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Lacunary sets on transformation groups
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The classical F. and \mathfrak{W} . Riesz theorem asserts that a measure \mu on the
circle group T_{-}. such that

\forall n<0,\overline{\mu}(n)=\int_{T}e^{-int}d\mu(t)=0

is absolutely continuous with respect to the Lebesgue measure on T
Many extensions of this result have been obtained. Helson-Lowdenslager
[15, Theorem 8. 2. 3] and De Leeuw-Glicksberg [5] extended the theorem
to compact abelian groups with certain ordered duals. Forelli extended it
to transformation groups such that R acts on a locally compact Hausdorff
space [8]. Recently, Yamaguchi got the compact analogue of Forelli’s
result [18, 19, 20]. He proved:

PROPOSITION [19]. Let (G, X) be a transformation group with Ga
compact abelian group which acts on a locally compact Hausdorff space X.
Let \sigma be a positive Radon measure on X which is quasi-invariant, and let
\Lambda be a Riesz set in \hat{G}. Let \mu be a measure in \mathscr{M}(X) with spec \mu

contained in \Lambda . Then spec \mu_{a} and spec \mu_{s} are both contained in spec \mu,

where \mu=\mu_{a}+\mu_{s} is the Lebesgue decomposition of \mu with respect to \sigma.

By using Yamaguchi’s technique, we get in [7] the same result for a
nicely placed subset \Lambda of \overline{G} . In this paper, we consider (G, X) as in the
proposition and introduce a new notion of lacunarity in the transformation
group case. It is what we call “

\sigma- lacunarity” (Definition 1. 4). The idea
is the following: let \Lambda be a subset of \hat{G} , we consider functions and mea-
sures on X with spectrum contained in \Lambda and we work with a “reference”
measure \sigma on X which is positive and quasi-invariant. We then define
the analogue of the usual lacunarity notions. We want to transfer
lacunarity properties on \hat{G} to \sigma- lacunarity properties.

In section 1, we give the necessary preliminaries and notation. Sec-
tion 2 is devoted to a positive result: a nicely placed (resp. Shapiro) subset
of \hat{G} is also \sigma-nicely placed (resp. \sigma-Shapiro). This is Theorem 2. 1 and
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its corollary. Of course, such a result does not hold for Riesz sets (see
Example 1. 3). Moreover \sigma-Shapiro sets are not necessarily \sigma-Riesz sets.
This leads us to introduce a smaller class contained in the class of \sigma-Riesz
sets. It is what we call the N(\sigma)-Riesz sets (Definition 3.14). In the clas-
sical case (when X=G and \sigma=m_{G} ) the usual class of Riesz sets in \overline{G} and
our class of N(\sigma)-Riesz sets both coincide. The first part of section 3 is
devoted to the study of the set N(\sigma) . Some examples are given. The
second part of section 3 is devoted to the study of identity approximations
in our context. We then get the implication: \sigma-Shapiro\Rightarrow N(\sigma)-Riesz
(Theorem 3. 13). We also extend Shapiro’s lemma [16]. In section 4, we
develop in our context the localization technique introduced by Meyer
[14]. We show that the classes of \sigma-Riesz sets, N(\sigma)-Riesz sets, \sigma-nicely
placed and \sigma-Shapiro sets are localizable. This leads us to another trans-
fer theorem: every Riesz subset of \hat{G} is N(\sigma)-Riesz (Theorem 4. 10). In
section 5, we use techniques of infinite dimensionnal Banach space theory
and we consider on transformation groups Lust-Piquard’s result [13] and
Bachelis and Ebenstein’s result [2].

\underline{Acknowledgment} . The first author wants to thank Professors
N. Asmar and G. Godefroy for many fruitfull conversations. Both authors
thank Professor H. Yamaguchi for his instructive remarks, and the referee
for his valuable advice.

1-Preliminaries and notation

Let G be a compact abelian group and X be a locally compact Haus-
dorff space. We say that (G, X) is a \underline{transformation}group such that G

acts on X if there exists a continuous map from G\cross X onto X:(g, x) –

g.x such that

\forall g\in G , \forall h\in G , \forall x\in X , e.x=x , g.(h.x)=(g.h).x .

Let us give a few examples. The following pairs (G, X) are transforma-
tion groups:

a) if G is a compact abelian subgroup of a locally compact group X.
b) let G be a compact abelian group and H be a subgroup of G .

Take for X the homogeneous space G/H.
c) let G be a metrizable compact abelian group and \mu be a probabil-

ity measure on G. Then take for X the Poisson space \prod_{\mu} of \mu[1] .
A Borel measure \sigma on X is called quasi-invariant if

\forall F\subseteq X , F Borel, (|\sigma|(F)=0)\Rightarrow(\forall g\in G, |\sigma|(gF)=0) .
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For example, let X=G be the circle group. Then to say that \sigma is quasi
-invariant means that every rotation carries the collection of \sigma-null sets
onto itself.

We denote by \mathscr{K}(X) the space of continuous functions on X with
compact support and by \mathscr{M}(X) the space of regular bounded measures on
X. By dg or m_{G} , we denote the Haar measure on G normalized to total
mass one. We denote by \overline{G} the dual of G. We denote by (G, X) a trans-
formation group and \sigma a positive quasi-invariant Radon measure on X.
We also denote by I_{E} the characteristic function of a set E. L^{1}(G, dg)=

L^{1}(G) , L^{1}(X, \sigma)=L^{1}(\sigma) and ||f||_{1} have their usual meaning. If \mu\in \mathscr{M}(X)

we write \mu\ll\sigma for “
\mu absolutely continuous with respect to \sigma

” We iden-
tify k\in L^{1}(\sigma) with the element of \mathscr{M}(X) absolutely continuous with
respect to \sigma which k defines. Then for a Borel set Y of X, we write:
k(Y)= \int_{Y}k(x)d\sigma(x) . For a Banach space Y. we denote by B(Y) the unit

ball of Y
The usual notion of convolution can be generalized in the following

way [18]. For \mu in \mathscr{M}(X) and \lambda in \mathscr{M}(G) , the convolution is defined by

( \lambda*\mu)(f)=\int_{X}\int_{G}f(g\cdot x)d\lambda(g)d\mu(x) for f\in \mathscr{K}(X) .

Then \lambda*\mu is an element of \mathscr{M}(X) and satisfies ||\lambda*\mu||\leq||\lambda|| . ||\mu|| . Further-
more, if \nu\in \mathscr{M}(X) and \lambda , \mu\in \mathscr{M}(G) , then (\lambda*\mu)*\nu=\lambda*(\mu*\nu) .

We also have the following property:

LEMMA 1. 1. Let \gamma be in \hat{G}, \nu be in \mathscr{M}(G) and \mu be in \mathscr{M}(X) .
Then (\gamma m_{G})*\nu*\mu=\hat{\nu}(\gamma)\cdot (\gamma m_{G}*\mu) .

