{a}\theta^{\sigma}-u^{\sigma}\theta_{a})+\delta_{a}^{\sigma}(u_{\beta}\theta^{\beta}-u^{\beta}\theta_{\beta})+

+i(u_{a}^{\sigma},+u_{a}^{\sigma},+4u_{a}u^{\sigma}+4\delta_{a}^{\sigma}u_{\beta}u^{\beta})\theta+\delta_{a}^{\sigma}du (7)

where u_{a},=u_{a}.- h^{\sigma\overline{\beta}}\sigma, \theta_{a}=h_{a\overline{\beta}}\theta^{\overline{\beta}}, etc.

PROOF. The first two identities in (6) are a straightforward conse-
quence of (A. 3) -(A. 4) . To prove the last identity in (6) note that (A. 5)
may be also written:

\Gamma_{0a}^{\rho}h_{\rho\overline{\sigma}}=T(h_{a\overline{\sigma}})+g\theta([T-, T], T_{a}) .

The desired formula follows from:
e^{2u}\pi_{-}[T-, \overline{T}]=\pi_{-}[T-, T]+2i[T -, T -]u^{\overline{\mu}}+

+2i \{u^{\overline{\rho}},\sigma-2u - u^{\overline{\rho}}+\Gamma_{\mu}^{\overline{\rho}}- u^{\mu}-\Gamma\frac{\overline{\rho}}{\mu}- u^{\overline{\mu}}\}T -

and:
e^{2y}\hat{\Gamma}_{0a}^{g}+2iu^{\beta}\hat{\Gamma}_{\rho a}^{\sigma}-2iu^{\overline{\beta}}\hat{\Gamma}_{\overline{\beta}a}^{\sigma}=

=\Gamma_{0a}^{\sigma}+2u_{0}\delta_{a}^{\sigma}+2iu_{a}^{\sigma},+4iu_{\beta}u^{\beta}\delta_{a}^{\sigma}+4iu_{a}u^{\sigma}

where u_{0}=T(u) .
Let (M, T_{1,0}(M) , \theta) be a nondegenerate CR manifold admitting a real

closed (globally defined) 1-form \omega . Let B=\omega^{\#} , where \# denotes raising of
indices with respect to g_{\theta} . Next, set B^{1,0}=\pi_{+}B . Locally, if:

\omega=\omega_{a}\theta^{a}+\omega_{\overline{a}}\theta^{\overline{a}}+\omega_{0}\theta

where \omega_{\overline{a}}=(\omega_{a})^{-} then :
B^{1,0}=h^{a\overline{\beta}}\omega_{\overline{\beta}}T_{a} .

By the Poincar\’e lemma, there exists an open covering \{ U_{i}\}_{i\in I} of M and a
family \{u_{i}\}_{i\in I} of R-valued functions u_{i}\in C^{\infty}(U_{i}) so that \omega|_{U_{i}}=du_{i} , i\in I .
Set \theta_{i}=\exp(2u_{i})\theta|_{U_{i}} . By applying (6) to u=u_{i} it follows that the Webster
connections of the nondegenerate CR hypersurfaces ( U_{i}, \theta_{i}) , i\in I , glue up
to a (globally defined) linear connection D on M expressed by:

D_{Z}W=\nabla_{Z}W+2\{\omega(Z)W+\omega(W)Z\}

D_{\overline{Z}}W=\nabla_{\overline{Z}}W-2L_{\theta}(\overline{Z}, W)B^{1,0}

3 The formula (7) has been obtained by J. M. Lee, cf. [Leel]. Yet there is an error in
(5.7) of [Leel], p.421 (the term \delta_{\alpha}^{\sigma}du is missing there).
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D_{T}W=\nabla_{T}W+2i\nabla_{W}B^{1,0}+4i\omega(W)B^{1,0}+4i||B^{1,0}||^{2}W (8)
D_{Z}T_{\omega}=2\omega(Z)T_{\omega}

D_{T\omega}T_{\omega}=2\omega(T)T_{\omega}

for any Z, W\in T_{1,0}(M) . Here \nabla denotes the Webster connection of (M,
\theta) and T_{\omega}=T-2iB^{1,0}+2iB^{0,1} . Note that T_{\omega} is transversal to H(M) (so
that the formulae (8) define D everywhere on T(M)) . In analogy with I.
Vaisman, [Vai], we call D the Weyl connection of (M, \theta, \omega) .

