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On a new class of rigid Coxeter groups
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Abstract. In this paper, we give a new class of rigid Coxeter groups, which is an

extension of [9] and a result of D. Radcliffe in [10].

Key words: rigidity of Coxeter groups.

1. Introduction and preliminaries

The purpose of this paper is to give a new class of rigid Coxeter groups.
A Coxeter group is a group W having a presentation

〈S | (st)m(s,t) = 1 for s, t ∈ S〉,

where S is a finite set and m : S×S → N∪{∞} is a function satisfying the
following conditions:

( i ) m(s, t) = m(t, s) for any s, t ∈ S,
( ii ) m(s, s) = 1 for any s ∈ S, and
(iii) m(s, t) ≥ 2 for any s, t ∈ S such that s 6= t.

The pair (W,S) is called a Coxeter system. For a Coxeter group W , a
generating set S′ of W is called a Coxeter generating set for W if (W,S′)
is a Coxeter system. Let (W,S) be a Coxeter system. For a subset T ⊂ S,
WT is defined as the subgroup of W generated by T , and called a parabolic
subgroup. A subset T ⊂ S is called a spherical subset of S, if the parabolic
subgroup WT is finite.

Let (W,S) and (W ′, S′) be Coxeter systems. Two Coxeter systems
(W,S) and (W ′, S′) are said to be isomorphic, if there exists a bijection
ψ : S → S′ such that

m(s, t) = m′(ψ(s), ψ(t))
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for every s, t ∈ S, where m(s, t) and m′(s′, t′) are the values appeared in
the Coxeter presentations of (W,S) and (W ′, S′), and we note that it is
known that m(s, t) and m′(s′, t′) are the orders of st in W and s′t′ in W ′,
respectively.

A diagram is an undirected graph Γ without loops or multiple edges
with a map Edges(Γ) → {2, 3, 4, . . .} which assigns an integer greater than 1
to each of its edges. Since such diagrams are used to define Coxeter systems,
they are called Coxeter diagrams.

In general, a Coxeter group does not always determine its Coxeter sys-
tem up to isomorphism. Indeed some counter-examples are known (cf. [4],
[5]). Here there exists the following natural problem.

Problem ([5]) When does a Coxeter group determine its Coxeter system
up to isomorphism?

A Coxeter group W is said to be rigid, if the Coxeter group W de-
termines its Coxeter system up to isomorphism (i.e., for each Coxeter gen-
erating sets S and S′ for W the Coxeter systems (W,S) and (W,S′) are
isomorphic).

We can find some research on rigidity of Coxeter groups in [1], [2], [5],
[6], [7], [8], [9] and [10].

A Coxeter system (W,S) is said to be even, if m(s, t) is even or ∞ for
all s 6= t in S. Also a Coxeter system (W,S) is said to be strongly even, if
m(s, t) ∈ {2} ∪ 4N ∪ {∞} for all s 6= t in S. In [1], [2] and [3], P. Bahls and
M. Mihalik have investigated even Coxeter systems. Concerning strongly
even Coxeter systems, the following theorem was proved by D. Radcliffe
in [10] (in [10], strongly even Coxeter systems are called “even” Coxeter
systems).

Theorem 1.1 ([10]) If (W,S) is a strongly even Coxeter system, then the
Coxeter group W is rigid.

In this paper, we say that a Coxeter system (W,S) satisfies the condition
(∗), if (W,S) satisfies the following conditions:

(0) for each s, t ∈ S such that m(s, t) is even, m(s, t) ∈ {2} ∪ 4N,
(1) for each s 6= t ∈ S such that m(s, t) is odd, {s, t} is a maximal spherical

subset of S,
(2) there does not exist a three-points subset {s, t, u} ⊂ S such that m(s, t)
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and m(t, u) are odd, and
(3) for each s 6= t ∈ S such that m(s, t) is odd, there exists at most one max-

imal spherical subset of S that is different from {s, t} and intersecting
with {s, t}.
The purpose of this paper is to prove the following theorem which is

an extension of Theorem 1.1 and [9, Theorem 1.2]. (In [9, Theorem 1.2],
we needed the condition that for each s, t ∈ S such that m(s, t) is even,
m(s, t) = 2.)

Theorem 1.2 Let (W,S) be a Coxeter system which satisfies the condition
(∗). Then the Coxeter group W is rigid.

The condition (∗) is somewhat technical. However the class of Coxeter
systems satisfying the condition (∗) is large.

Example The Coxeter groups defined by the diagrams in Figure 1 are
rigid by Theorem 1.2.
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Figure 1. Coxeter diagrams for rigid Coxeter groups

Now, we introduce that we can not omit some conditions in the condition
(∗).
Example ([4, p. 38 Exercise 8], [5]) It is known that for an odd number
k ≥ 3, the Coxeter groups defined by the diagrams in Figure 2 are isomorphic
and D2k.