PROOF.
(\gamma m_{G})*_{1/}*\mu=((\gamma m_{G})*_{f/})*\mu

=(\overline{\nu}(\gamma)\gamma m_{G})*\mu

=\overline{1\prime}(\gamma)(\gamma m_{G})*\mu .

We now give a characterization of quasi-invariant measures on X. It is
the compact analogue of De Leeuw and Glicksberg’s result [5], (see also
[18] ) .

LEMMA 1. 2. Let \lambda be in \mathscr{M}(X) . Then the following are equivalent:
(1) \lambda is quasi-invariant on X.
(2) |\lambda| and m_{G}*|\lambda| are equivalent.

PROOF. (1) implies (2). Let E be a \lambda-null Borel set. Then for all g
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in G , |\lambda|(g^{-1}.E)=0 and (m_{G}*| \lambda|)(E)=\int_{G}|\lambda|(g^{-1}.E)dg=0 . And m_{G}*|\lambda| is
absolutely continuous with respect to |\lambda| . On the other hand, let E be a
Borel subset of X such that (m_{G}*|\lambda|)(E)=0 , then for almost all g in G ,
|\lambda| (g^{-1}.E)=0 and |\lambda|(E)=0 .

(2) implies (1). Let E be such that (m_{G}*|\lambda|)(E)=0 . It follows that
|\lambda|(E)=0 . And \int_{G}|\lambda|(g^{-1}.(s.E))dg=(m_{G}*|\lambda|)(s.E)=0 for all s in G . But |\lambda|

and m_{G}*|\lambda| are equivalent. So |\lambda| is quasi-invariant.

Let \sigma be a positive quasi-invariant Radon measure on X. If \mu\ll\sigma ,
then for \lambda\in \mathscr{M}(G) , one has \lambda*\mu\ll\sigma . And we have the following inclusion:
\mathscr{M}(G)*L^{1}(\sigma)\subset L^{1}(\sigma) . More precisely, Gulick, Liu and Van Rooij proved
that \mathscr{M}(G)*L^{1}(\sigma)=L^{1}(\sigma)[10] . But usually, L^{1}(G)*\mathscr{M}(X)\not\leqq L^{1}(\sigma)[10] .
They proved the existence of a modular function \mathscr{T} such that \mathscr{T} is posi-

tive, locally integrable, defined on G\cross X and \int_{G\cross X}F(g, x)d(m_{G}\otimes\sigma)(g, x)=

\int_{G\cross X}F(g, g.x)\mathscr{T}(g, x)d(m_{G}\otimes\sigma)(g, x) for F in L^{1}(G\cross X) . Then, for f in
L^{1}(G) and k in L^{1}(\sigma) , we have:

(a) for almost all x in X

(f*k)(x)= \int_{G}f(g)k(g^{-1}.x)\mathscr{T}(g^{-1}, x)dg ;

(b) for all g in G

\int_{X}k(x)d\sigma(x)=\int_{X}k(g.x)\mathscr{T}(g, x)d\sigma(x) .

We can now define the spectrum of a measure \mu in \mathscr{M}(X)[18] . Let J(\mu)

be the set of all f in L^{1}(G) with f*\mu=0 . The \underline{spectrum} of \mu , denoted by
spec \mu or specc/A is the closed subset of \hat{G} where all the Fourier trans-
forms of functions in J(\mu) vanish. We have that s\in spec\mu if and only if
(sm_{G})*\mu\neq 0[18] . Of course, when X=G and \sigma=m_{G} , spec \mu is just the
support of \overline{\mu} . By Lemma 1.1, it follows that if \nu is in L^{1}(G) and \mu in
\mathscr{M}(X) , then spec(\nu*\mu)\subseteq supp(\overline{\nu})\cap spec(\mu) . Let us give an example:

EXAMPLE 1. 3. Let G be the circle group T. X=G\cross G and \sigma=m_{G}\otimes

m_{G} . For g in G and (\#, y) in X, the action of G on X is given by the
application : (g, (x, y)) - (gx, y) . For \mu in \mathscr{M}(X) , the spectrum spec \tau\mu is
exactly the projection of supp \hat{\mu} on the first coordinate.

Let \Lambda be a subset of \overline{G} , we will denote by \mathscr{M}_{\Lambda}(X) (resp, L_{\Lambda}^{1}(\sigma) ) the
subspace of \mathscr{M}(X) (resp. L^{1}(\sigma) ) of measures (resp. functions) with spec-
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trum in \Lambda . We are now ready to give our definition of lacunary sets.

DEFINITION 1. 4. Let \Lambda be a subset of \hat{G} :
a) \Lambda is \sigma-Riesz if every measure in \mathscr{M}_{\Lambda}(X) is absolutely continuous

with respect to \sigma .
b) \Lambda is \sigma- nicely placed if the unit ball of L_{\Lambda}^{1}(\sigma) is closed in L^{p}(\sigma) ,

(0<p<1) .
c) \Lambda is \sigma- Shapiro if every subset of \Lambda is \sigma-nicely placed.

Of course, similar definitions can be given for \Lambda(p)-sets, Sidon sets,
see [12], [15]. This paper is devoted to the study of these sets.

REMARK 1. 5. As the space (L^{p}(\sigma), ||\cdot||_{p}) , 0<p<1 , is metrizable, the
unit ball of L_{\Lambda}^{1}(\sigma) is closed in L^{p}(\sigma) if and only if it is sequentially closed
in L^{p}(\sigma) .

2-Transference of nicely placed and Shapiro sets

THEOREM 2. 1. Let (G, X) be a tranformation group with G metriza-
ble. If \Lambda is a nicely placed subset of \hat{G}, then \Lambda is \sigma- nicely placed.

PROOF. Let (f_{n}) be a sequence in B(L_{\Lambda}^{1}(\sigma)) , which converges to f in
|| ||_{p} . Then, up to a subsequence, we may assume that (f_{n}) converges to
f almost everywhere. Let s be in \hat{G}\backslash \Lambda : we have to prove that, s*f=0.
We have that, for all n, s*f_{n}=0 . By equality (a) in section 1, we have
that for almost all x in X :

(s*f_{n})(x)= \int_{G}s(g)f_{n}(g^{-1}.x)\mathscr{T}(g^{-1}, x)dg .

We consider the following functions defined on G : for almost all x in X,

k_{n,x}(g)=f_{n}(g.x)\mathscr{T}(g, x) ,
k_{X}(g)=f(g.x)\mathscr{T}(g, x) .

We will show the following assertions: for almost all x in X,
(1) supp \hat{k_{n,x}}\subseteq\Lambda ,
(2) k_{n,x}\in L^{1}(G) ,
(3) k_{n,x} converges to k_{x} almost everywhere,
(4) \varliminf||k_{n,x}||_{1} is finite.