THEOREM 2. Let 0<s<1 and n>1 . Then i) all Chern classes of
\mathscr{H}_{S} vanish and it) the contact form (4) is pseudO-Einstein and has
nonvanishing pseudohermitian torsion.

PROOF. Let M=H_{n}(s) with the C^{\infty} atlas \{ U_{i}, z_{i}^{a}, t_{i})\}_{i\in I} as above.
Let u_{i}\in C^{\infty}(U_{i}) be defined by u_{i}=\log|x_{i}| , x_{i}=(z_{i}, t_{i}) . Then (by (5)) we
have u_{j}-u_{i}=m_{ji}\log s=const . on U_{i}\cap U_{j} . Consequently, the local l-forms
du_{i} glue up to a real (closed) global 1-form \omega on H_{n}(s) . The Webster
connections of the local pseudohermitian structures \{\theta_{i}\}_{i\in I} are flat, so that
the Weyl connection D of (H_{n}(s), \theta, \omega) (with \theta given by (4)) is flat. As
DJ=0 the Weyl connection is reducible to a (flat) connection in \mathscr{H}_{s} . By
the Chern-Weil theorem the characteristic ring of \mathscr{H}_{s} must vanish.

Let (M, T_{1,0}(M) , \theta) be a nondegenerate CR manifold. Set \hat{\theta}=e^{2u}\theta , u
\in C^{\infty}(M) . As a consequence of Proposition 1 one has:

\hat{A}_{a\beta}=A_{a\beta}+2iu_{a,\beta}-4iu_{a}u_{\beta} (9)

(cf. also (2. 16) in [Lee2], p. 164). At this point we may prove ii ) in The-
orem 2. Indeed, we may apply (9) with u=\log|x|^{-1} . A_{a\rho}=0 and \omega_{\beta}^{a}=0 . If
T_{a}=\partial/\partial z^{a}+i\overline{z}^{a}\partial/\partial t then:

u_{a}=- \frac{1}{2}|x|^{-4}\overline{z}_{a}\varphi

T_{a}(u_{\beta})=|x|^{-8}\varphi^{2}\overline{z}_{a}\overline{z}_{\beta}

where \varphi(z, t)=|z|^{2}+it . Finally, as \overline{\varphi} is CR-holomorphic, (9) yields \hat{A}_{a\beta}=

2iT_{a}(u_{\beta})-4iu_{a}u_{\beta}=i|x|^{-8}\overline{z}_{a}\overline{z}_{\beta}\varphi^{2} so that (4) has nonvanishing pseudoher-
mitian torsion.

Let (M, T_{1,0}(M) , \theta) be a nondegenerate CR manifold of CR dimension
n and \hat{\theta}=e^{2u}\theta . Then the pseudohermitian Ricci tensors R_{a} -, \hat{R}_{a} - of \theta,\overline{\theta}

are related by:

\overline{R}_{a\overline{\beta}}=R_{a\overline{\beta}}-(n+2)(u_{a,\overline{\beta}}+u -_{a},)-

-(u_{\rho}^{\rho},+u_{\overline{\rho}}^{\overline{\rho}},+4(n+1)u_{\rho}u^{\rho})h_{a\overline{\beta}} (10)
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(cf. e.g. (2. 17) in [Lee2], p. 164). If M=H_{n}(s) and \theta is given by (4) then
we may apply (10) with R_{a\overline{\beta}}=0 , u=\log|x|^{-1} , h_{a\overline{\beta}}=\delta_{a\beta} and \omega_{\beta}^{a}=0 . Then:

u_{\rho}^{\rho},=- \frac{n}{2}|x|^{-4}\varphi

u_{\rho}u^{\rho}= \frac{1}{4}|x|^{-4}|z|^{2}

u_{a,\overline{\beta}}=- \frac{1}{2}|x|^{-4}\varphi\delta_{a\beta}

so that (10) yields:

\overline{R}_{a\overline{\beta}}=(n+1)|x|^{-2}|z|^{2}\overline{h}_{a\overline{\beta}}

and (4) is pseud0-Einstein. Our Theorem 2 is completely proved.