Hence, we can not omit the conditions (0) and (1) in the condition (∗).
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Figure 2. Two distinct Coxeter diagrams for D2k

Example ([5]) It is known that the Coxeter groups defined by the di-
agrams in Figure 3 are isomorphic by the diagram twisting ([5, Definition
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4.4]).
Hence, we can not omit the condition (3) in the condition (∗).
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Figure 3. Coxeter diagrams for isomorphic Coxeter groups

2. Proof of the theorem

Let (W,S) be a Coxeter system which satisfies the condition (∗). Let
(W ′, S′) be a Coxeter system. We suppose that there exists an isomorphism
φ : W → W ′. To prove Theorem 1.2, we show that the Coxeter systems
(W,S) and (W ′, S′) are isomorphic.

The following lemma is known.

Lemma 2.1 (cf. [5]) For each maximal spherical subset T ⊂ S, there
exists a unique maximal spherical subset T ′ ⊂ S′ such that φ(WT ) =
w′W ′

T ′w
′−1 for some w′ ∈ W ′, i.e., φ(WT ) ∼ W ′

T ′ . Here we denote A ∼ B

if A and B are conjugate.

We first prove the following lemma.

Lemma 2.2 The Coxeter system (W ′, S′) satisfies the condition (∗), i.e.,

(0′) for each s′, t′ ∈ S′ such that m′(s′, t′) is even, m′(s′, t′) ∈ {2} ∪ 4N,
(1′) for each s′ 6= t′ ∈ S′ such that m′(s′, t′) is odd, {s′, t′} is a maximal

spherical subset of S′,
(2′) there does not exist a three-points subset {s′, t′, u′} ⊂ S′ such that

m′(s′, t′) and m′(t′, u′) are odd, and
(3′) for each s′ 6= t′ ∈ S′ such that m′(s′, t′) is odd, there exists at most

one maximal spherical subset of S′ that is different from {s′, t′} and
intersecting with {s′, t′}.

Proof. Let s′ 6= t′ ∈ S′ with m′(s′, t′) < ∞. There exists a maximal
spherical subset T ′ of S′ such that {s′, t′} ⊂ T ′. By Lemma 2.1, φ−1(W ′

T ′) ∼
WT for some maximal spherical subset T of S. By (0) and (1), either
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( i ) (WT , T ) is a strongly even Coxeter system, or
( ii ) |T | = 2 and if T = {s, t} then m(s, t) is odd.

Hence WT is a rigid Coxeter group by Theorem 1.1 and [8], and (WT , T ) and
(W ′

T ′ , T
′) are isomorphic. Thus if m′(s′, t′) is even then m′(s′, t′) ∈ {2}∪4N,

and if m′(s′, t′) is odd then {s′, t′} is a maximal spherical subset of S′. Hence
(0′) and (1′) hold. We can show (2′) and (3′) by the same argument as the
proof of [9, Lemma 3.1] ¤

Let A and A′ be the sets of all maximal spherical subsets of S and S′,
respectively. For each T ∈ A, there exists a unique element T ′ ∈ A′ such
that φ(WT ) ∼ W ′

T ′ by Lemma 2.1.
We define

S̄ =
⋃
{T ∈ A | (WT , T ) is strongly even}

S̄′ =
⋃
{T ′ ∈ A′ | (W ′

T ′ , T
′) is strongly even}.

We note that (WS̄ , S̄) and (WS̄′ , S̄
′) are strongly even. Also we note that

for each s ∈ S \ S̄, there exists a unique element t ∈ S \{s} such that m(s, t)
is odd. Then m(s, u) = ∞ for any u ∈ S \ {s, t} by the condition (∗).

Let W ab and W ′ab be the abelianizations of W and W ′ respectively,
and let π : W → W ab and π′ : W ′ → W ′ab be the abelianization maps.

We can obtain the following lemma by the same argument as the proof
of [10, Theorem 4.4], since (WS̄ , S̄) is strongly even.

Lemma 2.3 If A and B are subsets of S̄ and π(WA) = π(WB), then
A = B.

For A ⊂ S̄ and A′ ⊂ S̄′, we denote AτA′ if π′(φ(WA)) = π′(W ′
A′).

We can obtain the following lemma by the same argument as the proof
of [10, Theorem 4.5].

Lemma 2.4 Let A and B be subsets of S̄ and let A′ and B′ be subsets of
S̄′.

( i ) If AτA′ and BτA′ then A = B.
( ii ) If AτA′ and AτB′ then A′ = B′.
(iii) If AτA′ and BτB′ then (A ∩B)τ(A′ ∩B′).

We obtain the following lemma from Lemmas 2.3 and 2.4.
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Lemma 2.5 Let A and B be subsets of S̄ and let A′ and B′ be subsets of
S̄′. If AτA′, BτB′ and A ⊂ B, then A′ ⊂ B′.

Proof. Suppose that AτA′, BτB′ and A ⊂ B. By Lemma 2.4 (iii), (A ∩
B)τ(A′ ∩ B′). Since A ⊂ B, Aτ(A′ ∩ B′). Now AτA′. By Lemma 2.4 (ii),
A′ = A′ ∩B′, i.e., A′ ⊂ B′. ¤

A subset T of S is said to be independent, if m(s, t) = 2 for all s 6= t

in T . We note that if T is an independent subset of S then WT
∼= Z|T |2 .