(1) One has, for almost all x in X :

(s*f_{n})(x)= \int_{G}s(g)k_{n,x}(g^{-1})dg
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= \int_{G}s(g^{-1})k_{n,x}(g)dg

=\hat{k_{n,x}}(s) .

Therefore, for almost all x in X, supp \hat{k_{n,x}}\subseteq\Lambda .
(2)

||f_{n}||_{1}= \int_{X}|f_{n}(x)|d\sigma(x)

= \int_{G}\int_{X}|f_{n}(x)|d\sigma(x)dg .

By equality (b) of section 1, one has

||f_{n}||_{1}= \int_{G}[\int_{X}|f_{n}(g.x)|\mathscr{T}(g, x)d\sigma(x)]dg

= \int_{X}[\int_{G}|f_{n}(g.x)|\mathscr{T}(g, x)dg]d\sigma(x) .

Then, for almost all x in X, \int_{G}|f_{n}(g.x)|\mathscr{T}(g, x)dg is finite. This proves

assertion (2).
(3) This assertion will follow directly from the following lemma:

LEMMA 2. 2. Let E be a Borel subset of X. Then the following
assertions are equivalent :

(i) \sigma(E)=0 .
(ii) m_{G}(\{g\in G:g.x\in E\})=0 , for almost all x in X.

PROOF. The proof follows from the equality

\forall x\in X , m_{G}( \{g\in G:g.x\in E\})=\int_{G}I_{E}(g.x)dg

and from the quasi-invariance of \sigma .
(4) We will follow the proof of Lemma 2. 8 of [9].
For each l and n, we consider the set A_{n,l}=\{x\in X:||k_{n,x}||_{1}\geq l\} . One

has

l \sigma(A_{n,l})\leq\int_{X}||k_{n,x}||_{1}d\sigma(x)=||fn||_{1} .

And, \forall n , \forall l , \sigma(A_{n,l})\leq l^{-1} . Let us consider B_{l}=\{x\in X, \exists infinitely many
n set x\not\in A_{n,l} }. One has X \backslash B_{l}=\bigcup_{j}\bigcap_{n\geq j}A_{n,l} . And \sigma(\bigcap_{n\geq j}A_{n,l})\leq l^{-1} for
every j . Therefore, for all l , \sigma(X\backslash B_{l})\leq l^{-1} and \sigma(X\backslash \bigcup_{l\geq 1}B_{l})=0 . If x

does not belong to this set, the condition (4) is satisfied.
Since \Lambda is nicely placed in \overline{G} , then for almost all x in X, k_{X} is in

L_{\Lambda}^{1}(G) . That is, for almost all x in X,
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\forall s\not\in\Lambda , \overline{k}_{x}(s)=\int_{G}s(g^{-1})f(g.x)\mathscr{T}(g.x)dg

=(s*f)(x)
=0 .

This proves the theorem.

COROLLARY 2. 3. Let (G, X) be a transformation group with G metr-
izable. If \Lambda is a Shapiro subset of \overline{G}, then \Lambda is a \sigma- Shapiro set.

Let us come back to Example 1. 3. We know that N is a Shapiro

subset of Z[9] , then by the corollary, N is a \sigma-Shapiro set. If we only
suppose \Lambda to be a Riesz subset of \overline{G} , there is no reason for \Lambda to be a
\sigma-Riesz set as we can see with our example. Indeed, there are many

Riesz sets in \overline{G}=Z which are not \sigma-Riesz. For example, consider \Lambda a
subset of \overline{G} containing 0. Let f be in L_{\Lambda}^{1}(G) such that \hat{f}(0)\neq 0 and \mu be a
measure in \mathscr{M}_{s}^{+}(G) . Then it is easy to see that the measure f\otimes\mu in

\mathscr{M}_{\Lambda}(X) is not absolutely continuous with respect to \sigma . This shows also
that the empty set is the only \sigma-Riesz set. Therefore, N is not a \sigma-Riesz
set. This gives an example of a \sigma-Shapiro set which is not a \sigma-Riesz set.
This situation is different from the usual one where every Shapiro set of \hat{G}

is a Riesz set [9]. As seen in this example, the notion of \sigma-Riesz set is
much too strong. It is why we will introduce a new notion. It is what
we call N(\sigma)-Riesz set (see Definition 3. 14). And we will get the follow-
ing implications:

\sigma-Shapiro set\supset N(\sigma)- Riesz set (Theorem 3. 13) (1)

Riesz set\supset N(\sigma)- Riesz set (Theorem 4. 10) (2)

The proof of implication (1) is based on Godefroy’s ideas [9]. We need
to know more about the different kinds of convergence of convolutions
between identity approximations on G and measures on X. It is the
object of the next section. The proof of implication (2) uses localization
techniques and Yamaguchi’s result [18, 19] . This is postponed to section 4.

3. The set N(\sigma) and identity approximations

When X=G, it is known [3] that there exists an identity approxima-
t oo (f_{V})_{V\in \mathcal{J}^{-}} in B(L^{1}(G)) such that

(1) if f\in L^{1}(G) , then \lim_{-\mathcal{T}}f_{V}*f=f in L^{1}(G) , and

(2) if \mu\in \mathscr{M}_{s}(G) , then \lim_{\mathcal{J}^{-}}f_{V}*\mu=0 in Haar measure.

In the second part of this section, we will extend this result to the
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transformation group case. Let \mathscr{I}^{-} be a filter of symmetric neighbor-
hoods of e in G . We let f_{V}=m_{G}(V)^{-1}I_{V} . It is easy to check that if f\in

L^{1}(\sigma) , then \lim_{J^{-}}f_{V}*f=f in L^{1}(\sigma) . The problem in proving the second

assertion for \mu\in \mathscr{M}_{s}(X) is that the measure f_{V}*\mu on X is not necessarily
absolutely continuous with respect to \sigma . This leads us to consider a set
N(\sigma) introduced by Gulick, Liu and Van Rooij [10], see also [11].

a-The set N(\sigma)

N(\sigma)=\{\mu\in \mathscr{M}(X):\forall f\in L^{1}(G) f*\mu\ll\sigma\} .

In this section, we will recall some facts on this set [10], [11], and give
some examples. We have the following inclusions: L^{1}(\sigma)\subseteq N(\sigma)\subseteq \mathscr{M}(X) .
If X=G and \sigma=m_{G} then N(\sigma)=\mathscr{M}(X) . On the other hand, if the action
is given by (g, x)arrow x for all g in G and x in X, then N(\sigma)=L^{1}(\sigma) . This
is also the case when G is discrete. Let us come back to Example 1. 3:
N(\sigma)\neq \mathscr{M}(X) and N(\sigma)\neq L^{1}(\sigma)[10] . In that example, we can say more
about N(\sigma) . We get

PROPOSITION 3. 1. Let (G, X) be as in Example 1. 3. Let \mu_{1} , \mu_{2} be
two non zero measures on G and \mu=\mu_{1}\otimes\mu_{2} . Then \mu is in N(\sigma) if and
only if \mu_{2} is absolutely continuous with respect to m_{G} .