REMARK 1. Let R^{*}\approx\{(0, t):t\in R-\{0\}\}\subset H_{n}-\{0\} . The pseudoher-
mitian Ricci curvature of the contact form (4) vanishes on \pi(R^{*}) so that
Prop. 6.4. in [Lee2], p. 175 does not apply.

3 Regular strictly pseudoconvex CR manifolds.

Let M be a m-dimensional differentiate manifold. A local chart ( U, \varphi)

on M is cubical (of breadth 2a centered at x\in M ) if \varphi(x)=(0, \ldots, 0) and
\varphi(U)=\{(t^{1}, \ldots, t^{m})\in R^{m} : |t^{j}|<a, 1\leq j\leq m\} . Let ( U, \varphi),\varphi=(x^{1}, \ldots, x^{m}) , be a
cubical local chart on M. Let 1\leq p\leq m and t=(t^{p+1}\backslash \cdots, t^{m})\in R^{m-p} so that
|t^{p+j}|<a , 1\leq j\leq m-p . The p-dimensional slice \Sigma_{t} of ( U, \varphi) is given by
\Sigma_{t}=\{y\in U : x^{p+j}(y)=t^{p+j}, 1\leq j\leq m-p\} .

Let (M, T_{1,0}(M) , \theta , T) be a nondegenerate CR manifold of CR dimen-
sion n . Then T is regular if M admits a C^{\infty} atlas \{(U, x^{i})\} so that the
intersection with U of any maximal integral curve of T is a l-dimen-
sional slice of ( U, x^{i}) . Let \langle T\rangle be the distribution spanned by T , i.e.
\langle T\rangle_{x}=RT(x) , x\in M . If T is regular then, by Theorem VIII in [Pal], p .
19, the quotient space M/\langle T\rangle (i.e. the space of all maximal integral
curves of T) admits a natural manifold structure with respect to which
the canonical projection \pi:Marrow M/\langle T\rangle is differentiate (cf. also Theorem
X, [Pal], p. 20). We may state the following:

THEOREM 3. Let (M, T_{1,0}(M) , \theta , T) be a compact strictly
pseudoconvex CR manifold. If T is regular then M admits a global
pseudO-Einstein structure.

To prove Theorem 3. we need to recall the essentials of the Boothby-
Wang theorem (cf. [BoO-Wan]). As T is regular, its maximal integral
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curves are closed subsets of M (cf. Theorem VII, [Pal], p. 18). But M is
compact so that each maximal integral curve is homeomorphic to S^{1} . Let
\lambda be the period of T , i.e. \lambda(x)=\inf\{t>0:\varphi_{t}(x)=x\} , x\in M , where \{\varphi_{t}\}_{t\in R}

is the 1-parameter group generated by T We may assume that \lambda=1

(otherwise, as \lambda=const.>0 (by an argument in [Tan]) we may replace T

by \frac{1}{\lambda}T ). Then, by the Boothby-Wang theorem, T generates a free and

effective action of S^{1} on M. Next M becomes the total space of a princi-
pal bundle S^{1}arrow Marrow B\pi , where B=M/\langle T\rangle . Any principal bundle is in
particular a submersion (and we may apply results in [Nei]).

Let g_{\theta} be the Webster metric. Let \frac{d}{dt} be the generator of the Lie

algebra L(S^{1})\approx R . Then \theta\otimes\frac{d}{dt} is a connection 1-form in S^{1}arrow M– B.