Let B and B′ be the sets of all maximal independent subsets of S̄ and S̄′,
respectively.

We show the following lemma which corresponds to [10, Theorem 4.7].

Lemma 2.6 For each T ∈ B, there exists a unique T ′ ∈ B′ such that
TτT ′.

Proof. Let T ∈ B. Then there exists U ∈ A such that T ⊂ U ⊂ S̄. By
Lemma 2.1, φ(WU ) = w′W ′

U ′w
′−1 for some U ′ ∈ A′ and w′ ∈ W ′. Here

φ : WU → w′W ′
U ′w

′−1 is an isomorphism and (WU , U) and (W ′
U ′ , U

′) are
strongly even. By the proof of [10, Theorem 4.7], there exists a unique
independent subset T ′ of U ′ such that TτT ′. We show that T ′ is a maximal
independent subset of S̄′. Suppose that T ′ ⊂ T ′0 and T ′0 is an independent
subset of S̄′. Then by the above argument, there exists an independent
subset T0 of S̄ such that T0τT ′0. Since T ′ ⊂ T ′0, T ⊂ T0 by Lemma 2.5.
Hence T = T0 because T is a maximal independent subset of S̄. By Lemma
2.4 (ii), T ′ = T ′0. Thus T ′ is a maximal independent subset of S̄′, i.e.,
T ′ ∈ B′ which is a unique element such that TτT ′. ¤

We can obtain the following lemma from Lemmas 2.4 (iii) and 2.6 and
the proof of [10, Theorem 4.8].

Lemma 2.7 Let T1, . . . , Tk ∈ A ∪ B and T ′1, . . . , T
′
k ∈ A′ ∪ B′ such that

Ti ⊂ S̄ and TiτT ′i for each i = 1, . . . , k. Then |T1∩· · ·∩Tk| = |T ′1∩· · ·∩T ′k|.
Lemma 2.7 implies that there exists a bijection ψ̄ : S̄ → S̄′ such that for

each s ∈ S̄ and T ∈ A∪B with T ⊂ S̄, s ∈ T if and only if ψ̄(s) ∈ T ′, where
T ′ is the element of A′ ∪ B′ such that TτT ′ (cf. [10]). By the proof of [10,
Theorem 4.11], the bijection ψ̄ : S̄ → S̄′ induces an isomorphism between
the Coxeter systems (WS̄ , S̄) and (WS̄′ , S̄

′).
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Here we note that we can construct ψ̄ : S̄ → S̄′ so that ψ̄(t) = t′ for each
t ∈ S̄ and t′ ∈ S̄′ such that {t}τ{t′}. Indeed, suppose that {t}τ{t′} (such t′

is unique, since (WS̄ , S̄) and (W ′̄
S′ , S̄

′) are even). Then for T ∈ A ∪ B with
T ⊂ S̄ and T ′ ∈ A′ ∪ B′ such that TτT ′, t ∈ T if and only if t′ ∈ T ′ by
Lemma 2.5.

Using the above argument, we show the following.

Theorem 2.8 The Coxeter systems (W,S) and (W ′, S′) are isomorphic.

Proof. We define a bijection ψ : S → S′ as follows: Let s ∈ S. If s ∈ S̄ then
we define ψ(s) = ψ̄(s). Suppose that s ∈ S \ S̄. Then there exists a unique
element t ∈ S \{s} such that m(s, t) is odd. Here we note that m(s, u) = ∞
for any u ∈ S \ {s, t}. Now either t ∈ S̄ or t 6∈ S̄. We first suppose that
t 6∈ S̄, i.e., {s, t} ⊂ S \ S̄. Then {T ∈ A | T ∩ {s, t} 6= ∅} = {{s, t}}. There
exists a unique {s′, t′} ∈ A′ such that φ(W{s,t}) ∼ W ′

{s′,t′} by Lemma 2.1.
Here {s′, t′} ⊂ S′ \ S̄′ by [9, Lemma 2.6]. We define ψ(s) = s′ and ψ(t) = t′.
Next we suppose that t ∈ S̄. Then |{T ∈ A |T ∩ {s, t} 6= ∅}| = 2, and there
exists a unique T ∈ A such that t ∈ T ⊂ S̄. By Lemma 2.1, there exist
unique {s′, t′}, T ′ ∈ A′ such that φ(W{s,t}) ∼ W ′

{s′,t′} and φ(WT ) ∼ W ′
T ′ .

The proof of [9, Lemma 2.6] implies that {s′, t′}∩T ′ 6= ∅ and φ(t) ∼ s′ ∼ t′.
We may suppose that t′ ∈ T ′. Then ψ̄(t) = t′ because {t}τ{t′} by Lemma
2.4 (iii). We define ψ(s) = s′.

Then the bijection ψ : S → S′ induces an isomorphism between the
Coxeter systems (W,S) and (W ′, S′) by the construction of ψ. ¤
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