PROOF. The proof follows from the fact that f*(\mu_{1}\otimes\mu_{2})=(f*\mu_{1})\otimes\mu_{2}

for f in L^{1}(G) .
Let us now consider other examples.

EXAMPLE 3. 2. Let G=T and X=T and m_{T} be the Haar measure
on T Define for a Borel subset Y of X, \sigma(Y)=m_{T}(Y) . The action of ,

G on X is given by

\pi(e_{7}^{it}e^{ix})=e^{i(t+x)} .

It is easy to see that \sigma is quasi-invariant and N(\sigma)=\mathscr{M}(X) .

EXAMPLE 3. 3. Let G be a compact abelian group and H be a closed
subgroup of G . Then the action of G on G/H is given by \pi(g,\tilde{x})=g\mp x

where \tilde{x}=x+H for some x in G. Let \sigma=m_{G/H} . Then N(\sigma)=\mathscr{M}(X) .

EXAMPLE 3. 4. Let G=T. X=T\cross T and \sigma=m_{T}\otimes m_{T} . Let \alpha be a
real number. The action of G on X is defined by

\pi_{a}(e^{ir}, (e^{ix}. e^{iy}))=(e^{i(x+r)}, e^{i(y+ar)}) .

It is also easy to see that \sigma is quasi-invariant and that for all u , \sigma(G.u)=0 ,

this N(\sigma)\neq \mathscr{M}(X) .
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REMARKS 3. 5.
(1) Let us recall the nice description of N(\sigma) that Liu, Van Rooji

and Wang got in [11]. Let G_{0} be an open set which is also a countable
union of compact sets and a subgroup of G. Let I_{\sigma} be the \sigma- ideal in the
\sigma-algebra of all Borel subsets defined by

I_{\sigma}= { Y : Borel \exists B\subset Y Borel invariant under G_{0}\sigma(B)=0}.

Then a measure belongs to N(\sigma) if and only if it vanishes on I_{\sigma} . And it
follows that every measure in \mathscr{M}(X) which is absolutely continuous with
respect to a measure in N(\sigma) is also in N(\sigma) .

(2) Let \mu be another positive quasi-invariant Radon measure on X.
If \mu belongs to N(\sigma) , then it is easy to see that \mu is absolutely continuous
with respect to \sigma . Then, when N(\sigma)=\mathscr{M}(X) , every positive quasi-invar-
iant Radon measure on X is absolutely continuous with respect to \sigma (the

converse is false). In this situation, every \mu-Riesz set ( \mu a positive quasi
-invariant Radon measure on X) is a \sigma-Riesz set.

(3) Gulick, Liu and Van Rooij studied the case: N(\sigma)=\mathscr{M}(X) (for G

an abelian locally compact group) [10]. Let us say a few words on the
case: L^{1}(\sigma)=N(\sigma) . It is easy to get:

PROPOSITION 3. 6. The following assertions are equivalent:
1) L^{1}(\sigma)=N(\sigma) .
2) L^{1}(G)*N(\sigma)=N(\sigma) .
3) \forall\mu\in N(\sigma) , \exists g\in G , \delta_{g}*\mu\in L^{1}(\sigma) .
4) \forall\mu\in N(\sigma) , \forall g\in G , \delta_{g}*\mu\in L^{1}(\sigma) .

We close the first part of this section by giving the descriptive com-
plexity of the set N(\sigma) when X is \sigma-compact metrizable and G is metriza-
ble. Let \mathscr{M}^{1}(X) denote the unit ball of \mathscr{M}(X) . It is a polish space when
equipped with the vague topology. Let N^{1}(\sigma)=N(\sigma)\cap \mathscr{M}^{1}(X) . Then, we
have the following result:

PROPOSITION 3. 7. N^{1}(\sigma) is a F_{\sigma 8} set in \mathscr{M}1(X) .

PROOF. Let (f_{n}) be an identity approximation in L^{1}(G) . It is easy
to see that

N^{1}(\sigma)=\{\mu\in \mathscr{M}^{1}(X):\forall n, f_{n}*\mu\ll\sigma\} .

Let
\phi_{n} : \mathscr{M}^{\overline{1}}(X)arrow \mathscr{M}^{1}(X) .

\mu^{-}arrow f_{n}*\mu

Then \phi_{n} is continuous for the vague topology [4]. But N^{1}(\sigma)=
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\bigcap_{n}\phi_{n}^{-1}(L^{1}(\sigma)\cap \mathscr{M}^{1}(X)) . Let us compute the complexity of the set L^{1}(\sigma)\cap

\mathscr{M}^{1}(X) :
\mu\ll\sigma\Leftrightarrow|\mu|\ll\sigma

\mu\ll\sigma\Leftrightarrow\forall\epsilon>0 \exists\eta>0 \forall B\subset X, B Borel \sigma(B)<\eta\Rightarrow|\mu|(B)\leq\epsilon ;
\mu\ll\sigma\Leftrightarrow\forall k>0 \exists p>0 \forall B\subset X , B Borel \sigma(B)<1/p\Rightarrow|\mu|(B)\leq 1/k .

It is enough to check the last implication on finite unions of basis open
sets. Moreover these unions form a countable set since X is \sigma-compact
metrizable. Let us denote by ( U_{l}) the members of this last set. Then
we get

\mu\ll\sigma\Leftrightarrow\forall k>0 \exists p>0 \forall l \sigma(U_{l})<1/p\Rightarrow|\mu|(U_{l})\leq 1/k .
Thus

L^{1}( \sigma)\cap \mathscr{M}(X)=\bigcap_{k}\bigcup_{p}\bigcap_{\{l\sigma(U_{l})<p^{-1}\}\{\mu:|\mu|(U_{l})\leq k^{-1}\}} .
Let \mathscr{K}_{U}^{+}(X) be the set of positive continuous functions with compact sup-
port. It is easy to see that for any open set U, we have |\mu| ( U)=su|\mu|x_{u}^{+}(P)(f)

where

\mathscr{K}_{U}^{+}(X)=\{f\in \mathscr{K}^{+}(X):\forall x\in X f(x)\leq I_{U}(x)\} .
So

|\mu|(U_{l})\leq 1/k\Leftrightarrow\forall f\in \mathscr{K}_{U\iota}^{+}(X) |\mu|(f)\leq 1/k .