Set:
h_{\theta}(X, Y)_{u}=g_{\theta}(X^{H}. Y^{H})_{x}

where x\in\pi^{-1}(u) , u\in B and X, Y\in T_{u}(B) . Here X^{H} denotes the horizon-

tal lift (cf. [Kob-Nom], vol. I , p. 64) of X with respect to \theta\otimes\frac{d}{dt} . The

definition of h_{\theta}(X, Y)_{u} does not depend upon the choice of x in \pi^{-1}(u) . It
follows that \pi : Marrow B is a Riemannian submersion from (M, g_{\theta}) onto (B,
h_{\theta}) . Let P, Q be the fundamental tensors of \pi (cf. [Nei], p. 460) that is:

P_{X}Y=h\tilde{\nabla}_{vX}vY+v\tilde{\nabla}_{vX}hY

(12)(11)
Q_{X}Y=h\tilde{\nabla}_{hX}hY+v\tilde{\nabla}_{hX}vY

for any X, Y\in T(M) . Here \tilde{\nabla} denotes the Levi-Civita connection of (M,
g_{\theta}) . Moreover h=\pi_{H} and vX=\theta(X)T are the canonical projections as-
sociated with (A. 2). Let us substitute from (A. 6) into (12). As JT=0 ,
\tau T=0 , \nabla T=0 and H(M) is parallel with respect to \nabla , our (12) becomes:

Q_{X}Y= \{\frac{1}{2}\Omega_{\theta}(X, Y)-A(X, Y)\}T

Q_{X}T= \tau(X)+\frac{1}{2}JX (13)

Q_{T}X=0 , Q_{T}T=0

for any X, Y\in H(M) . By Theorem 6, \tau is self-adjoint, while by a result
of B. O’Neill (cf. [Nei], p. 460) Q is skew-symmetric on horizontal vectors.
Clearly the Levi distribution H(M) coincides with the horizontal distribu-
tion of the Riemannian submersion \pi:Marrow B . Then the first of the formu-
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lae (13) yields A=0 and thus (cf. [Lee2], p. 176) there is u\in C^{\infty}(M) so
that exp (2u)\theta is globally pseud0-Einstein. The proof of Theorem 3 is
complete.

REMARK 2.
i) Let us substitute from (A. 6) into (11). This procedure leads to P

=0. Consequently the fibres of the submersion \pi:Marrow B are totally-
geodesic in (M, g_{\theta}) .

ii) By a result of G. Gigante, [Gig], p. 151, and by the proof of TheO-
rem 3, any compact strictly pseudoconvex symmetric (in the sense of
[Gig], p. 150) CR manifold is a Sasakian manifold.

Let (M, T_{1,0}(M) , \theta) be a nondegenerate CR manifold. Let \mathscr{C}_{CR} be the
sheaf of local CR-holomorphic functions on M. There is a short exact
sequence :

0arrow R^{j}arrow \mathscr{C}_{CR^{arrow}}^{\eta}\mathscr{P}arrow 0 (14)

where j_{U} : Rarrow \mathscr{C}cR( U) , j_{U}(c)=ic , and \eta_{U} : \mathscr{C}_{CR}( U)arrow \mathscr{P} ( U) , \eta_{U}(f)=Re(f) ,
for any c\in R , f\in \mathscr{C}_{CR}(U) . Indeed, let \sigma_{x}\in Ker(\eta_{x}) , x\in M . That is,
there are an open set U\subset M , x\in U , and a real valued function v\in C^{\infty}(U)

so that [iv]_{x}=\sigma_{x} and \overline{\partial}_{b}(v)=0 . Then \partial_{b}v=0 (by complex conjugation)
and dv=T(v)\theta . Exterior differentiation gives:

0=dT(v)\wedge\theta+T(v)d\theta=dT(v)\wedge\theta+iT(v)h_{a\overline{\beta}}\theta^{a}\wedge\theta^{\overline{\beta}} .

Let us apply this to the pair ( T_{a} , T-) so that to yield 0= \frac{i}{2}T(v)h_{a} -.

Finally, contraction with h^{a\overline{\beta}} gives T(v)=0, i.e. there are an open set V\subset

U, x\in V . and a constant c\in R so that v=c on V. Thus \sigma_{x}=[ic]_{x}=j_{x}(c) ,
Q. E. D.

Consider the Bockstein exact sequence:

\ldotsarrow H^{1}(M, R)arrow H^{1}(M, \mathscr{C}_{CR})-^{\eta_{*}}>H^{1}(M, \mathscr{P})^{b}arrow H^{2}(M, R)arrow\cdots

associated with (14). If M is compact and strictly pseudoconvex one may
try to show that i) b(\gamma(M))=c_{1}(T_{1,0}(M)) and ii ) Im(\eta_{*})=0 (by Prop. 5.2 in
[Lee2], p. 172, this would imply the Lee conjecture). The example M=
H_{n}(s) kills a hope to solve the Lee conjecture along the line indicated
above. Indeed, r:H_{n}-\{0\}arrow\Sigma^{2n} defined by:

r(x)=\delta_{|x|^{-1}}(x)

for any x\in H_{n}-\{0\} , is a deformation retract. Thus, by H_{n}(s)\approx\sum^{2n}\cross S^{1}
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and the K\"unneth formula it follows that H^{2}(H_{n}(s), R)=H^{2}(\Sigma^{2n}, R)=H^{2}(H_{n}

-\{0\} , R)=H^{2}(S^{2n}, R)=0 and the Bockstein sequence yields:

Im(\eta^{*})=H^{1}(H_{n}(s), \mathscr{P})

4 Locally conformal Heisenberg manifolds.

Let M be a C^{\infty} real (2n+1)-dimensional manifold. Then M is said to be
locally Heisenberg if it is equipped with a C^{\infty} atlas \mathscr{A} whose transition
functions (coordinate transformations) are local CR diffeomorphisms of
the Heisenberg group H_{n} . The sphere S^{2n+1}\subset C^{n+1} is locally Heisenberg.
Also H_{n}(s) (cf. Section 2) is locally Heisenberg, for any 0<s<1 .

Any locally Heisenberg manifold (M,\mathscr{A}) is a CR manifold, in a natu-
ral way. Indeed, let x\in M and ( V. \emptyset ) \in \mathscr{A} so that x\in V . Define H_{x}(M)

=\phi_{*}^{-1}H_{\psi(\chi)}(H_{n}) . The definition of H_{x}(M) does not depend upon the choice
of ( V. \emptyset ) \in \mathscr{A} Next, define a real operator J_{X} : H_{x}(M)\otimes C- H_{x}(M)\otimes C by
setting J_{X}T_{a}’=iTa , where T_{a}’=\phi_{*}^{-1}W_{a} , W_{a}=\partial/\partial w^{a}+i\overline{w}^{a}\partial/\partial s , \phi=(w^{1} , \ldots , w^{n} ,
s) . If ( U,\varphi)\in \mathscr{A} is an other chart, U\cap V\neq\emptyset , then F=\phi\varphi^{-1} is a CR
diffeomorphism. Set F=(F^{1}, \ldots, F^{n}, f) . As F is a CR map, the functions
F^{a} and |F|^{2} -if are CR-holomorphic, where |F|^{2}=F^{a}F_{a} . Thus F_{*}Z_{a}=

Z_{a}(F^{\sigma})W_{\sigma} , where Z_{a}=\partial/\partial_{a}+i\overline{z}^{a}\partial/\partial t , \varphi=(z^{1}. \ldots, z^{n}. t) . Finally JT_{a}=J\varphi_{*}^{-1}Z_{a}

=JZ_{a}(F^{\sigma})\phi_{*}^{-1}W_{\sigma}=iT_{a} , i.e. J is globally defined. Then (H(M), J) gives M
a structure of CR manifold of CR dimension n.

A pseudohermitian manifold (M, \mathscr{H}, \theta) of CR dimension n, is said to
be locally conformal Heisenberg if for any x\in M there is a local coordi-
nate neighborhood ( U, z^{1}, \ldots, z^{n}, t) , x\in U , so that:

\theta_{|U}=e^{2u}\{dt+i\sum_{a=1}^{n}(z^{a}d\overline{z}^{a}-\overline{z}^{a}dz^{a})\}

for some R-valued function u\in C^{\infty}(U) . For instance (H_{n}(s), |x|^{-2}\{dt

+i \sum_{a=1}^{n}(z^{a}d\overline{z}^{a}-\overline{z}^{a}dz^{a})\}) is locally conformal Heisenberg (with u=\log|x|^{-1} ).