It follows that

L^{1}( \sigma)\cap \mathscr{M}^{1}(X)=\bigcap_{k}\bigcup_{p}\bigcap_{\{l\sigma(U_{l})<p^{-1}\}}\bigcap_{f\in.r_{U_{l}}^{+}(X)}\{\mu:|\mu|(f)\leq k^{-1}\} .
For f in \mathscr{K}_{U}^{+}(X) let

\phi_{f} : \mathscr{M}^{1}(X)arrow C .
\mu->|\mu|(f)

Then \psi_{f} is l.s.c. for the vague topology [4] and \{\mu:|\mu|(f)\leq k^{-1}\} is closed.
Thus L^{1}(\sigma)\cap \mathscr{M}^{1}(X) is a F_{\sigma 8} set and N^{1}(\sigma) is also a F_{\sigma\delta} set since for any
n, \phi_{n} is continuous.

is the following

THEOREM 3. 8. Suppose \sigma is in \mathscr{M}^{+}(X) . Then there exists a net of
functions \{f_{a}\} in B(L^{1}(G)) such that for \mu in \mathscr{M}_{S}(X)\cap N(\sigma) , the net \{f_{a}*

\mu\} converges in \sigma- measure to zero.
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PROOF. The proof follows the one of Shapiro in the group case [16].

Consider \mathscr{U} a basis of symmetric neighborhoods of e in G . We direct the
net in the usual way: U\geq V if U\subseteq V . For V\in \mathscr{U} , let f_{V}=m_{G}(V)^{-1}I_{V} .
Since |f_{V}*\mu|\leq f_{V}*|\mu| , we may suppose without loss of generality that \mu is a
positive measure. Let \epsilon>0 and a>0 . Since \mu is a regular and singular
measure on X, there exists a compact set H and an open set O such that
H\subset O\subset X and

\mu(O)=\mu(X)=||\mu|| ,

\mu(O\backslash H)<\frac{\epsilon a}{2} ,

\sigma(O)<\frac{\epsilon}{2} .

Define \lambda in \mathscr{M}(X) as follows: \lambda(B)=\mu(B\cap H) for B a Borel subset of X.

Then \mu=\lambda+\theta where \theta(X)<\frac{\epsilon a}{2} . There exists a neighborhood W in \mathscr{U}

such that W.H\subseteq O . Since \mu is in N(\sigma) , f_{W}*\mu\ll\sigma and f_{W}*\lambda\ll\sigma . As \sigma and
f_{W}*\mu are finite measures on X, one has:

(I_{W}* \lambda)(X\backslash O)=\int_{G}I_{W}(g)\lambda(g^{-1}.(X\backslash O))dg

= \int_{G}I_{W}(g)\mu((g^{-1}.(X\backslash O))\cap H)dg

=0

since the set (g^{-1}.(X\backslash O))\cap H is empty, when g\in W .
For V\subset W .

(f_{V}* \mu)(X\backslash O)=\int_{x\backslash 0}(f_{V}*\mu)(x)d\sigma(x)

= \int_{x\backslash 0}(f_{V}*\theta)(x)d\sigma(x)

\leq(f_{V}*\theta)(X)

\leq||f_{V}||_{1}\theta(X)

\leq\frac{\epsilon a}{2} .

Let A=\{x\in X\backslash O:(f_{V}*\mu)(x)\geq a\} , then \sigma(A)\leq\frac{\epsilon}{2} and \sigma(\{f_{V^{*\mu}}\geq a\})\leq\frac{\epsilon}{2}

+\sigma(O)<\epsilon . This proves the theorem.

COROLLARY 3. 9. Suppose that \sigma is in \mathscr{M}^{+}(X) . Then there exists a

net of functions \{f_{a}\} in B(L^{1}(G)) such that
(1) for f\in L^{1}(\sigma) , the net \{f_{a}*f\} converges in L^{1} -norm to f,

(2) for \mu\in \mathscr{M}_{s}(X)\cap N(\sigma) , the net \{f_{a}*\mu\} converges in \sigma- measure to
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zero.

COROLLARY 3. 10. Let (G, X) be a transformation group with G
metrizable. Let \Lambda be a \sigma- nicely placed subset of \hat{G} and \mu be in N_{\Lambda}(\sigma) .
Then spec \mu_{a} and spec \mu_{s} are both contained in \Lambda .

PROOF. Since \mu is bounded and regular on X, there exists a \sigma-com-
pact open set X_{0} in X with G.X_{0}=X_{0} and a quasi-invariant measure \sigma’ in
\mathscr{M}^{+}(X) such that \mu is concentrated on X_{0} and \sigma’|_{Xo}-\sigma|_{x_{0}} . Hence \mu=\mu_{a}

+\mu_{s} is also the Lebesgue decomposition of \mu with respect to \sigma’ More-
over \mu\in N(\sigma) implies \mu\in N(\sigma’) . Thus, we may assume that \sigma is a mea-
sure in \mathscr{M}^{+}(X) that is quasi-invariant. Let (f_{n}) be an identity approxima-
tion satisfying Corollary 3.9. Since spec (f_{n}*\mu)\subset spec\mu , the functions (f_{n}*

\mu)are in L_{\Lambda}^{1}(\sigma) . And by Corollary 3.9, the sequence (f_{n}*\mu) converges in
\sigma-measure to \mu_{a} . Since (f_{n}*\mu) is bounded in L^{1}(\sigma) and \sigma is finite, (f_{n}*\mu)

also converges in L^{p}(\sigma)(0<p<1) . Then spec \mu_{a} is contained in \Lambda and
spec \mu_{s} is also contained in \Lambda .

By Theorem 2. 1, it follows

COROLLARY 3. 11. Let (G, X) be a transformation group with G
metrizable. If \Lambda is a nicely placed subset of \overline{G} and \mu is in N_{\Lambda}(\sigma) , then
both spec \mu_{a} and spec \mu_{s} are contained in \Lambda .

Let us mention that we got the same result (without the restriction for
\mu to be in N(\sigma)) by using Yamaguchi’s technique [7].

Let \mathscr{C}\subset \mathscr{P}(\overline{G}) be a family of subsets of \hat{G} . We denote by \mathscr{C}^{0} the
biggest hereditary class contained in \mathscr{C} . that is

\mathscr{C}^{0}=\{\Lambda\subset\overline{G} :\forall\Lambda’\subset\Lambda ,_{\Lambda’\in \mathscr{C}\}} .

LEMMA 3. 12 (cf. [9, Lemma 1.1]). Let \mathscr{C}\subset_{\mathscr{P}}(\overline{G}) be a family of sub-
sets of \hat{G}. Suppose that every \Lambda\in \mathscr{C} satisfies the condition

(*) \mu\in N_{\Lambda}(\sigma) implies \mu_{s}\in \mathscr{M}_{\Lambda}(X) .

Then every \Lambda\in \mathscr{C}^{0} satisfies that \mu\in N_{\Lambda}(\sigma) implies \mu\ll\sigma.