Any orientable locally Heisenberg manifold is locally conformal
Heisenberg, in a natural way. Indeed, let (M, \mathscr{A}) be a locally Heisenber-
g manifold and \mathscr{H} its natural CR structure. By orientability, let \theta\in

\Gamma^{\infty}(F) be a global, nowhere vanishing section, i.e. a pseudohermitian
structure on M. Here Farrow M is the real line bundle in the Appendix (i.e.
F_{x}\subset T_{x}^{*}(M) , x\in M , and each covector f\in F_{X} annihilates H_{x}(M)) . Let ( U,
\varphi)\in \mathscr{A}-\varphi=(Z^{1}-\ldots, Z_{-}^{n}t) . Then \mathscr{H}_{|U}=Span\{\partial/\partial z^{a}+i\overline{z}^{a}\partial/\partial t\} so that dt

+i \sum_{a=1}^{n}(z^{a}d\overline{z}^{a}-\overline{z}^{a}dz^{a})\in\Gamma^{\infty}(F_{1U}) . Thus there is a R-valued function f\in
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C^{\infty}(U) , nowhere vanishing, so that \theta_{|U}=f\{dt+i\sum_{a=1}^{n}(z^{a}d\overline{z}^{a}-\overline{z}^{a}dz^{a})\} . We
may assume w. 1. 0.g. that f>0 on U(otherwise start with -\theta ). If ( T^{\prime,\psi)},

\in \mathscr{A} is an other coordinate neighborhood, U\cap V\neq\emptyset , so that \phi=(w^{1} . ...,

w^{n} , s) and \theta_{|V}=g\{ds+i\sum_{a=1}^{n}(w^{a}d\overline{w}^{a}-\overline{w}^{a}dw^{a})\} , g\in C^{\infty}(V) , then g>0 on V ; in

particular (M, \mathscr{H}, \theta) is strictly pseudoconvex. Indeed, set F=\phi\varphi^{-1} ; then

F is a local CR diffeomorphism of H_{n} and F^{*} \{ds+i\sum_{a=1}^{n}(w^{a}d\overline{w}^{a}-\overline{w}^{a}dw^{a})\}=

\lambda\{dt+i\sum_{a=1}^{n}(z^{a}d\overline{z}^{a}-\overline{z}^{a}dz^{a})\} with \lambda=\sum_{a,\beta=1}^{n}|U_{a}^{\beta}|^{2}>0 (where U_{a}^{\beta}=Z_{a}(F^{\beta}) ).

Finally, note that f=gA.
Let (M, \mathscr{H}, \theta) be a locally conformal Heisenberg manifold. There is

a covering of M with coordinate neighborhoods \{(U_{j}, z_{j}^{a}, t_{j})\}_{j\in J} and a fam-
ily \{ u_{j}\}_{j\in f} of R -valued functions u_{j}\in C^{\infty}(U_{j}) so that \theta_{|U_{j}}=e^{2u}’\{dt_{j}

+i \sum_{a=1}^{n}(z_{j}^{a}d\overline{z}_{j}^{a}-\overline{z}_{j}^{a}dz_{j}^{a})\} . If, for any i , j\in J with U_{i}\cap U_{j}\neq\emptyset , there is c_{ij}\in R

so that u_{i}-u_{j}=c_{ij} on U_{i}\cap U_{j} then (M, \mathscr{H}. \theta) is termed globally conformal
Heisenbrg.

Let (M, \mathscr{H}. \theta) be a globally conformal Heisenberg manifold. Set \omega_{|U_{j}}

=du_{j} , j\in J . Then \omega is a (closed) globally defined 1-form on M, called
the Lee form of M. For instance H_{n}(s) with the contact form (4) is
globally conformal Heisenberg with the Lee form \omega=d\log|x|^{-1} .

Let M be a real (2n+1)-dimensional C^{\infty} differentiable manifold admit-
ting a C^{\infty} atlas \mathscr{A} whose transition functions are dilations \delta_{r} : (z, t)\}arrow

(rz, r^{2}t) , r\neq 0 , of H_{n} . Let us call such (M, \mathscr{A}) a locally dilation mani-
fold. For example H_{n}(s) , 0<s<1 , is a locally dilation manifold.

PROPOSITION 2. Let M be a locally dilation manifold. Then M is
globally conformal Heisenberg.