PROOF. Let \Lambda\in \mathscr{C}^{0} and \mu\in N_{\Lambda}(\sigma) . By hypothesis, \mu_{s}\in \mathscr{M}_{\Lambda’}(X) .
Suppose that \mu_{s}\neq 0 . Then there exists \alpha\in\Lambda such that \alpha*\mu_{s}\neq 0 . Consider
\Lambda’=\Lambda\backslash \{\alpha\} and \mu’=\mu-\alpha*\mu . Then \Lambda’ satisfies the condition (*) . Since
spec (\mu’)\subset\Lambda’ and \mu\in N_{\Lambda’}(\sigma) , we have \mu_{s}=(\mu’)_{s}\in \mathscr{M}_{\Lambda’}(X) . Since \alpha\not\in\Lambda’ . we
have \alpha\star\mu_{s}=0 . This gives a contradiction.

By Corollary 3. 10 and Lemma 3. 12, we have
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THEOREM 3. 13. Let (G, X) be a transformation group with G metr-
izable. Let \Lambda be \sigma- Shapiro in \overline{G}. If \mu is in N_{\Lambda}(\sigma) , then \mu is absolutely

continuous with respect to \sigma.

This leads us to introduce a new class of \sigma- lacunary sets

DEFINITION 3. 14. A set \Lambda in \overline{G} is N(\sigma)-Riesz if every measure \mu in
N_{\Lambda}(\sigma) is absolutely continuous with respect to \sigma .

Of course when N(\sigma)=\mathscr{M}(X) the notion of N(\sigma)-Riesz set coincides
with the usual notion of \sigma-Riesz set. See also Examples 3. 2 and 3. 3.
And we proved (Theorem 3. 13) that every \sigma- Shapiro set is a N(\sigma)-Riesz

set.

4. Localization techniques in transformation groups

A way to construct lacunary sets is the localization technique

introduced by Meyer [14] and used by Godefroy [9] and Tardivel [17]. If
G is a compact abelian group, we denote by \tau the Bohr topology on \hat{G} .

It is the topology induced on \overline{G} by the pointwise convergence on G . If
\mathscr{C}\subset \mathscr{P}(\hat{G}) is a family of subsets of \hat{G} , we will say that \mathscr{C} is \underline{localizable} if

the following property holds:
\Lambda\in \mathscr{C}\Leftrightarrow\forall\alpha\in\overline{G} , \exists V_{a} , a \tau-neighborhood of \alpha in \hat{G} ,
(\Lambda\cap V_{a})\in \mathscr{C}

and that \mathscr{C} is if

\Lambda\in \mathscr{C}\Leftrightarrow\forall E\in \mathscr{C} , \forall\alpha\in\overline{G}\backslash E , \exists V_{a} , a \tau-neighborhood of \alpha in
\hat{G} , (\Lambda\cap V_{a})\in \mathscr{C} .

Meyer proved that the class of Riesz sets is localizable [14]. Godefroy

proved that the classes of nicely placed sets, of Shapiro sets and the class
\mathscr{C}_{0}=\{\Lambda\subset\hat{G}:\forall\mu\in \mathscr{M}_{\Lambda}(G), \mu_{s}\in \mathscr{M}_{\Lambda}(G)\} are localizable [9], Tardivel proved

that the class of Riesz sets is strongly localizable [17]. We will give other
examples.

LEMMA 4. 1. Let \nu be a discrete measure on G and \mu_{s} be a singular

bounded measure on X with respect to \sigma. Then (\nu*\mu)_{s}=\nu*\mu_{s}

PROOF. Let us write \nu=\sum_{n}a_{n}\delta_{gn} with a_{n}\in C , \sum_{n}|a_{n}|<\infty and g_{n}\in G .

Since \mu_{s} is singular, there exists two Borel sets B_{1} and B_{2} in X such that
B_{1}\cap B_{2}=\emptyset , B_{1}\cup B_{2}=X , |\mu_{s}|(B_{1})=0 and \sigma(B_{2})=0 . Consider B= \bigcup_{n}g_{n}.B_{2} .
It is a Borel set. Let E be a Borel subset of X such that E\cap B=\emptyset , then
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\nu*\mu_{s}(E)=\sum_{n}a_{n}\mu_{s}(g_{\overline{n}}^{1}.E)=0 . This shows that \nu*\mu_{s} is concentrated in B.

On the other hand, \sigma(B_{2})=0 implies that \sigma(g_{\overline{n}}^{1}.B_{2})=0 for all n by the
quasi-invariance of \sigma . Thus \sigma(B)=0 . This proves the lemma.

PROPOSITION 4. 2. Let H be either \mathscr{M}(X) or N(\sigma) . The class
\mathscr{C}_{H}=\{\Lambda\subset\overline{G} : \forall\mu\in H, spec\mu\subset\Lambda\supset\mu\ll\sigma\}

is strongly localizable.

PROOF. Let \Lambda\subset\overline{G} be such that
(1) \forall E\in \mathscr{C}_{H} , \forall\alpha\in\hat{G}\backslash E , \exists V_{a} , ( V_{a}\cap\Lambda)\in \mathscr{C}_{H} .

Let E\in \mathscr{C}_{H} , \alpha\in\hat{G}\backslash E and \mu\in H such that spec \mu\subset\Lambda . There exist a
\tau-neighborhood V_{a} of \alpha and a discrete measure \nu , on G such that

(2) \{

\overline{\nu}(\alpha)=1

\overline{\nu}(\lambda)=0 \forall\lambda\in\overline{G}\backslash V_{a}

By Lemma 1. 1, we have : \alpha*\nu*\mu=\hat{\nu}(\alpha)(\alpha*\mu)=\alpha*\mu and spec (\nu*\mu) is
contained in V_{a}\cap\Lambda . By (1), \nu*\mu\ll\sigma . We have \nu*\mu=\nu*(\mu_{a}+\mu_{s})=(\nu*\mu_{a})

+(\nu*\mu_{s}) and \nu*\mu_{a}\ll\sigma . Therefore \nu*\mu_{s}=(\nu*\mu)_{s}=0 . We have : \alpha*\mu_{s}=\alpha*\nu

*\mu_{s}=0 , and \alpha\not\in specks . It follows that spec \mu_{s} is contained in E which
belongs to \mathscr{C}_{H} . Thus \mu_{s}=0 .

COROLLARY 4. 3. The following classes are strongly localizable:
1) The class of \sigma- Riesz sets.
2) The class of N(\sigma)-Riesz sets.

PROPOSITION 4. 4. Suppose \sigma\in \mathscr{M}^{+}(X) . Then the class of \sigma- nicely
placed sets is localizable.

We need a lemma

LEMMA 4. 5. Suppose \sigma\in \mathscr{M}^{+}(X) . Let \nu be a discrete measure on G.
Let f\in L^{1}(\sigma) and let (f_{n}) be a sequence in B(L^{1}(\sigma)) such that (f_{n}) con-
verges to f in L^{p}(\sigma) , 0<p<1 . Then there exists a subsequence (f_{n_{k}}) of
(f_{n}) such that (\nu*f_{n_{k}}) converges to \nu*f in L^{p}(\sigma) , where \nu*f(x)=\int_{G}f(g^{-1}.x)

\mathscr{T}(g^{-1}, x)d\nu (g) .