PROOF. Any dilation of H_{n} is a CR diffeomorphism so that a locally
dilation manifold is in particular locally Heisenberg. Let \theta_{|U}=e^{2u}\varphi^{*}\theta_{1} and
\theta_{|V}=e^{zv}\phi^{*}\theta_{2} (where \theta_{1}=dt+i\sum_{a=1}^{n}(z^{a}d\overline{z}^{a}-\overline{z}^{a}dz^{a}) and \theta_{2}=ds+i\sum_{a=1}^{n}(w^{a}d\overline{w}^{a}

-\overline{w}^{a}dw^{a})) . Then F^{*}\theta_{2}=\lambda\theta_{1} with \lambda=|r\delta_{a}^{a}|^{2}=r^{2}n^{2} so that u=v+\log n|r|

(and M follows to be globally conformal Heisenberg), Q. E. D.

THEOREM 4. Let M be a globally conformal Heisenberg manifold.
If M is locally realizable and its Lee form is exact then M admits a global
pseudO-Einstein structure.

PROOF. As (M, \mathscr{H}, \theta) is globally conformal Heisenberg, there is an
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open cover \mathscr{U}=\{U_{j}\}_{j\in f} and a family \{u_{j}\}_{j\in f} , u_{j}\in C^{\infty}(U_{j}) , and local coordi-

nates \varphi_{j}=(z_{j}^{a}, t_{j}) : U_{j}arrow H_{n} so that \theta_{|U_{j}}=e^{2u_{j}}\{dt_{j}+i\sum_{a=1}^{n}(z_{j}^{a}d\overline{z}_{j}^{a}-\overline{z}_{j}^{a}dz_{j}^{a})\} and u_{i}

-u_{j}=c_{ij}\in R on U_{i}\cap U_{j}\neq\emptyset . Let f=(c_{ij})\in \mathscr{C}^{1}(N(\mathscr{U}), R) be the corre-
sponding cochain. Note that f is a cocycle so that we may consider its
cohomology class [f]\in H^{1}(M, R) . Then [\omega] (the De Rham cohomology
class of the Lee form) corresponds to [f] under the isomorphism H_{DR}^{1}(M)

\approx H^{1}(M, R) . Let \mathscr{P} be the sheaf of CR-pluriharmonic functions on M and
\gamma(M)\in H^{1}(M, \mathscr{P}) the CR invariant cohomology class in Section 2. Let i :
\mathscr{C}^{1}(N(\mathscr{U}), R)arrow \mathscr{C}^{1}(N(\mathscr{U}), \mathscr{P}) be the natural cochain map. Since each dt_{j}

+i \sum_{a=1}^{n}(z_{j}^{a}d\overline{z}_{j}^{a}-\overline{z}_{j}^{a}dz_{J}^{a}) , j\in J , is Ricci flat (and in particular pseud0-Einstein)

it follows that i_{*}: H^{1}(M, R)arrow H^{1}(M, \mathscr{P}) maps [f] onto \gamma(M) .

5 Appendix.

Let M be a C^{\infty} manifold of real dimension 2n+1 . A CR structure on M
is a complex n-dimensional subbundle T_{1,0}(M)\subset T(M)\otimes C so that i)
T_{1,0}(M)\cap T_{0,1}(M)=(0) and ii ) [ T_{1,0}(M), T_{1,0}(M)]\subset T_{1,0}(M) , where T_{0,1}(M)=

\overline{T_{0,1}(M)} . A pair (M, T_{1,0}(M)) is a CR manifold (of CR dimension n). Set
H(M)=Re\{T_{1,0}(M)\oplus T_{0,1}(M)\} . Then H(M) is a real rank 2n vector sub-
bundle of T(M) (the Levi distribution of M). It carries the complex
structure J(Z\dagger \overline{Z})=i(Z-\overline{Z}) , for any Z\in T_{1,0}(M) . Let F_{x}\subset T_{x}^{*}(M) con-
sist of all tangent covectors f so that Ker(f)\supseteq H_{x}(M) , x\in M . Assume
from now on that M is orientable. Then the real line bundle Farrow M

admits global nowhere vanishing sections (termed pseudohermitian struc-
tures). With a choice \theta\in\Gamma^{\infty}(F) of pseudohermitian structure on M we
associate the Levi form L_{\theta}(Z, W)=L_{\theta}(\overline{Z},\overline{W})=0 , L_{\theta}(Z,\overline{W})=-i(d\theta)(Z ,
\overline{W}) and L_{\theta}(\overline{Z}, W)=\overline{L_{\theta}(Z,\overline{W})}, for any Z, W\in T_{1,0}(M) . The CR manifold
M is nondegenerate (respectively strictly pseudoconvex) if, for some
choice of \theta , L_{\theta} is nondegenerate (respectively positive-definite).

Let M be a nondegenerate CR manifold. Its Webster metric g_{\theta} is
given by g_{\theta}(X, T)=0 , g_{\theta}(T. T)=1 and g_{\theta}(X, Y)=G_{\theta}(X, Y) where:

(A.O) G_{\theta}(X, Y)= \frac{1}{2}\{(d\theta)(X, JY)-(d\theta)(JX, Y)\}

for any X, Y\in H(M) . Here T is the unique globally defined nowhere
vanishing tangent vector field on M transverse to H(M) and subject to:

(A.0) T\rfloor\theta=1 , T\rfloor d\theta=0

Note that :
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(A.2) T(M)=H(M)\oplus\{RT\}

Extend J to an endomorphism J : T(M)arrow T(M) by setting JT=0 . We
recall (cf. [Dra]):

THEOREM 5. Let (M, T_{1,0}(M) , \theta, T) be a nondegenerate CR mani-
fold. There is a unique linear connection \nabla on M satisfying the following
axioms:

i) X\in T(M) , Y\in H(M)\supset\nabla_{X}Y\in H(M) ,
ii) \nabla J=0 ,
iii) \nabla g_{\theta}=0 ,
iv) \pi_{+}Tor(Z, W)=0 ,

for any Z\in T_{1,0}(M) , W\in T(M)\otimes C(whereTor is the torsion of \nabla and
\pi_{+}: T(M)\otimes C-arrow T_{1,0}(M) the natural projection).

This is the Webster connection of M. With respect to a (local) frame
\{T_{a}\} of T_{1,0}(M) it is given by:

(A.3) 2\Gamma_{\rho a}^{\rho}h_{\rho\overline{\sigma}}=T_{\beta}(h_{a}-)+T_{a}(h_{\beta^{-}})+

+g_{\theta}([T_{\beta}, T_{a}], T-)+g_{\theta}([T-, T_{\beta}], T_{a})+g_{\theta}([T-, T_{a}], T_{\beta})

(A.4) 2\Gamma_{\overline{\beta}a}^{\rho}h_{\rho\overline{\sigma}}=T
-(h_{a\overline{\sigma}})-T- (h_{a} -)+

+g_{\theta}([T_{\overline{\beta}}, T_{a}], T_{\overline{\sigma}})+g_{\theta}([T_{\overline{\sigma}}, T_{\overline{\beta}}], T_{a})+g_{\theta}([T_{\overline{\sigma}}, T_{a}], T_{\overline{\beta}})

(A.5) 2\Gamma_{0a}^{\rho}h_{\rho\overline{a}}=T(h_{a\overline{\sigma}})+

+g_{\theta}([T-T_{a}], T-)+g_{\theta}([T-, T], T_{a}) .

Let \tilde{\nabla} be the Levi-Civita connection of (M,g_{\theta}) . Then (cf. [Dra]):

(A.6) \tilde{\nabla}=\nabla+(\frac{1}{2}\Omega_{\theta}-A)\otimes T+\tau\otimes\theta+\theta J

where \Omega_{\theta}(X, Y)=g_{\theta}(X, JY) , A(X, Y)=g_{\theta}(X, \tau Y) and \tau : T(M)arrow T(M)

given by \tau X=Tor ( T-X) is the pseudohermitian torsion of the Webster
connection. Also stands for the symmetric product. Finally, we recall
(cf. [Dra]):

THEOREM 6. Let (M, T_{1,0}(M) , \theta, T) be a strictly pseudoconvex CR

manifold. Then \tau is self-adjoint {with respect to g_{\theta} ) and trace-less. Con-
sequently, the Levi distribution is minimal {in (M, g_{\theta})) .
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