PROOF. There exists a subsequence (f_{n_{k}}) of (f_{n}) such that (f_{n_{k}}) con-
verges to f almost everywhere. Put \nu=\sum_{n}a_{n}\delta_{gn} , g_{n}\in G and \sum_{n}|a_{n}|<\infty .

For \epsilon>0 , there exists \nu’=\sum_{p\in J}a_{p}\delta_{gp} , where J is a finite set, such that
||\nu-\nu’||<\epsilon . Then
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||\nu*f_{n_{k}}-\nu*f||_{p}^{p}\leq||\nu*f_{n_{k}}-\nu’*f_{n_{k}}||_{p}^{p}+||\nu’*f_{n_{k}}-\nu’*f||_{p}^{p}+||\nu’*f-\nu*f||_{p}^{p}

where || \nu*f||_{p}^{p}=\int_{X}|\nu*f(x)|^{p}d\sigma(x) . Since ||f_{n_{k}}||_{1}\leq 1 , we have

||( \nu-\nu’)*f_{n_{k}}||_{p}^{p}=\int_{X}|\int_{G}f_{n_{k}}(g^{-1}. x)\mathscr{T}(g^{-1}. x)d(\nu-\nu’)(g)|^{p}d\sigma(x)

\leq(\int_{X}\int_{G}|f_{n_{k}}(g^{-1}.x)|\mathscr{T}(g^{-1}. x)d|\nu-\nu’|(g)d\sigma|(x))^{p}\sigma(X)^{1-p}

\leq\sigma(X)^{1-p}\epsilon^{p} .

Similarly, we have
||(\nu-\nu’)*f||_{p}^{p}\leq\sigma(X)^{1-p}\epsilon^{p}

Since J is finite and \sigma is quasi-invariant, \nu’*f_{n_{k}} converges to \nu’*f almost
everywhere. Moreover ||\nu’*f_{n_{k}}||_{1}\leq||\nu|| and ||\nu’*f||_{1}\leq||\nu|| . Hence

\lim_{karrow\infty}||\nu’*f_{n_{k}}-\nu’*f||_{p}=0 .

Thus we have

\lim_{karrow\infty}||\nu*f_{n_{k}}-\nu*f||_{p}=0 ,

which proves the lemma.

PROOF OF PROPOSITION 4. 4. Let \Lambda\subset\overline{G} be such that \forall\alpha\in\overline{G} , \exists V_{a} ,
V_{a}\cap\Lambda is \sigma-nicely placed. Let (f_{n}) in B(L_{\Lambda}^{1}(\sigma)) be such that (f_{n}) con-
verges to f in L^{p}(\sigma) , 0<p<1 . Let \alpha\not\in\Lambda . We need to prove that \alpha*f=0 .
There exists a discrete measure \nu on G satisfying (2). By Lemma 4. 5,
there exists a subsequence (f_{n_{k}}) of (f_{n}) such that (\nu*f_{n_{k}}) converges to \nu*f

in L^{p}(\sigma) . Since spec(\nu*f_{n_{k}}) is contained in V_{a}\cap\Lambda , spec(\nu*f) is also
contained in V_{a}\cap\Lambda . Since \alpha\not\in V_{a}\cap\Lambda , \alpha*\nu*f=0 , and so \hat{\nu}(\alpha)(\alpha*f)=0 .
But by (2), \overline{\nu}(\alpha)=1 . This implies that \alpha*f=0 . And spec f is contained
in \Lambda .

PPOPOSITION 4. 6. The class \mathscr{C}_{0}=\{\Lambda\subset\overline{G}:\forall\mu\in \mathscr{M}_{\Lambda}(X), \mu_{S}\in \mathscr{M}_{\Lambda}(X)\}

is localizable.

PROOF. Let \Lambda\subset\hat{G} be such that \forall\alpha\in\hat{G} , \exists V_{a} , V_{a}\cap\Lambda\in \mathscr{C}_{0} . Let \mu be
in \mathscr{M}_{\Lambda}(X) . We have to show that spec \mu_{s} is contained in \Lambda . Let \alpha\not\in\Lambda .
There exists a discrete measure \nu on G satisfying (2) and spec (\nu*\mu) is
contained in V_{a}\cap\Lambda . Therefore spec (\nu*\mu)_{s}=spec(\nu*\mu_{s}) is also contained
in V_{a}\cap\Lambda . But \alpha\not\in V_{a}\cap\Lambda . Then 0=\alpha*\nu*\mu_{s}=\alpha*\mu_{s} . And spec\mu_{s} .

REMARK. Yamaguchi’s result [18, 19] says that the class \mathscr{C}0 contains
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the Riesz subsets of \hat{G} . This class \mathscr{C}_{0} also contains the nicely placed sub-
sets of \overline{G}[7] .

Let \mathscr{C}\subset \mathscr{P}(\hat{G}) be a family of subsets of \hat{G} . Let \mathscr{C}^{0} be the biggest
hereditary class contained in \mathscr{C}

Of course, if \mathscr{C} is (strongly) localizable, then \mathscr{C}^{0} is also (strongly)
localizable.

COROLLARY 4. 7. Suppose \sigma\in \mathscr{M}^{+}(X) . Then the class of \sigma- Shapiro
sets is localizable.

COROLLARY 4. 8. The class \mathscr{C}_{0}^{0} is localizable.

PROPOSITION 4. 9. Let \Lambda be in \mathscr{C}_{0}^{0} , then \Lambda is a N(\sigma)-Riesz set.

PROOF. We can prove the proposition as we proved Lemma 3. 12.

From the remark and Proposition 4. 9, we get the following theorem:

THEOREM 4. 10. Every Riesz subset of \overline{G} is a N(\sigma)-Riesz set.

COROLLARY 4. 11. When N(\sigma)=\mathscr{M}(X) , every Riesz subset of \overline{G} is a
\sigma- Riesz set.

Let us come back again to our Example 1. 3. In this case, we obtain
a nice characterization of Riesz subsets of Z.

PROPOSITION 4. 12. Let (G, X) be as in Example 1. 3. Let \Lambda be a

subset of \overline{G}. Then \Lambda is Riesz if and only if \Lambda is N(\sigma)-Riesz

PROOF. Suppose that L_{\Lambda}^{1}(\sigma)=N_{\Lambda}(\sigma) . Let \nu be in \mathscr{M}_{\Lambda}(T) . Consider

\mu in N(\sigma) defined for Y\subset T\cross T by \mu(Y)=\int_{T}I_{Y}(1, g)dg . The measure
\nu*\mu is in N_{\Lambda}(\sigma) . Let K_{1} and K_{2} be compact subsets of T such that m_{T}(K_{1})

=0 and m_{T}(K_{2})\neq 0 . Consider K=K_{1}\cross K_{2} . Then \sigma(K)=0 and (\nu*\mu)(K)=

0 . But (\nu*\mu)(K)=\nu(K_{1})\cdot m_{T}(K_{2}) . It follows that \nu(K_{1})=0 . Thus \nu is
absolutely continuous with respect to m_{T} and \Lambda is a Riesz set. The con-
verse implication follows from Theorem 4. 10.

Let us also mention the following transfer result : when G is metriza-
ble, if \Lambda\subset\overline{G} is \tau-closed, then \Lambda is \sigma-nicely placed. This result follows
from the fact that a \tau-closed subset of \overline{G} is nicely placed [9] and from
Theorem 2.1.

5-Lacunarity and geometry of Banach spaces

Lust-Piquard got a nice characterization of Riesz sets [13] : let G be
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a compact abelian group, a subset \Lambda of \overline{G} is a Riesz set if and only if the
space L_{\Lambda}^{1}(G) has the Radon-Nikodym property. Finet extended this result
to the compact non abelian group case and the hypergroup case [6]. Let
us recall that a Banach space Y has the Radon-Nikodym Property (R.N.P.)
if and only if every linear continuous operator T : L^{1}(\Omega, \mathscr{A}, \mu) – Y
(where \mu is a probability measure) is representable by a Y-valued strongly
ly \mu-measurable and bounded function F, that is

\forall\varphi\in L^{1}(\Omega, \mathscr{A}, \mu) T( \varphi)=\int_{\Omega}\varphi(\omega)F(\omega)d\mu(\omega)

In this situation, we get

THEOREM 5. 1. Let (G, X) be a transformation group with X metr-
izable, Let \sigma be a quasi-invariant measure in \mathscr{M}^{+}(X) . If L_{\Lambda}^{1}(\sigma) has
R.N.P., then \Lambda is N(\sigma)-Riesz set.

PROOF. Let \mu be in N_{\Lambda}(\sigma) and define the operator T_{\mu} on L^{1}(G) by
T_{\mu}(f)=f*\mu . As \mu is in N_{\Lambda}(\sigma) , f*\mu is in L_{\Lambda}^{1}(\sigma) . For f in L^{1}(G) and \Theta in
\mathscr{K}(X)

(f* \mu)(\Theta)=\int_{G}f(g)[\int_{X}\Theta(g\cdot x)d\mu(x)]dg

= \int_{G}f(g)(\delta_{g}*\mu)(\Theta)dg .

The space L_{\Lambda}^{1}(\sigma) has R.N.P., then for almost all g in G, \delta_{g}*\mu is in L^{1}(\sigma) .
Thus for almost all g in G, the measure \delta_{g-1}*(\delta_{g}*\mu) is in L^{1}(\sigma) (since for
a quasi-invariant positive measure \sigma , \mathscr{M}(G)*L^{1}(\sigma)\subset L^{1}(\sigma)) . Thus \mu is in
L^{1}(\sigma) and \Lambda is a N(\sigma)-Riesz set.

Bachelis and Ebenstein showed that a subset \Lambda of \hat{G} is \Lambda(1) if and
only if L_{\Lambda}^{1}(G) is reflexive [2], (see also [6]). A similar proof gives:

PROPOSITION 5. 2. Let \sigma be a quasi-invariant measure in \mathscr{M}^{+}(X) .
If \Lambda\subset\overline{G} is \sigma-\Lambda(1) then L_{\Lambda}^{1}(\sigma) is reflexive.

COROLLARY 5. 3. Let (G, X) be a transformation group with X metr-
izable and let \sigma be quasi-invariant measure in \mathscr{M}^{+}(X) . If \Lambda\subset\hat{G} is
\sigma-\Lambda(1) , then \Lambda is a N(\sigma)-Riesz set.

PROOF. The corollary follows from the fact that a reflexive Banach
space has R.N.P.

We are now concerned with the question : what can be said on L_{\Lambda}^{1}(G)
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if L_{\Lambda}^{1}(\sigma) has R.N.P. ? Let us recall a definition :

DEFINITION 5. 4. Let (G, X) be a transformation group. We say
that G acts freely on X if for any x in X, the map g->g.x is one-t0-0ne.

A trivial example is the transformation group (G, X) , when G is a
compact abelian subgroup of a locally compact group X.

We get the following result:

THEOREM 5. 5. Let (G, X) be a transformation group with X metr-
izable. Suppose that G acts freely on X. Let \sigma be a quasi-invariant mea-
sure in \mathscr{M}^{+}(X) and \Lambda be a subset of \overline{G}. If L_{\Lambda}^{1}(\sigma) has R.N.P., then L_{\Lambda}^{1}(G)

also has R.N.P.

PROOF. It is equivalent to prove that \Lambda is a Riesz set. Let \mu be in
\mathscr{M}\Lambda(G) . We define the operator T_{\mu} on L_{\Lambda}^{1}(\sigma) by T_{\mu}(f)=\mu*f . We have
that T_{\mu}(f) is in L_{\Lambda}^{1}(\sigma) . For f in L^{1}(\sigma) and \Theta in \mathscr{M}(X) :

( \mu*f)(\Theta)=\int_{X}f(x)[\int_{G}\Theta(g.x)d\mu(g)]d\sigma(x)

= \int_{X}f(x)(\mu*\delta_{X})(\Theta)d\sigma(x)

As the space L_{\Lambda}^{1}(\sigma) has R.N.P., it follows that for almost all x in X, \mu*\delta_{x}

is in L^{1}(\sigma) . We will show that this implies that \mu is in L^{1}(G) . Let K be
a Borel subset of G such that m_{G}(K)=0 . Then, for all x in X, m_{G}(\{g\in G ,

g.x\in K.x\})=0 . Therefore \int_{X}\int_{G}I_{K.X}(g.x)dgd\sigma(x)=0 . And, for almost all g

in G , \int_{X}I_{K.x}(g.x)d\sigma(x)=0 . But this last integral is exactly \sigma(g^{-1}K.x) .

Since \sigma is quasi-invariant, it follows that \sigma(K.x)=0 for all x in X. And,

for almost all x in X, (\mu*\delta_{x})(K.x)=0 . That is \int_{G}I_{K.X}(g.x)d\mu(g)=0 .

Hence \mu(K)=0 since the map g }arrow g.x is one-t0-0ne.

COROLLARY 5. 6. Let (G, X) be a transformation group, where G acts
freely on X. Let \sigma be a quasi-invariant measure in \mathscr{M}^{+}(X) . If \Lambda\subset\hat{G} is
a \sigma- Riesz set, then \Lambda is a Riesz set.
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